
TR-IT-0252

Internal Use Only (非公開）

002

Improved input methods for
CHATR

Sebastien Voyard

January 1998

ABSTRACT
In this report, I describe the work I did during the last six months.

After a brief overview of the way CHATR works, especially in the
field of prosody and multi-lingual input, I explain how we can make

the speech sound more human with the use of a parser. Then I in-

troduce interactive prosody prediction, and discuss the functionalities
that should be present in CHATR to achieve this goal. Finally, I de-

scribe the work done with multi-lingual input, and show how texts
containing more than one language can be processed.

@ATR Interpreting Telecommunications

Research Laboratoriess.

◎ ATR音声翻訳通信研究所

Improved input methods for CHATR

Sebastien Voyard

ATR-ITL, January 1998

Acknowledgements

The information contained in this document is the result of a six month

internship I spent in ATR. It has been a great opportunity for me, to discover
a country I really wanted to know, and to improve my Japanese.

I would like to thank the people who helped we to come to Japan, especially

Mr Guedj from INT, without whom all this would not have been possible.

I am also very grateful to everybody in ATR, who have been so kind.

Special thanks are due to Nick Campbell, who supervised my work and

has been very helpful with all his advice. The whole department 2, shall not

be forgotten. It has been a real pleasure to work here.

Thanks to ATR Foreign Staff Support Group, who were always ready to

answer any question.

Contents

ー What is CHATR?
1.1 Input ．．、.......

1.1.1 Text utterance

1.1.2 HLP utterance ．．

1.1.3 PhonoWord utterance

1.1.4 PhonoForm utterance

1.1.5 Phoneme utterance ．．

1.1.6 other utterance types ... ．． ..

Prosody ．． ..

1.2.1・what is Prosody?

1.2.2 Prediction within CHATR

1.2.3 Using a parser ... ．．

Overview ．．．．．．．

1.2

1.3

2

Multilingual Input

2.1 Mtts ．．．

2.2 Conv_phoneme
2.3 From a multilingal text to speech

2.3.1 about kan2rom

2.3.2 phoneme」nput
2.3.3 word module

3

3.2

3 ． 3

My contribution

3.1 Further development on using a parser

3.1.1 Pausing ．． ．． ．．

3.1.2 From Phono Word to HLP

3.1.3 Future work

Prosody ．．

3.2.1 Interaction with the user

3.2.2 A new feature ．． ．．

Multilingual ．．

3.3.1 New functionalities

3.3.2 Remaining problems

1

1

1

2

3

3

4

5

5

5

6

6

6

8
8
9
9
9
1
0
1
1
1
2
1
2
1
2
1
2
1
4
1
4
1
4
1
5
1
6
1
6
1
7

11

CONTENTS 11l

A Variable setting 19

B SkeLto_HLP 20
B.1 tree.h 20
B.2 tree.c : 21
B.3 SKEL_to」ILP.c. 26

C CHATRface 27
C.1 chatrface.h .. 27
C.2 callbacks.c .. : 28
C.3 main.c
C.4 sebvtst.~:

30
33

C.5 utt皿 odules.c. 36

D Multi-lingual input 38
D.1 pwjnput.c . 38

E Focus +++ 42

E.l phrasejnt.c .. : 42
E.2 grammar.c . . . 42
E.3 grammar.h . 44

Chapter 1

What is CHATR?

CHA.TR is a speech synthesis system developed by department 2 of ITL (In-

terpreting Telecommunications Research Laboratories) at ATR (Advanced

Telecommunications Research Institute). It is a multi-speaker and multi-

language system. That is to say that the same text can be spoken with

different voices (male, female and even child voice), and that different lan-

guage can be processed (English, Japanese, German, Chinese, Korean). It

differs from conventional speech synthesis in that it re-uses actual reading

from a human speaker without recourse to signal processing.

1.1 Input

Specifically CHATR is not a text-to-speech system, though it does support

a simple text input module. CHATR's main use in ATR will be within a

speech translation system. To turn translated speech into plain text and

then expect a text-to-speech system to recreate all the information that has

just been thrown away is a waste of resources. The language generation

system already has a labeled form of the utterance and it is this far richer

form of the utterance that is intended as the input to the CHATR system -

though many other types of input are possible.

Input to CHATR is in the form df an utterance created by the Utterance

command. Several types of input may be specified at quite different levels,

varying from raw text to a simple waveform. The current possibilities are

following.

1.1.1 Text utterance

The Text utterance type is the most basic type of input, it consists of just

raw text with no additional information.

(Utterance Text "You can pay for the hotel with a credit card.")

ー

2 CHAPTER 1. WHAT IS CHATR?

1.1.2 HLP utterance

The HLP utterance type is a high level "linguistic" structure. A sentence

is represented by a tree, where each node brings information about syntax

or speech type. The leaves of the tree are words. At the word level a series

of features can be attached to each word to bring other information such as

Focus.

(Utterance

HLP

(((CAT S) (IFT Statement))

(((CAT NP) (LEX you)))

(((CAT VP))

(((CAT Aux) (LEX can)))

(((CATV) (LEX pay)))

(((CAT PP))

(((CAT Prep) (LEX for)))

(((CAT NP))

(((CAT Det) (LEX the)))

(((CAT N) (LEX hotel)))))

(((CAT PP))

(((CAT Prep) (LEX with)))

(((CAT NP))

(((CAT Det) (LEX a)))

(((CAT Adj) (LEX credit) (Focus +)))

(((CAT N) (LEX card))))))))

The attribute CAT determines the category of the node at each level.

• S stands for Sentence

• xP for Phrase

-NP correspond to Noun Phrase

-VP to Verbal Phrase

-PP to Prepositional Phrase

• many features describe the word itself

-Noun

-Verb

-Aux

-Det

-Prep

1.1. INPUT 3

-Adj

The attribute IFT (Illocutionary Force Type) identifies the nature of the

sentence. Currently, CHATR recognizes Statement, Question, YNQuestion

and Interjection.

This kind of utterance is far more detailed and we can expect better

output. However it is very time consuming and error-prone to type it in

directly.

1.1.3 PhonoWord utterance

Phono Word utterance uses a lower level representation. It is again a tree,
but the depth is limited. There are only four levels: Discourse, Sentence,

Clause and Phrase. You can add intonation information for each word in

various formats including ToBI. In fact you can apply any feature on any
word. Here is an example:

(Utterance

PhonoWord

(:D ()

(: s ()
(: C ()

(rnarianna (H*))

(made)

(the)

(marmalade (H*) (L-1%))))))

1. 1 .4 Pho no Form utterance

This format allows specification of prosodic phrases, words, syllables, intona-

tion labels, segments, duration, power and pitch. In fact almost everything

that CHATR itself might predict during synthesis of a text string. This form

is typically used to represent full database information. Here is an example:

(Utterance

PhonoForm

(: D nil

(:S ((PauseLength 65))

(Word Attorney nil

(Syl ax () (Phoneme ax 70 8.5100 ((187.0000 35))))

(Syl t.er ((Stress 1) (Intones HiFO H*))

(Phoneme t 110 7.1200 ((242.0000 55)))

(Phoneme er 80 8.7500 ((255.0000 40))))

(Syl n.iy nil

4

CHAPTER 1. WHAT IS CHATR?

(Phoneme n 50 8.6700 ((233.0000 25)))

(Phoneme iy 60 8.3400 ((193.0000 30)))))

(Word General .((Break 1))

(Syl d.jh.eh.n ((Stress 1) (Intones !H*))

(Phoneme d 60 7.7300 ((173.0000 30)))

(Phoneme jh 40 7 .4100 ((226. 0000 20)))

(Phoneme eh 110 8.4300 ((205.0000 55)))

(Phoneme n 30 8.2700 ((196.0000 15))))

(Syl axr () (Phoneme axr 130 8.2600 ((158.0000 65))))

(Syl el ((Intones L-H%))

(Phoneme el 110 7.9000 ((180.0000 55))))))

(:S nil

(Word James nil

(Syl d.jh.ey.m.z ((Stress 1) (Intones H*))

(Phoneme d 70 7.0900 ((182.0000 35)))

(Phoneme jh 50 7.0800 ((184.0000 25)))

(Phoneme ey 150 8.2200 ((154.0000 75)))

(Phoneme m 100 7.7600 ((143.0000 50)))

(Phoneme z 30 6.7700 ((200.0000 15)))))

(Word Shannon ((Break 1))

(Syl sh.ae.n ((Stress 1) (Intones HiFO H*))

(Phoneme sh 90 6.9900 ((200.0000 45)))

(Phoneme ae 150 8.3700 ((172.0000 75)))

(Phoneme n 80 8.1000 ((144.0000 40))))

(Syl ax.n ((Intones L-L%))

(Phoneme ax 30 7.4400 ((104.0000 15)))

(Phoneme n 50 7.1100 ((145.0000 25))))))))

1.1.5 Phoneme utterance

The Phoneme input format is a simple list of words along with small integers

identifying break points. These break indices go from 1 to 5, with 5 corre-

sponding to a strong break like at the end of a sentence. With this kind of

input you can type in any language, using the phoneme set of the speaker.

See the following examples (English and Japanese).

(Utterance Phoneme

(you can pay 3 for the hotel 3 with a credit card 5))

(Utterance Phoneme

(sakujitsu)amega furima)shita 5 delmo 1 kyo)uwa ili telNkidesu 5))

1.2. PROSODY 5

1.1.6 other utterance types

Some other types of utterances exist such as Segment, SegFO, RFC, Syllable

or ¥Vave but they are of no relevance to this report. Some further information

about them can be found in CHATR's manual [6].

1.2 Prosody

1.2.1 What is Prosody?

Prosody is beyond what we say; it's how we say it. As an example, take the

sentence: "Could I have your phone number too?".

The meaning can be changed completely depending on intonation used

and which words are stressed. The following lines shows different possibilities,

where the stressed words appear in bold.

1. Could I have your phone number too?

2. Could I have your phone number too?

:3 . Could I have your phone number too?

4. Could I have your phone number too?

5. Could I have your phone number too?

These five sentences each have a different meaning. The first one could

mean that somebody already has your phone number and that I want it too,

whereas in the second one, I already have other people's phone number, but

I want yours particularly. In the third example, I could have already your

fax number, but I also want the phone number. And so on.

So as you can see from this example, a single sentence can have many

meaninBeyond skeleton parsing: producing a comprehensive large-scale general-

English treebank with full grammatical analysis.gs. If you take this sentence
without any context you will not be able to decide which one is the most

appropriate.

Each time we stress a word while speaking the J,。valuerises. So to have
a word stressed, you have to predict a higher .fi。value.But you must have
also noticed that when a word is really important, you slow down when you

are pronouncing it, whereas you speed up on words that do not bring much

information such as articles and so on. Some may say that you could also

speak louder; usually it is not for the same purpose and this possibility should

not be thrown away.

6 CHAPTER 1. WHAT IS CHATR?

1.2.2 Prediction within CHATR

From the information given as input, CHATR will predict the prosody. To

each utterance is attached various streams concerning different kinds of infor-

mations and linked together (WordStream for words, SylStream for syllables

or IntoneStream for intonation). The prosody prediction works with the In-

toneStream, which get filled and enriched at many steps of the processing.

CHATR currently uses the ToBI intonation system, and its variant in sev-

eral languages (that is JToBI for Japanese and GToBI for German). For each

syllable of the Sylstream, pitch accent(H*, L*, ...), phrase accents (H-, 1-,
...) and boundaries tones (1%, ...) are predicted. See [2] for information
about the ToBI system. Then according to these ToBI labels, the /i。contour
is predicted.

1.2.3 Using a parser

To make English sentences sound more human, the use of a parser could be

of great utility. The work already done, concerning mainly pause prediction,

leads to better results in prosody prediction.

The parser used for this study has been developed by department 3[3].
The input is an English sentence. The output is a very detailed tree which

contains phrasal and lexical information at each node. Here is an example

of the output of the parser:

[start [sprpd1 [sprime1 [sd1 [nbar1 [n1a Water _NN2PERSDN n1a]

nbar1] [vbar1 [v2 was_VBDZ [nbarq4 [nbar1 [n1a

cascading_NN1DEVICE n1a] nbar1] [i1e [pi down』 IDDWN[nbarq4

[nbar4 [di the_AT di] [nia mountain_NNiPLACE nia] nbar4]

[iie [pi at_IIAT [nbarq4 [nbar4 [di a_ATi di] [nia

rate_NNiMEASURE nia] nbar4] [iie [pi of_IIDF [nbari [nia

knots_NN2MONEY nia] nbari] pi] iie] nbarq4] pi] iie] nbarq4]

pi] iie] nbarq4] v2] vbari] sdi] sprimei] . _. sprpdi] start]

The work that had been done by a previous INT student was to con-

vert the output of the parser into a format understandable by CHATR, and

extract information to make better prediction. This is done through the

SkeLto_Phon Word program. This output is then obviously a Phono Word

utterance. The algorithm is described in Tony Hebert's report [5].

1.3 Overview

The following graph shows the different steps of the processing of an utter-

ance.

1.3. OVERVIEW 7

pw_input text_input

＼
HLP _input

／
HLP_module

／
word_module

e

u

e

u

d

d

゜
m

o

-

m

↓
y
-＝-―
:
9
 e

g

n

゜
0

0

n

t

n

，

゜
h

p

e

e

ー

—

u
d

u

゜

d

m

゜
m

———-1,9-

'• n
e

t

o

g

i

r

a

t

a

r

t

t

u

d

n

．

s

．
 s

e

↓
h

t

n

y

s

Figure 1.1:

Chapter 2

Multilingual Input

CHATR can speak many languages, using different speakers. But any voice

should be able to speak any language. As far as the phoneme set are com-

pletely different, we cannot expect a Japanese speaker to be mistaken for an

English one. The Japanese language consists of much fewer phonemes than

the English one, so not every English sound is reproducible in Japanese.

However, it will sound like a foreigner speaking in this language. Moreover,

a single speaker should be able to speak a multi-lingual text, shifting the

language each time it is necessary.

To give a simple example of an application, you will perhaps want to

have your e-mail read, using CHATR, and what you receive may consist of

English text or Japanese text or both.

2.1 Mtts

The way to deal with multi-lingual text is to use a CHATR text-to-speech

module(tts) made for multi-lingual input: mtts. This was able to process ei-

ther English or Japanese. This module considered that Kanji and Kana was

Japanese text whereas Romaji was English. With only two such languages

the difference between each is very simple to cletemine. You can go on adding

other languages like Chinese or Korean without any problem as long as the

character set is different each time. But real problems come when you want

to deal with several Romaji languages; you need some deeper search to de-

termine which language is used. For example the use of umlaut which is a

characteristic of German language, or the use of article like the or das could

be part of the decision. However this point has to be discussed later. The

main drawback of mtts is that every time a switch of language occurs, it

corresponds to a switch of speaker. That is to say, English text was spoken

by an English speaker and Japanese text by a Japanese speaker.

Mtts takes a file as input, so you cannot edit the Japanese text directly.

8

2.2. CONV_PHONEME

，

To be able to edit Japanese text as well as English, several functions have

been implemented for mule (multi-lingual version of emacs). This basically

writes to a file and calls mtts.

2.2 Conv_phoneme

Another program has been developed to deal with multi-lingual input. It is

called conv_phoneme. I have been using 2 different versions of this program

and I will discuss each of them, given that they have their own advantages

and drawbacks. Basically, this program takes a multilingual text as input and

produces an Utterance Phoneme which can be used by CHATR. The program

takes the input string and parses it according to the language type to obtain

several lists (one for each language). Then each list is converted to Romaji,

using different programs. For instance kan2rom is used for Japanese, and

Hcode for Korean. The output string is then reconstructed using the different

lists. The output string uses the phoneme set of the selected language.

2.3 From a multilingal text to speech

In this section I will speak mainly about Japanese and English.

2.3.l about kan2rom

kan2rom is currently used to convert a Japanese text (Kanji and Kana) into

Romaji. The output of kan2rom is a list of words with break indices and

information concerning the intonation.

For example, with the input:

• 今日は寒いですね。多分雪が降るでしょう。

(Today is cold. It might snow)

the output is:

• kyo'uwa samu'idesune 5 ta'buN 1 yuki'ga fu'rudeshou 5

As you can see from this example, two other items are brought with the

transcription. They are apostrophes and numbers.

Numbers indicates break indices, they show how much a word is linked

to the next one. If no number appears the break index is considered to be 0,
which means that the two words are strongly linked together. The greater

the value, the less the words are linked. A break index of 5 corresponds to

the end of a sentence.

Apostrophes are placed after the accented mora (syllable) of each "word".

10 CHAPTER 2. MULTILINGUAL INPUT

Figure 2.1 shows the basic intonation contour of a Japanese phrase. On

each word of the phrase the Jo, usually rises in the second mora ,and the

apostrophe indicates the place where it goes down.

FO

phrase contour word contour

-、

｀`

／

／

＼

Figure 2.1: Japanese intonation contour

Note that what I called "word" here does not correspond necessarily to
real lexical words. It describes a series of characters surrounded by to spaces.

2.3.2 phoneme_input

what it does

Basically, what the phonemejnput function does is to convert its input into

another format which is the Phono Word format. Break indices are replaced

by boundaries:

• 1 and 2 give a phrase boundary (P J30UND)

• 3 gives a clause boundary (じBOU.ND)

• 4 and 5 give a sentence boundary (C_BQUND)

For example, the input:

(Utterance Phoneme(kyo'uwa samu'idesune 5 ta'buN 1 yuki'ga

fu)rudeshou 5 It's cold today 3 isn't it 5 Perhaps it will snow 5)

becomes

2.3. FROM A MULTILINGAL TEXT TO SPEECH

(:D

nil
(:S () (:C () (:P () ((kyo'uwa)) ((sarnu'idesune)))))

(:S

nil

(: C

nil
(:P () ((ta'buN)))

(: P () ((yuki'ga)) ((fu'rudeshou)))))

(:S

nil
(:C () (:P () ((It's)) ((cold)) ((today))))

(: C () (: P () ((i sn't)) ((it)))))

(: s
nil
(:C () (:P () ((Perhaps)) ((it)) ((will)) ((snow))))))

11

After the phonemejnput module, the word module is called as if the

input has been PhonoWord.

2.3.3 word module

The next module called after phoneme input is the word module. This mod-

ule calls the lexicon module, amongst others. The lexicon used is defined by

the speaker currently selected. That is to say, if you are using a Japanese

speaker the Japanese lexicon will be used.

This module gives us the lexical stress (which part of the word is ac-

cented). Each syllable is linked to a number, 1 if accented, 0 if not. For

example the word "intermediate" has the following structure:

ュntermed1ate('

(((in) (1)) ((tc) (0)) ((m ii) (1)) ((d iict) (0))))

As long as we are dealing with Multi-ling叫 text,the processing cannot

be correct. For instance, English words will not be recognized by a .Japanese

lexicon, and the lexical stress field of each syllable will be set to 0. This will

cause a lack in prosody prediction.

Chapter 3

My contribution

3.1 Further development on using a parser

After having understood the SkeLto_PhonoWord algorithm, I tried to make

some improvements to it and then tried to use the parser more efficiently.

3.1.1 Pausing

The use of the parser led to better predictions of the pause, especially when

the input was a very long sentence. However, even if results were better, using

the SkeLto_Phono Word algorithm, some problems remained. As a matter of

fact, if a group of word was greater than six a pause was inserted a soon as

possible, leading to strange breaks. On the other hand, there was no pause

insertion with smaller groups. This event occurred because, when a group

was too big, the algorithm decided to split it in two parts if possible. But it

tried to cut it from the middle of the group.

The choice of 6 words limit to make groups and then insert pause, is ar-

bitrary, but in my opinion, any choice will lead to strange breaks sometimes;

the best we can do is find a limit to make the fewer mistake we can. Con-

sidering the second point, improvements were made by having the recursion

search to split a big group applied on the whole group (not from its middle).

And doing this we had fewer strange breaks. However, the algorithm is still

not perfect.

3.1.2 From PhonoWord to HLP

・when the Phono Word format is used, we miss a part of the processing which

is HLP processing. Of course the Phono vVord input used at this stage, con-

tains more information than just text, but part of the prosody prediction is

done inside the HLP module for text input. And the HLP module is not

called for PhonoWord utterances (see Figure 1.1, page 7).

12

3.1. FURTHER DEVELOPMENT ON USING A PARSER 13

Moreover the output of the parser is very detailed, and it is not used as

much as it could be. Therefore, it is perhaps better to use an another kind

of input. The most appropriate at this step seemed to be HLP input. As a

matter of fact, both formats have the same structure, they represent a tree.

And all the information contained in the HLP tree, can be used by the HLP

module to make better predictions.

Example of use

With the input

[start [sprpd1 [sprime1 [sd1 [nbar4 [d1 The_AT d1]

[n4 [n1a price_NN1MONEY n1a] [n1a range_NN1CLASS n1a] n4]

nbar4] [vbar1 [v2 is_VBZ [j11 smaller_JJRDEGREE [fc1

than_CSN [nbarq13 [nbar9 [d1 any_DD d1] [p1 of_IIOF

[nbar6 us_PPI02 nbar6] p1] nbar9] [v1 expected_VVNMENTAL-ACT

v1] nbarq13] fc1] j 11] v2] vbar1] sd1] sprime1] . _. sprpd1]

start]

we get the following HLP utterance

(Utterance HLP

(((CAT S) (IFT Statement))

(((CAT NP))

(((CAT Det) (LEX The)))

(((CAT NP))

(((CAT Noun) (LEX price)))

(((CAT Noun) (LEX range)))))

(((CAT VP))

(((CAT Verb) (LEX is)))

(((CAT PP))

(((CAT Adj) (LEX smaller)))

(((CAT PP))

(((CAT Word) (LEX than)))

(((CAT NP))

(((CAT NP))

(((CAT Det) (LEX any)))

(((CAT PP))

(((CAT Prep) (LEX of)))

(((CAT Noun) (LEX us)))))

(((CAT Verb) (LEX expected)))))))))

14 CHAPTER 3. MY CONTRIBUTION

3.1.3 Future work

Surely the output of the parser could be used more efficiently, considering

the highly detailed output it gives. Currently what is recognized as an HLP
Input does not cover all of the features used by the parser. Moreover it

concerns only syntactic information, whereas the parser gives us much more.

The first solution would be to increase the number of features recognized

by CHATR and assign them a special processing. That is to say improve the

HLP module.

A better solution would be to write a new module which takes the parser

output directly as an input without any conversion, using as much informa-

tion as possible. This way, we should be able to save time in processing. But

most important, for further development, changes just have to be done in

one single place, instead of at each stage of the different conversion.

However the main problem is perhaps that by now the parser is very slow.

Therefore it cannot be used as is in CHATR. If this program could run real-
time it could be of great use for CHATR.

3.2 Prosody

3.2.1 Interaction with the user

When the user wants to process such a sentence, he cannot expect CHATR

to guess what meaning he wants. That's why the intervention of the user

is required. In fact the user should be able to process a sentence as many

times as he needs and make any necessary prosody adjustment between two

processings. This should be realized through a loop. By that, I mean that

the user processes the sentence, hears it, changes some parameters, does

the processing again until he can hear what he really wants (or as close as

possible).

The first step consists in marking words or groups of words to be "read"

in a different way (concerning focus or speed). An editing loop should be

available at this level.

The second step is to have another editor to refine the prosody. This time

you should be able to directly modify Jo, having also another loop.

Graphical User Interface?

I tried to design a graphical interface to be more user-friendly, which could

realize the loop described ahead. I called it CHATRface for CHATR interface.

I have done this through a new module which is called directly from CHATR.

It looks like figure 3 .1

3.2. PROSODY 15

~-
こ目t--\r~

you to do

:
 ，

Figure 3.1: CHATRface

You just have to click on a word and then choose the action. The result

of the previous processing is shown via different colors. Focusing uses the

background color, and speed (speaking rate) uses foreground color. This

module should work for any language written in Romaji. To be able to use

Kanji and Kana it requires more work.

About the code

In this section I will try to briefly describe the code, to make it understand-
able, in case somebody wants to do further work on it. This program uses

XWindow and Athena Xtoolkit. Although Athena is not very good looking,

I choose it, because it was available on my machine, and because it can be

used on every machine where XWindow is available. It uses also IPC (UNIX

InterProcess Communication) to deal with communications between CHATR

and the interface, which I decided should not be part of CHATR.

First of all, the program Chatrface should be running, before the func-

tion (Sebd) is called from CHATR. Once an Utterance has been synthe-

sized, a call to (Sebd) will send the information to the program Chatrface

waiting. Having this information, a window is created with function but-

tons(CommandWidget Class), and a button for each word(ToggleWidget

Class). A word is selected by changing its state (it appears in reverse video).

Then once a command is selected, the information is sent back to CHATR.

In fact you can include any function in Chatrface, to be called from the
"outside".

(too brief)

3.2.2 A new feature

vVe have seen in section 1.2.1 that a word can be stressed by raising the Jo
and/ or slowing down on it. Another way could be to insert a pause before

the stressed word. In fact, if you listen carefully, you can easily notice a short
pause in speech just before saying an important word.

16 CHAPTER 3. MY CONTRIBUTION

This kind of pause is inserted just before the word marked with the new

feature (Focus +++) . It will correspond to a stronger stress. Ji。israised as
with the (Focus ++) feature. This works if the pause prediction is done by
phrase break (which should be the default in my opinion). Perhaps you will

have to set a parameter as follows.

(set pause_prediction'by_phrase_break)

The pause length is defined in the Pause Stats parameter as follows.

(Stats Pause

（

(discourse

(sentence

(clause

(phrase

(focus

500)

350)

200)

150)

100) <-this is where the parameter is set

ーヽ

‘ー

3.3 Multilingual

The first thing to be done was to make it possible to use conv_phoneme

directly. For this purpose, an editor was needed, but this editor should be

able to edit Kanji as well as Romaji. We could have written this editor, but

it would have taken a great amount of time. Instead we chose to use mule,

which combines the functions of a multi-lingual editor and the possibility to

create your own functions. With only a few changes, I switched from mtts

to conv_phoneme. If you call CHATR from emacs, the text will be entirely
spoken by the chosen speaker, after calling conv_phoneme and CHATR.

3.3.1
. .

New functionaht1es

What is described in section 3.2.1 should be available for every language.

We add to include the same functionalities in this kind of input. I chose to

use the same escape characters that are used in text input. Transferring the

information from the Multi-lingual level to the phoneme level is difficult, so

I began to included the escape characters in Phoneme Utterances.

Modification of phoneme_input

The conversion of Phoneme to Phono Word only uses basic functions. The

PhonovVord input can be much more detailed. So we can modify the Phoneme」nput
function to include new functionalities. In fact for each word you can include

3.3. MULTILINGUAL 17

ToBilabels or features. So I made modifications to enable the same function-

alities as for text input and some more. Now you can enter options before a

"word" to be applied to it. Options are entered between two'/'and can be

the following:

• + to insert a (Focus ++) feature

● -to insert a (Focus -) feature

• * to insert a (Focus +++) feature

• f to insert a (0 PT Fast) feature

• s to insert a (0 PT Slow) feature

two more are available although their feature have not been implemented yet

• h to insert a (Power +) feature

• 1 to insert a (Power -) feature

If the feature (Focus ++) is set on a word, .fi。valueswill be raised, with
(Focus -) they will be decreased, and (Focus +++) has the same effect on
f。buta pause is inserted before he word. (OPT Fast) and (OPT Slow) are
used to regulate the speed. (Power +) and (Power -) should be used to raise
or decrease power on the concerned word.

As an example:

(Utterance Phoneme(It's /+/ cold today 3

/f/ isn't it 5 Perhaps it will snow 5))

will be converted into

(:D

nil

(: s
nil

(:C () (:P () ((It's)) ((cold (Focus++))) ((today))))

(:C () (:P () ((isn't (OPT Fast))) ((it)))))

(:S

nil

(:C () (:P () ((Perhaps)) ((it)) ((will)) ((snow))))))

3.3.2 Remaining problems

As mentioned above, the transfer of information from Japanese text to U t-
terance Phoneme, is somehow difficult. This comes from the fact that lexical

words are not usually separated by spaces, and we may want to stress a ,rnrd

which will be surrounded by other words with no space. The problem is to

recognize the "word" in the series of characters.

18 CHAPTER 3. MY CONTRIBUTION

At the present time, almost everything in CHATR has been designed for

a monolingual input. Therefore, almost every module takes an Utterance
and applies the same processing to the whole utterance regardless of what is

inside. It is just done according to the parameters which were loaded when

the speaker was loaded (for example: intonation method, lexicon).
From the two versions of conv _phoneme that I know, one leaves English

text as it is whereas the other converts it to the phoneme set of the language

selected. In the first case, when using a Japanese speaker it will sound like
anything but english. It is spoken as if it was japanese Romaji."My name"

will sound like "みなめ". In the second case, which is prefered, when the

lexicon module is called, the lexical stress will be missing, as words will not
be recognized.

To use other words the processing is language dependent until the target
module (at least the duration module) is called.

Future work

In my opinion, there should be a multi-lingual Input module which takes

a multi-lingual text as an input and gives as output something closer to

PhonoForm. vVith this format, you can specify either ToBI labels or the

predicted Jo contour directly. As soon as the method to make the target is
the same for Japanese, English and German, i.e. by using linear regression
based on ToBI labels. I think just having units and ToBI labels should
be enough. With this kind of input the only thing to do is unit selection
according to the targets.

Appendix A

Variable setting

• The pause_prediction....method must be set to "by _phrase_break"

(set pause_prediction'by _phrase_break)

• In order to use all the information contained in the HLP input, espe-
cially when using the SkeLto_HLP program, the HLP _phrase_strategy
must be set to ::Bachenko_Fitzpatrick

(set HLP _phraseふtrategy'Bachenko_Fitzpatrick))

• It is important to check if the HLP .-Patterns and HLP且ulesvariables
are non ml

• To use the features (Focus ++), (Focus -), (OPT Slow), (OPT Fast),
you have to set the variable Tony_Params

• If you want to use the (Focus +++) feature you have to set the duration
of the pause with the attribute focus of the Stats Pause

ヽ
ー
、
ー
ノ
、
ー
ノ
、
ー
ノ
、
ノ

0

0

 0
 0
 0

0

5

0

5

0

5

3

2

1

1

e

s

e

e

r

c

s

u

n

e

e

u

o

e

s

s

s

P
a
S
e
n
t
a
u
r
a
c
u

.
l
e
l
h
o

s

d

s

c

p

f

t

(

（

（

（

（

a

t

(

）

s

)

（

19

Appendix B

Skel_to_HLP

B.1 tree.h

th source code can be found under: 文svoyard/src/lib

#ifndef _SEB_TREE_H

#define _SEB_TREE_H

typedef struct noeud * arbre;

typedef struct fils * pfils;

struct noeud {

char LEX[256];

char CAT[16];

int nb_fils;/* peut-etre redondant *I

pfils branche;

arbre pere;

int phrlc;/* to add PhraseLevel :C *I

};

struct fils {

arbre objet;

pfils suivant;

};

void affiche(arbre Stree);

void affiche2(arbre Stree,int st);

arbre newtree ();

void freetree(arbre A);/* to free the whole tree *I

void freenode(arbre A);/* to free the node only *I

arbre newbranche(arbre A);/* l'arbre retourne sert juste pour le marker*/

void upnode(arbre *A);

20

B.2. TREE.C

void trslate (char ent []);

void mvbranche(arbre source, arbre dest);

void cleantree(arbre A);

void edit_sentence(arbre Stree);

void addbreak(arbre A);

#endif

B.2 tree.c

Source is under: 文svoyard/src/lib

#include <stdio.h>

#include "tree.h"

void affiche(arbre Stree)

｛

pfils courant;

if (Stree->branche==NULL)

｛

I* printf(11%s ¥n",Stree->LEX); *I
trslate(Stree->CAT);

21

printf("(((CAT 1/,s) (LEX%。s)))¥n",Stree->CAT,Stree->LEX);

｝

else

｛

if(Stree->nb_fils>1)

｛

switch((Stree->CAT) [OJ)

｛

case'n':

printf("(((CAT NP)");

break;

case'v': case'。):
printf("(((CAT VP)");

break;

case's':

printf (" (((CAT S) ");

break;

default:

printf("(((CAT PP)");

break;

22 APPENDIX B. SKEL_TO_HLP

｝

if(Stree->phrlc) printf(" (PhraseLevel :C)");

printf(")¥n ");

｝

courant=Stree->branche;

while (courant!=NULL)

｛

｝

affiche(courant->objet);

courant=courant->suivant;

if(Stree->nb_fils>1) printf(")");

｝

｝

void affiche2(arbre Stree,int st)

｛

pfils courant;

printf("(Utterance HLP¥n(((CAT S) (IFT 11);

switch(st) {

case 1: printf ("Statement)) ¥n");

break;

case 2: printf("Question))¥n");

break;

case 3: printf("Interjection))¥n");

break;

default: printf ("Statement))¥n");

break;

｝

affiche(Stree);

printf("))¥n");

｝

arbre newtree()

｛

arbre aux=(arbre)malloc(sizeof(struct noeud));

aux->branche=NULL;

aux->pere=NULL;

aux->nb_fils=O;

aux->phrlc=O;

return aux;

｝

void freetree(arbre A)

｛

B.2. TREE.C

pfils courant,aux;

if (A->branche==NULL)

free(A);

else

｛

courant=A->branche;

while (courant!=NULL)

｛

｝

freetree(courant->objet);/*tree was missing*/

courant=courant->suivant;

courant=A->branche;

while (courant!=NULL)

｛

｝

aux=courant;

courant=courant->suivant;

free(aux);

free(A->LEX);free(A->CAT);/* not sure *I

free(A);

｝

｝

void freenode(arbre A)

｛

free(A);

｝

arbre newbranche(arbre A) {

pfils aux;

if (A->nb_fils==O) {

A→ branche=(pfils)malloc(sizeof(struct fils));
A→ nb_fils=1;
(A->branche)→ obj et=newtree () ;
(A->branche)->suivant=NULL;

I* peut-etre d'autres initialisations *I

(A->branche)->objet->pere=A;

return (A→ branche)->objet;
｝

else {

(A->nb_fils)++;

aux=A->branche;

while (aux->suivant!=NULL) aux=aux->suivant;

aux->suivant=(pfils)malloc(sizeof(struct fils));

23

24 APPENDIX B. SKEL_TQ_HLP

(aux->sui vant)->obj et=newtree O;
(aux->suivant)->suivant=NULL;

aux->suivant->objet->pere=A;

return (aux->suivant)->objet;}

｝

void upnode(arbre *A) {

if ((*A)->pere!=NULL) *A=(*A)->pere;

else perror("upnode: already at the top");

｝

void trslate(char ent [])

｛

char sor[16];

if (ent[O]=='n')

strcpy(sor,"Noun");

else if (ent [OJ==万｝）

strcpy(sor,"Adj");

else if (ent[O]=='か）

strcpy(sor,"Det");

else if ((ent[O]=='。')11 (ent[O]=='v,))

strcpy(sor,"Verb");

else if ((strcmp(ent,"p")==O) 11 (strcmp(ent,"pr")==O)

11 (strcmp(ent, "pzero")==O))

strcpy(sor,"Prep");

else if ((strcmp(ent,"r")==O) 11 (strcmp(ent,"rqzero")==O)

11 (strcmp(ent, "rzero")==O))

strcpy(sor,"Adv");

else strcpy(sor,"Word");/* a modifier :(*I

strcpy(ent, sor);

｝

void mvbranche(arbre source, arbre dest)

｛

pfils aux;

if (dest->nb_fils==O) {

dest->branche=(pfils)malloc(sizeof(struct fils));

dest->nb_fils=1;

(dest->branche)->objet=source;

(dest->branche)->suivant=NULL;

｝

else {

(dest->nb_fils)++;

B.2. TREE.C 25

aux=dest->branche;

while (aux->suivant!=NULL) aux=aux->suivant;

aux->suivant=(pfils)malloc(sizeof(struct fils));

(aux->suivant)->objet=source;

(aux->suivant)->suivant=NULL;

｝

I* ! ! ! enlever source a son pere ! ! ! *I

if (source->pere->branche->objet==source){

source->pere->branche=source->pere->branche->suivant;

/*manque un free*/

｝

else {

aux=source->pere->branche;

while (aux->suivant->objet!=source) aux=aux->suivant;

aux->suivant=aux->suivant->suivant;

/*manque un free*/

｝

(source->pere->nb_fils)--;

source->pere=dest;

／＊ peut-etre d'autres initialisations *I

｝

void cleantree(arbre A)

｛

pfils courant,aux,aux2;

if (A->branche==NULL)

｛

/*nothing to do at the moment*/

｝

else

｛

if((A->nb_fils==1)&&(A->pere!=NULL))

｛

aux=A->pere->branche;

while(aux->objet!=A) aux=aux->suivant;

aux->objet=A->branche->objet;/*rernove non-useful nodes*/

aux->objet->pere=A->pere;

aux->objet->phrlc=((A->phrlc) I I (aux->objet->phrlc));/*transfert au fil
cleantree(A->branche->objet);

free(A->branche);/* was missing *I

freenode(A);

26 APPENDIX B. SKEL_TQ_HLP

e

}

s

{

ーe

courant=A->branche;

if ((A->CAT[O]=='配）&&(A->pere!=NULL))

｛

strcpy(A->CAT,"p");

｝

while (courant!=NULL)

｛

cleantree(courant->objet);

courant=courant->suivant;

｝

｝
 ｝

 ｝

void edit_sentence(arbre Stree)

｛

pfils courant;

if (Stree->branche==NULL)

｛

printf("%s 11,Stree->LEX);

｝

else

｛

courant=Stree->branche;

while (courant!=NULL)

｛

edit_sentence(courant->objet);

courant=courant->suivant;

｝
 ｝

 ｝

B.3 SKEL_to_HLP.c

Source is under: xsvoyard/ src It is an adaptation of the SKEL_to_Phono Word

program written by Tony Hebert

{/home/as65/xsvoyard/src/SKEL_to_HLP.c}

Appendix C

CHATRface

The source code is under: 文svoyard/XW/ chatrface

C.1 chatrface.h

#include <stdio.h>

#include <X11/StringDefs.h>

#include <X11/Intrinsic.h>

#include <X11/Xaw/Label.h>

#include <X11/Xaw/Cornmand.h>

#include <X11/Xaw/Paned.h>

#include <X11/Xaw/Box.h>

#include <X11/Xaw/Toggle.h>

#include <X11/Xaw/Scrollbar.h>

#include <X11/Xaw/Viewport.h>

#include <X11/Shell .h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

/*----------Widgets----------*/

Widget pressW;

Widget press2W;

Widget press3W;

Widget Focus2W;

Widget toplevel;

27

28 APPENDIX C. CHATRFACE

Widget boxW,box2W,skrollW;

Widget panedW;

Widget titreW;

Widget quitW,DkW,confW,ctitrW,cboxW,yesW,noW;

int msgqid,nb,i;

/*----------Callbacks----------*/

void

PressCB(Widget widget, XtPointer client_data, XtPointer call_data) ;

void

FocusCB(Widget widget, XtPointer client_data, XtPointer call_data);

void

QuitCB(Widget widget, XtPointer client_data, XtPointer call_data) ;

void

yesCB(Widget widget, XtPointer client_data, XtPointer call_data) ;

void

noCB(Widget widget, XtPointer client_data, XtPointer call_data);

void

OkCB(Widget widget, XtPointer client_data, XtPointer call_data);

C.2 callbacks.c

#include "chatrface.h"

!*---
--*!

void

PressCB(Widget widget, XtPointer client_data, XtPointer call_data)

｛

printf ("Ok¥n") ;

｝

!*---
--*!

void

FocusCB (Widget widget, XtPointer client_data, XtPointer call_data)

｛

struct msgbuf{

long mtype;

char mtext[128];

C.2. CALLBACKS. C 29

};

struct msgbuf msg;

msg.mtype=2;

sprintf(msg.mtext,"%s %s11,(char*)client_data,(char*)XawToggleGetCurrent(press2W)

if (msgsnd(msgqid, &msg,128,0)==-1)

｛

｝

puts("serv: erreur sur msgsnd");

exit(1);

printf("Focus added on %s¥n",(char*)XawToggleGetCurrent(press2W));

｝

!*---
--*!
void

QuitCB(Widget widget, XtPointer client_data, XtPointer call_data)

｛

XtPopup(confW, XtGrabNone);

｝

!*---
--*!
void

yesCB(Widget widget, XtPointer client_data, XtPointer call_data)

｛

struct msgbuf{

long mtype;

char mtext[128];

};

struct msgbuf msg;

msg.mtype=2;

strcpy(msg.mtext,"cQuit");

if (msgsnd(msgqid, &msg,128,0)==-1)

｛

｝

puts("serv: erreur sur msgsnd");

exit(1);

exit (0) ;

｝

!*---
--*!

30 APPENDIX C. CHATRFACE

void

no CB (Widget widget, XtPointer client_data, XtPointer call_data)

｛

XtPopdown(confW) ;

｝

!*---
--*!
void

OkCB (Widget widget, XtPointer client_data, XtPointer call_data)

｛

struct msgbuf{

long mtype;

char mtext[128];

};

struct msgbuf msg;

msg.mtype=2;

strcpy(msg.mtext,"cSay");

if (msgsnd(msgqid, &msg,128,0)==-1)

｛

｝

｝

C.3

puts("serv: erreur sur msgsnd");

exit(1);

．
ma1n.c

#include <stdio.h>

#include "chatrface .h"

void logo(Widget);

!*---
--*!

main(int argc, char **argv)

｛

struct msgbuf{

long mtype;

char mtext[128];

};

struct msgbuf msg;

struct msqid_ds *buf;

!*--------------------------------*!

C.3. MAIN.C

Arg arg [8];

char text[256];

char flags [16] ;

/*---------init queue------------*/

msgqid=msgget(27,IPC_CREATI0777);

if (msgqid==-1)

｛

｝

puts("serv: erreur sur msgget");

exit(1);

!*----------------------------*!

31

toplevel= Xtinitialize(argv[O], "Chatrface", NULL, 0, &argc, argv);

boxW= XtCreateManagedWidget("boite", boxWidgetClass, toplevel, NULL, 0);

XtSetArg(arg[O], XtNorientation, 0);

XtSetValues(boxW, arg, 1);

!*---

Action box

--*!

panedW= XtCreateManagedWidget(11panneau11, panedWidgetClass, boxW, NULL, O);

pressW= XtCreateManagedWidget("Focus++", commandWidgetClass, panedW, NULL, O

XtAddCallback(pressW, XtNcallback, FocusCB,"Focus ++");

XtSetArg(arg[O], XtNbackground, 15);

XtSetValues(pressW, arg, 1);

Focus2W= XtCreateManagedWidget("Focus-", cornmandWidgetClass, panedW, NULL, O

XtAddCallback(Focus2W, XtNcallback, FocusCB,"Focus -");

XtSetArg(arg[O], XtNbackground, 14);

XtSetValues(Focus2W, arg, 1);

□kW= XtCreateManagedWidget("Ok", cornmandWidgetClass, panedW, NULL, O);
XtAddCallback(□kW, XtNcallback, OkCB, NULL);

quitW= XtCreateManagedWidget("Quit", commandWidgetClass, panedW, NULL, O);

XtAddCallback(quitW, XtNcallback, QuitCB, NULL);

titreW= XtCreateManagedWidget("action", labelWidgetClass, panedW, NULL, O);

XtSetArg(arg[O], XtNforeground, 13);

32

XtSetValues(titreW, arg, 1);

logo(titreW);

APPENDIX C. CHATRFACE

!*-------------------―---
--*!
confW=XtCreatePopupShell("cnf",topLevelShellWidgetClass, toplevel, NULL,

cboxW= XtCreateManagedWidget("conf", boxWidgetClass, confW, NULL, 0);

cti trW= XtCreateManagedWidget ("Do you really want to quit?", label Widget(

yesW= XtCreateManagedWidget("Yes", commandWidgetClass, cboxW, NULL, 0);

XtAddCallback(yesW, XtNcallback, yesCB, NULL);

noW= XtCreateManagedWidget("No", cornrnandWidgetClass, cboxW, NULL, 0);

XtAddCallback(noW, XtNcallback, noCB, NULL);

skrollW= XtCreateManagedWidget(11asc11, viewportWidgetClass, boxW, NULL, 0

I* XtSetArg(arg[O], XtNallowHoriz, True); *I

I* XtSetValues(skrollW, arg, 1); *I

box2W= XtCreateManagedWidget("boite2", boxWidgetClass, skrollW, NULL, C

XtSetArg(arg[O], XtNorientation, 0) ;

XtSetValues(box2W, arg, 1);

I* while((nb=msgrcv(msgqid,&msg, 128, 1,IPC_NDWAIT))==-1); *I

nb=msgrcv(msgqid,&msg, 128, 1,0777);

press2W= XtCreateManagedWidget("text:", toggleWidgetClass, box2W, NULL,

XtAddCallback(press2W, XtNcallback, PressCB, NULL);

while(msg.mtext[O] !='c'){

XtSetArg(arg[O], XtNbackground, 0);

XtSetArg(arg[1], XtNforeground, 1);

for(i=1;msg.mtext[i] !='/';i++){

/*tests*/

switch(msg.mtext[i]) {

case 汗）：

XtSetArg(arg[O], XtNbackground, 15);

break;

case'-':

XtSetArg(arg[O], XtNbackground, 14);

break;

case's':

XtSetArg(arg[1], XtNforeground, 13);

break;

case'f':

XtSetArg(arg[1], XtNforeground, 12);

break;

C.4. SEBVTST. C 33

｝

｝

sscanf(msg.mtext+i,11/%s11,text);

press3W= XtCreateManagedWidget(text, toggleWidgetClass, box2W, NULL, 0);

XtAddCallback(press3W, XtNcallback, PressCB, NULL);

XtSetArg(arg[2], XtNradioGroup, press2W);

XtSetArg(arg[3], XtNborderWidth, 0);

XtSetValues(press3W, arg, 4);

I* while((nb=msgrcv(msgqid,&msg, 128, 1,IPC_NDWAIT))==-1); *I

nb=msgrcv(msgqid,&msg, 128, 1,0777);

｝

XtRealizeWidget(toplevel);

XtMainLoop () ;

｝

void logo(Widget W) {

f*Affichage de la bitmap*/

Arg arg [1];

Pixmap Bm;

Display *d=XtDisplay(W);

Window w=DefaultRootWindow(d)・ ，
unsigned int width,height;

int x,y;

XReadBitmapFile(d,w,"chatr_logo.xbm",&width,&height,&Bm,&x,&y);

XtSetArg(arg[O], XtNbitmap, Bm);

XtSetValues (W, arg, 1) ;

｝

C.4 sebvtst.c

Source code is under: xsvoyard/src/ chatr-0.93/ display

#include <stdio.h>

#include 11list.h11

#include 11interface.h11 I* for print functions *I

#include 11table.h11

#include 11word.h11

34

#include 11syllable.h11

#include 11intonation.h11

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

void sebvtst(Utterance utt)

｛

struct msgbuf{

long mtype;

char mt ext Cl28] ;

};

Stream w;

List syls,s;

Stream intone;

/*for ipc*/

int msgqid,nb;

struct msgbuf msg1,msg2;

char f1[64] ,f2[64] ,f3[64];

msgqid=msgget(27, IPC_ALLOC);

if (msgqid==-1)

｛

｝

P_Message("erreur sur msgget");

exit(1);

msg1 .mtype=1;

APPENDIX C. CHATRFACE

for (w=utt_stream(11Word11,utt); w!=SNIL; w=SC_next(w))

｛

P_Message("Word %s:",SC(w,Word)->text);

P_Message("%s",pprint(SC(w,Word)->features));

!*----------------------------*!
strcpy (msg1. mt ext,"/");

if (hlp_has_feat(w,11Focus11,11++11)){

strcat (msg1 .mt ext, 11+11);

｝

if (hlp_has_feat(w,11Focus11,11-11)){

strcat (msg1. mt ext, 11-11) ;

｝

if (hlp_has_feat(w,11DPT11,11Slow11)){

C.4. SEBVTST. C 35

strcat (msg1 .mtext, 11s11);

｝

if (hlp_has_feat (w, 11DPT11, 11Fast11)){

strcat (msg1 .mtext, 11£11);

｝

strcat (msg1 .mt ext,"/");

strcat(msg1.mtext,SC(w,Word)->text);

I* else strcpy(msg1.mtext,"0"); *I

I* send message to server *I
if (msgsnd(msgqid, &msg1,128, 0777)==-1)

｛

puts("erreur sur msgsnd");

exit(1);

｝

!*----------------------------*!
｝
 I* send message to server *I
strcpy(msg1.mtext,"cend");

if (msgsnd(msgqid, &msgi,128, 0777)==-1)

｛

puts("erreur sur msgsnd");

exit(1);

｝

!*----------------------------*!

I* now waiting for information from user *I
while(1){

I* while ((nb=msgrcv(msgqid,&msg2, 128, 2, IPC_NDWAIT))==-1); *I
nb=msgrcv(msgqid,&msg2, 128, 2, 0777);

if (msg2. mt ext [OJ ! =, c1){

P _Message("Request: %s11 ,msg2 .mtext);

sscanf(msg2.mtext,"%s %s %s",f1,f2,f3);

P_Message(11%s : %s : %s",f1,f2,f3);

simple_input(utt);

for (w=utt_stream("Word",utt); w!=SNIL; w=SC_next(w))

｛

I* P_Message("%s",SC(w,Word)->text); *I
if (strcmp(SC(w,Word)->text,£3)==0) break;

｝

36

if (w==SNIL) exit(-1);

hlp_delete_feat(w,f1,"-");

hlp_add_feat(w,11Focus11,11++11);

I* hlp_module(utt); *I

APPENDIX C. CHATRFACE

f* P_Message("OK %s",pprint(SC(w,Word)->features)); *I
｝

else if (msg2.mtext[1] !=lQ') {

f* P_Message(11input11); *I
f* simple_input(utt); *I
P_Message("hlp");

hlp_module(utt);

P_Message(11word11);

word_module(utt);

P_Message("phono");

phonology_module(utt);

P_Message("intone");

intone_module(utt);

P_Message("durat");

duration_module(utt);

P_Message("int targ");

int_target_module(utt);

P_Message("synth");

synthesis(utt);

P_Message("say");

play(GETWAVE(utt));

for (w=utt_stream("Word",utt); w!=SNIL; w=SC_next(w))

｝

｝

｛

P_Message("Word %s:",SC(w,Word)->text);

P_Message("%s",pprint(SC(w,Word)->features));

else {

｝

｝

｝

break;

C.5 utt_modules.c

struct LE_um_name_func com2umfunc[] =

｛

C.5. UTT_MODULES.C 37

{11Sebd11,sebvtst,NIL,NIL,

"essai di affichage par seb. 11},

｝

Appendix D

Multi-lingual input

D.1 pw_input.c

static int is_stressed(List *a); I* seb *I

List prosodic_options(List *a); I* seb *I

void phoneme_input(Utterance utt)

｛

I* Build a pphrase and word stream based on this romaj i input *I

I* The input form is a simple list of words with small integers *I

I* identifying break points --this input is as from the KDD prog *I

I* This does this by building the same Lisp structure that would *I

I* have been written if this were a PhonoWord input *I

List input,p,phr_c,phr_p,phr_s,phr_d,intrm;

int blvl = NO_BOUND;

int focus =O; I* seb *I

input= UTTERANCE(utt);

if (list_is_atomic(input) == FALSE)

｛

｝

P_Error(11Input form for Phoneme should be simple list of words/brE

list_error(On_Error_Tag);

phr_p = phr_c = phr_s = phr_d = NIL;

for (p=input; blvl != D_BOUND; p = cdr(p))

｛

I* P_Message(11w %s11,pprint(prosodic_options(&p)));*/

intrm=prosodic_options(&p);

I* f ocus=is stresse d(&p);*/

38

D.l. PWJNPUT.C 39

blvl = nuu_blvl(p);
if (blvl == NO_BOUND)
｛

I* seb ->
if (focus) intrm = cons(cons(mkatom("H*"),NIL),NIL);

else intrm = NIL;

<-seb *I
phr_p = cons(cons(cons(list_copy_tree(car(p)),list_copy_tree(intrm)),N

｝

if (blvl >= P_BOUND)
｛

if (phr _p ! = NIL)

｛

phr_p = cons(mkatom(":P"),cons(NIL,list_reverse(phr_p)));

phr_c = cons(phr_p,phr_c);

phr_p = NIL;

｝

｝

if (blvl >= C_BOUND)
｛

if (phr_c != NIL)

｛

phr_c = cons(mkatom(11:C11),cons(NIL,list_reverse(phr_c)));

phr_s = cons(phr_c,phr_s);

phr_c = NIL;

｝

｝

if (blvl >= S_BOUND)
｛

if (phr_s != NIL)

｛

phr_s = cons(mkatom(":S11),cons(NIL,list_reverse(phr_s)));

phr_d = cons(phr_s,phr_d);

phr_s = NIL;

｝

｝

if (blvl == D_BOUND)
phr_d = cons(mkatom(11:D11),cons(NIL,list_reverse(phr_d)));

｝

utt_set_stream("Word",SNIL,utt);

utt_set_stream("Pphrase",build_phrase_tree(phr_d,utt),utt);

P_Message("%s",pprint(phr_d));

40 APPENDIX D. MULTI-LINGUAL INPUT

list_free_tree(phr_d);

｝

static int is_stressed(List *a)/* seb *I

｛

if (streq(11/s/11,STRVAL(car(*a))))

｛

*a=cdr(*a);

return 1;

｝

else return O;

｝

List prosodic_options(List *a)/* seb *I

{ I* this function extract options from the phoneme input

options are applied to the following "word"

format is /([+-fs])+/

+ add a (Focus ++) feature

11 (Focus -) "

f 11 (OPT Fast) 11

s 11 (OPT Slow) 11

more options could be added such as

1 and h to change the Power

I included the concerning code but as the features

are not defined yet it has to be changed later!!! *I

List p_opt;

inti・

if ((*a!=NIL)&&(STRVAL(car(*a)) [0]==1/1))

｛

p_opt=NIL;

for(i=1;STRVAL(car(*a))[i] !=1/1 ;i++)

｛

switch(STRVAL(car(*a))[i])

｛

case 1+ 1:

p_opt=cons(cons(mkatom(11Focus11),cons(mkatom(11++11),NIL)),p_opt)

break;

case'* 1:

p_opt=cons(cons(mkatom(11Focus11),cons(mkatom(11+++11),NIL)),p_opt

break;

r

D」. PvVJNPUT.C 41

case ,_'.

p_opt=cons(cons(mkatom(11Focus11),cons(mkatom(11-11),NIL)),p_opt);

break;

case's':

p_opt=cons(cons(mkatom(11DPT11),cons(mkatom(11Slow11),NIL)),p_opt);

break;

case'f':

p_opt=cons(cons(mkatom(11DPT11),cons(mkatom(11Fast11),NIL)),p_opt);

break;

I* case 屯）：

｝

p_opt=cons(cons(mkatom(11Power11),cons(mkatom(11+11),NIL)),p_opt);

break;

case'1':

p_opt=cons(cons(mkatom(11Power11),cons(mkatom(11-11),NIL)),p_opt);

break;*/

default:

｝

｝

break;

*a=cdr(*a);

return list_copy_tree(p_opt);

else return NIL;

｝

Appendix E

Focus+++

E.1 phrase_int.c

void insert_phrase_pause(Utterance utt)

｛

Stream s_syl;

for (s_syl = SYLSTREAM(utt); s_syl != SNIL; s_syl = SC_next(s_syl))

｛

｝

｝

if ((SC(s_syl,Syl)->ph_final == P_BOUND) &&

(grammar.pause_stat.p_dur > 0))

insert_pause(s_syl, utt);

else if ((SC(s_syl,Syl)->ph_final == C_BOUND) &&

(grammar. pause_stat. c_dur > 0))

insert_pause(s_syl, utt);

else if ((SC(s_syl,Syl)->ph_final ==凡BOUND) &&

(grammar. pause_stat. s_dur > 0))

insert_pause(s_syl, utt);

else if ((SC(s_syl,Syl)->ph_final == D_BOUND) &&

(grammar.pause_stat.d_dur > 0))

insert_pause(s_syl, utt);

I* modification by seb for Focus+++ *I
else if ((hlp_has_feat(Rword1(SC_next(s_syl)),"Focus","+++")) &&

insert_pause(s_syl, utt);

I* else don't add a pause *I

E.2 grammar.c

static int pause_list_parse (List data)

42

E.2. GRAMMAR.C 43

r
1
 int num_entries, i;

List l_cell, a_cell;

char *tmpstr;

num_entries = list_length(data);

P_Debug("list length= %d¥n", num_entries);

for (i = 0, l_cell = data; l_cell != NIL; l_cell = cdr(l_cell), ++i)

｛

a_cell = car(l_cell);

trnpstr = print_cc(a_cell);

P_Debug(11entry is %s¥n11, trnpstr);

xfree(trnpstr);

if (list_length(a_cell) ! = 2)

｛

P_Error("Wrong number of fields in file %sat %dth entry¥n", i);

P_Error("Expected 2, got %d¥n11, list_length(a_cell));

return (-1);

｝

if (streq(nth_val(1, a_cell), "discourse"))

grammar. pause_stat. d_dur = atoi (nth_ val (2, a_cell));

else if (streq(nth_val(1, a_cell), "sentence"))

grammar. pause_stat. s_dur = atoi (nth_ val (2, a_cell));

else if (streq(nth_val(1, a_cell), "clause"))

grammar. pause_stat. c_dur = atoi (nth_ val (2, a_cell));

else if (streq(nth_val(1, a_cell), 11phrase11))

grammar.pause_stat.p_dur = atoi(nth_val(2, a_cell));

else if (streq(nth_val(1, a_cell), 11focus11))/* seb *I

grammar.pause_stat.f_dur = atoi(nth_val(2, a_cell));/* seb *I

else

｛

P_Error("Unknown Pause type: %s¥n", nth_val(1, a_cell));

return(-1);

｝
 ｝

44 APPENDIX E. FOCUS +++

return(O);

｝

E.3 grammar.h

¥struct Pause_Stat {

int d_dur;

int s_dur;

int c_dur;

int p_dur;

int f_dur;/* seb *I

};

Bibliography

● })

[1] M. Beckman and G. Ayers. Guidelines to ToBI Labelling. Version 2.0,

February 1994.

[2] M.E Beckman and G.M Ayers. The ToBI Handbook. Technical report,

Ohio-State University, Coloriibus, U.S.A., 1993.

[3] E. Black, S. Eubank, H. Kashioka, R. Garside, G. Leech, and Mager-

man. D. Beyond skeleton parsing: producing a comprehensive large-scale

general-english treebank with full grammatical analysis. In Proceed切gs

of the 16th Annual Conference on Computational Languistics, 1996.

[4] Nick Campbell. Tones and break indices (tobi). The journal of the Acous-

tical Society of Japan, 53(3):223, 1997.

[5] Tony Hebert. Prosody within CHATR. Technical report, ATR Interpret-

ing Telecommunications Research Laboratories, 1997.

[6] Martyn Weeks. CHATR - a generic speech synthesis sys-

tem. ATR Interpreting Telecommunications Research Laboratories,

http://www.itl.atr.co.jp;~ mweeks.

，`
ーノ

45

Index

CHATRface, 14

conv_phoneme, 9

Focus +++, 16

HLP, 2

kan2rom, 9

lexical stress, 11

mtts, 8
mule, 9
multi-lingual, 8, 16

parser, 6

PhonoForm, 3
PhonoWord, 3
Prosody, 5

utterance, 1

46

	001
	002
	003

