
Internal Use Only

TR-IT-0237

Teaching CHATR German

Intonation

ABSTRACT

Lesson One

Kristina I. Striegnitz

Sep. 1997

002

I will describe the work on prosody prediction for German, which I did

during my two month stay at ITL. I will briefly discuss the heuristics

used to predict phrasing, placement of pitch accent and intones and

will then explain more detailed how I implemented these things to be

used by CHATR.

◎ ATR Interpreting Telecommunications

Research Laboratoriess.

◎ ATR音声翻訳通信研究所

Contents

1

2

Introduction 2

3

4

5

A Touch of Theory

2.1 From Part-of-Speech and Topological Fields to Prosody
2.2 The Prediction Rules

2.2.1 Phrasing

2.2.2 Placement of Pitch Accent
2.2.3 Intones ...

Welcome to CHATR

3.1 Text and HLP Input
:3 .2 Phonoform Input

The TDMT Interface

4.1 From TDMT to Phonoform

4.2 m2b -the Interface Program

Text Input

5.1 Adding Information to the Sphrase Tree
5.2 g_predicLphracc -Predicting Prosody from Text Input

5.3 Along the Way Bug Fixes for CHATR
5.3.1 text.c: texLsentence上ead

5.3.2 lexicon.c: lex」ookup
5.3.3 hlp.c: hlp_apply_actions ...

5.3.4 intonation.c: add」ntonation

3

3

4

4

4

5

6

7

A

FO Prediction

Conclusion

Some Useful Hints on Variable Settings

6
6
8
1
0
1
0
1
1
2
6
2
6
2
9
3
3
3
3
3
3
訪

3
6
3
9
4
0
4
1

ー

"

Chapter 1

Introduction

I spent eight weeks at ITL as a participant in the REES program (research

experience for european students) of the Japanese science and technology

exchange center (.JISTEC). Another German participant of the same program

was at ITL as well and we were working together very closely.

During this time I worked on the German synthesis within CHA.TR. I

was mainly concerned with predicting prosody (in the form on ToBI labels)

taking simply text as ,vell as the output of the TDMT system as input for

CHATR. TDMT is an example based machine translation system, which is

being developed at ITL. Since during the translation process some syntactic

analysis is done, we could base our prosody prediction rules on a little bit

more than just the words.

I will describe the algorithms we used to predict phrasing and intonation

from text input and from the input we received from the TDMT system. I

will also explain the changes which had to be made to the CHATR source

code in order to achieve a better result in the final FO prediction.

In chapter 2, I will describe the heuristics we used for prosody prediction.

Chapter ;3 brie且yintroduces the relevant modules of CHATR, showing which

parts of the information necessary to synthesise a wave each of them adds

to a given utterance. Chapter 4 describes the prosody prediction for TDMT

input in more detail and chapter 5 does the same for text input. Finally, in

chapter 6, I will explain, how the actual FO values are predicted from the

specified intones.

毒

ぅl

Chapter 2

A Touch of Theory

I will describe the rules we used for prosody prediction from a very technical

point of view. Anybody interested in more theoretical details should refer to

Caren Brinckmann's report ([2]).

2.1 From Part-of-Speech and Topological Fields

to Prosody

The TDMT system translates, among other language pairs, from .Japanese

to English. In the course of the translation process the utterance is syntacti-
cally analysed, which yields information very helpful to the correct prediction

of phrasing. The structure which is passed on from the TDMT system to

CHATR contains the following information:

• words

• phonemic transcription, syllable boundaries, lexical stress

• part-of-speech

● sentence type, punctuation

• topological fields

The information about sentence type in combination with punctuation en-

ables us to distinguish between main clauses and subordinate clauses as well

as between statements and questions.

For the generation of German TDMT uses a theory of topological fields.

Therefore, we, unfortunately, can not get a phrase structure tree, but we do

have some kind of information about grouping of words.

Stock and Zacharias (in [8]) use part-of-speech and sentence structure

to predict phrasing and the placement of pitch accent within these phrases.

3

We adapted their approach to our environment. For predicting the actual

intones, we oriented ourselves on the rules given by Isacenko and Schadlich

in [6].

2.2 The Prediction Rules

Here comes an overview of the rules we used for prediction of phrasing,

placement of pitch accent and type of intones for pitch accents and boundary

tones.

We used ToBI (or rather GToBI, which is a language specific variant

of ToBI [7]) to annotate prosody. ToBI devides sentences into intonation

phrases, which again are devided into intermediate phrases.

2.2.1 Phrasing

• put a sentence boundary at every'.','!','?'and':'

• put an intonation phrase boundary

-between two main clauses

-between a main clause and a subordinate clause

-at every':'

• put an intermediate phrase boundary

-at every','

-at the end of every'syntactic phrase', which contains an adjective

or noun

'syntactic phrase'is here used in the sense of the TDMT algorithm. It
just denotes a grouping of words1 which usually is identical to a topological

field.

2.2.2 Placement of Pitch Accent

Every intermediate phrase has to have one pitch accent specified. Usually the

last noun or adjective respectively get accented, but there might be phrases

without either one.

• on the last noun or adjective in every intermediate phrase

• if there are no nouns or adjectives, on the last accentable word with the
highest priority; accentable words are (ordered by priority): adverbs,

verb prefixes, idiomatic expressions and prepositions

4

• if there is no accentable word, on the last word in the phrase

2.2.3 Intones

Now, that the utterance is devided into phrases and every phrase contains

one word marked as accented, we have to decide, what intones to put on the

different phrase boundaries and pitch accents. As mentioned above we based
this on a paper by Isacenko and Schadlich.

• last intermediate phrase in a sentence
question: L*+H on pitch accent and H-H% on last syllable

others: H+1* on pitch accent and 1-1% on last syllable

• last intermediate phrase in an intonation phrase
L+H* on pitch accent and H-1% on last syllable

• all other phrases
H* on pitch accent and L-on last syllable

3

Chapter 3

Welcome to CHATR

CHATR ist the speech synthesis system developed by the ATR Interpreting

Telecommunications Research Laboratories. Anybody not familiar with the

basic idea behind CHATR, should refer to [3] or [4].

I will only describe those parts of CHATR relevant for our work. For

a more thorough description of the system, please refer to Tony Hebert's

technical report ([5]), which includes a very nice illustration of the changes

an utterance will undergo from its input until its synthesis, or to the CHATR

manual ([9]).
CHATR has various input formats, which differ in the amount of infor-

mation they can hold. The format called phonoform is the most informative

one. In cases, where all the slots are filled, it perfectly describes a wave,

i.e. the utterance can be synthesised right away with no further processing

needed. We used the phonoform input format for the TDMT interface. Text

input is maybe the least informative of the input formats. vVe used a dictio-

nary to obtain some additional information. I will now explain more in more

detail how CHATR handles input in these two formats and how this input

is processed to acquire the information necessary for synthesis.

3.1 Text and HLP Input

When CHATR receives the command

(SayText''Als der Frosch ueber die Wiese sprang,

ロurdeer vom Storch gefressen. Ist das nicht raurig?J')

it adds to the utterance a stream containig a tree structure. The stream

is called Sphrase stream, where ,:S" is standing for "syntactic". But, since

we are talking about text input and no syntactic analysis is done, CHATR

does not have any information about the syntax of the utterance, so that the

Sphrase tree will actually be quite a flat structure in this case.

6

(((CAT D))
(((CATS) (IFT Statement))

(((LEX als)))

(((LEX der)))

(((LEX Frosch)))
(((LEX ueber)))

(((LEX die)))
(((LEX応iese)))

(((PUNC ,) (LEX sprang)))
(((LEX wurde)))
(((LEX er)))
(((LEX vom)))

(((LEX Storch)))
(((PUNC .) (LEX gefressen))))

(((CATS) (IFT Question))
(((LEX ist)))
(((LEX das)))

(((LEX nicht)))
(((PUNC ?) (LEX traurig)))))

Figure 3.1: The initial Sphrase tree built from text input

As can be seen in figure 3 .1, the only structuring is clone by the nodes

labeled "(CAT D)" and "(CAT S)", which can be thought of as meaning

discourse or sentence boundary respectively. Of course, the Sphrase tree

structure is also capable of representing syntactic constituent trees for exam-

ple. And, in fact, from this point on our input will take the exact same route

through CHATR's modules as an Sphrase tree built from an input in the

HLP format (a high level linguistic structure) would; i.e. it will pass through

the following modules: hlp工 odule,word_rnodule, phonology -111odule, in-

tone_rnodule, duration_rnodule, inLtarget_rnodule, poweunodule. I will now
give a very rough description of what they do.

hlp-111odule the features which can be added to nodes in hlp input are used

to predict phrasing and prosody (I will later come back to this module

in greater detail)

word_module lexicon lookup of the words to get informaLion about the

phonemic transcription, syllable boundaries and lexical stress

phonology _n1odule pause prediction

intone_module prosody prediction

7

duration_module prediction of durations for the segments

int_targeLmodule prediction of FO contour from the prosodic labels (in-

tone.module)

power -111odule prediction of power

At this point then, the segments are specified in a way, that CHATR has

enough information to chose appropriate units from the database.

3.2 Phonoform Input

The phonoform input is the most informative way of giving an input to

CHATR. It was originally intended to serve as a way of describing speech

waves in a database. These could then be removed from the database and

be resynthesised for testing. The following things can be explicitly specified

in phonoform input as can also be seen in figure 3.2.

● segments

• duration

• power

• pitch

• syllables

• lexical stress

• ToBI labels

• break indices

• words

Everything that makes up a speech wave is specified. CHATR thus only

calls two functions upon phonoform input. The phonoforrn input function,

which constructs a structure of type'Utterance'from the given input and

the synthesis function.

8

(Utterance

PhonoForm

(:D nil

(: S ((PauseLength 65))

(Word Attorney nil

(Syl ax () (Phoneme ax 70 8.5100 ((187.0000 35))))

(Syl t.er ((Stress 1) (Intones HiFO H*))

(Phoneme t 110 7.1200 ((242.0000 55)))

(Phoneme er 80 8.7500 ((255.0000 40))))

(Syl n. iy nil

(Phoneme n 50 8.6700 ((233.0000 25)))

(Phoneme iy 60 8.3400 ((193.0000 30)))))

(Word General ((Break 1))

(Syl d.jh.eh.n ((Stress 1) (Intones !H*))

(Phoneme d 60 7.7300 ((173.0000 30)))

(Phoneme jh 40 7.4100 ((226.0000 20)))

(Phoneme eh 110 8.4300 ((205.0000 55)))

(Phoneme n 30 8.2700 ((196.0000 15))))

(Syl axr () (Phoneme axr 130 8.2600 ((158.0000 65))))

(Syl el ((Intones L-H'l.))

(Phoneme el 110 7.9000 ((180.0000 55))))))

(: S nil

(Word James nil

(Syl d.jh.ey.m.z ((Stress 1) (Intones H*))

(Phoneme d 70 7.0900 ((182.0000 35)))

(Phoneme jh 50 7.0800 ((184.0000 25)))

(Phoneme ey 150 8.2200 ((154.0000 75)))

(Phoneme m 100 7. 7600 ((143. 0000 50)))

(Phoneme z 30 6.7700 ((200.0000 15)))))

(Word Shannon ((Break 1))

(Syl sh.ae.n ((Stress 1) (Intones HiFO H*))

(Phoneme sh 90 6.9900 ((200.0000 45)))

(Phoneme ae 150 8. 3700 ((172. 0000 75)))

(Phoneme n 80 8.1000 ((144.0000 40))))

(Syl ax .n ((Intones L-11/.))

(Phoneme ax 30 7.4400 ((104.0000 15)))

(Phoneme n 50 7.1100 ((145.0000 25))))))))

Figure :3.2: An example for the phonoform input format. The numbers

specify duration, power and pitch.

，

Chapter 4

The TDMT Interface

4.1 From TDMT to Phonoform

The input we receive from the TDMT system looks like the structure in

figure 4.1. The first field of each line contains the words. The second field

contains syntactical information and is further devided into three subfields

containing sentence type, information about the syntactic function of that

line, and part-of-speech. The third field contains the phonemic transcription

of the words including syllable boundaries. And the fourth field holds lexical

stress information. Each line is thought to represent one topological field.

That is not in all cases consistantly realised though. The topological fields

might be split up further according to syntactic functionality (e.g subjects

and objects may be in a line of their own).

The phonoform input format was chosen for the TDMT interface, because

it allowed us to use all the information we received from TDMT. Words, seg-

ments, syllables and lexical stress can be directly taken over from one format

into the other. Using the rules from chapter 2 we will predict phrasing, which

gives us boundaries, such as'S','C','P'and the associated'PauseLength'fea-

tures (cf. figure :3.2). We used the'C'(clause) boundary as intonation phrase

boundary and the'P'(phrase) boundary as intermediate phrase boundary.

vVe can then use the rules from chapter 2 to assign intones to words. Lexical

stress then determines, to which syllable they actually have to be added to as

a feature. This will produce a phonoform, which looks like the one in figure
4.2.

This leaves a couple slots in the phonoform format still open. We dont't

have any information about duration, the actual FO values or power and

want CHATR to use its own prediction modules to且11these slots. Just like

it does for e.g. text input. Since so far phonoform input was ony intended

to be used fully specified, these extra module calls had to be added to the

phonoform input function. In our case the duration, inLtarget and power

10

modules have to be called.

4.2 m2b -the Interface Program

The conversion from the TDMT format to the phonoform input format, and

thus the prediction of placement and type of ToBI labels, is done as a front

end to CHATR.

The TDMT output is read and parsed into a three dimensional array. The

first dimension represents the lines of the TDMT format and the second di-

mension the four fields containing words, syntactical information, phonemes

and syllables, and lexical stress. Each field of information is thus a string,

which is stored in the slot of the array determined by the linenumber and

fieldnumber.

The entry "BOUNDARY" in the second field introduces a C boundary

at that point1. I will then go over all the lines between two C boundaries to

decide on the placement of accents and P boundaries. After having collected

this information and stored it in chained structures, I will go over these

lines again to actually print the phonoform line by line, while adding the

appropriate intones at the predicted places.

#include <stdio.h>

#include <stdlib.h>

#define BUFFSIZE 4096 I* bad limitation ! ! *f

int put_口rd(char*wrd, int n);

int put_syl(char *syl, int n, int pitch_accent, char acc_type,
char bound, int put_stress_mark);

int put_ph(char *ph, int n, int put_stress_mark);
int stressable(char *pos);

int vowel(char phone);

int make_phonoform(char txt [1024] [4] [256], int len) I* ugly *I

｛

struct boundary { I* to collect boundaries *I
int line;
int type;

struct boundary *next;

｝；

1Theoretically'・BOUNDARY" should describe a boundary between two clauses. Un-
fortunately, until now kommas between clauses and other kommas, like in enumerations,
are not yet distinguishable by this, so that in effect every komrna introduces a C boundary

11

struct accent {

int priority;

int line;

I* to collect accents *I

int -wrd;

char type;

struct accent *next;

};

struct stress_mark {

int line;

I* to collect'+'able ,;,ords -since the plus *I

I* is specific to sampaG, is has to be added *I

int w-rd;

struct stress_mark *next;

};

struct boundary *boundary, *current_bound, *last_bound;

struct accent *accent, *ace, *last_acc;

struct stress_mark *stress_mark, *current_stress;

int x,i,j,l,posc;

char acc_type, bound;

int n_wrd;

int口rd_x,gr_x,syl_x,ph_x,strぶ；

int put_stress_mark, pitch_accent = O;

char pos [64] ;

fprintf (stdout, "¥n(Say (Synth (set utt¥n");

fprintf (stdout, " (Utterance PhonoForm (: D nil (: S nil (: C nil (: P nil 11) ;

i=O;

while(i<len) { I* for all lines *I

I* first口ehave to find, WHERE to put pitch accents and *f

f* boundary tones *f

last_bound = NULL;

current_bound =boundary=

(struct boundary *)malloc(sizeof(struct boundary));

last_acc = NULL;

acc =accent=

(struct accent *)malloc(sizeof(struct accent));

acc->priority = O;

current_stress = stress_mark =

(struct stress_mark *)malloc(sizeof(struct stress_mark));

for (j =i; (j <len && ! strstr (txt [j] [1] , "BOUNDARY")) ; j ++) {

I* for all lines until next clause boundary *I

12

nー訂rd= O;

gr_x = O;

x=O;

吐 ile(xく2){ / * get to POS information *I
if (txt [j J [1] [gr _x++ J ==':')

x++;

｝

while(txt[j] [1] [gr_x] !='¥0'){ I* until all .J'ords in that *I
I* line have been checked *I

I* skip spaces bet,.een切ords*I while(txt [j] [1] [gr_x]=='')

gr_x++;

pose= O;

吐 ile(txt[j][1] [gr_x] !=':'認 I*read POS for one閃ord*I
txt [j] [1] [gr _x] ! =''臨
txt [j] [1] [gr _x] ! ='¥0')

pos [pose++] = txt [j] [1] [gr_x++];

pos [pose] ='¥0';

I* check, 切hetherpos is a noun or adjective *I
I* if so, save line in boundary structure and add *I
／・* information to accent structure *I
if(strcmp(pos,"NOMEN")==O)

｛

｝

current_bound->type ='p';

current_bound->line = j;

acc->priority = 15;

acc->line = j;

acc->刃rd=n_.rrd;

acc->type ='p';

else if(strcmp(pos,"ADJEKTIV")==O)

｛

｝

current_bound->type ='p';

current_bound->line = j;

acc->priority = 15;

acc->line = j;

acc->.rrd = n_.rrd;

acc->type ='p';

I* if no boundary has been found yet, check what accent *I
＊／

add info to accent struct *I
I* priority pos口ouldget

I* if it is the highest, yet,

else if (last_bound==NULL)

｛

if(strcmp(pos,"ADVERB")==O && acc->priority<=13)

1:3

｛
 acc->priority = 13;

acc->line = j;

ace->研rd=n —w'rd;

｝

｛

if(strcmp(pos,"VERBZUSATZ")==O && acc->priority<=11)

acc->priority = 11;

acc->line = j;

acc->wrd = n_wrd;

｝

｛

else if(strcmp(pos,"KARDINALZAHL")==O && acc->priority<=9)

acc->priority = 9;

acc->line = j;

ace->口rd=nー'il'rd;

｝

｛

else if(strcmp(pos,"VERB")==O && acc->priority<=7)

acc->priority = 7;

acc->line = j;

acc->r;;rd = n_r;;rd;

｝

｛

else if(strcmp(pos,"FIX-EXP")==O && acc->priority<=S)

acc->priority = 5;

acc->line = j;

acc->wrd = n_wrd;

｝

｛

else if(strcmp(pos, "PRAEPDSITIDN")==O && acc->priority<=3)

acc->priority = 3;

acc->line = j;

acc->wrd = n_wrd;

｝

｛

else if(acc->priority==O) /*accent on last word *I

ace→ line= j;
ace->研rd=n_wrd;

｝

｝

if(stressable(pos)) I* if word is'+'able, memorize *I

｛

current_stress->line = j;

current_stress->wrd = n_wrd;

14

current_stress = current_stress->next = (struct stress_mark *)malloc(sizeof(struct

｝

n_wrd++;

｛

｝

｝

I* if a boundary has been added in this line, start looking *I

I* for the next one and also the next accent *I

if(current_bound->type=='p')

last_acc = acc;

acc = acc->next = (struct accent *)malloc(sizeof(struct accent));

acc->priority = O;

last_bound = current_bound;

current_bound = current_bound->next =

(struct boundary *)malloc(sizeof(struct boundary));

｝

free(current_stress);

I* adjust last boundary and accent, in case no boundary切asfound *I

I* at all in this clause, or臼ordsare left after the last phrase *I

I* boundary *I

I* also mark type of last boundary: clause, statement, question *I

if(last_bound!=NULL){

｝

free(acc);

free(current_bound);

acc = last_acc;

current_bound = last_bound;

else {

｝

acc->next = NULL;

current_bound->next = NULL;

current_bound->line = j-1;

s.,itch(txt [jJ [OJ [OJ) {

case

current_bound->type ='c';

acc->type ='c';

break;

case '?'.

current_bound->type ='q';

acc->type ='q';

break;

default:

current_bound->type ='s';

15

acc->type ='s';

break;

｝
 ”

I* write phonoform line by line, adding intones, whenever a pitch *I

I* accent is specified in the accent structure or a boundary is *I

I* specified in the boundary structure *I

current_bound = boundary;

acc = accent;

current_stress = stress_mark;

for(l=i;l<j;l++)

｛

I* open phrase if required by boundary structure *I

if(current_bound->line==l-2) { I*'-2'to skip line with *I

if(current_bound->type=='p') I* only punctuation *I

fprintf (stdout, 11 ¥n (: P nil 11) ;

else if(current_bound->type=='c')

fprintf(stdout,11¥n (:C ((PauseLength 150)) (:P nil");

else if(current_bound->type=='s'I I current_bound->type=='q')

fprintf (stdout, 11 ¥n (: S ((PauseLength 300)) (: C nil (: P nil") ;

｝

nーYrd= O;

切rd_x= syl_x = ph_x = str_x = O;

Yhile(txt[l][O][Yrd_x]!='¥0') I* until end of line *I

｛

I* put word *I

立 d_x= put一切rd(txt[l] [OJ, 刃rd_x);

r;;hile(txt[l][3][str_x]=='') I* skip spaces betr;;een切ords*I

str_x++;

r;;hile(txt[l] [2] [syl_x]=='') I* skip spaces bet口eenr;;ords *I

syl_x++;

while(txt[l] [2] [syl_x] !=''&& txt[l] [2] [syl_x] !='¥0')

I* until end of r;;ord *I

｛

I* check for a pitch accent in the accent *I

f* structure

if(acc->line==l臨

acc->.,rd==n立 rd&&

txt [l] [3] [str _x] =='1')

｛

pitch_accent = 1;

acc_type = acc->type;

if(acc->next!=NULL)

＊／

16

｛

ace= acc->next;

free (accent);

accent= acc;

｝

｝

else

pitch_accent = O;

I* check ,.hether'+'has to be added to first *I
／ * vor;iel 1n syllable *I
if(current_stress->line==l &&

current_stress->,.rd==n_r;ird &&

txt [l] [3] [str _x] =='1')

｛

put_stress_mark = 1;

if(current_stress->next!=NULL)

｛

current_stress = current_stress->next;

free(stress_mark);

stress_mark = current_stress;

｝

｝

else

put_stress_mark = O;

I* check因hetherboundary tones have to be added to *I
I* syllable *I
if(txt[l] [3] [str_x+1]=='¥0'&& current_bound->line==l)

bound= current_bound->type;

else

bound ='¥0';

I* put syllables of TJord *I
syl_x = put_syl(txt[l] [2] ,syl_x,pitch_accent,

acc_type,bound,put_stress_rnark);

while (txt [l] [2] [ph_x] ==''I I txt [l] [2] [ph_x] =='-')

I* skip spaces and dashes between words and syllables *f
ph_x++;

while(txt[l] [2] [ph_x] !='-'揺

txt [l] [2] [ph_x] ! =''臨

txt[l] [2] [ph_x] !='¥0') I* until end of syllable *I
｛

17

I* put phonemes of syllable *I

ph_x = put_ph(txt[l] [2],ph_x,put_stress_mark);
亀

｝

I* add pause at the end of sentence, sounds better *I

if (bound=='s'I I bound=='q')

fprintf(stdout, "¥n (Phoneme# 0 0 ((0 O)))");

fprintf(stdout, ")"); /*close syl *I

str_x++;

｝

fprintf(stdout, 11)11);

n_wrd++;

f* close ,1ord *f

｝

I* close opened phrase *I

if(current_bound->line==l) {

if(current_bound->type=='p')

fprintf (std out, 11) 11) ;

else if(current_bound->type=='c')

fprintf (stdout, 11)) 11);

else if(current_bound->type=='s'I I current_bound->type=='q')

fprintf(stdout,11)))11);

current_bound = current_bound->next;

free(boundary);

boundary= current_bound;

｝

｝

i = j+1;

｝

fprintf(stdout, 11)))))¥n"); I* close everything*/

return O;

｝

I* prints one word *I

int putーロrd(char*txt, int n)

｛

int i=O;

char wrd [64] ;

while (txt [n] =='')

n++;

18

｝

while(txt[n] !=''&& txt[n] !='¥0')

切rd[i ++] =txt [n++] ;

ロrd[i] ='¥ 0';

fprintf (stdout, 11 ¥n (Word'/,s nil 11, TiJrd) ;

return(n);

f* prints one syllable *f

int put_syl(char *txt, int n, int pitch_accent,

char acc_type, char bound, int put_stress_mark)

｛

int put_glot=O, i=O;

char syl [64] ;

田hile (txt [n] =='-'I I

txt [n] =='')

n++;

if it starts *f f* add glottalization in the beginning of syllable,

／＊訂itha vo切el ＊／

txt [n] =='c'11 txt [n] =='6') && put_stress_mark) if ((vowel (txt [n]) I I

｛

put_glot = 1;

syl[i++] ='Q';

syl[i++] ='.';

｝

ロhile(txt[n]!='-'&& txt[n] !=''&& txt[n] !='¥0')

syl[i ++] =txt [n++] ;

syl[i]='¥0';

I* write syllables

I* boundaries

if(pitch_accent)

｛

switch(acc_type) {

case ＇ p '.
fprintf (stdout, "¥n

break;

case'c':

fprintf (stdout, "¥n

break;

case'q':

fprintf (stdout, "¥n

and intones, appropriate var the accents and *I

＊／

(Syl'/.s ((Stress 1) (Intones H*", syl);

(Syl'/.s ((Stress 1) (Intones L+H*", syl);

(Syl'/.s ((Stress 1) (Intones L*+H" ,syl);

19

break;

case's':

fprintf (stdout, 11¥n

break;

default:

fprintf (stdout, 11 ¥n

break;

｝

｝

else

｛

switch (bound) {

case'p':

fprintf (stdout, "¥n

break;

case'c':

fprintf (stdout, "¥n

break;

case's':

fprintf(stdout, "¥n

break;

case'q':

fprintf (stdout, "¥n

break;

default:

fprintf (stdout, "¥n

break;

｝

(Syl'/.s ((Stress 1) (Intones H+L*",syl);
贔

(Syl'/.s ((Stress 1) (Intones H*",syl);

s口itch(bound){

case'p':

fprintf (stdout, 11 L-)) 11);

break;

case'c':

fprintf(stdout, 11 H-L'l.'l.))11);

break;

case's':

fprintf(stdout, 11 L-L'l.'/.))11);

break;

case'q':

fprintf(stdout, 11 H-H'l.'l.))11);

break;

default:

fprintf (stdout, 11)) 11) ;

break;

｝

(Syl'/.s ((Intones L-)) 11, syl) ;

(Syl'/.s ((Intones H-L'/.'/.))11,syl);

(Syl'/.s ((Intones L-L'/.'/.)) 11, syl);

(Syl'/.s ((Intones H-H'/.'/.))", syl);

(Syl'/.s ()11,syl);

20

｝

if(put_glot)

fprintf (stdout, "¥n

return(n);

｝

f* prints one phoneme *I

int put_ph(char *txt, int n, int put_stress_mark)

｛

int i=O;

char ph[64];

while (txt[n]==' —'I I txt [n] =='')
n++;

/* add stress sign'+', if切ordis'+'able and phoneme is a vo切e1*/

if(put_stress_mark認 VO口el(txt[n])){

ph[i++] ='+';

put_stress_mark = O;

｝

while(txt[n] !='.')

｛

ph [i ++ J =txt [n++] ;

｝

ph [i] ='¥ 0';

n++; I* get past the'.'*I

fprintf(stdout, "¥n

(Phoneme Q O O ((0 O)))");

(Phoneme 1/.s O O ((0 O)))", ph);

return(n);

｝

int stressable(char *pos)

｛

if(strcmp(pos,"NDMEN")==O 11

strcmp (pos, "VERB") ==O I I
strcmp(pos,"VERBZUSATZ")==O I I
strcmp(pos, "ADVERB")==O 11

strcmp (pos, "FRAGEADVERB")==O I I
strcmp(pos,"ADJEKTIV")==O 11

strcmp(pos,"INTERROGATIVPRDNDMEN")==O I I
strcmp(pos,"KARDINALZAHL")==O I I

21

strcmp(pos,"ORDINALZAHL")==O I I
strcmp (pos, "FIX-CAP")==O 11

strcmp(pos,"FIX-UP")==O I I
strcmp(pos,"STOP-WORD")==O I I
strcmp(pos, "FIX-END")==O 11

strcmp(pos,"FIX-INTRD")==O)

return(1);

else

return(O);

｝

int VO咋el(charphone)

｛

if(phone=='a'

phone=='o'

phone=='□'
phone=='u'

phone=='U'

phone=='y'

phone=='Y'

phone=='i'

phone=='I'

phone=='e'

phone=='E'

phone=='2'

phone=='9')

return(1);

else

return(O);

｝

I* Reads in the TDMT format and saves it into a 3-dimensional *I
I* array. The first dimension being the lines, the second the *I
I* four fields of the TDMT format (words, syntax, phonemes, *I
I* lexical stress) and the third the characters, i.e. each *I
I* TDMT field is stored as a string *I
int main()

｛

char buff [BUFFSIZE] ;

int i,j, k, n, len, ch_n;

char for_chatr[2048]; I* ugly *I
char txt [1024] [4] [256]; I* ugly *I

while ((len=read(O, buff, sizeof buff)) > 0) { I* ugly *I
i=j=k=n=ch_n=O;

辱`ー

ぅl
う
l

Tilhile (i ++ < len){

w'hile (buff [i] =='¥ 11') i ++;

txt [n] [k] [j ++] =buff [i] ;

I* parse the structure into four fields *I
if (buff [i] =='I'I I buff [iJ =='¥n'){

txt[n] [k] [j-1]='¥0';

j=O;

k++;

if(k==4){

切hile(txt [n] [2] [j] ! ='¥0')

for _chatr [ch_n++] =txt [n] [2] [j ++] ;

for_chatr[ch_n++]='';

n++;

j=O;

k=O;

｝

｝

｝

｝

for_chatr[ch_n++]='¥0';

I* this is -where the actual -work gets done *I
make_phonoform(txt,n-1);

exit(O);

｝

3

ぅ
]

ー

"bitte I SATZ: INTRO :FIX-INTRO lb. I.-t. c. [10

?!SATZ:EOUNDARY-END:INTERPUNKTIDN[4[0

es scheint[SATZ:INTRO:FIX-INTRO FIX-INTRO[c.s. S.aI.n.t. !O 1

, [SATZ:EOUNDARY:INTERPUNKTIDNl2IO

die gebuehr[SATZ:SUBJECT:DETERMINATIV NOMEN[d.i:. g.c.-b.y:6. [1 01

, !REL-S:BOUNDARY-START:INTERPUNKTIDN[2IO

die!REL-S:INTRO:RELATIVPRONOMEN!d.i:. 11

ich!REL-S:SUEJECT:PERSONALPRONOMEN!I.C. 11

irn reisefuehrer!REL-S:F-MIDDLE:PRAEPOSITIDN NOMEN!I.rn. r.aI.-z.c.-f.y: .-r.6. [O 1000

gesehen !REL-S :V-INF:VERB I g. c. -z. e: .-c.n. I 010

habeiREL-S:V-FIN:HILFSVERE[h.a:.-b.c. 110

, [SATZ:BOUNDARY:INTERPUNKTIDNl2IO

ist!SATZ:V-FIN:HILFSVERB!I.s.t. [1

anders[SATZ:VP-ADVERE:ADVERB!a.n.-d.c.r.s. [10

. !SATZ:EOUNDARY-END:INTERPUNKTIDN[4IO

Figure 4.1: The TDMT output

24

(Utterance PhonoForm (:D nil

(: S nil (: C nil (: P nil

(Word drei nil

(Syl d.r. aI. ()

(Phoneme d O O ((0 0)))

(Phoneme r O O ((0 0)))

(Phoneme +aI O O ((0 0)))))

(Word stuecke nil

(Syl S.t.Y. ((Stress 1) (Intones H+L*))

(Phoneme SO O ((0 0)))

(Phoneme t O O ((0 0)))

(Phoneme +YOO ((0 0))))

(Syl k.@. ((Intones L-L'l.))

(Phoneme k O O ((0 0)))

(Phoneme@ 0 0 ((0 0)))

(Phoneme# 0 0 ((0 0))))))))

(: S ((PauseLength 300)) (: C nil (: P nil

(Word oder nil

(Syl Q. o: . ((Intones L*+H))

(Phoneme Q O O ((0 0)))

(Phoneme +o: 0 0 ((0 0))))

(Syl d.6. ((Intones H-H'l.))

(Phoneme d O O ((0 0)))

(Phoneme 6 0 0 ((0 0)))

(Phoneme # 0 0 ((0 0))))))))))

Figure 4.2: The input to CHATR derived from a TDMT output

ご
J9]

＇し

Chapter 5

Text Input

5.1 Adding Information to the Sphrase Tree

Now, in the case of text input, we have even slight_ly less information than

we receive from the TDMT system. Luckily, there 1s a lexicon for German,

which contains part-of-speech. This means, we have to rely on punctuation

and part-of-speech to do our phrasing. We don't have any information about

sentence type as we did with the input from the TDMT system, except for

what is conveyed by punctuation ('.'vs'?'). Thus we cannot distinguish

between different uses of kommas anymore, so that we just have to assume,

that every komma means the end of an intonation phrase, which is not always

the case as e.g. in enumerations. Also, we have to slightly change our rules

for the grouping of words into intermediate phrases, because don't have any

information about topological fields. So we will put an intermediate phrase

boundary after every noun and adjective, which is not followed by a noun or

adjective. The rules on placement of pitch accent are actually pretty much

the same. We just adapted them to the categories that are distinguished by

the lexicon.
As I mentioned in chapter 3, text input gets transformed into a very flat

Sphrase tree (cf. figure 3.1). But as I also mentioned before, the Sphrase
stream structure is capable of holding a lot more information than the one
in figure 3.1 does. We will use this fact by adding information about phase
boundaries and accents to the Sphrase stream, which later get translated
into ToBI labels. The function text」nput.cin file hlp/hlp.c will now look
like this, so that phrasing and placement of pitch accents will be predicted by
our rules, if the variable'texLprosody _strategy'is set to "POS", otherwise
text input will be treated as before.

void text_input(Utterance utt)

｛

f* A text input mode, basically to fill in the gap betueen
f* TTS and HLP

／

／

＊

＊

26

｝

I* simply converts the input to an HLP tree and continues in *I

I* the same way
＊／

List input, prosody_strategy;

I* P_Message("*** hlp_input.c/text_input ***"); *I
if (stringp(UTTERANCE(utt)) == FALSE)

｛

｝

P _Error ("Utterance contents not a string in Text utterance type 11) ;

list_error(On_Error_Tag);

input= text_to_hlp(STRVAL(UTTERANCE(utt)));

utt_set_stream("Sphrase",hlp_build_sphrase(input,utt),utt);

f******NEW*NEW*NEW*NEW*NEW*NEW*NEW*NEW*NEW*NEW*NEW*NEW********f

prosody _strategy = list_str_eval ("text_prosody _strategy" ,NULL);

if(list_sequal("PDS" ,prosody_strategy))

g_predict_phracc (utt) ;

f******WEN*WEN*WEN*WEN*WEN*WEN*WEN*WEN*WEN*WEN*WEN*WEN*******f

get_and_apply_options (utt); I* just above; tony *f

list_free_tree(input);

After the function g_predict_phracc enriched the Sphrase tree with addi-

tional information, it will look like the one in figure 5.1. We again want to

think of the features'(PhraseLevel :P)'as the end of an intermediate phrase

and of'(PhraseLevel :C)'as the end of an intonation phrase. I used the

attributes'PAccent', ℃ Accent'and'Accent'to distinguish between the last

pitch accents in an intonation phrase, the last pitch accent in an intermediate

phrase and all other pitch accents. As we saw earlier the intones assigned to

them may cliff er.

This structure now takes the same course an Sphrase tree built from

HLP input would. (The stages an HLP input will go through are very

nicely decribed in [5], Tony Hebert's report.) It first passes through the

hlp-1nodule, where the information contained in the Sphrase tree is reorgan-

ised and further processed. If the input was a phrase structure tree e.g. the

user might choose to do prosody prediction on the basis of the syntactic struc-

ture, which would result in an Sphrase tree very similar to ours from figure

27

(((CAT D))

(((CATS) (IFT Statement))
(((LEX als)))

(((LEX der)))

(((PAccent +) (LEX Frosch)))

(((PhraseLevel : P) (LEX ueber)))

(((LEX die)))

(((CAccent +) (LEX Wiese)))

(((PUNG ,) (LEX sprang)))

(((PhraseLevel : C) (LEX訂urde)))

(((LEX er)))

(((LEX vom)))

(((Accent+) (LEX Storch)))

(((PUNG .) (LEX gefressen)))
(((CATS) (IFT Question))

(((LEX ist)))

(((LEX das)))

(((LEX nicht)))

(((PAccent +) (PUNG?) (LEX traurig)))))

Figure 5.1: The Enriched Sphrase Tree

5.1. That means of course that we want to skip some of the processing in the

hlp_rnodule, because we already have that information. Setting the variables

"HLP _phrase_strategy" and "HLP _prosodic_strategy" to "None" does it.

How do we now get from phrase boundaries and accents to the appropriate

intones? We have to define a set of rules and assign it to a variable called

"HLP主atterns",which are then used by the function hlp-1電ealise_accents,the

last function in the hlpJnodule, to translate boundary and accent features

into ToBI labels. In our case, they might look like the ones in figure 5.2.

Intones will now be assigned to words like this:

als der Frosch ueber die Wiese sprang# wurde er vom Storch

H* L- L+H* H-L'l. H+L*

gefressen # ist das nicht traurig

L-L'l. L*+H H-H'l.

28

(set HLP _Patterns
'((Statement (START)

(Accent (+ (H+L*)))

(PAccent (+ (H*)))

(CAccent (+ (L+H*)))

(PPHRASE (L-))

(CPHRASE (H-1%))
(TAIL (L-1%)))

(Question (START)
(Accent (+ (1*+H)))

(PAccent (+ (H*)))

(CAccent (+ (L+H*)))

(PPHRASE (L-))
(CPHRASE (H-1%))
(TAIL (H-H%)))))

Figure 5.2: An Example for HLP Patterns

5.2 g_predict_phracc -Predicting Prosody from

Text Input

Here is the function that predicts the accents and phrase boundaries and

adds them to the Sphrase tree.

It runs over the word stream and puts a C boundary, whenever it en-

counters any punctuation. The S boundaries are already added by CHATR

(cf. 3 .1). For every vvord, the part-of-speech is looked up in the lexicon. A

phrase boundary is added after every noun or adjective, which is not followed

by another noun or adjective. For the placement of accents, we used, similar

as before, a method of assigning to them a certain priority. If no noun or
adjective is found, the word with the highest priority gets accented.

static void g_predict_phracc(Utterance utt)

｛

Stream r,;,v;

List punct, entry, cat;

int pbound=O, cbound=O;

inti, acc_pos=O, acc_grade=O, last_pbound=O, last_cbound=O, r,;ordx;

char *r,;ord, *acc_type="PAccent";

I* go over all訳ordsin the召ordstream *I
for(w=utt_stream("Word",utt), 団ordx=1;w!=SNIL;w=SC_next(w),wordx++){

word= SC(w,Word)->text; I* get word *I

29

entry= lex_lookup(可ord,NIL); f* lookup word in lexicon *f
cat= list_assoc_str("CAT",list_last(entry)); I* get POS *f

if (cbound)

f* put C boundary if specified *f
｛

SC(w,Word)->features =

cons(make_fpair_from_str(11PhraseLevel11,11:C11),SC(切，Word)->features);

cbound = O;

pbound = O;

｝

if (! list_sequal (11N11, car (cdr (cat))) &:&:

!list_sequal(11A11,car(cdr(cat))) &:&:

pbound)

I* put P boundary if specified and word is no content word *I
I* put accent on previous訳ord-that is the one that * /
I* triggered the P boundary *I
｛

SC(見 Word)->features=

cons (make_fpair _from_str(11PhraseLevel 11, 11: P11), SC (w, Word)->features);

SC(SC_previous(w),Word)->features =

cons(make_fpair_from_str(acc_type,11+11),

SC(SC_previous(刃），Word)->features);

pbound = O;

｝

if((list_sequal("N",car(cdr(cat))) 11

list_sequal("A" ,car(cdr(cat)))) &&

SC_next(y)==SNIL)

I* if Yord is a content Yord and also last口ordin stream, *I
I* put an accent *I

｛

SC(見 Word)->features=

cons(make_fpair_from_str(acc_type,11+11),SC(Y,Word)->features);

pbound = 1;

acc_grade = 1;

acc_pos = Yordx;

last_pbound =訳ordx;

｝

else if(list_sequal("N",car(cdr(cat))) 11

list_sequal("A",car(cdr(cat))))

I* if Yord is a content Yord, it possibly needs a pitch accent *I
I* and introduces a boundary -store that info *I

f
,

:30

｛

｝

pbound = 1;

acc_grade = 1;

acc_pos =訳ordx;

last_pbound=訳ordx;

I* for other PDS, grade is higher than吐 atyou have so far *I
I* the訳ordmight become pitch accent -store info *I
else if(list_sequal("ADV",car(cdr(cat))) && acc_grade>=3)

｛

｝

acc_grade = 3;

acc_pos = wordx;

else if(list_sequal("NUM",car(cdr(cat))) && acc_grade>=5)

｛

acc_grade = 5;

acc_pos =曰ordx;

｝

else if(list_sequal("PREP",car(cdr(cat))) && acc_grade>=7)

｛

｝

acc_grade = 7;

acc_pos = wordx;

else if(list_sequal("V",car(cdr(cat))) && acc_grade>=9)

｛

｝

acc_grade = 9;

acc_pos = wordx;

／＊口ords.J"ith a punctuation feature are special-> C boundary *f
punct = list_assoc_str("PUNC",SC(エWord)->features);

if(punct != NIL)

｛

cbound = 1;

I* accent type is dirfferent, depending on T.Jhether it is the *I
／ * last in a sentence or the last in a clause *I
if(list_sequal(" ," ,car(cdr(punct))) 11

list_sequal(":",car(cdr(punct))))

acc_type = "CAccent";

else

acc_type = "Accent";

I* adjust last boundary and accent *I
I* have to run over stream again *I

;31

if(last_cbound<last_pbound臨 last_pboundくwordx)

f* found noun or adjective刃ithinclause *f
I* just change accent type and remove last P boundary *I
｛

｝

for(v=utt_stream(11Word11,utt),i=1;i<=切ordx;v=SC_next(v),i++)

｛

if(i==acc_pos)

｛

｝

SC(v,Word)->features =

list_remove(make_fpair_from_str(11PAccent11, 11+11),

SC(v,Word)->features);

SC(v,Word)→ features =

cons(make_fpair_from_str(acc_type,11+11),

SC(v,Word)→ features);

if(i==last_pbound+1)

｛

｝

｝

SC(v,Word)->features =

list_remove(make_fpair_from_str(11PhraseLevel11,11:P11),

SC(v,Word)->features);

else if(last_pbound<=last_cbound)

f* found no noun or adjective万ithinclause *f
if(acc_grade!=O)

f* put pitch accent on word specified in acc_pos *f
｛

for(v=utt_stream(11Word11,utt),i=1;i<=wordx;v=SC_next(v),i++)

｛

if(i==acc_pos)

SC(v,Word)->features =

cons(make_fpair_from_str(acc_type,11+11),

SC(v,Word)→ features);
｝

｝

else

f* if nothing is specified, just put pitch accent on last word *f
SC(w,Word)→ features = cons (make_fpair _from_str (acc_ type, 11+11),

SC(w,Word)->features);

I* reset counters etc. *I
acc_type = "PAccent";

acc_grade = O;

last_cbound=切ordx;

32

｝

｝ ｝

5.3 Along the Way Bug Fixes for CHATR

While implementing our prediction rules for text input, I came across a

couple of problems which could only be solved by making minor changes to

CHATR's source code. I will explain these changes in this section.

5.3.1 text.c: text_sentence__:_head

As you might have noticed CHATR translates a'?'in the end of a sen-

tence into the feature'(IFT Question)'as opposed to'(IFT Statement)',

which is the default. The value of the IFT attributes are later used by

the HLP _Patterns to select the appropriate ToBI labels. This very rough

approximation of sentence type using punctuation is done in the function

texLsentence上eadin file text/tetx.c, if you replace

if (list_sequal("?",punc))

ift = "Question";

by

if (list_sequal("?",car(cdr(punc))))

ift = "Question";

The value of the variable punc will be a list, the first element of which is

"PUNC" and the second element of which is the actual punctuation. So you

really want to compare only the second element to "?" and not the whole

list.

5.3.2 lexicon.c: lex_lookup

In order to make text input as natural as possible, the function, which does
the lexicon lookup has to be able to deal with words that appear capitalized in

the input text for some reason (like standing at the beginning of a phrase),

but are not listed in the lexicon as capitalized. So far, this problem has

been avoided by doing only lowercase lexicon lookup. For German, useful

information about part-of-speech is lost that way1. So, what we want to do,

is to search for the word in the lexicon and then, only if we cannot find it

that way, try to find the lowercased version. That adds a couple of lines to

the function lex」ookupin the file lex/lexicon.c.

1Since all nouns are capitalized in German, there are cases, in which verbs e.g can be
distinguished from nouns by capitalization.

;33

List lex_lookup(char *text,List features)

｛

I* looks up the word in the lexicon *I

/* at present only deal with first entry in lexicon for given word *I

I* Returns a copy of the entry *I

List entry;

char *ltext;

f*******DLD*DLD*DLD*DLD*DLD*DLD*DLD*DLD*DLD*DLD*DLD*DLD*DLD**********f

I* ltext = s_to_lo刃er(xstrdup (text)); *I

f*******1DD*LD0*1DD*LDD*LDD*LDD*LDD*LDD*1D0*1DD*1DD*LDD*1DD**********f

if ((entry= addenda_lookup(text,features,current_lex->addenda)) != NIL)

｛

if (current_lex->phone_set != grammar.int_ph)

entry= lex_map_phonemes(entry);

｝

else if ((current_lex->lfd != NULL) &&

((entry= find_matching_entry(text,features)) != NIL))

｛

if (current_lex->phone_set != grammar.int_ph)

entry= lex_map_phonemes(entry);

｝

else {

f*******NEW*NEW*NEW*NEW*NEW*NEW*NEW*NEW*NEW*NEW*NEW*NEW*NEW*NEW*******f

ltext = s_to_loTiler(xstrdup(text));

if ((entry= addenda_lookup(ltext,features,current_lex->addenda)) != NIL)

｛

if (current_lex->phone_set != grammar.int_ph)

entry= lex_map_phonemes(entry);

｝

else if ((current_lex->lfd ! = NULL) &&

((entry= find_matching_entry(ltext,features)) != NIL))

｛

if (current_lex->phone_set != grammar.int_ph)

entry= lex_map_phonemes(entry);

｝

＼

f*******WEN*WEN*WEN*WEN*WEN*WEN*WEN*WEN*WEN*WEN*WEN*WEN*WEN*WEN*******f

34

｝

else if (streq(current_lex->onfail,11JLTS11))

entry= mlts_lookup(text,features,11JLTS11);

else if (streq (current_lex->onfail, 11GLTS11))

entry= mlts_lookup(text,features,11GLTS11);

else if (streq (current_lex->onfail, 11KLTS11))

entry= mlts_lookup(text,features,11KLTS11);

else if (streq(current_lex->onfail,11CLTS11))

entry= mlts_lookup(text,features,11CLTS11);

else if (streq(current_lex->onfail,11LTS11))

entry= lts_lookup(ltext,features);

else if (streq(current_lex->onfail,11ERRDR11))

｛

｝

P_Error("Word'/.snot in lexicon",text);

xfree(ltext);

list_error(Dn_Error_Tag);

return NIL;

xfree (ltext) ;

｝

return entry;

5.3.3 hlp.c: hlp_apply _actions

The function hlp_apply _actions in file hlp /hlp.c gets called during the exe-

cution of the function hlp_realise_accents and does the actual annotation of

words with ToBI labels according to the HLP patterns. As far as phrasal

boundaries are concerned, it could only deal with the attribute'PHRASE'

until now, which would add boundary tones to the words before C boundaries.
Since we wanted to distinguish between intonation phrases and intermediate

phrases by using C boundaries as intonation phrase boundaries and P bound-

aries as intermediate phrase boundaries, I had to extend the function in such

a way that it could handle the attributes'PPHRASE'and℃ PHRASE'. In
addition to

if ((act=getfvalue("PHRASE",actions)) != NIL)

｛

lword = hlp_last_word(item);

for (word= hlp_firstーword(item);word != 1切ord; 切ord= SC_next(切ord))

｛

｝

｝

if (SC(訳ord,Word)->right_boundary> P_BOUND)

SC(word,Word)->intones =

list_append(list_copy_tree(act) ,SC(曰ord,Word)->intones);

35

we now have

if ((act=getfvalue("CPHRASE",actions)) != NIL)

｛

lword = hlp_last_word(item);
for (切ord= hlp_first_word(item); ロord!= 1切ord;word = SC_next (研ord))

｛

if (SC(word,Word)->right_boundary > P_BOUND)

SC(word,Word)->、intones=
list_append(list_copy_tree(act),SC(切ord,Word)->intones);

｝

｝

if ((act=getfvalue(11PPHRASE11,actions)) != NIL)

｛

lword = hlp_last一切ord(item);
for (word= hlp_first_word(item); word != lword; word= SC_next(word))

｛

if (SC(word,Word)->right_boundary == P_BOUND)
SC(word,Word)->intones = ・

list_ append (list_ copy_ tree (act) , SC (切ord,Word)->intones);

｝

｝

5.3.4 intonation.c: add_intonation

As I explained above, the function hlp__realise_accents assigns ToBI labels to

words. For the prediction of FO values the int_target工 oduleneeds an as-

signment from ToBI labels to syllables, though. This basically means finding

the syllable which carries lexical stress within the relevant word for the pitch

accent and the last syllable within that word for the boundary tones. Unfor-

tunately, the function add」ntonationin file intonation/intonation.c didn't

work that way. It just took the assigned ToBI labels and put them on each

syllable in that word.

Here comes my new version of add」ntonation.I am assuming, that no

word can have more than two ToBI labels, i.e. one pich accent and one

boundary tone. I am also hoping, that no word has more than one syllable

marked with lexical stress. I am aware of the fact that a word might have

more than one syllable carrying lexical stress, but since I could not decide,

which one is the one that gets the pitch accent anyway, I will just take the

first lexically stressed syllable and stop searching.

void add_intonation(Utterance utt)

｛

I* build the first level of intonation stream from the word input *I

I* lots of modifications made by Tony *I

＼

36

I* more modifications made by KS *I

int sylx,x;

Stream previous= SNIL;

Stream start = SNIL;

List intones,i,pitch_acc,bound_tone;

Stream newcell;

Stream words,w,s,intone,syl;

／＊巳Message ("*** add_intonation ***"); *I

sc_delete_stream("Intone",utt);

for(w=WORDSTREAM(utt); 閃 !=SNIL;w=SC_next(口））

｛

pitch_acc=NIL; bound_tone=NIL;

intones= SC(w,Word)->intones;

sylx = list_length(car(cdr(SC(w,Word)->lexentry))); I*# of syls *I

/ *maximal 2 Intones on切ord-one pitch accent and one boundary tone*/

if (list_length(intones) >2)

｛

I* P_Message("too many intones on匂ord'l.s",SC(口，Word)->text); *I

｝

I* check, what kind of ToBI labels are specified for that word*/

for(i=intones;i!=NIL;i=cdr(i))

｛

if(strstr(STRVAL(car(car(i))),"*"))

pitch_acc = car(i);

else

bound_tone = car(i);

｝

/*go over syllables matching the word*/

for(s=Rsyl1(w),x=1;s!=SNIL;s=SC_next(s),x++)

｛

I* if syllable carries lexical stress and there is a pitch *I

I* accent specified for that訳ord, link the appropriate *I

I* intones to that syllable *I

if(SC(s,Syl)->lex_stress==1 && pitch_acc!=NIL)

｛

newcell = make_intonation_cell(pitch_acc);

SC_previous(newcell) = previous;

if (start==SNIL)

start= newcell;

37

if(previous!=SNIL)

｛

SC_next(previous) = ne訳cell;

｝

link_stre紐 1_cells(w ,newcell);

link_stre紐 1_cellsCs ,ne刃cell);

previous= newcell;

pitch_acc = NIL;

｝

I* if syllable is last one and boundary tones are *I
I* specified, link them *I

if(x==sylx && bound_tone!=NIL)

｛

neT,l'cell = make_intonation_cell(bound_tone);

SC_previous(newcell) = previous;

if (start==SNIL)

start= ne刃cell;

if(previous!=SNIL)

｛

SC_next(previous) = ne訳cell;

｝

link_stream_cells(Y,neycell);

link_stream_cells(s,ne百cell);

previous= neYcell;

｝

｝

｝

utt_set_stream("Intone", start, utt);

｝

i
iー'.

38

Chapter 6

FO Prediction

CHATR offers two methods for predicting the actual FO values. Since we were

using ToBI labels, we had a choice between a linear regression technique and

an implementation of Anderson, Pierrehumbert and Liebermann's technique,

which is described in [l]. The linear regression model turned out be trained

on data from a news corpus, so that it was almost impossible to predict

questions. Therefore we started to use the technique by Anderson et. al.

This approach calculates target values for FO by just adding or subtrack-

ting a bit from the speakers mean according to the ToBI label or the combi-

nation of ToBI labels on the relevant syllable. Later a curve is interpolated

from these target points and decline is added.

To model the meaning of the ToBI labels (especially the complex ones)

well, you need to place several targets on one syllable. E.g. to get a rise on

the syllable labeled with H-H%. Also, there might be cases, where one ToBI

label expands its in恥 enceover more than one syllable. The label L*+H for

example should trigger the placement of a high target value on the following

syllable. This makes the right timing of the targets a bit complicated. And in

fact, in the beginning, CHATR shuffeld the intones pretty well before placing

them. I did some adjustments1 to the timing, so that now the only time a

problem occurs is, when a label like L *+H is placed on the last syllable of

a phrase. In that case, the last target gets placed after the boundary tone.

With our rules that happens whenever the last syllable in a question carries
a pitch accent. This problem could probably be fixed by compressing the

span of the label a bit and then shifting it some towards th ebeginning of the

utterance.

1 changes only affected the function tobしmake_targets_aplin file intonation/ToBI.c

39

Chapter 7

Conclusion

Our approach to prosody prediction is based on very rough heuristics. There

are far more elaborate methodes, which would be very interesting to imple-

ment and compare. Unfortunately, we didn't have time to run a lot of test,

so everything we can say about the quality of our prediction is quite impres-

sionistic. For simple "everyday" utterances like they are e.g. produced by the

TDMT system, we were able to produce acceptable results. But when the

sentences became more complex, the intonation started to sound strange.

Especially if the utterance required some special focusing or envolved any

kind of emotion. Of course, we are not able to predict these things form just

part-of-speech and a little bit of syntactic information. One really needs a

lot of semantic and pragmatic information for that.

One point, we had to struggle a lot with, was the unit selection. We had to

put the weight on the unit cost really high (ratio 5 to 1 to the concatenation

cost), in order for the predicted FO values to have an effect on the unit

selection at all. This of course, sometimes led to a loss of smoothness in

the concatenation. But even with this much weigth on the unit cost, the FO

value of the selected units was sometimes exactly the opposite to what we

predicted. Probably a still bigger database, preferably with a greater variety

of prosodic patterns than contained in the current database, could solve this
problem.

We made an interesting observation, when playing around with the be-

ginning of a fairy tale. It sounded quite bad, although the sentences were

not very complicated. After a while we noticed, that the quality act叫 lywas

not that much di仔erentfrom the other examples we had, but our acceptance

for these sentences seemed to be a lot stricter. So apparently, the standards,

by which we judge speech, changes depending on the type of the utterance

we are listening to and maybe also on the person who is speaking. ，＼

40

(>

し）

Appendix A

Some Useful Hints on Variable・
Settings

For the German speakers you should set the parameter'InLMethod'to

'ToBI'. There you have two possibilities: one is to use the linear regres-

sion model (which was trained on English(!) news and therefore has a very

limited pitch range) and the other one is the method by Anderson et. al.

This is set via the'ToBLparams'. The ToBI parameter'target...II1ethod'has

to be set to either'apl'or'lr'.

If you choose'apl', there are a lot of additional ToBI parameters, where

the pitch range of the speaker can be tuned. They are described in the

CHATR manual.

If you use text input (or HLP input) and want the prosody to be predicted

in the hlp module and later realised according to your HLP patterns, you

have to prevent the intone」nodulefrom going over the intone stream again

and predicting different things. The intone module is skipped if the variable

'HLP -1、ealise__strategy'isset to'Simple」=fades'.
If you want to use our prosody prediction for text input, you have to

set the variable'texLprosocly_strategy'to'POS'. And if you want our pre-

diction to be the only one done on your text, you have to set the variables

'HLP _prosodicstrategy'and'HLP _phrase__strategy'to'None'.

41

Bibliography

[1] M.D. Anderson, J.B. Pierrehumbert, and M.Y. Liberman. Synthesis by

rule of english intonation patterns. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, New
York, 1984. IEEE.

[2] Caren Brinckmann. German in eight weeks -a crash course for chatr.
Technical report, ATR, Kyoto, Japan, 1997.

[3] Nick Campbell. A step in the direction of synthesising natural sounding
speech.

[4] Nick Campbell. Chatr: A high-definition speech re-sequencing system. In

Proceedings of the 3rd ASA/ ASJ Joint !Vleeting, pages 1223-1228, Hawaii,
1996.

[5] Tony Hebert. Prosody within CHATR. Technical report, ATR, Kyoto,
Japan, 1997.

[6] A.V. Isacenko and H.J. Schadlich. Untersuchungen iiber die deutsche
Satzintonation. Akaclemie Verlag, Berlin, 1964.

[7] Matthias Reyelt et. al. Prosodische Etikettierung des Deutschen mit
ToBI. Verbmobil-Report 154, DfKI, Saarbri.icken, Germany, 1996.

[8] E. Stock and C. Zacharias. Deutsche Satzintonation. VEB Verlag Enzyk-
lopadie, Leipzig, 1982.

[9] Martyn Weeks. CHATR -a generic speech sy叫hesissy.stem. ATR-ITL,
、 http://www.itl. 匂tr.co.jp/mweeks/.

42

	001
	002
	003

