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1 Introduction 

A complication in speaker independent automatic speech recognition com-
pared to speaker dependent recognition is the increased acoustic variability 

due to speaker differences. A lot of the acoustic variability can be contributed 

to the differences in the length of the vocal tract. The average length of the 

vocal tract among males is significantly larger than the average among fe-

males. Therefore, some speaker normalization can be achieved by the use 
of gender dependent models but due to a significant variance in the vocal 

tract length within a gender group, considerable acoustic variability among 

speakers within a gender remains. More fine grained automatic normalization 

schemes were developed over the last couple of years. All these techniques 
incorporate vocal tract length normalization in the feature extraction phase. 

They differ however in the way the vocal tract length is estimated. Tech-

niques for the estimation of the vocal tract can be divided in two groups 
First a (/knowledge based" approach was developed by BBN[l], where vocal 

tract length differences are estimated from average formant locations. This 
approach was also investigated by others[2]. A second approach uses a like-
lihood based estimation of vocal tract length differences. In this approach 
the likelihood of a finite set of features, normalized for different vocal tract 
lengths given a speech model are computed. The vocal tract length is then 

estimated by deter血ningwhich features generated the highest likelihood. 

In the initial work by Andreou et. al.[3] as well as later work by Dragon[4] 

and AT&T[5] the speech recognition system itself was used in the likeli-

hood computation. To address the computational cost problem introduced 

in this way, Dragon developed an algorithm in which a text-independent 

multivariate両 xturedensity was used for the likelihood computation[6]. As 

this approach showed comparable performance (an approximately 2% to 3% 
drop in word error rates) at much smaller computational cost, many other 

sites currently use this approach[5, 7, 2]. 

In this report, the background and implementation of speaker normaliza-
tion using both the likelihood based vocal tract length estimation procedure 

as well as the formant based method are described. The implementation 

was done using the ASSM software package described in detail in[8]. For 
the implementation of the formant based method, the commercially avail-

able XWaves+ package was used. In the likelihood approach, a 256 mixture 

zeroth order Polynomial Segment Model (PSM) was used to estimate likeli-

傘声
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Figure 1: A simple tube model of the vocal tract 

hoods. Section 2 describes the implemented algorithm, section 3 describes 
experimental conditions and section 4 describes the results obtained using 

the different normalization approaches. 

2 Speaker Normalization Algorithms 

In this section, the formant based and the maximum likelihood vocal tract 

length normalization (ML-VTLN) algorithm will be described. First in sec-
tion 2.1 the algorithm for normalizing the features given a vocal tract length 
estimate is explained. Second in section 2.2 the formant based approach 

is described. Third in section 2.3 the algorithm used to train the mixture 
model for likelihood computations in the ML-VTLN framework is described. 

Finally, in section 2.4 the application of the normalization schemes for the 

recognition of test data (i.e. data not seen in training) is described. 

2.1 Frequency warping 

Given an estimate of the vocal tract length of a speaker relative to a mean 
vocal tract length (the derivation of this mean vocal tract length is described 

in section 2.2 for the formant based method and in section 2.3 for the ML-
VTLN method), the spectral features derived from the speech waveform of 

that speaker are to be normalized such that acoustic differences due to a dif-

ferent vocal tract length are removed. To investigate the effect of the vocal 
tract length on the spectral features consider a simple tube model represent-

ing the vocal tract as shown in figure 2.1. The effect of changing the length 
L of the tu be (i.e. varying the length of the vocal tract) will cause a linear 

shift in of the resonance frequencies k/ L with k E {1, 3, ・ ・ ・}. Note though 

that the tube model is only a reasonable model for a schwa. A reasonable 
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Figure 2: The Helmholz resonator model of the vocal tract 

model for closed vowels such as / iy / is the Helmholtz resonator depicted 

in figure 2 which has the first resonance frequencies dependent on the vocal 

tract length parameter L as sqrt (V /AL) while the other resonance frequency 

dependencies are approximately linear. These simplified models show that 

in order to compensate for different vocal tract lengths a frequency warping 

can be used. The models also lead us to the conclusion that this frequency 

warping will have to be phone dependent. In this work however, each speaker 

will be limited to a single speaker dependent frequency warping to normalize 

spectral differences due to vocal tract length differences as is assumed in pre-

vious work by others. The warping function used is depicted in figure 3. The 

warping parameter a controls the slope of the linear warping from O to the 

fixed frequency <I>. From that point to the Nyquist frequency, the warping 

is also linear so as to reach the point (1, 1). To implement this frequency 

warping the approach described by[6] is used, where the warped frequency 

axis is sampled at equally spaced intervals. For each warped frequency f'the 

corresponding original frequency f is computed. As the spectral representa-

tion is derived by an FFT, there is no guarantee that there is an estimate of 

the spectral energy at that exact frequency. To derive the spectral energy at 

arbitrary frequencies in between the discrete frequency estimates provided 

by the FFT, we use a linear interpolation of the spectrum estimated by the 
FFT. The warping process is depicted in figure 4 
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Figure 3: Piecewise linear frequency warping function 

2.2 Formant based warp estimation 

To determine the warping for a particular speaker, two related problems 

have to be solved. First, the "normalized" speaker has to be defined and 

second for each new speaker, the warping factor to normalize the speaker 

has to be determined. One approach is to use formant estimates to solve 

these problems[l]. The normalized speaker can be defined by computing the 

median formant location over all voiced frames from a training corpus. Then 

by computing the median formant location for a particular speaker by only 

using the voiced frames from that speaker, an estimate of the warping to 

normalize the features from that speaker is obtained. If the corpus median 

formant location is denoted as Fe and the median formant location of speaker 

S is denoted as Fs, the warping factor for that speaker is simply Fs / Fe・

The advantage of this approach is that continuous warp estimates are ob-

tained. Another advantage is that this approach is possibly computationally 

inexpensive. A disadvantages of this technique are that the warping factors 

are sub-optimal in the maximum likelihood sense. Another disadvantage is 

that this technique can be computationally expensive when a very robust 

formant estimation algorithm is used. If a computationally inexpensive for-
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Figure 4: Equally spaced sampling of the warped frequency axis using spec-

trum estimation by linear interpolation 
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mant estimation algorithm is used it becomes more likely to get erroneous 

formant estimates and therefore erroneous warp estimates. 

2.3 Maximum Likelihood Normalization using a Mix-

ture Model 

In the likelihood based approach to estimation of warping factors, an ap-
proach similar to[6] was used except that a segment based mixture model 

was used rather than a frame based one. To solve the related problems of 
defining the "normalized speaker" and to have an algorithm to automati-
cally determine how to frequency-warp the data from an unknown speaker 

towards the normalized speaker, a likelihood based approach can be used. 
A text-independent segment based multivariate mixture model is trained for 

"the normalized" speaker. To train this model and simultaneously define the 

normalized speaker, the following training algorithm was used: 

1. Initialize: Estimate a multivariate mixture model A。onunwarped 

features. Set i = O; 

2. Likelihood estimation: Compute the likelihood of the features of 

each training speaker m = {l, 2, ・ • •, M} warped at different warp fac-
tors A E { 0:1, a2, ・ ・ ・, 叩}given the last model Ai・

3. Estimate warps: Estimate the most likely warp factor for each speaker 
m by determining which warping in A when applied to the features gen-

erated the highest likelihood given Ai. Let o:F denote the most likely 
warping for speaker m at iteration i. 

4. Retrain: Retrain the mixture model using for each speaker the fea-
tures warped at a;n. 

5. Iterate: Set i = i + 1, go to 2. 

A pictorial representation of this training algorithm is given in figure 5. 
The mixture model was trained using a divise clustering approach in 

which each cluster is represented by a zeroth order PSM. The distance mea-

sure used in clustering is the negative log-likelihood of data with respect to 
the model parameters of a cluster[9]. 
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Figure 5: Model training overview 

As the mixture model is implemented as a segment model, a segmentation 

has to be derived before this iterative training scheme can be executed. An 

acoustic segmentation algorithm is used to derive this segmentation. In this 
algorithm, described in detail in[9], stationary regions in the speech signal are 

sought by use of the dynamic programming algorithm. To derive a non-trivial 

segmentation, an average likelihood per frame threshold is used to control 

the average length of the stationary regions. Here it's important to prevent 

introducing a bias for certain warpings by allowing the segmentation for one 

warp factor to have a larger number of segments than the segmentation of 

the features at another warp factor. The segmentation is therefore derived 

in two steps. First the unwarped features are acoustically segmented. The 

the features at other warpings are segmented under the constraint that the 

number of segments per utterance is equal for each warping. Graphically, 

the segmentation is derived as shown in figure 6. 

2.4 Normalizing Test Speakers 

To normalize the features of a test speaker (i.e. a speaker not included in the 

training set), some or all of the speech available from that new new speaker is 

used to estimate the appropriate warping factor for that speaker. Typically 

30 to 60 seconds of speech is used to estimate the warp factor of a speaker. 

After estimating the speaker dependent warp factor, all the features derived 

from the speech of that speaker are warped using this warping factor. 

For the formant based approach to warp factor estimation the speech 
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Figure 6: Segmentation overview 

used for warp factor estimation is analyzed using the formant tracker used in 

the training process. Then the median formant location is computed which 

in comparison to the corpus median formant location gives an estimate for 

the speaker dependent warp factor. 

In the likelihood based approach, features are extracted at all allow-

able warps from the speech used for warp factor estimation. The unwarped 

features are then acoustically segmented first. Subsequently, the features 

warped at the other factors are acoustically segmented under the constraint 

that the resulting segmentation should have the same number of segments 

as the unwarped segmentation does. The likelihood of these features given 

the trained likelihood model is then computed for all features at all warps. 

The speaker dependent warp factor is then determined by determining which 

warped features generated the highest likelihood. This warp factor estima-

tion process is depicted in figure 7. 
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Experiments 

Experiments were conducted on 2 corpora. Both the formant based warp fac-

tor estimation procedure and the likelihood based estimation procedure was 

used on the TIMIT read English corpus. The likelihood based method was 

also applied to the Switchboard spontaneous conversational English corpus. 

Evaluation of the effects of speaker normalization was performed on TIMIT 
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Figure 7: Test speaker warp factor estimation 

by a phone classification experiment. Training and database information re-

garding the TIMIT corpus is given in section 3.1, regarding the Switchboard 

corpus in section 3.2. 

3.1 TIMIT Database and Training Conditions 

The TIMIT corpus consists of a training set of 462 speakers and a test set 

of 168 speakers with approximately 25 seconds of speech per speaker. The 

speech is read in a recording studio, digitized at a 16KHz sampling rate and 

quantized using 16 bits per sample. 

The signal processing on the TIMIT corpus speech was performed using 

the following parameters: 

• 25 ms. Hamming windowing 

• 10 ms. frame shift 

• 1 -0.97z―1 pre-emphasis filter 

• 4096 point fft 

• 24 triangular filter filter-bank, equally spaced on the Mel scale 
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fFormant I Median (Hz) -/ 
Fl 557 

F2 1534 

F3 2597 

• 14 dimensional Mel scale cepstral coefficient 

The phone classification experiments on the TIMIT corpus were con-

ducted using segment models with: 

• 3 regions per model 

• Single mixture Gaussian with constant mean and full covariance for 
each region. 

• linear time warping 

The standard Kai-Fu Lee phone set of 48 phones was used in the exper-

iment. All of the training set defined in the TIMIT corpus, excluding the 

core sentences (sal and sa2) was used for training. Testing was done on all 

of the test set consisting of 50754 phones. 

The formant based warp factor estimation was done using the first, second 

and third formant. Formant frequencies were estimated using the XWaves+ 
software which uses the following algorithm: 

1. Window waveform using a 25 ms Hamming window 

2. derive AR model parameters by solving Yule-Walker equations 

3. impose continuity constraint for formant tracks by dynamic program-

mmg 

The corpus medians for the three formants were: 

In the likelihood based TIMIT experiments, a gender balanced training 

set of 272 speakers, randomly selected from the available 462. A 256 mixture 

zeroth order mixture Polynomial Segment Model (PSM) was estimated. The 

set of allowable warp factors was a E {0.80, 0.82, • ・ ・, 1.20}. 
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3.2 Switchboard Database and Training Conditions 

The Switchboard corpus is a conversational spontaneous speech corpus. The 

complete database consists of approximately 160 hours of telephone quality 

speech (digitized at SkHz, quantized using 8bit mu-law coded samples). 

For the experiments reported here, a gender balanced training set of 240 

speakers, randomly selected from the available 2559 speakers was used. A 
total of 4 hours of speech was used for training, with approximately 60 sec-

onds per speaker. Approximately 40 seconds of speech was used for the warp 

estimation of test speakers. 
The signal processing on the Switchboard corpus speech was performed 

using the following parameters: 

• 25 ms. Hamming windowing 

• 10 ms. frame shift 

• l-0.97z―1 pre-emphasis filter 

• 2048 point fft 

• 24 triangular filter filter-bank, eq叫 lyspaced on the Mel scale 

• 14 dimensional Mel scale cepstral coefficient 

For these experiments, both a gender independent (GI) and gender de-

pendent (GD) models were trained. All models were 256 mixture zeroth 

order PSMs. The allowable warping parameters used in these experiments 

were 0: E {0.80, 0.82, ・ ・ ・, 1.36}. More warp factors were allowed in these ex-
periments as other sites reported warp factor distributions beyond the range 
of warp factors used in the TIMIT experiments. 

4 Results 

The results of the experiments on the TIMIT corpus are given in section 4.1. 
The results on the Switchboard corpus are given in section 4.2. 
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[ Formant [ Classification rate [ Improvement I 
baseline 43.57% 

Fl 45.27% 1.70% 

F2 45.24% 1.67% 

F3 45.56% 1.99% 

Table 1: Classification improvements due to speaker normalization 

4.1 Results on the TIMIT Corpus 

The warp factor distributions using the TIMIT warp factor estimation pro-

cedure using the first, second and third formant for both training and test 
sets are given in figure 8, 9 and 10 respectively. 

The classification performance by use of speaker normalized features using 
the formant based approach are summarized in table 1. 

The warp factor distributions using the ML-VTLN method on the TIMIT 
corpus is depicted in figures 11 through 15 for 5 training iterations. The 
classification results and data likelihoods using the warp factor estimation 
model obtained after each iteration is depicted in figure 16 

Note that the likelihood increase of the training data going from the forth 

to the fifth iteration is very small and that the likelihood of the test data 
decreases at this iteration. The classification result shows a similar trend. 

4.2 Results on the Switchboard Corpus 

The warp factor distributions of the speaker in the training set during the 5 

iterations of training of the GI model are depicted in figures 17 through 21. 
The warp factor distributions of the speaker in the training set during the 
5 iterations of training of the male GD model are depicted in figures 22 

through 26. The warp factor distributions of the speaker in the training 
set during the 5 iterations of training of the female GD model are depicted 

in figures 27 through 31. The distribution of warp factors for all the 2559 

speakers in the corpus using the GD models are depicted in figures 32 and 33 

for males and females respectively. The data likelihood given the models at 
different iteration steps is given in figure 34. 
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Figure 8: Fl based warp factor histograms for training and test sets 
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Figure 9: F2 based warp factor histograms for training and test sets 
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Figure 11: Warp factor histogram of training and test data using the mixture 

model estimated after iteration 1 
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Figure 12: ¥A/arp factor histogram of training and test data using the mixture 

model estimated after iteration 2 
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Figure 13: Warp factor histogram of training and test data using the mixture 

model estimated after iteration 3 
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Figure 14: Warp factor histogram of training and test data using the mixture 

model estimated after iteration 4 
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Figure 15: v¥「arpfactor histogram of training and test data using the mixture 
model estimated after iteration 5 
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Figure 17: Warp factor histogram of training data using the gender indepen-
dent mixture model estimated after iteration 1 
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Male train warp estimate histogram GI model iteration 2 
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Figure 18: ¥"larp factor histogram of training data using the gender indepen-

dent mixture model estimated after iteration 2 
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Male train warp estimate histogram GI model iteration 3 
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Figure 19: ¥Varp factor histogram of training data using the gender indepen-

dent mixture model estimated after iteration 3 

5 Conclusions 

The speaker normalization using either the formant based warp estimation 

approach as well as the likelihood based approach both give gains in classi-

fication performance on the TIMIT corpus similar to the gains reported by 
other sites. 

For both corpora, the gender independent models show a clear separation 

of the distributions of warp factors of males and females but also show a 

considerable spread around the gender dependent mean warp factor. 

It can be noted that during the iterative training process on the Switch-
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Male train warp estimate histogram GI model iteration 4 
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Figure 20: Warp factor histogram of training data using the gender indepen-

dent mixture model estimated after iteration 4 
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Figure 21: Warp factor histogram of training data using the gender indepen-
dent mixture model estimated after iteration 5 
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Male train warp estimate histogram GD model iteration 1 
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Figure 22: ¥iVarp factor histogram of training data using the male gender 

dependent mixture model estimated after iteration 1 
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Figure 23: Warp factor histogram of training data using the male gender 

dependent mixture model estimated after iteration 2 
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Male train warp estimate histogram GD model iteration 3 
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Figure 24: Warp factor histogram of training data using the male gender 

dependent mixture model estimated after iteration 3 
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Male train warp estimate histogram GD model iteration 4 
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Figure 25: Warp factor histogram of training data using the male gender 

dependent mixture model estimated after iteration 4 
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Male train warp estimate histogram GD model iteration 5 
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Figure 26: Warp factor histogram of training data using the male gender 

dependent mixture model estimated after iteration 5 
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Figure 27: Warp factor histogram of training data using the female gender 

dependent mixture model estimated after iteration 1 
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Female train warp estimate histogram GD model iteration 2 
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Figure 28: ¥r./arp factor histogram of training data using the female gender 

dependent mixture model estimated after iteration 2 
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Female train warp estimate histogram GD model iteration 3 
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Figure 29: ¥"/1/arp factor histogram of training data using the female gender 

dependent mixture model estimated after iteration 3 
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Female train warp estimate histogram GD model iteration 4 
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Figure 30: Warp factor histogram of training data using the female gender 

dependent mixture model estimated after iteration 4 
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Female train warp estimate histogram GD model iteration 5 
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Figure 31: Warp factor histogram of training data using the female gender 

dependent mixture model estimated after iteration 5 
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Male test warp estimate histogram GD model 
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Figure 32: Warp factor histogram of test data using the male gender depen-

dent mixture model estimated after iteration 4 
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Female test warp estimate histogram GD model 
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Figure 33: vVarp factor histogram of test data using the female gender de-

pendent mixture model estimated after iteration 4 
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Figure 34: Data likelihoods of the training data given the model estimated 

after the different training iterations 
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board corpus, the median of the histogram of warp factors drifts towards 

higher warp factors. This was independently noted by experiments con-

ducted at BBN[7]. The reported approach to dealing with this problem is to 
renormalize the warp distribution such that the histogram median is shifted 

towards 1.0 at each iteration. If the median warp after an iteration is for 

example 1.04, then all warp factors are adjusted by substracting 0.04 be-

fore starting the next iteration. Given the comparable performance gains 

reported by BBN, this seems a reasonable approach to solve this drifting 

problem. 
The performance of speaker normalization could be improved by making 

the warp factor phone dependent rather than speaker dependent. It is ques-

tionable however if the current likelihood based approach is suitable as is 

in such a framework as the current approach requires much more data than 
the average duration of a phone to make a reliable estimate of the warping 

factor as illustrated in figure 35 for a few speaker. As shown, most speakers 
required approximately 10 seconds of data before a "converged" warp factor 

estimate was found. 
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