
TR-IT-0253

Internal Use Only
OOr!

A User Interface for Cha tr

Robert Grau

February 1998

Chatr is a powerful system and I like the quality of the speech synthesis, but the
Unix style command line interface is not intuitive and the current code (Feb 98,
V0.93) is not at all easy to understand. To improve the first disadvantage and to
encourage some work on the second I had some ideas to build a native
Windows 32 bit application with a graphical user interface. Due to my short
stay at ATR (14 weeks) and the fact that I had to specify everything by myself it
was obvious that I could not finish the job, so I will provide this documentation
to help other people understanding my code without having to learn Visual C++
for some months.

cATR Interpreting Telecommunications
Research Laboratories

cA TR Interpreting Telecommunications Research Laboratories

Contents

1 INTRODUCTION….. ………………………………………………………………………………………….5

1.1 OBJECTIVES ... 5
1.2 MY FIRST IMPRESSION OF CHA TR ... 6

1.3 ZEN AND THE ART OF WINDOWS PROGRAMMING……………………………・ …………………….. 7
1.4 A QUICK AND DIRTY GUIDE TO C++ ... 8

2 GUI…….9

2.1 FRAME WINDOW .. 9

2. I. I Input Window .. I 0
2.1.2 Info Window
2.1.3 Output Wind盃：：：：：．●：：： ::

10
10

2.1.4 Menubar and Toolbars ... 11
2.2 PROPERTY SHEET
2.2.1 Introduction・:::: .. : .. : .. : .. : : .. : :: : :: : : :: .. :: 12

12

2.2.2 Buttons .. : ... 13
2.2.3 Property Page General
2.2.4 Udb-Page :::

13
13

2.2.5 Concat

2.3 HELP SYSTE~·::
13
14

2.3.1 Windows Help System .. ・・・・・............・・・・・・・・....14
2.3.2 Command Line Assistant .. 15

2.4 TECHNICAL OVERVIEW OF GUI CODE .. ….... 16
2.4.1 How to access the code ... 16
2.4.2 The Frame Window ... 18

： !:! ~~: 塁二；~·;:::~i
2.ff'~UL~;~~ 勺 H゚二~:~~~~・::::::::::::::::::::::::::::::::-::~『
2.6 CUSTOMIZING THE GUI. ... 22
2.6.1 How to modify a Property Page .. ,, 22

;~:~ 靡:~::芯腐:h認［；二：：：：：：：．．：：：：：．．．．．．．：：：：：：：．．．．．．：．．：：．：：：：．：：．．：：：：．．：．：：．．：：：：：．．：：：：：．：．．：．：：：．．：：．．：：：：：：．．：．：ぢ

゜

゜

2

Technical Report R.Grau (TR-IT-0253)

cATR Interpreting Telecommunications Research Laboratories

3

4

5

6

MODULES……………... …………………………………••………………………………………………….. 23
3 .1 A PROPOSAL FOR CHA TR MODULES …・・23

::~:; g。:::::〗贔;i玩：．．：：：：：：：：：：：．．．．：：：：．．：：：：：．．：：．．：．．．．：：．．．．：．．：：：：：．．：：：：：．．：：：：：：．．：：：：：．．．．：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：：．．：：：：；：
3.1.3 Problems ... 25

3.23.; い悶：二~~~:::::::::::::: : : :: : :: : : : : :: : : : : : :: :: : : :: : : : : : : : : : : : :: :: : : : : : : : : :: :: : : : : : : : : : : :~~
3.2.2 Comand Module .. 27

3.2.3 Utterance Module
3.2.4 Udb Module :::

28

29
3.2.5 Concat ... 29

3.3 THEDATAMODULES ... 30

::::; : ご：：：：：：： ::~
3.3.3 Environment .. 31

CONCLUSION ………••……………………………………………………••……………………………….. 32
4.1 THERESULTOFMYWORK ... 32

］：；冒~~=ご。~:·ぷ函贔：：：：：：：：：：：：：：：□□：：：：．．：：：．．：：：：：：：：：：：：：：：：：：：．．：：：：：：：：：：：：：：：：：：．．：：：：：：：：：：：：：：：：：：：：：．．：：］：

4.3.1 Infrastructure
4.3.2 Software and五五羞盃;~::34

34

BIBLIOGRAPHY……•……………………………………………………………………………………….. 35

LISTINGS & RECEIPTS ………………………………………………••…………………………………36

6.1 A NESTED SPLIT WINDOW .. 36

6.2 AUDIO OUTPUT・・39
6.2.1 Simple Highlevel Output ... 39
6.2.2 Low Level Audio ... 43

6.2.3 Streamed Low Level Audio Output for Unit Concatenation ………•• …•……………… 46

Technical Report R.Grau (TR-IT-0253) 3

cATR Interpreting Telecommunications Research Laboratories

Glossary

Button Typical Windows control item that can be "pressed".

C++ Programming language built on C that features encapsulation, inherritage,

polymorphism, see [STR] or [KRU].

Check Box Windows control item that looks like図

Class C++ structure that can have member functions and variables.

Combo Box Field (editable or not) with an arrow at the right border that drops down a

list of items.

DOS Saying "DOS" the rnost people think of MS-DOS, "Microsoft Disk

Operating System". Old fashioned 16Bit operating system with a command

line interface. See my introduction to Windows in para四aph1.3.

Endian Little/Big Endian means least/most significant byte FIRST (the word

"endian" is a bit ambiguous). See 3 .1.3.

Hungarian Building up names for variables or objects like "typeNameOfVariable"

Notation (e.g. int nLoop;)
Integer n

String str

Bool b

Double d

Float f

Filehandle file

rn_…for member variables (e.g. m_b Valid)
g_…for global variables (e.g. g_ dPi)
C ... for class declarations (e.g. CMainFrame)

Icon Symbol that activates a specific program or process.

List Box Scrollable data field

Message Information that is used in a Windows program to communicate between or

within processes.

Method Other name for member function of a class.

Microsoft Huge software company from Redmond, US.

MFC Microsoft Foundation Class -a huge library that provides many powerful

functions and classes for programming, you only have to know it's

possibilities.

Object allocated memory that has the q叫 itiesof a corresponding abstract
declaration like a variable type, class or structure. E.g. the command "int
i;" will create an object of type'、Integer"named "i".

Radio Button Windows control item that looks like 0 that can be grouped.

Thread Other word for process. In a Windows system multiple threads can be

executed "simultaneously", but it takes some special programming
techniques to synchronize them (see [KRU] or 2.5).

Visual C++ C++ Compiler from Microsoft with a very powerful GUI.

Wave file File with a specific format. Windows uses RIFF files with the extension
.WA V that have a header and may contain additional info at the end.

Windows Graphical User Interface and Operating System from Microsoft.

ベー

1

’

_

，

9
,

負

4

Technical Report R.Grau (TR-IT-0253)

cATR Interpreting Telecommunications Research Laboratories

1 Introduction

At the beginning of this report I want to introduce myself. My name is Robert Grau, I'm a
native German electrical engineer with emphasis on information technology, acoustics and
human machine interaction and I have written l 6Bit Windows Applications before my stay at
ATR. I am not a believer in Microsoft, but for practical reasons I use their powerful

applications.
My scientific background is the Institute for Human Machine Communication (MMK) of the

Munich University of Technology (TUM), the former institute of acoustics (former head:
E.Zwicker). Members of this institute are M.Lang (general chair ICASSP 97), H.Fastl (psycho
acoustics), Terhardt (acoustics) and G.Ruske (speech processing). My last project was a word
level speech concatenation system for BMW car navigation systems with the emphasis on

natural sound.
My stay at ATR was very short, so I was asked to improve some programming aspects of

Chatr.

1.1 Objectives

My task at ATR was to build a Graphical User Interface for the Unix based speech synthesis
software Chatr using Microsoft Windows and to design interfaces for software modules to
simplify building in classic Chatr functions later.

My GUI should be able to access Chatr modules (these should be almost platform

independent), and it should be possible for a C++ programmer without or little Windows
programming knowledge to modify my code. Therefore my code has to consist of clearly

written and documented modules completely separated from the Chatr Kernel. That Kernel

has to be written by someone else redesigning the old Chatr C code with C++ and to make the
Chatr core run on other systems, the code should be as portable as possible.

So I created a Graphical User Interface with many windows, buttons and menus described in
Chapter 2, that should be easy to use for both newcomers and experts. Paragraph 2.6 deals
with the modification of the existing interface.

To give other programmers an idea how to build up an interface between my code and their
code I defined some Chatr modules, some of them with dummy code just to make my

application run, others with real code like the Concat module with the streamed audio output.

Check out Chapter 3.
To summarize what I have done and to give an outlook on future activities I wrote C~apter 4.
After a short bibliography (Chapter 5) I will finally list a few receipts how to obtam some
goals using Visual C++ in Chapter 6.

Technical Report R.Grau (TR-IT-0253) 5

cA TR Interpreting Telecommunications Research Laboratories

1.2 My first Impression of Chatr

Before talking about Windows I want to write some lines concerning Chatr version 0.93
11/97. Chatr is a really powerful speech synthesizer and the best one I have ever heard, but its

strength and weakness are the same: the database and the unit selection.
As a German native speaker I had a closer look at the KKO database with its charming voice

of Klaus Koehler. The database consists of several recording sessions with different recording

methods that result in some audible discontinuities. Due to Koehler's characteristic (and in my
opinion a bit British) way of pronouncing, the many similar sentences of recording and the
English intonation module the synthesis of a sentence like "an der naechsten Kreuzung links

abbiegen" ("at the next crossing tum left") sounds awful. Maybe new units from spontaneous

speech and a German intonation module can help to improve this.

Anyway, with the parameters recommended by my predecessor Caren Brinckmann [BRI] the
generated speech has some jitter in it due to prosodic discontinuities at concatenation points.

To improve this I changed the weights of unit costs and join costs from 5.0 and 1.0 to 1.0 and
5.0. The result is obvious but in my opinion significant: the utterance will sound fluent due to
the better joining units, the prosody will sound natural because many units will be taken in a
row from a database utterance, but -of course -the fO time function might be far away from

the given or predicted target.

To judge by yourself, select the database (speaker_ KKO), and try:

(SayText "Frohe Weihnachten und ein gutes neues Jahr")

Now change the weights by:

(set nus kko_params'((join_wt 5. 0) (unit wt 1. 0)))

Try the first line again. Do you agree with me ?

By the way, there were two things I didn't like (therefore I started this Windows project):

• it took me several days to understand how to make Chatr do what I want due to it's not

very intuitive command line interface and the huge documentation that has no pictures in
it (I was told the latter has technical reasons).

• when I had a look at the code I was just frightened by the many different programming
styles, modules, global variables, hard coded variables and comments saying "this is an

old function".

7

So my first thought was: "someone should rewrite everything in C++ code with specified
interfaces and encapsulated data", and the second thought was: "a graphical user interface

(like the useful Chlnspect application) would be nice". The third thought was: "I definitely
don't want to be the one for the first job" so I decided to do the second as I had some
experience with Windows applications :-)

6

Technical Report R.Grau (TR-IT-0253)

cA TR Interpreting Telecommunications Research Laboratories

1.3 Zen and the Art of Windows Programming

"Working with Windows requires deep inner peace of your mind"

There are many people that don't like Microsoft and their aggressive marketing strategy. But
if you take a look at some pieces of software like Visual C++ (here Version 4.0) you can't
deny that the Graphical User Interface (GUりhassome advantages compared to a command
line driven interface, often experienced with Unix systems. So building a Windows
application is not only useful due to Windows-is-the-standard-reasons, but also because of
some aspects of human machine interaction.
People who are not familiar with Windows applications should know the following facts:

• There are several versions on the market (Windows 3.lx, 95, NT3.51, NT4.0 and the new
98), I worked with Win95 because by now it runs stable and the system requirements are
not too high, so it will run on laptops, too (the application should also run under NT).

• DOS is an old 16Bit operating system that interacts somehow with Windows 95 (although
Microsoft will deny that), but without special tricks it can't access Windows 95 functions.

• There are several improvements in Win95 compared to Win3.lx that make the life of a
programmer MUCH easier (e.g. memory management: Win95 uses 32Bit addresses,
Win3.lx uses 16Bit segment addresses and audio functions need locking of memory), so if
you got frustrated with earlier versions try out Win95.

• According to David Kruglinsky [KRU], the learning curve for Windows programming and
C++ is several months, but to understand this code you sh叫 dknow C++ and how to
operate standard Windows applications.

If you are still interested in Windows programming (or if you have to) get the Kruglinsky
book first. Anyway, here is some information on programming with Visual C++:

• Your program has to provide functions that handle "messages" from the operating system
(so exactly the other way round like "normal").

• The Application Wizard provides a code skeleton and many default functions and handles
that won't be visible. It will create several classes with member functions and variables.

• There are graphical tools to build resources like dialogs.

• Every item of your graphical user interface has an ID value that has to be mapped with a
specific method.

• If you are not satisfied with a default handler you have to override it -in other words: if
the automatically generated code won't work you have to do it "manually".

• To edit a function double-click it's name in the tree style Class View, this is very
effective.

Although Visual C++ is very powerful there are many traps for the newcomer, so:

• backup VERY often, because it's hard to undo wizard actions (you have to erase files and
edit the .clw file manually-like in Goethe's Faust: "The devils I called").

• if you want to create a graphical resource, specify FIRST what you want to do.

• make use of the online help, if you got used to it it's extremely helpful.

• if you got stuck don't worry, this happened to me all the time.

Enjoy.

Technical Report R.Grau (TR-IT-0253) 7

cATR Interpreting Telecommunications Research Laboratories

1.4 A Quick and Dirty Guide to C++

Writing C++ code is not very difficult, but if you are used to C you have to change your point

of view a bit. First of all get a C++ book (to understand it, the short paragraph in the appendix

of the 4.0 Version of the Kruglinsky book [KRU] should be sufficient).

C Code

In C code you have many functions and maybe a header file for the definition of all the global
variables. The most people group functions by using source code files organized in directories.
So if you are new to a program the only hints you have are the filenames and the function

names (and the comments if the programmer(s) was/were nice).
If you look at the header file(s) you will see all global variables, but you don't know which

functions will access them (only if the variables have names like

"accessed_ by_ functionx_that_ does _this_ and_ that").

C++ Code

In C++ you will encapsulate functions and data. So if there are functions with a similar
purpose like unit selection, we can put them together in a class. There are functions that may
be called from outside the class and there may be functions that are only called within our
class. The former are candidates for public member functions, the latter for protected ones.

Then there is data that should be available for all these functions like global data, but some of

these variables might be only necessary within the class. These are candidates for protected
member variables. If there are variables that might be accessed from outside you can declare

them as public. Initialization can be done in the constructor or in an extra function.

So if you look at the class definition you will see the class name that should have something to
do with the functionality of the member functions (e.g. class CConcat). You will identify

public member functions and you know you can use these from outside. The protected
members are not interesting for you if you just want to use the module without changing it, so

you can forget them(!). It's the same with the member variables, if you are only interested in
the interface of your class you don't have to know protected or private data.

So one advantage of C++ is obvious: you can read the class declaration to understand the

classes interface even if the documentation is not available or written in a foreign language.

Here are some general guidelines:

J

ー

9
.
,
f

9
9

ム

i-

．

゜

．

Use Hungarian Notation for your variable names, because it makes the reading of code

easier (→ Glossary)

Use as few global variables as possible (everybody says this but nobody does it◎)．
In our application I used one global object of a class with member variables that could be

accessed like this: g.strConcatMethod (I omitted them_…in the declaration of the
member variables so that the expression looks similar to g_…）．

If you design a clearly written class definition with public and protected members, names

that are easy to understand and comments everyone that has to read your code will be very
happy because this task will not be more difficult then necessary.

8

Technical Report R.Grau (TR-IT-0253)

cATR Interpreting Telecommunications Research Laboratories

2 GUI

This chapter includes the specification of the GUI I created for our Chatr Application and will

show some aspects of the coding.

2 .1 Frame Window

Who has ever worked with Visual C++ will notice that its complex and powerful user

interface inspired my to create the main screen of our Chatr application.

＼
ー/

The application's frame window is resizable and contents following elements:

• a menu bar with "pulldown" menus providing items like "Open File", "Undo" etc.

• a toolbar with buttons as shortcuts for menu items (can be hidden)

• an editable input window with a toolbar at the bottom

• an info window (read-only) with a toolbar for displaying information

• an output window for displaying info about the running processes (like std out)

• a status bar for displaying help information

Technical Report R.Grau (TR-IT-0253)

，

cATR Interpreting Telecommunications Research Laboratories

2.1.1 Input Window

The input window provides a RichEditControl object that is in principle an editable field we
can use for typing in text. At the bottom of the window a tool bar (I called it "PlayBar") offers
some buttons (these are discussed in 2.1.4). Two of these buttons decide whether the window

content has to be interpreted as a ASCII-Text or a script of command lines.

The content of the window can be saved and restored. The standard copy & paste operations
work, also marked selections from the other windows can be copied with drag & drop. I added
a simple undo function. Building in new functions like find and replace are just some lines of
code because everything is provided by the MFC and you only have to activate existing

functions.

A RichEditControl is capable of varying fonts, colors and styles, so these features can be used
in future versions to highlight unknown words in a text or errors in a command script. Using
this features the user can type information on the utterance of an ASCII-Text by using colors,
fonts or font styles like Tobi labels.

In this version of Chatr, the Execute button will start a new process that will access the text of
the window (or a selection) and will pass it to the Chatr core for execution.

2.1.2 Info Window

In the existing Unix version of Chatr the user has to type a command sequence like (Save
UnitLabels "-") to get the specific data. He can display this data in a teletype manner on the
standard out device or can write it to a file. Unlike the Unix version our GUI provides menu
items or buttons in a toolbar that activate functions to vis叫 izethe requested information in
the info window. The Info window can display this information in a scrollable field, so this is
a more comfortable way to look at the data. In the current version of the GUI the user can
access UnitLabels, UnitLabels+, Segments, FO and Power.

Of course it is possible to copy a selection to the input window by copy&paste, but you can
also make a selection with the mouse and drag&drop it to the input window. If you want to
save the content of the info window to disk, you don't need to copy it to the input window

because I built in an extra menu item (Info→ Save As) to serve for this purpose.

The info window also provides context sensitive information on the continuation of a
commandline, so the user can activate an assistant that will show him valid input possibilities
(see 2.3.2).

2.1.3 Output Window

The output window serves as a standard out device where inforn認 tionon the current process
is displayed in an old-fashioned teletype manner. The window content will be cleared at the

beginning of a process execution, is read-only and can be scrolled. Of course selections can be
copied to the Clipboard.

10 Technical Report R.Grau (TR-IT-0253)

cA TR Interpreting Telecommunications Research Laboratories

2.1.4 Menubar and Toolbars

The following table lists all items from the Menubar together with the Shortcuts. If a

corresponding Toolbutton is available, a cell in the right column is checked (M=Mainbar,

I=Infobar, P=Playbar).

Menu Description Hotkev M I p

File→ New Create a new document Ctrl+N 区l

File→ Onen Opens an existing document Ctrl+O 図

File→ Save Save the active document Ctrl+S 図

File→ Save As Save the active document with a new name 区l

File→ Print Print the active document Ctrl+P 図

Edit→ Undo Undo the last action Ctrl+Z 区

Alt+back

Edit→ Cut Cut the selection and put in on the Clipboard Ctrl+X 図

Shift+del

Edit→ Copy Copy the selection and put it on the Clipboard Ctrl+C 区l

Ctrl+ins

Edit→ Paste Insert Clipboard contents Ctrl+V 区l

Shift+ins

View→ Toolbar Show or hide the Toolbar

View→ Status Bar Show or hide the status bar

View→ Default Set default configuration for split windows Ctrl+D 区l

View→ Info Maximize input window

View→ Info Maximize info window

View→ Outnut Maximize output window

Execute→ Start Start execution Ctrl+E 図

Execute→ Ston Stop execution ESC 区l

Execute→ TTS Switch to TTS mode 区

Execute→ Comand Switch to comand mode 区l

Execute→ Svnth Start unit selection for existing target

Execute→ Sav Start audio output for existing unit list

Execute→ Macro Execute user specific macro F2

Tools→ Insoect Start Chinspect application 図

Tools→ Record Start Voiceinput application 図

Tools→ Ootions Change Chatr properties 区

Tools→ Default Options Set default configuration

Tools→ Load Ootions Load configuration from file

Tools→ Save Ootions Save current configuration to file

Tools→ Wave Edit Display waveform

Info→ UnitLabels Display current UnitLabels 区l

Info→ UnitLabelsP!us Display current UnitLabelsPlus 区

Info→ Segment Display current Target Segment 困

Info→ FO Display current Target FO 区

Info→ Power Display current Target power 区l

Info→ Phonemes Display current Target phonemes 区l

Info→ Say Play content of audio buffer 区l

Info→ Save Save content of info window to file 図

Helo→ Help Topics List help topics 区l

Help→ Assist Command line input assistant 区l

Help→ About Chatr ... Display program information, version number and 区l

copyright

Technical Report R.Grau (TR-IT-0253) 11

2.2 Property Sheet

22 . .1 Introduction

cA TR Interpreting Telecommunications Research Laboratories

In Unix Chatr, environment variables are manipulated by command lines like these:

(set nus kko_params'(
，ー，

(Join_wt 5.0)
(unit_wt 1. 0)

））

(Parameter Concat_Method DUMB+)

Because it is not very comfortable to type this in a single command line most Chatr users
prefer to create a text file and execute it with a (Load "filename") command, this is similar to

the ".ini files" of Windows 3.1 or the ".profile" files on Unix. But Windows applications (and

many graphical Unix applications too) offer access to variables by graphical property sheets

like this:

Our Chatr application will support both styles:
the graphical interface will provide a quick overview whereas the command line interface will

obtain compatibility with the Unix Version. This is possible because both methods can access

the same environment variables (of course I provided a mechanism that this can't happen
simultaneously).

I added a property sheet to our Chatr application, that will be accessible with the menu item

Tools→ Options. Because there were other tasks for me to do I only created a preliminary
sheet with three pages and some control items on them. These control items are related to

environment variables, so someone has to fill in all the control items needed for the access of

the desired variables. How to modify a property sheet and how to change the dialogs is

displayed in paragraph 2.6.1.

Our preliminary property sheet has several buttons and a tab control to access property pages,

which are described in the following paragraphs, just to give you an idea how it works. Of
course there may be better ways to group the variables, so this here is just an example.

12 Technical Report R.Grau (TR-IT-0253)

cAIR Interpreting Telecommunications Research Laboratories

2.2.2 Buttons

The following buttons are provided by the framework of our application when we create the

property sheet the way I did:

Name of Button Description ID

OK Leave Dialog and app]y changes ID OK

Cancel Leave Dialog and discard changes ID CANCEL

Apply Apply changes ID APPLY

Help Display help ID HELP

2.2.3 Property Page General

I created this page for general variables that affect the whole application like a command

macro or the name of the database. The last column shows the name of the corresponding

global variable, but the pages have local variables (m_ ...) to buffer the global ones.

Name of field Control Description Variable

Database Combo Box Choose name of database form strDatabase
given list

Macro Edit Field Edit a user specific macro strMacro

Wavetool Edit Field Path of a tool that can display a strWaveTool
waveform in RIFF format

2.2.4 Udb-Page

The unit selection algorithm has many environment variables, so maybe it's worth two

property pages or a bigger one (you can change the size). In my opinion it's not necessary to

put every variable in here, because some of them are experimental or of minor importance.

Name of field Control Description Variable

beam width Edit Box Number of paths to continue at each stage nBeamWidth

cand width Edit Box Number of new candidates to build paths nCandWidth
through

join weight Edit Box Overall weighting of distance measures dJoinWeight
according to continuity

unit weight Edit Box Overall weighting of distance measures dUnitWeight
according to match of a unit

2.2.5 Concat

The concatenation module offers several concatenation methods like Dumb, Dumb+ etc. to

join the units and there are different ways to handle the output.

Name of field Control Description Variable

Concat Method Combo Box Name of the concatenation method strConcatMethod

Concat Process 3 Radio Buttons Integer value representing one of nConcatProcess
three possible output processes (a
large buffer in memory, streamed
output, write temporary files).

Technical Report R.Grau (TR-IT-0253) 13

cATR Interpreting Telecommunications Research Laboratories

2.3 Help System

Windows offers a sophisticated help system which is described in [KRU]. For Chatr, I

modified the traditional Windows help system created by the Application Wizard with

contents, index and search, and created a homemade command line assistant that is similar to

the "TAB-TAB" key combination on Unix systems.

2.3.1 Windows Help System

A Windows help System needs three files (in "hlp" directory of our Chatr project):

• a Rich Text Format document with topics and links (Chatr.rtf)

• a hlp file with information for the compilation (Chatr.hlp)

• a cnt file with tree information for visualization (Chatr.cnt)

To edit the RTF file you will need a word processor like Win Word, the hlp file is processed

by the Windows Help Workshop ("hcw.exe" in "Msdev" directory) and the cnt file has a

simple ASCII format and can be edited with a standard editor or with Help Workshop.
Although there is a good explanation of these three files in [KRU] I will add some

information on the RTF files:

The RTF file contains pages (create new page with CTRL+Enter), headed by up to three

footnotes with custom footnote marks.

Footnote Mark Footnote Text e.g.

HID ASCII

$

k

How to synthesize
an ASCII Text
Synthesize: ASCII

Description

Help context ID of this page

(the content page has the ID HID_ CONTENTS)

Topic Title

Keyword text→ in a help index this keyword will be
listed and the topic title will be displayed when you
click that keyword, so it is important that keywords

of similar topics match.

To insert a new footnote place the cursor at the beginning of the page, choose menu item

、、Insert→Footnote" and choose your "Custom mark".

．

ー

1
>

A link to a page is created by a text in a specific style corresponding to the type of the link,

followed by a text with "hidden" style that contains the ID of a page. There are three different
link styles:

Text Style

Double underlined
Single underlined

Description

Normal link
Pop-up-jump, a small pop up window will appear with the

contents of the referring page

To have an example how this works look at the files by using the applications I described

above.

14 Technical Report R.Grau (TR-IT-0253)

cAIR Interpreting Telecommunications Research Laboratories

2.3.2 Command Line Assistant

The help function is powerful but not enough. Chatr has many commands, so the user often

wants to know what the parser allows at a certain place of a command line without starting the

online help. On Unix you have to doublepress the Tab key to accomplish a word or to get a

list according to the content of the current command line. This is fast and effective once you

got used to it. It would be nice, if the Windows version could even improve this mechanism,

so I tried to "merry" both worlds and created the assist和nctionalitytriggered by the "assist"

button in the tool bar of the info window.

In Comand Mode, pressing the Assist button will cause the following actions:

• the word in front of the cursor position will be selected

• the selection will be replaced with the string the possibilities have in common

• if there are more possible patterns than one they will be displayed in the info window

• the cursor will be positioned at the end of the word

For example the line (Save UnitLabels"…") could be typed like this:

Assist

•

After typing in'(Save Unit'the user presses Tab-Tab, the parser will add'labels'and the info

window will display "UnitLabels" and "UnitLabels+".

Compared with the original Unix style this method will not scroll the command line up, so in

my opinion it is a bit superior.

An alternative is a context sensitive popup menu activated by the right mouse button (or the

"Syskey" on Win95 keyboards) that shows the possible keywords. The selected menu item in

this list will replace the current selected word. This version is more "Windows like" but we

will have to add a popup menu to the RichEditCtrl item of the input window (via Component

Gallery). To access the entries we w叫 dhave to add the menu items to the popup menu with

a fixed ID (CMenu::InsertMenu()). So we would have to define IDs with a text displayed in

the menu and a help-text. The messages could be handled in the RichEditCtrl item class by a

ON_COMMAND_RANGE macro that maps all the IDs to one specific function. Of course

this is possible but it will take some time only to create the IDs (the coding is much easier

then you would expect due to the Component Gallery), so I decided on the first solution.

Technical Report R.Grau (TR-IT-0253) 15

cA TR Interpreting Telecommunications Research Laboratories

2.4 Technical Overview of GUI Code

Our GUI consists of several modules represented by objects of classes described in the

following paragraphs, but first I want to explain to a newcomer how to read the code.

2.4.1 How to access the code

When you work with Visual C++ (here V4.0) load the workspace "Chatr". The main screen of
Visual C++ has a tree control in the window on the left to display the class definitions. When
you double-click a class name the edit window on the right will show the class declaration that

will usually be in a header (.h) file. When you expand the tree you will have access to the code
of member functions and variables that are listed in alphabetical order (normally a .cpp file).

You can access code independent from the file where the code is realized because Visual C++

will search for you.

The Globals section lists all global variables and functions, in our case the object "theApp"

which is the object that represents our application, the object "g" that contains all environment

settings and the function "Thread" that has to be global for technical reasons (see also 2.5).

The GUI consists of the classes CMainFrarne, CinputView, CinfoView, COutputView,
CChatrDoc, CProperty, CPageGen/Concat/Udb and ChatrApp, we have a structure called
RiffHeader (used for creating and reading audio files in RIFF format) and CAboutDlg

(handles the "about" dialog). The other classes are part of the Chatr core described in 3.

16 Technical Report R.Grau (TR-IT-0253)

cATR Interpreting Telecommunications Research Laboratories

If you want to access resources, click on the second tab at the bottom of the left window.

Now you will see all the resources like accelerators (hotkeys), dialogs, icons, menus, string
tables (the list of all ID values together with accompanied help texts and tool tips), toolbars
and the version info. To use a graphical tool just double-click the resource's name.

You can have a file tree like in the picture above, but the class view is more comfortable.

Technical Report R.Grau (TR-IT-0253) 17

cATR Interpreting Telecommunications Research Laboratories

2.4.2 The Frame Window

The frame window is represented by an object of class CMainFrame derived from class

CFrameWnd. It handles the three child windows, all the update command handlers, and many

message handlers, so it is the core of our application.

Member variables• m _ wndSplitterl/2 to create the split windows.

• The Boolean m _ bCreated prevents an access violation when
OnSize() is called before the child windows are created.

OnCreate() builds up the window and loads resources like the Menubar and the

toolbar (both IDR _MAINFRAME).
OnCreateClient() constructs the nested split window view and therefore creates the objects

for the CView classes. It uses CSplitWnd::CreateStatic() and

Create View() to create the panes of the splitted window.

OnSize() is called by the framework after OnCreateClient() or when the frame
window has been resized, and arranges the configuration of the child

windows.
UpdateHandlers define if a toolbar or menu item is enabled, checked and so on. These

handlers are valid for all the child windows (represented by the nested
views), so all the items will be updated by the frame window's handlers.

CommandHandlers Here are the handlers for all "global" messages:

2.4.3 The Views

., copy/paste functions: to select the right RichEditControl object

GetF ocus() is called.

• Properties: initiating the Dialog, load/save and default.

• Change or restore the current window configuration

• Some of the handlers for messages that can be accessed by the
toolbars in the input or info window call the views of this windows
to handle the message. This has something to do with the windows
messaging system that doesn't send messages to the frame window
under specific conditions.

The View classes handle the visualization of our three child windows. Our three Views are

derived from the base class CView and have some code in common:

RichEditCtrl

On Create()
OnSize()

18

The RichEditCtrl object m_rich provides a window within the child
window that can handle text. This control is VERY powerful and can
handle many different styles, fonts, colors, OLE-objects and so on. I

prefer it (alternative: CEdit object or CEditView) because of its few
limitations and its high versatility.

The edit client is constructed by its member function Create() where all

the window styles are set using predefined flags. The member

SetOptions() will set the properties of our edit field that may vary due to
the window's purpose.

builds up the window and can load a resource like a local toolbar.
is called by the framework. Here it arranges the size of the RichEditCtrl
object and the toolbar objects if available (not output view).

Technical Report R.Grau (TR-IT-0253)

cA TR Interpreting Telecommunications Research Laboratories

a) CinputView

The input window provides the input field and the "Playbar".

Toolbar The OnCreate function will add a toolbar (Resource IDR_PLAYBAR)

to the view that is attached to the window's bottom (CBRS_BOTTOM).

RichEditCtrl The input window has a border (WS_BORDER) to highlight it, is

editable and the selection will not be hidden if the control looses input

focus (ECO_NOHIDESEL). Ifwe double-click on a word the whole

word will be selected (flag ECO_ AUTOWORDSELECTION)

CommandHandlers Here are some command handlers for the messages sent by the local

tool bar at the bottom of the window. These are the handlers for the

"TTS mode" and "Comand mode" buttons that will set the g.bTTS

variable, the "Start" "Stop" and "Record" buttons. The handler for the

Start button will start a new Thread that can be stopped with the Stop

button, see also 2.5.

OnDraw Normally this function is used to build up the display of the window, but

here we use it to handle the printout.

b) Clnfo View

The info window has a read only edit field and a toolbar at the top.

Toolbar

RichEditCtrl

CommandHandlers

OnlnfoSave()

Clear

国 e

c) COutputView

The OnCreate function will add a Toolbar (Resource IDR INFOBAR)

to the view, that is attached to the child window's top (CB-RS_TOP).

The info window's RichEdit object is read-only (ECO _READONLY)

and will loose its selection if the control looses input focus.

These will handle messages triggered by the buttons of the Info bar. They

will clear the info window and then display the requested information by

printing strings provided by the functions for visualization of the class

that contains the data (see 3.3).

This message handler will save the content of the info window to a file

using a dialog provided by the MFC class CFileDialog. According to the

type of the information displayed in the window it will propose a

specific extension for the filename.

Clears the window by setting the window text to empty.

Displays a string on the window.

The output window is the simplest of all, is used as a teletype style display and is read only

without special tricks.

Toolbar

RichEditCtrl

T四e,Clear

The OnCreate function will add a Toolbar (Resource IDR_PLA YBAR) to

the view, that is attached to the child window's bottom.

The input window is editable and the selection will not be hidden if the

control looses input focus.

Like Cinfo View

Technical Report R.Grau (TR-IT-0253) 19

cA TR Interpreting Telecommunications Research Laboratories

2.4.4 The Document

Windows programming makes use of the so-called DocumentNiew Architech1re that uses a
Document class to store data and one ore more associated View classes to display the

information. This method is very powerful because like this it is easy to handle quite complex

data structures.
In our case the document class CChatrDoc is very primitive (almost superfluous), because our
document only consists of the ASCII text displayed in the input window. The only interesting

member functions have to do with loading and saving data.

Serialize This member function will do storage and loading using an archive object

created by other functions. I tried to use the<< and the>> operator, but
the loading didn't work with normal ASCII files, only with saved files. So

I used common functions like WriteString() and Read() that don't look

very elegant but will do their job.

2.4.5 The Property Sheet

The dialog we use to access the environment variables has graphical resources and needs two
types of classes, CPropertySheet and CPropertyPage. I derived some classes from these two
base classes and put them all together in two files ("property.cpp" and "property.h") :

a) CProperty derived from CPropertySheet

This class is used for providing the frame for the property pages. It uses objects of the other
classes as member variables, so it is important that the declaration of this class comes after the
declaration of the property pages (otherwise the compiler will complain).

Constructor The constructor is very simple and uses AddPage() to link objects of the
property pages to the property page.

b) CPageGen/Udb/Concat derived from CPropertyPage

A property page is associated with a corresponding dialog resource. To build a property page,

make a new dialog resource and run Class Wizard to create the class (derive from

CPropertyPage) with it's member variables and the following handlers:

OninitDialog

OnApply

20

This handler (WM_INITDIALOG) will copy the global variables to the
member variables of the associated dialog resource. If the dialog h邸

control items that need initialization (e.g. Listboxes, Combo boxes,

Spincontrols) it can be done here (you can also define the list items in the
resource).

Here the contents of the local member variables will be copied to the

global environment variables.

Technical Report R.Grau (TR-IT-0253)

cATR Interpreting Telecommunications Research Laboratories

2.5 Multiple Threads

To provide a stop key for a running process, similar to the ESC-Key or CTRL+C in Unix, I

used multiple threads, synchronized by two Booleans, g.bRun and g.bStop. When using

threads we have to ensure that our "worker thread" can't be started multiple times, it will

finish when it has to and finally that no data processed within the thread can be accessed from

outside at the same time.

To start and stop the thread we will use command handlers for the "start" and the "stop"

button which are enabled according to the value of our two Booleans. The code shows that the

thread can be started only once, and when the thread ends it has to set the g.bRun variable to

false.

void CエnputView:: OnExecuteStart ()
｛

if(g.bRun==FALSE)
｛

g.bRun = TRUE;
AfxBeginThread(Thread,O,THREAD_PRIORエTY_HIGHEST);

void Cinpu七View::OnExecuteStop() { g.bStop = TROE; }
void CMainFrame: :OnOpdateStart(CCmdOI* pCmdOI) {pCmdOI->Enable(!g.bRun);
void CMainFrame: :OnOpdateStop(CCmdOI* pCmdOI) {pCmdOI->Enable(g.bRun);

The thread itself looks like this:

OINT Thread(LPVOID lParam)
｛

g.pComand->ExecuteComand("(SayText ¥"hello¥")"); II for example
...
g.bRun = g.bStop = FALSE;
return O;

In my code I used the lParam parameter to pass a char pointer. If it is NULL, the thread will
get the command string from the input window, otherwise from lParam.

The functions called by the thread sh叫 dhave code like this at strategic points (e.g. in loops):

if(g.bStop==TRUE) return FALSE;

To prevent the user to access data that could influence the thread at runtime we will have to

modify ALL corresponding update handlers like load, save, options, info etc.

void CMainFrame::OnUpdateXXX(CCmdUI* pCmdUI)
pCmdUI->Enable(... && !g.bRun); }

To make sure our thread has finished when the user closes the application we will override the

handler for the WM_ ON_ CLOSE message:

void CMainFrame: :OnClose()

if (g .bRun) {
MessageBox("Please cancel the running process first !");
return;

CFrameWnd: :OnClose();

Technical Report R.Grau (TR-IT-0253) 21

cA TR Interpreting Telecommunications Research Laboratories

2.6

2.6.1

Customizing the GUI

How to modify a Property Page

To access an environment variable with the property dialog of our application five steps are

necessary (also look at 2.4.5):

．．

．
．
．

declare the variable as a public member of the CEnvironment class (.h file)

add a default initialization to the SetDefault() member function of the

CEnvironment class (.cpp file)

modify the graphical resource (dialog IDD _P AG旦XY)of the desired property
page with the graphics editor (e.g. fill in an edit field and a static text)

use class wizard to add a corresponding member variable to the related class of the

graphical resource (class CPageXY)

modify (or create) the member functions OninitDialog() and OnApply() of the

related class (same as above) and add some code to transfer data from and to the
global environment data (look at the existing code how it is done).

Remarks:

．
 ．

I don't recommend to link the global variables directly to a dialog resource,
because many functions like the controlling of the range of a variable can't be

accessed that way.

If you add control items like Listboxes or Spincontrols you have to initialize them

in the OnlnitDialog() function of the related class. One of the existing pages has a

Combobox in it, look at the code how the initialization is done.

2.6.2 How to modify the Menu

Modifying the menu bar is easy:

．．

．

゜

．．

just add your menu item to the graphical resource of the menu bar.

you will have to enter an ID for your menu item like ID_ MYMENU, the system

will generate a default, but you might to change that name

add a help text and add'¥n'to the text, followed by a short name (this will be

displayed in the tool tip)

use class wizard and add a command handler and an update handler to a class (e.g.

CMainFrame) by clicking at the message name (ID_…）

write the code to your new functions (look at the other handlers how it is done)

for a better overview move your code to a place in the source code where it fits
best, e.g. move a command update handler to the place where all the others are, or

if you prefer group your command handlers and update handlers together with a

comment so that other people can find them easily.

2.6.3 How to modify a Toolbar

Like the Menubar the toolbar has a graph~cal resource that can be modified very easily. The
procedure to bind a function to the button rs the same as described above because menu items
and Toolbuttons trigger messages the same way and messages are unambiguous defined by

their ID.

22 Technical Report R.Grau (TR-IT-0253)

cATR Interpreting Telecommunications Research Laboratories

3 Modules

3 .1 A Proposal for Cha tr Modules

Huge programs like Chatr are much easier to read and to modify if all the functions are
grouped in several modules with specified inte廿aces,so I tried to design a framework for our

Chatr Application.

3. I. I Overview

My proposal consists of three modules: Core, User Interface and Machine Interface, a module
for global data can be separate or included in the core (it has some platform dependent
environment variables in it).

Execute

Chatr functions

Visualization

Call platform

specific functions
(e.g. file access)

The user interface provides the frame of our application. When the user wants to access a
Chatr function, the user interface will call the Chatr core. Obviously there are many basic

functions like file access and visualization that depend on the used platform, so the core has to

call these platform specific functions that can be combined in an own module called machine

interface as macros, inline functions or ordinary functions. For vis叫 izationthe machine
interface may call functions provided by the user interface. All modules have access to the

global data that contains environment variables, databases etc. (if a module has local
environment variables, these can be added to the global data for a better overview).

Technical Report R.Grau (TR-IT-0253) 23

cATR Interpreting Telecommunications Research Laboratories

3.1.2 Communication

a) Man Machine Interface

When the user wants Chatr to execute a command line he communicates with the UI first.

With our GUI the user has several degrees of freedom, because he can type the text in the

input window, can load a text from an existing file, he can execute a predefined macro or click

on a button that will perform some commands. To access data we can use the common Chatr

command lines or functions provided by the GUI which can be triggered with buttons or menu

items.

ぃノ The UI calls the Chatr Core

To execute a Chatr command line the UI will pass a string (here: the whole content of the

input window, just a selected area or a text created by the GUI itself) to a specific Chatr

module that will check the syntax and process the string. So Chatr has to provide a module

that can process that string and return some information on syntax and success of

computation. The UI can call the core also for assistance in checking and completing

command lines (see also 2.3.2).

c) The UI accesses Global Data

The UI can access the data modules if it wants to display some data like the current unit list.

The data module(s) has/have to provide member functions for visualization. The UI will also

access the global environment variables when the user activates the property dialog.

①

Chatr Core calls the Machine Interface

Each platform has its own specific functions for file access and especially audio output. For

example the Microsoft Foundation Class MFC (a huge library) provides many useful

functions for a Windows application, whereas a Unix Code makes use of standard devices and

streams. To integrate this in our application we can work with macros or inline-functions,

defined in our machine interface module. C++ offers a very effective method of overriding

functions and operators. For example if you want to use something like "strText >> stdout" in

the core module it will run on a Unix based system without any change. For our application

we will have to override the >> operator in combination with stdout and redirect the

information to the output window.

e) Chatr Core accesses Global Data

The core will access the data for processing the speech synthesis (see also 3.2.1), but also for

thread synchronization and to get the environment information.

゜
The Machine Interface calls the UI

There may be platform specific functions like the output on the screen that are defined in the

User Interface. To access them we will need a function or macro in the machine interface that

will call the corresponding GUI function if we don't want the core to call the UI directly.

切 The Machine Interface accesses Global Data

Primary the machine interface will need environment variables.

24 Technical Report R.Grau (TR-IT-0253)

cATR Interpreting Telecommunications Research Laboratories

3 .1.3 Problems

The modularization of the existing Chatr code is not an easy task and will consume many

working hours. But before we can do the coding we have to solve some problems to design a

good specification.

a) Platform specific code

This should be our biggest problem, because Chatr has many functions that use hardware or

operating system dependent code. Defining all these functions in an extra module ("machine

interface") sounds very easy but I am sure it will be quite hard. Actually there will be modules

with only a few relevant functions like the Comand module and some modules with lots of

them (like the Concat module). So someone has to define a method that balances overview,

speed and is appropriate for this application. For the most modules inline definitions should

be appropriate, but for the Concat module it might be better to provide the functions for the

concatenation and call them from the machine interface that handles the file access and the

audio output.

b) Synchronization versus Portability

Windows applications use multiple threads all the time, even if you don't notice it, so I
introduced this mechanism to Chatr. To synchronize the threads I use a very simple

mechanism, but of course this is Windows specific. If you have a look at paragraph 2.5 you

will see the code is very simple (if g.bStop return FALSE), but this line has to be everywhere

in the Chatr core at strategic positions, even if the code will be ignored on other systems

(using inline functions).

c) Little/Big Endian problem

Chatr processes many precompiled databases like audiofiles, unit lists and so on. Some of

these databases contain values with more then one byte length (i.e. integer values with four

bytes or 16Bit audio data with two bytes). Intel based systems like Windows or Linux use

Little Endian (least significant byte first) whereas systems with Motorola or Sun architecture

like the common Unix systems use Big Endian (most significant byte first).

So there are two possibilities:

• a database has to be available in Big Endian and in Little Endian format, so there should

be an external converting program, or

• there is only one database, and one of the two platforms has to perform byte swap but this

online converting causes slowdown in performance.

I would prefer the first solution, even if it means that we have to maintain two versions of our
databases.

Technical Report R.Grau (TR-IT-0253) 25

cA TR Interpreting Telecommunications Research Laboratories

3.2 The Chatr Core

To separate the UI and the classic Chatr functions, I had to define modules and an interface
between those modules. This chapter will show my proposal for Chatr modules that will

contain functions that I filled with dummy code to test my GUI. So this is only a proposal and
might be far away from the final realization, but since nobody has done a modularization of

the Chatr code when I arrived at ATR I had to invent something just to run my code. The only

module with real code is the Concat module that provides streamed audio output that can be

used for unit concatenation in real-time.

3.2.1 Overview

Normally Chatr processes speech synthesis like this simplified flowchart: ,
1
,
•
4
1

し

⇒

•••••••••••••••••••••••••

e
t
"

c
u
”

.
o
l
p
A・・・・・・

n

>
 >-,
:

、...................... .

So there is an obvious way how to divide the whole process into separate modules:

We first need a Comand module that will handle the command line input and will control all

other modules. To handle all the different input formats for an utterance like plain Text,
PhonoForm, PhonoWord or HLP, we will need a module that combines other modules like

lexicon, intonation, phoneme duration or prosody. I named this module Utterance according to
the related Chatr command, it will receive the input in any of the mentioned formats and will

build a structure representing our target for synthesis. The target consists of a list with
phonemes, duration, power and fO. To process this data it is a good idea to encapsulate it in a

class I named To追型.Another module is the UDB module that will access the unit database to

select the best units according to some selection criteria. The list of units is another data field
that can be encapsulated in a so-called Units class. Finally the listed units are concatenated

using a specified concatenation method. The corresponding module can be called Concat.

26 Technical Report R.Grau (TR-IT-0253)

cATR Interpreting Telecommunications Research Laboratories

3.2.2 Comand Module

The Comand Module is represented by the class CComand. It will handle the execution of all

Chatr commandos and is the only module that the UI calls when it accesses the Chatr core.

I propose three public member functions that can be called by the UI:

ExecuteCornand BOOL ExecuteCornand(CString strCornand);

This function will receive a pointer to a zero terminated string that

contains the commands to be interpreted, e.g. (SayText "hello").

It will parse the string and will call the functions that will handle the

specific commands.

The return value will be true if all commandos could be processed

successful, otherwise a false return will indicate an error or termination by

the user (with the g.bStop variable).

TestComand BOOL TestComand(CString strComand, CString& strErrMsg,

int& nStart, int& nEnd);

The method will check the zero terminated string for syntax errors and

will return true if the syntax is correct, otherwise false. In the second case,
the string strErrMsg will contain an error message and the integer values

the position of the first and the last character of the passage that caused

the error. This will enable the UI to display the error and highlight the

corresponding selection in the text.

GetComand int GetComand(CString strComand, CString& strResult);

The UI will call this function if the user wants the system to complete an

unfinished command line contained in the string strComand (see also

paragraph 2.3.2). If there is a match with existing patterns the return value

is the number of matches and the string strResult will contain the list of
matches (strings divided by CR+LF "¥n"). For example, the call

GetComand("(Sa", strResult); will return the value "3" and strResult will

be "Say¥nSayText¥nSave".

Then there may be many protected member functions to handle the specific Chatr commands

like (Say), (Synth), (Save) and so on. If a function from outside the Comand module wants to

access a Chatr command, it has to pass the command as a string to the ExecuteString function

like this:
g.pComand->ExecuteString("(Say)");

This high level interface seems clumsy in the first moment, but on the other hand a

programmer can access Chatr functions without knowing the name of the method and all the

parameters, he (or she) only has to know the name and the syntax of the abstract Chatr

command that is independent from the coding. Obviously this only makes sense if the

execution is not time critical.

My Comand module is a primitive parser that handles the commandos (SayText "…"), (Save
Wave "filename") and (Play "filename") just for demonstration, so it will become obsolete

when someone fills in real code.

Technical Report R.Grau (TR-IT-0253) 27

cAIR Interpreting Telecommunications Research Laboratories

3.2.3 Utterance Module

The Utterance module will have functions to convert several input formats of utterances into a

target structure with information on phonemes, prosody, power etc. Here is a more detailed

flowchart of the Utterance module according to [HER]:

PhonoWord

E=J

The SylStream and

IntoneStream are built

SegStream is built with pauses

The IntoneStream gets richer

Segments and syllable durations are determined

All these modules build up streams and therefore will share data, but from a more global view

they will receive an utterance to create a target. In my eyes it makes sense to combine them in

a huge class where all these streams are declared as protected members so that all the member

functions can access them like global data. This has the advantage that we only have to change

the existing C code due to the new variable names and the class scope.

According to the Chatr commandos (Utterance Text "…"), (Utterance PhonoWord (…）），
(Utterance PhonoForm (…）） or (Utterance HLP (…）） I propose the following public member

function of the Input class that will be accessed by the Comand module:

Utterance

28

BOOL Utterance(CString strlnput, CTarget* pTarget, int nType);

According to the type of the input specified by the nType parameter, this

function will pass the input string strlnput to other member functions as

shown in the flowchart above. The pointer pTarget to an object of the

CTarget class will enable our modules to build up the target. The

function's return value will indicate success, error or termination.

Technical Report R.Grau (TR-IT-0253)

cATR Interpreting Telecommunications Research Laboratories

3.2.4 Udb Module

The "heart" of Chatr computes the selection of units according to weighted unit costs, join

costs, prosody and syllable context. This module will have many member functions due to its

complexity, but extern modules like the Comand module only need one public member

function to initiate the selection process:

Synth BOOL Synth(const CTarget* pTarget, CUnits* pUnits);

This function will call other protected member functions to perform unit

selection. It makes sense to pass pointers to the input and the output data,
because sometimes we want to process local objects. The return value is
true if successful and false if not or the user terminated (g.bStop=TRUE).

The Udb class I created contains only a dummy function that will produce a list of units if the

target is the word "youkoso" or "douso". That's really primitive but enough if we only want to

know how the interface between modules works. Maybe we will have to add a possibility to

exclude specific units to enable features like Testseg (perhaps with a global list ?).

3.2.5 Concat

The Concat module manages the unit concatenation and the platform dependent audio

handling, so it is hard to decide if parts of it should be defined elsewhere in the machine

interface module. Anyway, it will receive a pointer to a unit list and will create audio output or

a wave file. There are several methods to concatenate units (Dumb, Dumb+, PSOLA…) and
different ways of output (write to a file, use a large buffer, streamed output…) . In my module I

defined two public member functions:

Concatenate

Play

BOOL Concatenate(const CUnits* pUnits, CString strFilenarne = NULL);

The function will choose a concatenation method according to the global

environment variables. If no filename is given it will perform audio

output, otherwise it will create a wavefile with the given name.

BOOL Play(CString strFilename);

This function will perform audio output for the given Filename. If the file

has no valid Riff format (Windows Wave file) the function will use the

global wavefile parameters (raw PCM data, 16Bit, mono, 16kHz).

Here is a proposal for some of the protected member functions:

Dumb2Buffer

Dumb2File

Dumb2Stream

DumbP2Stream

DumbP2File

allocate a large buffer and create a Windows Riff file in memory.

use one small buffer and write units to a Windows Riff file.

use two small buffers to play a unit in a buffer while the other one is

loading into the other buffer. This function is time critical because the

unit concatenation has to be processed in real-time.

similar to Dumb2Stream but uses Dumb+ concatenation method and

therefore requires three buffers, this function does not yet exist.

like DumbP2Stream but writes to a file instead.

Because the Dumb2Stream function includes some interesting code like device independent,

streamed low level audio output you may want to check paragraph 6.2.3.

Technical Report R.Grau (TR-IT-0253) 29

cA TR Interpreting Telecommunications Research Laboratories

3.3 The Data Modules

Our Chatr application will access data, and some of this data should be global so that the UI
and the different Chatr core modules can access them. Of course all the modules have their
own data encapsulated within their classes, but I think there are three categories of data that
should be accessible by all modules: the predicted target utterance, the selected units and the

environment variables. Here is my proposal for these data classes:

3.3.1 Target

The information on the phonemes, the intonation and everything that is needed to specify a
target utterance will be described in an object of the CTarget class. There will be a global
object but due to the encapsulation we can create new objects that can be used like user
defined variables (maybe we want to write a script that will compare different target objects).
The class will contain common variables, arrays, chained lists or whatsoever to represent this
data, so here is a proposal for member variables:

nEntries Integer with the list's number of entries(= number of phonemes).
Indicates if the list is empty.

According to the principals of C++ we won't access the member variables directly, but with
public member functions. Some of them can be used to visualize the data, and I think it is
useful to combine data and visualization in one class.

Clear

GetSegrnent

void Clear();

This function will clear all entries and will set the entry counter to zero.
CString GetSegrnent();
The function will return a string for visualization, the string may look like
this:

0

0

 0
0
0
0
0
0

(Utterance Segment

I l~
(s

(0

（＃

））

60
77
77
67
74

104
87
600

7
7
7
7
7
7
7
7

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

9_',9~9,9,

'
_',9,',

',',

,
9
,
'

，
＇
,
'
，
'
，
'
，
'
，
'
,

'
、
）
、
＇
｀

‘
j
`
‘
,
＇，ー，＇ー，

`~`_J ,̀'̀ ,
，
ヽ

9
9
9
9
9
9
,
1
,
'
_
＇
，
ー
、
，
、

0
 0
0
0
0
0
0
0

Because there is a global Target object we can access the visualization functions from the
Comand module or from our User Interface (the functions to display data in the info window
make use of this).

My colleague Martin Holzapfel defined a data format for these information but unfortunately
it was too late to make it part of the code, so someone else has to pick up his ideas and
integrate them into Chatr.

30 Technical Report R.Grau (TR-IT-0253)

cATR Interpreting Telecommunications Research Laboratories

3.3.2 Units

To concatenate units we will need a list of them, here represented by an object of a class
called CUnits. Apart from the list this class will feature some protected member variables:

nEntries Integer with the list's number of entries(= number of units). Indicates if

the list is empty.

As always we will have to define some member functions to access the member variables:

Clear

GetUnits

void Clear();

This function will clear all entries and will set the entry counter to zero.
CString GetUnits(); and CString GetUnits(pTarget);

Returns a string for visualization of the Unit Stream. The overloaded
version with the pTarget pointer produces a string with target and
database info in it ("UnitsLabels+"). The return string may look like this:

(Utterance Unit

("D:¥Wave¥FMP MA R19.wav" 285 49 1)
("D:¥Wave¥F40百SF―A04.wav" 1232 50 1)
("D:¥Wave¥F408SF―A23.wav" 2703 69 1)
("D: ¥Wave¥FMP Ml―R16.wav" 1044 77 1)
("D:¥Wave¥FMP□ SR□ 042. wav" 7103 690 2)
））

3 .3 .3 Environment

The CEnvironment class will contain all the environment variables that are used by our
application. We will create a global object of this class called'g', so that we can access it's
member variables by "g.typeName". Here are some examples for variables, but someone will
have to create a complete list. The first group of variables is relevant for the GUI:

pMainFrame etc These pointers are related to the global objects of our classes. These
objects will be created in the constructor of the CEnvironment class.

bTTS This Boolean indicates that TTS mode (interpret content of input window
as a text) is active (otherwise "Comand mode").

bRun and bStop Two volatile Booleans used for the synchronization of the worker thread
that will execute the Chatr commands {see also 2.5)

Our class will have some member functions too, e.g. for initialization.

SetDefault void SetDefault();

Initializes all variables, parameters like the name of the database can be
set. The reason why I built an explicit function instead of using the
constructor is that we can call this function at any time to reset our

application (e.g. by Tools→ Default Options). Maybe it's better not to
hardcode default values but to load them from a write protected file.

Technical Report R.Grau (TR-IT-0253) 31

cAIR Interpreting Telecommunications Research Laboratories

4

Conclusion

4.1 The Result ofmy Work

In the 10 weeks I actually worked on this application I built a GUI that can be used for
demonstrations and as example for coding. I also created the streamed audio output.

I kept the interface simple so it should be easy to join Chatr and GUI together. When I
specified the Chatr modules I had a limited view, and maybe I didn't think of some aspects
other people know, so everybody is encouraged to make a better design.

A problem is that my application is like a commercial program with limited customization,
but Chatr is an experimental system that changes and grows all the time. E.g. it should be easy
to add new databases or single modules without compiling everything new, but if the GUI has
to reflect some of these changes we will have to modify it. DLLs (dynamic link libraries) can
improve flexibility of the code, but the problem of customizing the GUI will persist.

4.2 Future Work

In the short period of my stay I had to concentrate on the main focus, so there were many
things I couldn't do because of a lack of time. Here I will list some topics:

The biggest and most important task will be the rewriting of the Chatr modules with C++.
This will take quite a long time but is worth the effort, because it increases the overview and
makes modifying the code easier.

The next step is to connect Chatr and the GUI, perhaps by using the interface I defined. When
the combined system runs stable it will be necessary to customize the GUI, especially the
property dialog.

Another project is voice input for processing a f() contour for a given text input. The GUI has
a big red button for voice recording, but in the moment the corresponding command handler is
a dummy function only. To integrate the tool I propose to start an extern application the way I
"spawned" the sample editor in the handler for the wave edit function
(CMainFrame::OnWaveedit). This function will write the current text from the input window
to a temporary file and will start the voice input tool which can even run on a different
platfonn. This tool will write a target utterance in segment form to disk which can be loaded
by Chatr.

＾

レ

,．,'

9
9
,
-

32 Technical Report R.Grau (TR-IT-0253)

cATR Interpreting Telecommunications Research Laboratories

There are many ways to optimize and complete the GUI, so here is a list of necessary, useful
and interesting but not necessary tasks that can keep someone busy for several months:

• Create a complete helpfile (see 2.3.1), this is MUCH work. Maybe it is possible to reuse

existing data or to convert parts of the helpfile to HTML format to improve the existing

help files.

• Change the dialogs of the property pages to reflect the environment variables and

additional functions.

• Code for loading and saving environment variables (CMainFrame::OnToolsSave/
Loadoptions). Maybe it is better to use a combination of Chatr commands for this because
it is Unix compatible and there is existing code for this (of course we have to add GUI
specific data).

• Instead of CEnvironment::SetDefault() which is hardcoded use the above mentioned
Loadoptions function to load a write protected configuration file.

• Maybe it's better to use the Windows Registry for storing environment information.

• Building in new environment variables according to the Chatr core and new functions of

the GUI.

• Find a method that messages from Input View or Info View can be mapped to MainFrame
independent from the activated view, so that we don't need handlers in two classes.

• Find a better way to redraw the frame window (CMainFrame::ResizeClient())

• Change the SDI interface into a MDI interface the can handle many documents
simultaneously, so that the user can switch.

。Addingeye candy like a "splash screen" that is a large bitmap image that will be displayed

at the start of the application (like Win Word or Developer Studio).

• Multilingual support

• Create a downgraded version of Chatr for Text-to-Speech only that can be used for
demonstration (something like "Chatr Box").

• Make use of different fonts, styles and colors for the input window to highlight syntax
errors and to mark intonations.

Note: Realizing the GUI as a static dialog that cannot be resized would have reduced the

programming effort by approximately 10 times. The major drawback is that the static size
limits the user and is inappropriate due to varying screen sizes of PCs.

According to the introduction in the first chapter here are some proposals to improve the
German synthesis:

• Use a large database, if possible from one recording session to avoid discontinuities.

• If you want Chatr to sound natural choose recordings from spontaneous speech, but be
careful that you choose a speaker who is not too fast.

• If you have the choice between a system that follows your target but sounds awful and a
system that sounds much better but has a dynamic of its own choose the latter and

emphasize join costs more than unit costs (take this advice from someone who made tests
with persons which voices they prefer in a car environment). Set the weights of join costs :
unit costs 5 : 1.

Technical Report R.Grau (TR-IT-0253) 33

cA TR Interpreting Telecommunications Research Laboratories

4.3 Comments on my Work

Although I was very happy at ATR there are sorne aspects that c叫 dbe improved frorn my

point of view (when I left ATR some of rny proposals have already been realized).

4.3.1 Infrastructure

When you walk round the laboratories you see rnany computers, in rny opinion too many

because this is not necessary. There are rnany old Sun compatible Unix workstations

(SPARCstation 5, 10 and 20) and there are rnany expensive PCs that loose their value very

quickly (e.g. six months ago a 200MHz Pentium with 64MB was high tech, now we have

333MHz PentiumII with 256MB, but 400MHz CPUs are expected in two months).

To save lots of money and space and to rnake the life of the TSG people easier I propose the
following: Everyone should have a Sun station with a good monitor. For the number

crunching there should be a server like a Sun Enterprise 450 (www.sun.corn) that can use up

to 4 UltraSparc CPUs. This 100kg box can use PC components like the extremely cheap

memory DIM modules, so it is inexpensive to stuff it with some gigabytes of memory. It

might be necessary to upgrade the network due to the higher load. Usually the monitor of a

server will not be used very frequently, but the brand new monitor of the server might be

better then the old monitors in the lab. So we can exchange them if they are compatible. Like

this the researchers get better monitors.

To run standard PC applications like Win Word, Excel and Visual C++ we definitely don't

have to buy big machines for everyone. Most of the time a PC waits for keyboard input

anyway, so it is obvious that many users should share one PC. To do this we will need one big

PC with lots of memory and a really fast hard disk, because this is the key component of a

server. The operation system will be a modified version of Windows NT, called wind

(Windows Distributed Desktop) by Tektronix (www.tektronix.com). With wind it is possible

to get a remote access to the PC from a Unix workstation. All the tasks will run on the PC and

the Sun will provide a "Windows window", and things like data exchange or copy&paste will

work. This really clever solution of a thin client is 100% compatible, very stable and reliable.

We use this at my institute in Germany, because we didn't want to buy a PC for everyone,

only to use the latest version of Framemaker (by the way, the Framemaker license for

Windows is much cheaper than the Unix license).

I was not very satisfied with the network because it was not possible to access workstations

from a PC and vice versa, so I often had to use floppy disks for data transfer. ITL uses the
Microsoft Network that does allow inhomogeneous networks, but at my German institute we

use the NFS network solution from FTP Software (www.ftp.com) that allows far more

sophisticated networking.

4.3.2 Software and Literature

It is amazing that there is so much software available in Japanese, but it is hard to get English

software or literature. For someone like me it is impossible to use a Japanese Visual C++

because I depend on the online help. I propose that there should be some machines with

international versions of operating system and standard programs (maybe a Japanese and an

international WinDD server?).

，
＇
~
ト
｛

＼
ー
『

34 Technical Report R.Grau (TR-IT-0253)

cATR Interpreting Telecommunications Research Laboratories

5 Bibliography

[HER] Herbert Tony & Campbell Nick, Prosody within Chatr,
ATR Technical Report, TR-IT-0202 (1997-01)

[KRU] Kruglinsky David, Inside Visual C++, Microsoft Press, ISBN

[STR] Stroustrap Bjame, C++

[BRI] Brinckmann Caren, German in Eight Weeks -A Crash Course for Chatr,
ATR Technical Report, TR-IT-0236 (1997-09)

Technical Report R.Grau (TR-IT-0253) 35

cA TR Interpreting Telecommunications Research Laboratories

6 Listings & Receipts

6.1 A nested Split Window

The following procedure describes the creation of a Single Document Frame with three nested

Views used in this Chatr Application. ャ
，
｛

Sources: Kruglinsky's Inside Visual C++, Example 19B
Sample-Sourcecode VIEWEX on Visual C++ CD-ROM

(¥msdev¥sample¥general¥viewex)

• Start Developer Studio (Visual C++ 4.0 or 5.0)

• Use App Wizard to create a new Project (New→ Workspace):
-choose Single Document

-from [Advanced Options→ Window Styles] check [Use split window]
-rename View→ InputView
-finish

• With Class Wizard add-classes CinfoView and COutputView, derive from CView

• Modify the headers of all .cpp files:

#include "stdafx.h"
#include "ChatrDoc.h"
#include "InputView.h"
#include "InfoView.h"
#include "OutputView.h"
#include "Chatr.h"

• Add CMainFrame member variables (MainFrame.h)

protected:
CSplitteごWndm_wndSplitterl;
CSplitterWnd m_wndSplitter2;

BOOL m bCreated;
float m_fX;
float m fY;

• Edit the Mainframe constructor

CMainFrarne: : CMainFrarne ()
｛

rn bCreated=FALSE;
rn fX=O. 5F; / / For Nested Split View
rn fY=O. 8 F; / / For Nested Split View

36 Technical Report R.Grau (TR-IT-0253)

cAIR Interpreting Telecommunications Research Laboratories

• Edit the MainFrame code for OnCreateClient and OnSize

BOOL CMainFrame: :OnCreateClient(LPCREATESTRUCT /*lpcs*/,
CCreateContext* pContext)

if ((!m_wndSplitterl.CreateStatic(this, 2, 1)) II

II 2nd row
(!m_ wndSplitterl. Create View (1, 0, RUNTIME_CLASS (COutputView),

CSize(lO, 10), pContext)) II

II Split 1st row
(!m wndSplitter2.CreateStatic(&m_wndSplitterl, 1, 2,

WS CHILD I WS VISIBLE,
m _ wndSplitterl. IdFromRowCol (0, 0))) I I

II 1st col of 1st row
(!m_wndSplitter2. CreateView (0, 0, RUNTIME_CLASS (CinputView),

CSize (10, 10) , pContext)) I I

II 2nd col of 1st row
(!m_wndSplitter2.CreateView(O, 1, RUNTIME_CLASS (CinfoView),

CSize(10, 10), pContext)))

return FALSE;

m bCreated=TRUE;

return TRUE;

void CMainFrame: :OnSize(UINT nType, int ex, int cy)
｛

if(m_bCreated)
｛

｝

m _ wndSpli tterl. SetRowinfo (0 , (int) (cy*m fY), 20) ;
m_wndSplitter2. SetColumninfo (0, (int) (cx*m□ fX), 20) ;

CFrameWnd:: OnSize (nType, ex, cy);

• Add to all View.h files

public:
CRichEditCtrl m rich;

• Use Class Wizard to add messages WM_CREATE, WM_SIZE to all CView-Classes and

add code:

int C?View::OnCreate(LPCREATESTROCT lpCreateStruct)
｛

CRect rect(0,0,0,0);

if (CView::OnCreate(lpCreateStruct) == -1)
return -1;

// Construction of the Edit Client
m_rich.Create(ES AUTOVSCROLL I ES MULTILエNE I ES WANTRETURN

ES AUTOHSCROLL I WS HSCROLL I
WS_CHILD I ws_vエSIBLE I WS_VSCROLL, rect, this, 1);

//Set options for edit control

Technical Report R.Grau (TR-IT-0253) 37

cA TR Interpreting Telecommunications Research Laboratories

rn_rich.SetOptions(ECOOP SET,
ECO NOHIDESEL I
ECO AUTOHSCROLL
ECO AUTOVSCROLL I

// Set options
// Sel.not hidden
II Scroll option
II Scroll option

ECO AUTOWORDSELECTION
ECO WANTRETURN I

II Word sel on double
II-> Prevent Default

/* ECO READONLY I *I II Readonly-Flag
ECO SAVESEL); II Sel saved if focus lost

return O;

void C?View: :OnSize(UINT nType, int ex, int cy)

｛
CRect rect;

CView: :OnSize (nType, ex, cy);
GetClientRect(rect);
m_rich.SetWindowPos(&wndTop,O,O,rect.right-rect.left,

click
Button

rect.bottom-rect.top, SWP_SHOWWINDOW);

• to get the pointers of the Views use:

m_wndSplitter?.GetPane(y,x);

for example:

g.pinputView = m_wndSplitter2.GetPane(O,O);
g.pOutputView = m_wndSplitterl.GetPane (1, 0);
g.pinfoView = m_wndSplitter2.GetPane(0,1);

• to obtain Copy/Paste functionality, start Class Wizard, modify CMainFrarne Class and add
Commands for ID_EDIT_COPY, ID_EDIT_PASTE and ID_EDIT_CUT:

void CMainFrame: : OnEdi tCopy ()
｛

((CRichEditCtrl*) GetFocus ()) ->Copy ();

void CMainFrame: : OnEdi tCut ()
｛

((CRichEditCtrl*)GetFocus())->Cut();

void CMainFrame: : OnEdi tPaste ()
｛

((CRichEdi tCtrl *) Get Focus ()) ->Paste () ;

If you want to do fancy things like fonts, toolbars etc. have a look at the MainFrame class of
our Chatr applicaion.

Please notice: Windows messages will be sent to the RichEditControl Objects and NOT to the

corresponding views, and GetFocus() will return a pointer to the RichEditCtrl object with the
input focus on ! !

So if you want to do contextsensitive popup help etc. you have to derive your modified class

from CRichEditCtrl with class wizard and add a comand handler (e.g. for right button down).

38 Technical Report R.Grau (TR-IT-0253)

cAIR Interpreting Telecommunications Research Laboratories

6.2 Audio Output

In my opinion sample code is more important than reference books, so here are excerpts from
the code of a little program (Project "Audio") I wrote just to play with audio. To include this
code in your proggy use the Component Gallery to add multimedia support to or #include

<mmsystem.h> and link "Winmm.lib" (Build→ Settings→ Link→ Library modules). The end
of this chapter contains a function I wrote for the Chatr application. I did some comment on
this because I was told that some people might want to use this routine. Please note that I

didn't add error handling procedures, so you perhaps might to add some.

Windows 95/NT offer an significant improvement of the audio handling to the previous
Windows 3. lx. Because audiobuffers don't need no locking anymore, it is possible to modifiy

contents of a buffer while the buffer is asynchronously played.

6.2.1 Simple Highlevel Output

The highlevel output uses the PlaySound() function described in the detailed MFC online

help. For the following listings only the parameters SND _ASYNC, SND _SYNC,
SND_MEMORY and SND_NOSTOP are important.

Topics: How to play a file, play from memory, play two files from memory, concatenate
wavefiles and play the buffer, modify a buffer during play.

a) Play from file

Will play a Wavefile from disk asynchronously. Nice to mock up the boring About dialog.

void CMyApp: : OnAppAbout ()

CAboutDlg aboutDlg;
PlaySound("C:¥¥Windows¥¥Media¥¥Sound.wav", 0, SND_ASYNC);
aboutDlg.DoModal();

b) Play from memory

Will load a file into memory and will play it afterwards

void CMainFrame: :OnPlayPlaysoundfromfile()
｛

//PlaySound("C:¥¥Windows¥¥Media¥¥Sound.wav", 0, SND_SYNC);

char* pBuffer;
int dSize;
unsigned long dRead;
CFile cfile;
CFileStatus status;

// Open File
if (! cfile. Open ("C: ¥¥Windows¥ ¥Media¥¥ The Microsoft Sound. wav",

CFile: : modeRead))
return;

// Get Length

Technical Report R.Grau (TR-IT-0253) 39

cATR Interpreting Telecommunications Research Laboratories

cfile.GetStatus(status
dSize = status.m size;

.,． ,̀‘

// Allocate Buffer
pBuffer = (char*)malloc(dSize);

// Load
dRead =

File
cfile.Read(pBuffer, dSize);

// Close Handle
cfile.Close();

// Play Sound from
PlaySound(pBuffer,

II Free Memory
free(pBuffer);

Memory
0, SND_MEMORY SND_SYNC);

ヽ`
し

1
し

1
_
ー

c) Play two files from memory

This proggy shows how to synchronize asynchronous audio output with high level functions.

If you use this in Windows 3.lx you will get a deadlock, so you will have to add a Sleep(O)

comand to the while() loop.

＼

ヽ
~

void CMainFrame: :OnPlayPlaysoundtwobuffers()
｛

char* pBuffer[2];
int dSize;
unsigned long dRead;
CFile cfile;
CFileStatus status;
inti;

for(i=O;i<2;i++)
｛

// Open File
cfile.Open("C:¥¥Windows¥¥Media¥¥The Microsoft Sound.wav",

CFile: : modeRead) ;

// Get Length
cfile.GetStatus(status
dSize = status.m size;

.,
9

9

// Allocate Buffer
pBuffer[i] = (char*)malloc(dSize);

II Load
dRead =

File
cfile.Read(pBuffer[i], dSize);

II Close Handle
cfile.Close();

II Play Sound from Memory
while(!PlaySound(pBuffer[i],

SND_NOSTOP));
0, SND MEMORY SND ASYNC

II Free Memory
MessageBox("OK","OK",MB_OK);
for (i=O; i<2; i++) free (pBuffer [i]);

40 Technical Report R.Grau (TR-IT-0253)

,-

！

cATR Interpreting Telecommunications Research Laboratories

d) Concatenate wavefiles to build a large buffer

This function will concatenate parts of a file into a large buffer and will play this buffer at the
end. The Create WaveHeader() function is used to provide a selfmade header for the
PlaySound() MFC function.

void CMainFrame::OnPlayConcatenatebuffer()

｛
char* pPlayBuffer;
char* pPlayPosition;
char* pLoadBuffer;
int dPlaySize, dLoadSize;
unsigned long dRead;
HANDLE hfileHandle;
inti;

int dStart[3]={23400,45600,67800};
int dDur[3]={10000,10000,10000};

//Startin byte
// Duration in byte

I/I//I/I////////////II//////III/////////II/I/////II//I/
// Allocate PlayBuffer
///I///////////////I///I/I/I/////////I//II///I/II///II/

// Get Length of PlayBuffer
dPlaySize = 4 4; I I Length of Header 1 1

for(i=O;i<3;i++)
｛

dPlaySize+=dDur[i];

// Allocate Buffer
pPlayBuffer = (char*)malloc(dPlaySize);
TRACE("Allocated %d Byte PlayBuffer¥n",dPlaySize);

I///////I//////I///I///II//I///I////////////I/I/////II/
// Allocate LoadBuffer

I/II/I//I//I/I///I/I/I///I/////I/I/I//I/II////II////I//

// Get Length of LoadBuffer
dLoadSize = O;
for(i=O;i<3;i++)
｛

if((44+dStart[i]+dDur[i]) > dLoadSize)
｛

dLoadSize=44+dStart[i]+dDur[i];

// Allocate Buffer
pLoadBuffer = (char*)malloc(dLoadSize);
TRACE("Allocated %d Byte LoadBuffer¥n", dLoadSize);

I//I/I/////II//////II////II///II/I////IIII//II/////II//
// Concatenate

/III/////I//////I//I//I//////I///I//////III//II//I///I/

pPlayPosition=pPlayBuffer+44;

Technical Report R.Grau (TR-IT-0253) 41

cATR Interpreting Telecommunications Research Laboratories

for(i=O;i<3;i++)

｛
II Open File
hfileHandle = CreateFile("D:¥¥Wave¥¥kkol.wav",

GENERIC READ,0,0,0PEN EXISTING,
FILE ATTRIBUTE NORMAL,0);

dLoadSize=44+dStart[i]+dDur[i];

// Load File
ReadFile(hfileHandle, pLoadBuffer, dLoadSize, &dRead, 0);
CopyMernory(pPlayPosition, pLoadBuffer+44+dStart[i],dDur[i]);
pPlayPosition+=dDur[i];

II Close Handle
CloseHandle(hfileHandle);

/*hfileHandle = CreateFile("D:¥¥Wave¥¥kkol.wav",
GENERIC READ,0,0,0PEN EXISTING,

FILE ATTRIBUTE NORMAL,0);
ReadFile(hfileHandle, pLoadBuffer, dLoadSize, &dRead, 0);
//CopyMemory(pPlayPosition, pLoadBuffer+44,dPlaySize-44);
CopyMemory(pPlayBuffer, pLoadBuffer,dPlaySize);
CloseHandle(hfileHandle);*/

II Create Wave-Header
CreateWaveHeader(pPlayBuffer, dPlaySize-44);

// Play Sound from Memory
PlaySound(pPlayBuffer, 0, SND_MEMORY SND_SYNC);

/////////////ll//ll/l!///I/////////////////////////////
// Write File to Disk
!ll//ll//l////l///l///l/l/l!l//l/l/l/l/l!//II/I////////

hfileHandle = CreateFile("D:¥¥Wave¥¥TRACE.wav",
GENERIC WRITE,0,0,CREATE ALWAYS,

FILE ATTRIBUTE NORMAL,0); - ;-
WriteFile(hfileHandle, pPlayBuffer, dPlaySize, &dRead,
CloseHandle(hfileHandle);

// Free Memory
free(pPlayBuffer);
free(pLoadBuffer);

0) ;

void CreateWaveHeader(char* pBuffer, int dSize)

｛

42

WaveHeader* pHeader = (WaveHeader*)pBuffer;

strcpy (pHeader->riff, "RIFF") ;
pHeader->11 = 34 + dSize;
strcpy(pHeader->wave, "WAVEfmt ");
pHeader→ 12 = 16;
pHeader->tag = WAVE_FORMAT_PCM;
pHeader→ channels=l;
pHeader->rate = 16000;
pHeader->flow = 32000;
pHeader->block = 2;
pHeader->bits = 16;
strcpy(pHeader->data,
pHeader->13 = dSize;

"data");

Technical Report R.Grau (TR-IT-0253)

cATR Interpreting Telecommunications Research Laboratories

e) Modify a buffer during play

void CMainFrame: :OnPlayPlayandmodify()

｛
short int* pPlayBuffer;
int dPlaySize;
int dRead;
inti;

dPlaySize=160000;

pPlayBuffer = (short int*)malloc(dPlaySize+44);
CreateWaveHeader((char*)pPlayBuffer, dPlaySize);

PlaySound((char*)pPlayBuffer, 0, SND_MEMORY I SND_ASYNC);

for(i=O;i< dPlaySize/2;i++)
｛

* (pPlayBuffer+22+i) = (short int) (10000. O* sin ((double) i/10)) ;

/*hfileHandle = CreateFile("D:¥¥Wave¥¥TRACE.wav",
GENERIC WRITE,0,0,CREATE ALWAYS,

FILE ATTRIBUTE NORMAL,0);
- ;-

WriteFile(hfileHandle, pPlayBuffer, dPlaySize, &dRead, 0);
CloseHandle(hfileHandle);*/

MessageBox("OK", "OK",MB_OK);
free(pPlayBuffer);

6.2.2 Low Level Audio

Now it becomes interesting:

a) Create a tone with low level audio

void CMainFrame: :OnPlayGeneratelowlevelaudio()
｛

UINT wResult;
short int* pBuffer;
int i;
HWAVEOUT WaveOut;
#define LENGTH 128000

// Initialize buffer
pBuffer=(short int*)rnalloc(LENGTH); // 4 seconds of audio
for (i=O; iく (LENGTH/2);i++)
｛

pBuffer[i]=(short int) (10000.0*sin(i/10));

WAVEHDR WaveHeader= {(char*)pBuffer,LENGTH,0,0,0,0,0,0};
WAVEFORMATEX Format= { WAVE_FORMAT_PCM,l,16000,32000,2,16,0};

if(waveOutOpen((LPHWAVEOUT)&WaveOut, WAVE_MAPPER,
(LPWAVEFORMATEX) &Format,
OL, OL, CALLBACK_NULL))

MessageBox("Kein Open","Fehler",MB_OK);
return;

Technical Report R.Grau (TR-IT-0253) 43

cATR Interpreting Telecommunications Research Laboratories

if(waveOutPrepareHeader(WaveOut,
｛

&WaveHeader, sizeof (WAVEHDR)))

MessageBox("Kein Prepare","Fehler",
return;

MB OK);

if(waveOutWrite(WaveOut,
｛

&WaveHeader,

MessageBox("Kein Write","Fehler",
return;

sizeof (WAVEHDR)))

MB OK);

// Use Polling method for synchronisation
while(! (WaveHeader.dwFlags & WHDR_DONE)) Sleep(O);
//MessageBox("OK","OK",MB_OK);

waveOutUnprepareHeader(WaveOut,
waveOutClose(WaveOut);

free(pBuffer);

b)

&WaveHeader,

Play a large file by using small buffers and a streamed audio output

Remark: 44 is the length of the header of a Windows RIFF wave file(* .WAV).

void CMainFrame: :OnPlayPlaylargefile()
｛

char*
WAVEHDR
HWAVEOUT

pBuffer[2];
WaveHdr[2];

WaveOut;

sizeof (WAVEHDR));

WaveHeader* pHeader;
int dRead;
int dSize=lOOOO;
CFile cfile;
inti;
int dLength;

// Allocate Buffers
for(i=O;i<2;i++) pBuffer[i]=(char*)malloc(dSize);

// Open File
if(!cfile.Open("C:¥¥Windows¥¥Media¥¥The Microsoft Sound.wav",

CFile: : modeRead))

"＇＼＇

,
1ー

1

ー

MessageBox("No CFile.Open","Error",MB_OK);
return;

// Read
dRead =
pHeader

Header
(int)cfile.Read(pBuffer[O],
= (WaveHeader*)pBuffer[O];

4 4) ;

WAVEFORMATEX Format=
pHeader->tag,
pHeader->channels,
pHeader->rate,
pHeader->flow,
pHeader->block,
pHeader->bits,

゜} ;

44 Technical Report R.Grau (TR-IT-0253)

cATR Interpreting Telecommunications Research Laboratories

dLength=pHeader->13;

if (waveOutOpen ((LPHWAVEOUT) &WaveOut, WAVE_MAPPER,
(LPWAVEFORMATEX) &Format,
OL, OL, CALLBACK_NULL))

MessageBox("No WaveOutOpen","Error", MB_OK);

e

s

ー
}

e

{

 i=O;

do
｛

i*dSize));

II Load next block
dRead = (int)cfile.Read(pBuffer[i%2], min(dSize,dLength-

IITRACE("%d %d %d¥n",i,dRead,dLength-i*dSize);
II Prepare WaveHeader
WaveHdr[i%2] .lpData=(char*)pBuffer[i%2];
WaveHdr[i%2] .dwBufferLength=dRead;
WaveHdr[i%2] .dwBytesRecorded=O;
WaveHdr[i%2] .dwUser=O;
WaveHdr[i%2] .dwFlags=O;
WaveHdr[i%2] .dwLoops=O;
WaveHdr[i%2] .lpNext=O;
WaveHdr[i%2] .reserved=O;

waveOutPrepareHeader(WaveOut, &WaveHdr[i%2),
sizeof (WAVEHDR));

waveOutWrite(WaveOut, &WaveHdr[i%2], sizeof(WAVEHDR));

if(i>O)

｛
// Wait for previous block to be completed
while (! (WaveHdr [(i-1) %2) .dwFlags & WHDR―_DONE)) Sleep(O);

// Unprepare previous header
waveOutUnprepareHeader(WaveOut, &WaveHdr[(i-1)%2],

sizeof(WAVEHDR));

｝

i++;
｝

while ((dRead>=dSize) && ((dLength-i*dSize) >0));

// Wait for last block and clean up
while(! (WaveHdr[(i-1)%2] .dwFlags & WHDR DONE)) Sleep(O);
waveOutUnprepareHeader(WaveOut, &WaveHdて[(i-1)%2],

sizeof (WAVEHDR));

waveOutClose(WaveOut);
｝

II Close Handle
cfile.Close();

II Free Memory
TRACE("Completed %d blocks¥n", i);
I IMessageBox ("OK, ", "OK", MB_ OK) ;

for(i=O;i<2;i++) free(pBuffer[i]);

Technical Report R.Grau (TR-IT-0253) 45

cATR Interpreting Telecommunications Research Laboratories

6.2.3 Streamed Low Level Audio Output for Unit Concatenation

The function Dumb2Stream concatenates audiofiles using two small buffers to load the files

alternately. The filenames and the concatenation points are specified in a class named

CUnitLabels, a pointer to an object of this class is the function's parameter.

At first the function will do the usual initialization. Then it allocates two buffers, the sizes

depend on the largest unit in our list. After the audio device is prepared we will have to load a

unit and then play it. When the next unit has been loaded we will wait for the previous unit (if

there is one) to be finished, therefore our code polls the dwFlags entry of the waveheader.

When all units have been played we will close the audio device and free the memory.

To modify this function for more advanced concatenation techniques like Dumb+ or PSOLA

you have to use three buffers, so that every unit has a predecessor and a successor. Modifying

the code should be easy, just use pPlayBuffer[(i-1)%3] and pPlayBuffer[(i+ 1)%3] for previous
and next buffer and do the signal processing before the block is written to file. When the

length of the unit may get bigger due to the processing, allocate e.g. 20% more memory.

噌

J

¥
＇

l

int CConcat: :Dumb2Stream(CUnits* m_pUnits)
｛

// Playbuffer
char*
WAVEHDR
HWAVEOUT
int

I I Filestuff
int
CFile
CString

pPlayBuffer[2];
WaveHdr[2];
WaveOut;
nPlaySize;

nRead;
cfile;
strFilename;

inti;
int nNumber;
int nStart;
int nDuration;
char cUnits;
char pName[20];

II Number of UnitLabel-Entries

I I just Dummy

int returnvalue=O; // return value

nNumber = m_pUnits->GetNumber();

I I Allocate smallest PlayBuffers for all units

nPlaySize"'O;
for(i"'O; i<nNumber;
｛

i++)

m_pUnits->GetEntry(i, pName, nStart, nDuration,
nPlaySize=max((2*nDuration*SRATE), nPlaySize);

｝
for(i=O;i<2;i++)

cUnits);

pPlayBuffer[i]=(char*)malloc(nPlaySize);

WAVEFORMATEX Format= {WAVE_FORMAT_PCM,l,16000,32000,2,16,0};

46 Technical Report R.Grau (TR-IT-0253)

1cATR Interp_reting Telecommunications Research Laboratories

if (waveOutOpen ((LPHWAVEOUT) &WaveOut, WAVE_MAPPER,
(LPWAVEFORMATEX) &Format,
OL, OL, CALLBACK_NULL))

returnvalue=-1;

else
｛

『 ，

i=O;
while(i<nNumber)
｛

II Load block i
m_pUnits->GetEntry(i, pName, nStart, nDuration, cUnits);

II Read file
strFilename=DATABASEPATH;
strFilename+=pName;
stヱFilename+=".wav";

（ヘ

cfile.Open(strFilename,CFile: :modeRead);
cfile.Seek(2*nStart*SRATE, CFile: :begin);
nRead = cfile. Read_(pPlayBuffer [i%2], 2*nDuration*SRATE) ;
cfile.Close();

II DO SIGNAL PROCESSING HERE

// Prepare WaveHeader
WaveHdr[i%2] .lpData=(char*)pPlayBuffer[i%2];
WaveHdr[i%2] .dwBufferLength=nRead;
WaveHdr[i%2] .dwBytesRecorded=O;
WaveHdr[i%2] .dwUser=O;
Wa veHdr [i % 2] . dwFlags=O;
WaveHdr[i%2] .dwLoops=O;
WaveHdr[i%2] .lpNext=O;
WaveHdr[i%2] .reserved=O;

waveOutPrepareHeader(WaveOut, &WaveHdr[i%2],
sizeof (WAVEHDR)) ;

// Play current block
waveOutWrite(WaveOut, &WaveHdr[i%2], sizeof(WAVEHDR));

if(i>O)
｛

?

sizeof(WAVEHDR));

｝

// Wait for previous block and unprepare previous header
while(!(WaveHdr[(i-1)%2].dwFlags & WHDR DONE)) Sleep(O);
waveOutUnprepareHeader(WaveOut, &WaveHdr[(i-1)%2],

i++;

// Wait for last block and clean up
while(!(WaveHdr[(i-1)%2).dwFlags & WHDR DONE)) Sleep(O);
waveOutUnprepareHeader(WaveOut, &WaveHd日(i-1)%2),

sizeof (WAVEHDR)) ;

waveOutClose(WaveOut);

for(i=O;i<2;i++) free(pPlayBuffer[i]); // Free Memory

return returnvalue;

Technical Report R.Grau (TR-IT-0253) 47

cATR Interpreting Telecommunications Research Laboratories

!'

48 Technical Report R.Grau (TR-IT-0253)

. -~~-一

	001
	002
	003

