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Abstract 

In this report, we start with a revisit to the statistical formulation of the automatic 
speech recognition (ASR) problem, identify the factors which might influence the perfor-
mance of the conventional plug-in MAP decision rule for ASR. We summarize our recent 
research efforts on a class of robust speech recognition problem in which mismatches be-

tween training and testing conditions exist but an accurate knowledge of the mismatch 
mechanism is unknown. The only available information is the test data along with a 
set of pre-trained speech models and the decision parameters. We focus on two types of 
Bayesian techniques, namely on-line Bayesian adaptation of hidden Markov model pa— 

rameters and Bayesian predictive classification approach. We conclude the report with 
a brief mention of our ongoing research efforts towards a robust and intelligent spoken 
dialogue system. 
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1 Introduction 

In the last two decades, many advances have been achieved in the area of automatic speech recogni-
tion (ASR) (see, e.g., [48] for a sample of the state-of-the-art). This is largely attributed to the use 
of a powerful statistical pattern matching paradigm and the application of dynamic programming 
search over a structural network representation of acoustic and linguistic knowledge sources. The 

reader is referred to the seminal contributions in e.g., [8, 9, 35, 5] and a recent overview in [63] for 
the capabilities and limitations of the pattern recognition approach. For this approach, let's view a 

word Wand the associated acoustic observation X (usually, a feature vector sequence) as a jointly 
distributed random pair (W, X). Depending on the problem of interest, word here c_ould be any 
linguistic unit, such as a phoneme, a syllable, a word, a phrase, a sentence, etc. Suppose the true 
joint distribution of (W, X) could be modeled by a true parametric family of pdf (probability den-

sity function) p(W,X) = PA(XIW)・Pr(W), where PA(XIW) is known as the acoustic model with 
parameters A and Pr(W) as the language model with parameters r. This decomposition scheme is 
called sampling paradigm in the statistics community to contrast with another so-called diagnostic 

paradigm with p(W,X) = P(WIX)・p(X) [66]. Further suppose we have the full knowledge of 
the parameters (A,r) of the above distributions. Then, an optimal decoder (speech recognizer) 
which achieves the expected minimum word recognition error rate is the following MAP (maximum 
a posteriori) decoder (see, e.g., [66, 15] for a more general discussion on statistical decision theory): 

W = argmax:P(WJX) = argmaxpA(XJW)・Pr(W) 
w w 

(1) 

where Wis the recognition result. However, in practice, neither do we know the true parametric 
form of p(W, X), nor its true parameters. Therefore, the above optimal speech recognizer will never 
be achievable, but we can only approximate it. A simple heuristic solution is first to assume some 

parametric form for p(W, X) and then to estimate its parameters (A, r) from呼?11:etraining data by 
using some parameter estimation techniques. Then, we plug in the estimate (A, r) into the optimal 
but unavailable rule in Equation (1) in place of the correct but unknown (A, r) to obtain a plug切
MAP rule (see a general discussion in e.g., [66]). 
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2 Robust Speech Recognition Problem And Approaches 

Theoretically speaking, the performance of the above plug-in decision rule will depend on the 

following conditions: 

• if the assumed parametric models are accurate and flexible enough to appropriately model 
the highly complex and variable speech signals, 

• if the assumed models and the related parameter estimation methods are computationally 
efficient and robust enough to take care of the possible distortions between models and tr叫ning
samples which might be caused by wrong model assumptions, dependence and/or correlations 
of tr叫ningsamples, misclassification of tr叫ningsamples, outliers in training samples, etc., 

• if the tr叫ningdata are sufficient and representative enough to guarantee good parameter 
estimation and generalizability, 

• if the distortions between tr叫nedmodels and actual testing data are small enough to avoid 
the breakdown of the whole approach. 

Not all of the above issues have been seriously addressed in the past. Currently, the most 
widely used and the most successful modeling approach to ASR is to use a set of hidden Markov 
models (HMM's) as the acoustic models of subword or whole-word units, and to use the statistical 
N-gram model or its variants as lexical language model for words and/or word classes. The reader 
is referred to two good tutorials in [62] and [36) respectively for an introduction to the above 
two approaches and their applications. By using the above plug-in MAP approach, it has been 

repetitively shown by experiments in the past decade that given a large amount of representative 
tr血 ingspeech and text data, good statistical acoustic and language models can be constructed to 

achieve a high performance for many ASR tasks. Currently, the most popular training method for 
HMM parameters is still the maximum likelihood (ML) estimate [10, 46, 40]. It is noted in [57] that, 
if cert叫nassumptions are met, one can argue intuitively that using the ML estimate of HMM's 
and the plug-in MAP decision rule can lead to a speech recognition system that is asymptotically 

optimal. Nevertheless, apart from many other issues, inaccuracy alone in modeling the speech signal 
by HMM may lead to ML models that do not maximize the recognition accuracy [57, 59, 42]. In the 
past decade, many alternatives to ML tr叫ningwhich rely less on the model accuracy assumptions 

have been investigated. One method is the minimum discrimination information (MDI) training 

[17] which adjusts HMM parameters to mini血zea measure (discrim切ationinformation, or directed 
divergence) between assumed HMM distribution and the best possible distribution derived from 
the training data under cert叫nconstr叫ntsembedded in the tr叫ningdata. Unfortunately, no 
experimental results have been reported to show how MDI works in a speech recognition task. 

Another type of methods is the so-called discriminative training. Some of them such as maximum 

mutual information (MMI) tr叫ning[6), conditional maximum likelihood estimate (CMLE) [59], H-
criteria [24)叫mindirectly at reducing the error rate of the speech recognizer on tr叫ningdata. Other 

methods such as corrective training [7], minimum empirical error rate training [18, 53], minimum 
classification error (MCE) tr叫ning[44, 42, 43] try to reduce the recognition error rate on tr叫ning
data in a more direct way. It is quite clear that if there are no big mismatches between training 
and testing conditions and the tr叫ningdata is rich and representative enough, discriminative 

tr叫ningcan help improving the recognition performance over that of ML training. Otherwise, 
one should be careful to use the discriminative tr叫ning[61). The efficacy of any discriminative 

tr叫ningmethods is highly dependent on the nature and the size of the training data as well as 
the task itself and sometimes this limits its generalizability. On the other hand, if appropriately 
used, the discriminative tr叫ningcan also maximize the separation between models of speech units 

so that the robustness of a recognizer is improved. The final effect will depend on the result 
of these two competing factors. For MCE training based on the generalized probabilistic descent 
(GPD) algorithm, it can also be viewed as an adaptive learning algorithm because of its stochastic 

J
.
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approximation nature. However, it converges in probability. Only after a large amount of training 

data is used, the algorithm starts to converge. This makes MCE/GPD alone not suitable for 
efficient adaptation purpose. 

In many real applications, there always exists some form of mismatch between training and 
testing conditions. -These mismatches may arise from inter-and intra-speaker variabilities, trans-
ducer, channel and other environmental variabilities, and many other phonetic and ling直sticeffects 
due to the problem of task mismatch. It is the susceptibility of current ASR systems to even mod-
erate acoustic mismatches that prevents the widespread deployment of the ASR systems in a wide 
range of operating conditions. Robust speech recognition in this context thus refers to the problem 
of designing an automatic speech recognizer that works well for different tasks and speakers over 
unexpected and possibly adverse conditions. There are many ways to achieve robust ASR which 
might include: 

• finding invariant or robust features, 

• developing better modeling and learning techniques, 

• applying signal/feature/model compensation/adaptation techniques, and 

• using robust decision strategies. 

Along these lines, there have been a great deal of efforts aiming at improving speech recognition and 
hence enhancing performance robustness in the abovementioned mismatches (see recent reviews in 
[41, 50, 20] and the references therein). 
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3 Bayesian Approaches to Robust Speech Recognition 

In the past few years, we have been adopting a Bayesian paradigm to formulate and address a class 
of robust speech recognition problem in which 

• mismatches between training and testing conditions exist, but 

• an accurate knowledge of the mismatch mechanism is unknown, 

• the only av叫lableinformation is the test data along with a set of pre-trained speech models 
and the decision parameters. 

We've developed two sets of Bayesian techniques to cope with the acoustic mismatch problem 
for HMM based speech recognition. The first type of algorithms are targeting those applications 
involving a recognition session which might consist of a number of testing utterances. Unlike those 
ASR systems which rely on a static design strategy that all the knowledge sources needed in a 

system are acquired at the design phase and rem叫nfixed during use, we adopt a dynamic system 
design strategy where the new knowledge is acquired sequentially, new information is constantly 

collected during development and use of the ASR system, and is incorporated into the system 
using an adaptive learning algorithm, namely on-line Bayesian adaptive learning of the HMM 
parameters [27, 28, 29]. For the second type of techniques, by modifying directly the above plug-
in MAP decision rule, we've developed a new robust decision strategy called Bayesian predictive 

classification (BPC) approach in which part of the mismatch can be compensated and the decision 
performance can be improved [30, 31, 32, 33]. The robustness of the ASR system can be further 
enhanced by integrating on-line adaptation (OLA) of model parameters with a BPC-based decision 
rule [31, 32]. 
In the rest of the report, instead of presenting those comprehensive technical details and the 
related experimental results which mostly have been and are going to be published elsewhere, 
we intend to provide here the readers a snapshot of our recent works mentioned above. Special 

attentions have been p叫dto provide the background information of the problem, the motivation 
behind the development of the theory, and the basic principle of the algorithms. This report is 

thus叫mingat triggering the readers'interest to read our other relevant publications and hopefully 
inspiring other innovations that would potentially lead to better solutions in the context of robust 
ASR. 
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3.1 Dynamic System Design Strategy: On-line Bayesian Adaptation 

3.1.1 Background 

The on-line adaptation scenario is like this: starting from a previously trained (e.g., speaker and/ or 

task independent [49]) speech recognition system, for a new user (or a group of users) to use the 
system for a specific task, a small amount of adaptation data is collected from the user. These data 

are used to construct a speaker adaptive system for the speaker in the particular environment for 
that specific application. By doing so, the mismatch between the training and testing environments 
can generally be reduced. The most fascinating adaptation scheme with a practical value is the so 

called on-line (or incremental, sequentiaりadaptation.This scheme makes the recognition system 
capable of continuously adapting to the new adaptation data (possibly derived from actual test 

utterances) without the requirement of storing a large set of previously used training data. 

Recently, Bayesian adaptive learning of HMM parameters has been proposed and adopted in 
a number of speech recognition applications. A theoretical framework of Bayesian learning was 

first proposed by Lee et al. [47] for estimating the mean and covariance matrix parameters of a 
continuous density HMM (CDHMM) with a multivariate Gaussian state observation density. It was 
then extended to handle all the parameters of a CDHMM with Gaussian mixture state observation 

densities (e.g., [22]) as well as the parameters of discrete HMMs (DHMMs) and semi-continuous 

HMMs (SCHMMs, also called tied-mixture HMMs) (e.g., [26]). It was shown that, for HMM-

based speech recognition applications, the MAP framework provides an effective way for combining 

adaptation data and the prior knowledge, and then creating a set of adaptive HMMs to cope with 

the new acoustic conditions in the test data. The prior knowledge, which is embodied in a set 
of seed HMMs as well as in the assumed distributions of the model parameters being adapted, is 

made use of to mitigate the effect of adaptation data shortage to improve the system robustness. 
T拍sapproach works in a batch adaptation mode using a history of all the adaptation data. It 

can also be modified to work in a more attractive incremental adaptation mode. A related study 

was conducted by Matsuoka and Lee [54] in which they used the segmental MAP algorithm to 
perform on-line adaptation. Due to its missing mechanism of updating the hyperparameters of the 

prior and/or posterior distribution incrementally, all the previously seen adaptation data need to 

be stored. 

The advantage of a sequential algorithm over a batch algorithm is not necessarily in the final 

result, but in computational efficiency, reduced storage requirements, and the fact that an outcome 

may be provided without having to wait for all the data to be processed. Moreover, the parameters 

of interest are sometimes subject to changes, e.g., they are time varying just like previously men-

tioned acoustic mismatch problem frequently encountered in real speech recognition applications. 

In such cases, different data segments often correspond to different parameter values. Processing 

of all the available data jointly is no longer desirable, even if we can afford the computational load 

of the batch algorithm. To alleviate such problems, a better on-line Bayesian adaptation approach 

should be able to update both the hyperparameters of the prior and/or posterior distributions and 
the HMM parameters themselves simultaneously upon the presentation of the latest adaptation 

data. A sequential algorithm can also be designed to adaptively track the varying parameters by 

further introducing some forgetting mechanism to adjust the contribution of previously observed 

sample utterances. Recursive Bayesian inference theory provides a good vehicle to formulate this 

problem. 

3.1.2 Bayesian Approaches to On-line Adaptation 

Let X1 = {晶，ふ，・ • ・, Xn} be n independent sets of observation samples which are used to esti-
mate/adapt the HMM parameters A. Our initial knowledge about A is assumed to be contained in 

a known joint a priori density p(A), with A E n, where n denotes an admissible region of the HMM 
parameter space. In denoting the prior pdf p(A), we do not explicitly show the parameters of the 
prior pdf (often referred to as the hyperparameters) which are assigned values by the investigator. 
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3 Bayesian Approaches to Robust Speech Recognition 

Such prior information may, for example, come from subject matter considerations and/or from 

previous experiences. Let's assume the samples Xi's are given successively one by one, we can 
obtain a recursive expression for the a posteriori pdf of A, given X1, as 

p(AI芥）=-・
p(品 IA).p(AI芥―1)

..'. 一．• (2) 

Starting the calculation of posterior pdf from p(A), repeated use of the equation (2) produces the 

sequence of densities p(A因）， p(AI紆）， andso forth. This provides a basis of making formal re-
cursive Bayesian inference of parameters A and thus a good solution for on-line HMM adaptation. 

However, there are some serious computational difficulties to directly implement this learning pro-

cedure [28]. Consequently, some approximations are needed in practice. One such approach called 

quasi-Bayes (QB) learning was firstly developed in [26, 27] for adapting the mixture coefficients of 

SCHMM parameters and then extended to incremental adaptive learning of all of the CD HMM pa-
rameters in [28]. Based on the theory of recursive Bayesian inference, the QB algorithm is designed 

to incrementally update the hyperparameters on the approximate posterior distribution and the 

CDHMM parameters simultaneously. By further introducing some forgetting mechanisms, namely 

exponential forgetting and hyperparameter refreshing, to adjust the contribution of previously ob-
served sample utterances, the algorithm is truly adaptive in nature and capable of performing an 

on-line adaptive learning using only the current sample utterance. On the other hand, the QB 
framework is also flexible enough to include the batch and/or block mode MAP /ML learning as 

special cases. This algorithm has also been implemented into ATR's speech recognition package [69] 

and was shown to work well in ATR's large vocabulary conversational speech recognition system 
[78]. More recently, based on the above general QB framework, a sequential learning method of 

mean vectors of CD HMM based on a finite mixture approximation of their prior/posterior densities 

has also been investigated [38, 39]. 

In a conventional HMM-based Bayesian adaptation framework, HMM parameters of different 

speech units are usually assumed independent. Therefore, each model can only be adapted if 
the corresponding speech unit has been observed in the current adaptation data. Consequently, 

only after all units have been observed enough times, all of the HMM parameters can thus be 
effectively adapted. To enhance the efficiency and the effectiveness of the Bayes adaptive training, 
it is desirable to introduce some constraints on HMM parameters based on all possible sources of 

knowledge. Therefore all the model parameters can be adjusted at the same time in a consistent and 
systematic way even though some units are not seen in adaptation data. A simple way to achieve the 

above objective is to introduce the parameter tying. Consequently, the formulation in [28] can be 

straightforwardly modified to accommodate the on-line adjustment of the tied parameters. Another 

way to achieve the above objective is to explicitly consider the correlation of HMM parameters 

corresponding to different speech units. However, it is too difficult to define a joint prior distribution 

for all sets of HMM parameters, if not impossible. A tractable case could be to assume all mean 
vectors are correlated and have a joint prior distribution [45]. By restricting ourselves to this special 

case, in [29], we have extended our QB_ learning framework to cope with the correlated CDHMM's 

with Gaussian mixture state observat10n densities in which all mean vectors are assumed to be 
correlated and have a joint Gaussian distribution. Considering the difficulties of parameter updating 

and initial hyperparameters'estimation arisen from the introduction of correlation between different 

models, we proposed a successive approximation algorithm based on pairwise correlations to update 

the mean vectors of CDHMM's as well as the corresponding hyperparameters. As an example, by 

applying the method to on-line speaker adaptation application, the algorithm is experimentally 

shown to be asymptotically convergent as well as being able to enhance the efficiency and the 

effectiveness of the Bayes learning by taking into account the correlation information between 

different model parameters. The technique can be used to cope with the time-varying nature of 

some acoustic and environmental variabilities, including mismatches caused by changing speakers, 
channels, transducers, environments and so on. 
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3.1.3 Relation to Other Adaptation Approaches 

Now, we are ready to compare our approach to other related methods in the literature. In speech 
and pattern recognition area, to our knowledge, it was Lasry and Stern that first proposed a 

formulation of the MAP estimate (called extended MAP, or EMAP) in [45] for the mean vectors 
of a set of Gaussian pdf's in which those mean vectors are assumed to have a joint Gaussian prior 

distribution. They applied the EMAP method to the dynamic speaker adaptation in a feature-based 

isolated word recognition application [73]. To avoid the difficulty of the initial hyperparameters 

estimation, a classifier with a decision-tree structure is adopted. At each node of the decision tree, 

the utterance is classified into a small number of decision categories, based on a relatively small 

number of features that are relevant to the classification in question. Consequently, every time, they 

only make use of the correlation information among a small number of classes for adaptation and 
thus can afford the memory requirement and the computational complexity of the related algebraic 

operations. To avoid the repeated inversion of a big matrix in the standard EMAP implementation 

for dynamic speaker adaptation, later, in the context of SCHMM, Rozzi and Stern developed a least 

mean square (LMS) algorithm to implement the correlated means adaptation which is supposed 
to be more computationally efficient, but at the expense of a finite misadjustment [68]. On the 

other hand, the initial hyperparameters estimation problem still exists. More recently, Zavaliagkos 
et al applied EMAP into a large scale CDHMM-based speech recognition systems [79, 80]. With 

a similar motivation as in [45, 73], they adopted a hierarchical class tying technique to ease the 

abovementioned difficulties of the EMAP implementation. In [29], we integrate EMAP into our 

quasi-Bayes learning framework [26, 27, 28] and propose a successive approximation algorithm to 
ease the implementation. The algorithm does not involve any big matrix operation, thus becomes 
very computationally efficient. On the other hand, even if we can have an initial estimate of 
a non-singular correlation matrix, the successive approximation algorithm can not guarantee its 

nonsingularity after each iteration. However, because the implementation of the algorithm does 

not rely on the assumption of the nonsingularity of the correlation matrix, this in turn eases the 

problem of the initial hyperparameters'estimation. 

We also wish to draw the reader's attention to the work of Shahshahani [71], who has a very 

similar motivation to our work in the sense of exploiting model correlations for efficient Bayesian 

adaptation where a Gibbs distribution is adopted to serve as the joint prior pdf of the mean 

vectors of the all CDHMM's. However, in that work, only conventional batch mode adaptation is 

formulated and it's very difficult to extend this method for a true on-line adaptive learning. 

We can also set up the links between our approach and two other techniques, namely MAP /VFS 

(e.g., [74, 75, 76, 60, 25]) and regression based model prediction (RMP) methods (e.g., [19, 12, 2]). 
Our parameter updating equation in [29] is very similar to the so-called interpolation step in 

MAP /VFS method [7 4, 75] except that 1.) we use a different weighting coefficient, and 2.) every 
tii_ne, we only use the information from one mixture component to predict the mean vector of the 
mixture component without observations. But in our approach, by successively changing the role 

of the mixture components, we can achieve the similar effects as those of both interpolation and 

smoothing steps in MAP /VFS formulation. Furthermore, by updating the correlation coefficient, 

the algorithm can autonomously control the importance of the correlation information and thus 
make the estimations of the mean vectors of CDHMM asymptotically converge to their MAP or 

ML estimates without considering correlation. On the other hand, in MAP /VFS case, to avoid 
early saturation of the adaptation, some heuristic methods have to be employed [76]. We can also 

view our parameter updating equation as a simple linear regression function with one explanatory 

variable and the adaptive regression coefficients. Once again, by successive approximation, we can 

achieve the similar effect as that of RMP in [12, 2]. 

In the context of efficient adaptation, our method also shares the similarity with another type 

of transformation-based adaptation methods (e.g., [13, 52, 21]) in a more general sense of global 
mapping. The basic idea of both types of methods is to bind HMM parameters together (via 
correlation structure in our case and some shared transformations among different model parameters 
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in the latter case), and then to adjust them globally in a consistent and systematic way. For the 

transformation-based approaches, in order to achieve a better asymptotic convergence, one has 
to either dynamically increase the number of shared transformations according to the amount of 

available adaptation data (e.g., [52, 21]) or just combined with the Bayesian approach (e.g., [14)), 
both in a heuristic way. 

From above discussions, we can see that our Bayesian learning procedure has a more consistent 
formulation as well as an intuitively pleasing behavior (an improved adaptation efficiency for short 

adaptation data and a good asymptotic property for increasing number of adaptation data). By 
activating the forgetting mechanism, the algorithm can also be used to cope with the continuously 
changing conditions. We expect that discovering an appropriate acoustic space configuration and a 
good definition of an appropriate correlation structure among states and/or phones could be helpful 
for enhancing the efficiency of the OLA of the correlated CDHMM's. It will be interesting to see 
how it works by combining our approach with other techniques such as tree-structured Gaussians to 
explore acoustic space structure (e.g., [72)), phone-dependence tree to explore phonetic dependency 

structure (e.g., [67)), and their combination (e.g., [34)). We believe this is an area that deserves a 
further research from both a theoretical and a practical point of view. 

,

1
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3.2 Robust Decision Strategy: Bayesian Predictive Classification 

3.2.1 General Formulation 

The conventional plug-in MAP decision rule for speech recognition is known to achieve an o~timal 
Bayes decision if the assumed models and parameters of the rule were correct. However, m real 
world situations, we rarely have the full knowledge about the nature of the classification data to 
warrant optimal decisions. Some recent approaches have focused on modifying the decision rule to 

improve the decision performance. 
In a Bayesian framework, we intend to consider the uncertainty of the HMM parameters A by 
treating them as if they were random. Our prior knowledge about A is assumed to be summarized 
in a known joint a priori density p(A). Suppose a training set of the form X = {X(q,r)} is available, 
with x(q,r) denoting the rth training observation sequence of length T(q,r) associated with the q-th 

speech unit, and each unit has Wq such observation sequences. A posterior distribution can now 

be constructed as 

p(AIX) = -. 
p(XIA). p(A) 

(3) 

to update our knowledge about A. This posterior pdf p(AIX) includes all of the information 
inherited from~he prior knowledge and learned from the training data. Conventionally, we derive a 
point estimate A from p(AIえ)(e.g., MAP estimate [4 7, 22, 26, 28)) and then use the plug-in MAP 
decision rule in Equation (1) for recognition. If we want to account for HMM model parameters' 
uncertainty in recognition, an optimal Bayes solution, namely Bayesian predictive classification 
(BPC) approach exists which chooses a speech recognizer to minimize the overall recognition error 
when the average is taken both with respect to the sampling variation in the expected testing data 

and the uncertainty described by the prior/posterior distribution (The reader is referred to [58, 66) 
for a brief proof of the optimality of the BPC rule). If we assume that the language model is known 

and only acoustic models are adjusted, such a BPC rule operates as follows: 

where 

W = argmaxp(WJX) = argmax印(W,X)= argmaxp(XJW)・Pr(W) 
w w w 

p(XIW) = J p(XIA, W)p(AIX'W)dA 
n 

(4) 

(5) 

is called the predictive pdf [3, 23, 66] of the observation X given the word W. The computation of 
this predictive pdf is usually the most difficult part of the BPC procedure. The crucial difference 
between the plug-in and predictive classifiers is that the former acts as if the estimated model 
parameters were the true ones whereas the predictive methods average over the uncertainty in 

parameters. 
Historically, the predictive approach receives little attention in many classical statistics text-
books despite the existence of many good works. This may be because it usually makes little 
difference from plug-in approaches within the problems and the tightly constrained parametric 
families many statisticians used or considered. Nonetheless, it will become important when we 

consider much larger families and formulate the problem appropriately. The books of Aitchison & 
Dunsmore (1975) [3] and Geisser (1993) [23] are devoted to the predictive approach. Both contain 

brief accounts of classification, in Aitchison & Dunsmore's Chapter 11 under the heading of "diag-
nosis" and in Geisser's Chapter 9 under the heacling of "classification" respectively. Ripley (1996) 

[66] also contains a concise treatment of the topic. 

3.2.2 BPC Formulation for Robust Speech Recognition 

In speech recognition area, to our knowledge, it was Nadas who first adopted a BPC formulation 
and pointed out its potential in speech recognition applications [58]. He was using the posterior 
pdf p(AIX) derived from the training set X directly to serve as the prior pdf in predictive decision 
making and gave a simple example in which reproducing density existed. No experimental results 
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were reported and the paper closed by briefly discussing the difficulty of applying the theory to 

HMM-based speech recognition. 
Started with Nadas's formulation, Merhav and Ephraim [55] suggested a so-called approximate 

Bayesian decision rule (AB) for speech recognition which was based on the generalized likelihood 
ratios computed from the available training and testing data. Such an AB rule operates as follows: 

W = argmax max虚(XIA,W) . p(XIA, W)] 
w max:11.p(XIA, W)] 

Pr(W) . (6) 

It is clear that if the training sequences X are considerably longer than the test sequence X 

which is the case in most speech recognition applications, the parameter set A that maximizes the 
denominator of Equation (6) is very close to the parameter set that maximizes the numerator, 
hence the factor p(XIA, W) in both numerator and denominator is essentially canceled. This 
makes the AB decision rule of little difference from the plug-in MAP decision rule using ML 

estimate of A. The AB decision rule is also computationally expensive because the maximization 

of [p(XIA, W)・p(XIA, W)] over A must be performed for every test sequence X. Furthermore, all 
of the training data must be stored. All of these facts make the AB decision rule impractical for 

most of the speech recognition applications. 
Si血larly,if we directly apply the decision rule in Equation (4) as suggested by N adas to speech 
recognition, it will also make little difference from the conventional plug-in MAP rule. This is 
because whatever the initial prior pdf, p(A), is used, when a large amount of training data X 

are available, we will get a posterior pdf p(AIX)~ith a sharp mode. This ma½es the predictive 
pdf in Equation (5) of little difference from p(XIA, W) with the ML estimate A. In an extreme 

case, if p(AIX) = o(A -入） with 8(・) denoting the Kronecker delta function, namely, the posterior 
probability mass of A is concentrated at the ML estimate入obtainedfrom X, then it is easy to see 
from Equations (4) and (5) that the BPC decision rule coincides with the plug-in MAP decision 
rule. 
In the robust speech recognition problem we are considering, it is assumed that there are 

mismatches between training and testing conditions which often result in a performance degradation 
in comparison with the matched conditions. Because of the nature of many speech recognition 

applications, the mismatch involved could be of any types as discussed before. It is thus desirable to 
develop a general robust speech recognition approach that is cable of handling any mismatches which 

might encounter in real applications. By considering the reality of the statistical pattern recognition 

paradigm and the modeling techniques we are using, we always have to make some assumptions 

which are often violated for real observed data. One way to achieve the performance robustness 
is thus to design and construct a robust decision rule which considers the model uncertainty and 

thus is not so sensitive to definite types of distortions. Because we are using a parametric model 
namely HMM, a simple thus also li血tedway to consider the model uncertainty is via considering 

the model parameter uncertainty, i.e., any perturbation of the model parameter values will cause a 

perturbation of the range of the observed data which the assumed model can correctly represent. 
Thus the principle behind the BPC approach is rather straightforward: Because we assume no 

knowledge about the possible mismatch, we thus rely on a quite general prior pdf to characterize 

the variability of the HMM parameters caused by the possible modeling/estimation errors and/or 

mismatches between training and testing conditions. We try to average out this variability while 

making decision with BPC. More specifically, we start with where Nadas [58] left off, with an 

empirical Bayes method in which a specific parametric pdf p(Alcp) is adopted to represent the 

prior/posterior pdf of the CDHMM parameters. Its hyperparameters cp could be estimated from 

some training data, or specified based on some empirical reasoning, or their combination [26, 28]. 
Consequently, the predictive pdf required for BPC decoding will be computed as: 

p(XIW) = J p(XIA, W)p(Al<p, W)dA 
0 

(7) 

The crucial difference of p(Alcp) and p(AIX) is that the former is inflated appropriately and thus 
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less sharp than p(AIえ). This provides the BPC chance to make a difference from the conventional 
plug-in MAP decoder. 

3.2.3 Approximate BPC Approach 

In the CD HMM case, due to the nature of the missing data problem in HMM formulation, it is not 
easy to compute the following true predictive pdf: 

p(XIW) = I: p(X, s, IIA, W)p(Al<.p, W)dA 
s,l 
J (8) 

wheres is the unobserved state sequence and 1 is the associated sequence of the unobserved mixture 

component labels corresponding to the observation sequence X. Consequently, some approxima-
tions are needed. 
One way to compute an approximate predictive pdf is to use the Monte Carlo method. We 
can use the Monte Carlo simulation of the hidden processes (state sequence and mixture label 

sequence) of the CD HMM and then perform integration and averaging. We can also perform a 
double-fold Monte Carlo simulation of both the hidden processes and the HMM parameters, and 
then perform only averaging. Because it's computationally expensive, the Monte Carlo method has 
only of academic interest in the stage of performing speech recognition. 

Another way to compute the approximate predictive pdf is to use the following Viterbi approx-

imation: 

p(XIW)~ 門予Jp(X, s, llA, W)p(Al<p, W)dA (9) 

A detailed algorithm to implement the above approximation and the related experimental results 

are reported in [37]. The resultant BPC rule is called Viterbi BPC (VBPC) rule. 

The third way is to adopt a numerical approximation technique, namely, Laplace approximation 
for integral, to compute the approximate predictive pdf as follows: 

p(XIW)~p(XIAMAP, W). p(AMAPl'P, W)・(27r)M/2・IVll/2 (10) 

where AMAP is the MAP estimate as shown in Equation (14), Mis the number of HMM parameters 
involved in the integrand in Equation (7), and Vis the M x M modal dispersion matrix, i.e., -v-1 
is the Hessian matrix of second derivatives of 

h(A) = log{p(XIA, W)p(AJc.p, W)} (11) 

evaluated at A = AMAP・We note that the Laplace approximation is essentially derived by re-
taining the quadratic term in the Taylor expansion of 1i(A) and are thus equivalent to normal-like 
approximation to the integrand, namely, using a normal pdf N(A!AMAP, V) to approximate the 
posterior pdf p(A!X, W). So, this approximation technique is also known as the normal approxi-
mation method in the Bayesian community. In the case of CDHMM, to compute V directly is still 
too computationally involved. So, we have to make further approximation. If we only consider the 
uncertainty of the mean vectors in CDHMM for BPC decoding, we can use the QB algorithm in 
[28] or [29] t o compute an approXImate postenor pdf N(A; AMAP, U) and then replace Vin equa-
tion (10) with U. The resulted BPC rule is thus named as the QBPC (quasi-Bayesian predictive 
classification) rule [30, 31, 32, 33]. 

Both QBPC and VBPC methods have been shown via a series of comparative experiments in 

[30, 31, 32, 33, 37, 39] to be able to greatly enhance the robustness when mismatches exist between 
training and testing conditions. We can actually go one step further. By combing BPC decision 

strategy with the on-line model adaptation strategy to continuously update our prior knowledge 
about the uncertainty of the model parameters, we can approach a performance achieved by the 
plug-in MAP rule under a matched condition [31, 32, 39]. 
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3.2.4 Relation to Other Robust Decision Approaches 

In addition to the above BPC approach, another way to achieve performance robustness in the 
unknown mismatch case via considering the model uncertainty is to adopt the so-called m切imax
principle in which the essence is to try and protect against the worst possible mismatch within 

some classes. Therefore, the minimax approach is considered to be the most conservative decision 
strategy. Merhav and Lee presented a case study of minimax classification for robust speech 
recognition in [56]. In that approach, instead of only using the estimated values of A as in plug-
in MAP rule, like in BPC, it is also assumed that the true parameters A are uncertain (random 

variables) and randomly distributed in a neighborhood region n around the estimated ones. If we 
have no further knowledge about A, a reasonable decision is to warrant the optimal outcome (e.g. 
minimum classification error) in the possibly worst-case condition (e.g. maximum mismatch in the 
assumed uncertainty neighborhood). Under some assumptions, Merhav and Lee proposed such a 
minimax decision rule which minimizes the worst-case probability of classification error. It turns 

out to be too difficult to implement this decision rule. They then suggested a weaker decision 
rule which seeks to minimize an upper bound of the worst-case probability of classification error. 

Although it was still called a minimax decision rule, it has a much loose meaning than what it 
usually means in statistics literature. Such a minimax decision rule operates as follows: 

W = arg~ 炉[Pr(W)・唸翌p(XjA,W)] (12) 

As discussed in [56], it can also be viewed as a two-step procedure. First, each testing utterance 

is treated to possibly belong to any word sequence and a constrained ML estimate of the related 
HMM parameters is obtained. Then, a plug-in MAP rule is used for speech recognition by using 
the updated HMM parameters. This intuitive interpretation opens up the possibilities to use other 

estimation approaches, e.g., MAP approach, in the first step. This is exactly what we did in a set 
of comparative experiments of BPC with minimax approach in (30, 31, 32, 33]. Such a modified 

minimax decision rule works as follows: 

where 

W = argmaxp(XIAMAP, W)・ 片(W)
w 

AMAP = arg max p(XIA, W)p(Alcp, W) 
AErlw 

(13) 

(14) 

The minimax strategy tries to secure the decision in the worst case of the assumed mismatch, 
thus usually does not perform nearly as well as in a less malign situation and/or those techniques 
which use some prior information of the possible mismatches. In some applications, if a rough 

knowledge of the distortion is available, then it can be used to design a structural model which 
takes advantage of some structural constraints and thus only includes a small number of nuisance 
parameters to characterize the systematic distortion structure. The compensation can then be 
performed via on-line estimation of these nuisance parameters from the given pre-trained models 
and the available testing data. A so-called stochastic matching approach described in [70] is such a 
natural extension of structure-based compensation from minimax approach. The similar extension 
can also be applied to the BPC approach. 
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3.3 Sensitivity of Priors 

In the Bayesian framework we are adopting, one of the factors which greatly infl.uences the efficacy 

of the OLA and BPC approaches is the appropriateness of the prior pdf. Generally speaking, prior 
density estimation and the choice of density parameters depend on the particular application of 

interest. Because we have already assumed a specific parametric form for the prior pdf in our study, 
this turns out to be a hyperparameter specification/estimation problem. If the training data set 

X is rich and big enough to cover the interested variability of speech signal which possibly occurs 
in the testing conditions, then the method of moment algorithm presented in [26] can be used to 
automatically estimate the hyperparameters from the training dataぷ Otherwisewe have to use 

some ad hoc method for hyperparameter estimation. One of such methods is described in [28]. If 
application scenario allows us to have access to some testing data, by using sequential Bayesian 

learning method in [28, 29], we can also make the prior pdf more appropriate. Furthermore, the 
knowledge and/or experience of the interaction between speech signal and the possible mismatch 

will also be very helpful to guide us to obtain a better prior pdf as shown in [32, 33]. 
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4 Putting It All Together: A Robust HMM-based ASR System 

Because both OLA and BPC are formulated under a unified Bayesian paradigm to address re-
spectively the model parameter inference problem and the decision problem, they can be naturally 

combined to produce an enhanced algorithm to cope with the robust ASR problem as described 

before. Such a robust ASR system is schematically shown in Figure 1. 

「―----------~ 
I recognition result 

unsupervised 
|
 

input speech 
utterance 

Figure 1: A block diagram of a robust HMM-based speech recognition system 

Given a new block of input speech, feature extraction (usually spectral analysis) is first per-

formed to derive the feature vector sequences used to characterize the speech input. It is followed 

by some kind of acoustic normalization to reduce the possible mismatch in the feature vector space. 

The processed feature vector sequences are then recognized based on the current set of HMM's by 
using BPC approach. After the recognition of the current block of utterances, the HMM's and the 

posterior distributions of the related speech units are adapted and the updated models are used to 

recognize future input utterance(s). In this way, we can get a better and better posterior/prior pdf 
(i.e., more and more accurate knowledge about the uncertainty of the model parameters), and this 

in turn makes the BPC-based recognition system approach a performance achieved by the plug-in 
MAP rule under a matched conふtion.

For the acoustic normalization/equalization module shown in Figure 1, many existing techniques 

can be applied. They include, for example, the popular cepstral mean subtraction algorithm [4], 
different cepstral normalization methods (e.g. CDCN and others in [1]), ML-based feature space 

stochastic matching methods (e.g., [11, 81, 70]), signal conditioning techniques (e.g., [64, 65]), etc. 

Acoustic normalization could even be integrated into the feature extraction stage, e.g., speaker 
normalization via vocal tract length normalization using frequency warping (e.g., [77, 16, 51]). 
Encouraging results have also been demonstrated in combined acoustic normalization and model 

adaptation based on a small amount of calibration data (e.g., [81, 82]). 

On-line model adaptation is a data-driven method and its strength comes from the availability of 

a certain amount of test data. If the application involves a recognition session which might consist of 
a number of testing utterances, then a combined BPC decoding and on-line adaptation of the prior 

of the HMM parameters will provide a good solution to enhance the robustness towards varying 

environments, microphones, channels, speakers, and other general mismatches or distortions. For 

real-world applications, unsupervised on-line adaptation is usually more realistic and desirable. 

One of the remaining research issues is how to guide the unsupervised OLA when the recognition 

rate is initially low. Different degree of parameter tying and/or smoothing血ghtbe helpful. 

Incorporating some data validation mechanism will also be useful and more theoretical works are 
needed to develop a better verification paradigm. 
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5 Discussion and Conclusion 

We have presented an overview of the Bayesian approaches to robust speech recognition we've 
been developing in the past few years. From the lessons we learned thus far, we expect that a 

better understanding and more experience on how the speech signal is distorted and/or varied 
under different acoustic conditions will be helpful to design a better parametric form and the 

related hyperparameter estimation of the prior pdf's for both OLA and BPC. It will also be 
helpful to design a better structural model in structure-based compensation. It will be crucial for 

efficient adaptation and compensation to formulate and develop appropriate mathematical tools 

for discovering a good intrinsic structural model of speech in the acoustic, phonetic and linguistic 
aspects. We are continuously exploring other possibilities for 

• robust pattern verification, 

• structural model design, 

• efficient learning, 

• robust and selective learning, 

• intelligent and flexible dialogue control, 

which by combining with other techniques, will lead to a robust and intelligent spoken dialogue 

system for many useful applications. The greatest challenge might come from those applications 
which only involve a couple of utterances, but every utterance involves a distinct "distortion chan-

nel" from the intended message to the received signal. How to reliably and efficiently recover and/or 

extract the interested message from this signal pose a big challenge for the so-called robust ASR 

in this context. 
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