
TR-IT-0236

Internal Use Only (非公開）

002

German in Eight Weeks -A Crash
Course for CHATR

Caren Brinckmann

September 1997

With all its different modules, CHATR is an extremely big system. If
the output doesn't sound quite right, there are always several ways

of improvement. As an example of what can be achieved within

eight weeks, this technical report describes how to improve the Ger-

man voice of CHATR, focussing on the database, the lexicon and the

prosody prediction.

◎ ATR Interpreting Telecommunications
Research Laboratories

◎ ATR音声翻訳通信研究所

Contents

1

2

Introduction

2.2

Database

Diagnosing the Output ．．．．．．．．．．．．．

2.1.l Symptoms

2.1.2 Root Causes ．．．．

Treatment: Building a new Database

Gathering Speech Material

Fixing the Labels ．．

Training

2.1

2.2.l

2.2.2

2.2.3

3

Lexicon

3.1

3.2

3 3

Source ... ．． ．．

Problems & Solutions ．． ．． ..

3.2.1 Phonemic Transcription

3.2.2 Orthography ．．

3.2.3 Part-of-speech Information

3.2.4 Double Entries

One Speaker, Many Languages

4
 4.1

4.2

Prosody Prediction

Theories

4.1.1 Focus-based Approaches

4.1.2 Syntax-based Approaches ．． ..

4.1.3 Syllabification and Lexical Stress

Possibilities . . . ．．．．． ..

A vailable Information . . ．．．

4.3

4.2.1

4.2.2 TDMT Input

4.2.3 Text Input

Evaluation .

3

5

5

5

7

8

8

9

9

11

11

12

12

12

12

12

13

14

15

15

15

16

17

17

17

20

21

ー

2

CONTENTS

5 Future Work 23

5.1 Database ... ．． 23

5.2 Lexicon ．．．． ．． 23

5.3 Prosody Prediction 23

6 Conclusion 25

A Building a German Database 28

A.1 Speech Files 28

A.2 Label Files 29
A.3 Training 29

B Building a German Lexicon 31

B.l Available Awk Scripts 31

B.2 Lexicon Recipe 32

B.3 Tell CHATR about it 32

B.4 Mapping between "beep" and "sampaG" 34

C AWK Scripts 36

C.l Changing Labels 36
C.1.1 kiel2xlb-11ew.awk 36
C.1.2 postkiel.awk 38

C.2 Lexicon 40

C.2.1 celex2g_dic_十pos.awk... 40

C.2.2 sampa2sampaG.awk 45

3

祖
ゞへ

Chapter 1

Introduction

In the summer of 1997, I stayed at ATR Interpreting Telecommunications

Research Laboratories for eight weeks. This internship was the main part of

the 1997 REES Programme (Research Experience for European Students),
which was organized (and sponsored) by JISTEC on the Japanese side and

the "Studienstiftung des deutschen Volkes" on the German side.

Eight weeks is a tremendously short time to do research, and it's even

shorter when you have to get know the ropes within such a big system as
CHATR. So, together with Kristina Striegnitz, with whom I collaborated
the whole time, I could only take first steps to make the German voice(s) of

CHATR more intelligible and natural. Implementation of different intonation

models and thorough comparative testing (with naive subjects) is definitely
necessary, but lay beyond what could be achieved during eight weeks.

Therefore, this technical report is aimed at future researchers to help them

work with CHATR (not necessarily only the German part), so that they
hopefully can continue our work and further improve CHATR's (German)

prosody, which is still quite rudimentary.

・while still in Germany, I received my research plan for my stay at ITL,

which was entitled "German Prosody Prediction for Speech Synthesis". As

I am involved in the Speech Synthesis project at the Institute of Phonet-
ics, University of the Saarland, where we are currently also working on the
prosody prediction and realization, I was very excited about the opportunity

to work in the same field, but with a different speech synthesis system.

Of course, I expected that I would need some time to get into CHATR,

but when I played around with CHATR during my first week at ITL, I

noticed that half of the German utterances were unintelligible. Of course,

I could have proceeded as planned, working on the prosody only. But who

will notice a nice FO contour, when you cannot understand what is being
said? That's why I decided to improve the German voice of CHATR on the

segmental level first, in order to make it speak intelligible German. After
that, I worked on the prosody prediction.

3

4

CHAPTER 1. INTRODUCTION

There are as many ways to improve CHATR as there are modules. For a

general introduction to CHATR as well as an overview of the system archi-

tecture, please refer to the manual [Weeks 97], especially the part concerning
th e processmg sequence.
In this report, I will describe in detail my work concerning

• the German database,

• the German lexicon, and

• the prosody prediction for German.

During the whole time of my stay at ITL, I worked closely together with
Kristina Striegnitz. Since Kristina was the one who struggled with the act叫

CHATR code, while I worked with the CHATR Lisp Interface only, please

refer to [Striegnitz 97] for implementation details concerning the C code of
CHATR.
As I had mainly worked with PCs before coming to ATR, it was during
this summer that I wrote my first awk-script, and even this report is only

the second印町;xdocument (after the slides for my Final Talk) written by
myself. That's why I included many Unix commands in this report that

were necessary for my work with CHATR, just in case any future reader

has about the same knowledge about Unix machines and programs as I had

before. For those of you who think that this is kindergarten stuff: please

don't be annoyed, but kindly skip those paragraphs which are aimed at the
more computer-unminded readers.

Chapter 2

Database

To get a first impression of what the German voice of CHATR sounded like

when I arrived at ITL, please listen to the examples on

http://www.itl.atr.eo.jp/ ~xcaren/before_after.html.

Of some utterances the rhythm only is somewhat unnatural (but native

speakers can still understand what is being said), while other sentences are

completely unintelligible.

In this chapter I will describe

• my diagnosis of CHATR's German output, and

• my treatment concerning the database.

2.1 Diagnosing the Output

2.1.1 Symptoms

Unit Selection

・when you listen to what CHATR (version 0.92, speakerぷKO)makes out of
your command
(SayText "Mein juengster Sohn moechte Innenarchitekt werden."),
you might wonder why the word "Innenarchitekt" (interior designer) gets so
distorted. To have a quick look at which units CHATR chose from the
database to synthesize the utterance, you don't have to start the whole
(Inspect) environment. Simply type (Save Uni tLabels+ i -) and some-
thing like the following will appear on your screen:

("/dept2/曰ork16/pi/data/chatr_dbs/KKO/百av/KKD182.訂av"2053 37 1
(I 37 67) 6IC ・a:b6ICm9
）

5

6

CHAPTER 2. DATABASE

("/dept2/口ork16/pi/data/ cha tr _dbs/KKO/匹av/KK0118.wav" 6995 60 1

(n 60 81) ; ; InaU ; nu:6InaUks

）

("/dept2/切ork16/pi/data/chatr_dbs/KKO/wav/KK0153.刃av"5244 138 2
(6 84 38) ; ; d6n ; ve:d6na:x

(n 54 26) ; ; 6na : ; e : d6na : xm

）

("/dept2/work16/pi/data/chatr_dbs/KKO/wav/KK0177. 刃av"2146 105 1

(a6 105 59) ; ; ka6t ; fa: 6ka6tcn

）

("/dept2/切ork16/pi/data/chatr_dbs/KKO/四av/KK0107.切av"2554 86 1
(C 86 4 7) ; ; U6CU ; ndU6CUnt

）

("/dept2/w-ork16/pi/data/chatr_dbs/KKO/百av/KK0167.切av"2006 69 1
(i: 69 56) ; ; zュ：m ; nnz i : mi : 6b

）

("/dept2/w-ork16/pi/data/chatr_dbs/KKO/百av/KK0150.wav"1611 62 1
(t 62 22) ; ; i:ts ; tci:tse:n

）

("/dept2/w-ork16/pi/data/chatr_dbs/KKO/w-av/KK0012.w-av" 968 43 1
(E 43 37) ; ; tEs ; ge :tEsnI

）

("/dept2/w-ork16/pi/data/chatr_dbs/KKO/刃av/KK0187.wav"2364 79 1

(k 79 40) ; ; Ekf ; i:6vEkfa:r

）

("/dept2/w-ork16/pi/data/chatr_dbs/KKO/wav/KK0117.wav" 1301 45 1
(t 45 22) ; ; ktf ・rEktf□n
）

The column in the middle tells you the original segmental context of the

selected units. For example, unit "a6" has "k" as left and "t" as right context,

because it was realized in the word "Fahrkarten". vVhat we really need is an

"n" (or at least something alveolar) as left context and a "C" (or something

palatal) as right context. Because CHATR cannot find ideal units, you can

still hear the "k" in the "a6" -unit of this particular example.

You might also wonder why the schwa in "Innen-" is a "6" instead of a

regular schwa("@"). This is in fact a problem of the lexicon, which will be

addressed in Chapter 3.

Unit Labels: stressed vs. unstressed

CHATR's output of (SayText "die Biene") is also quite unintelligible.
Looking at the selected units, we get:

("/dept2/切ork16/pi/data/chatr_dbs/KKD/wav/KKD039.wav"548 130 1

2.1. DIAGNOSING THE OUTPUT 7

(d 130 58) ; ; ##da ; ##daNk

）

("/dept2/work16/pi/data/chatr_dbs/KKD/wav/KK0083.wav" 932 138 2
(i: 64 130) ;; di:b ; Isdi:bil
(b 74 76) ; ; i:bI ; sdi:bilI

）

("/dept2/work16/pi/data/chatr_dbs/KKO/切av/KK0127.wav"1863 137 2
(i: 107 135) ; ; ti :n ; siti :na:x
(n 30 34) ; ； 1:na: ; Iti:na:xh
）

(11 / dept2/work16/pi/ data/ chatr _dbs/KKO/切av/KK0061.wav"1663 62 1
(6 62 38) ; ; n6r ; Dan6ェ・@m
）

("/dept2/work16/pi/data/chatr_dbs/KKO/訂av/KK0162.wav"0 613 1
(## 613 600) ; ; ##f ; ##fa:r

）

Again, the context is not always right. But this time I want to focus on

the difference between the two "i:" units.

In German, as in many other languages, an unstressed realization of any
vowel is generally shortened and more centralized compared to the stressed

variant. On the phonemic level, both realizations would be transcribed the

same, of course. However, if two units have the same label, CHATR cannot

distinguish between them.

In this particular example, the "i:" for the German article "die" comes

from an actual realization of "die", so there's no problem. On the other hand,

the "i:" in "Biene" needs to be a long, stressed realization of that vowel. But

the selected unit comes from "Intercity", where the last vowel is unstressed

and therefore shortened and centralized.

2.1.2 Root Causes

Unit Selection

vVhy does CHATR eventually choose those "unfit" units? Looking at the

database, I found out that there were only about 9,000 units for speaker

KKO (as opposed to approximately 30,000 units for most of the japanese
speakers). As CHATR weighs continuity distance against unit distance, it

happens quite often with small databases, that there's no unit in the database

that fulfills both the segmental and the prosodic requirements that have been

predicted.

In theory, with an infinite database, the actual unit selection is no p~ob­
lem, because there will be enough units to choose from in any given situation.

In order to come close to this theoretical paradise, the database should be
as big as possible.

8

CHAPTER 2. DATABASE

Unit Labels

Theoretically, the unstressed and the stressed realizations of a certain vowel

should be distinguishable by their duration. Unfortunately, CHATR is not

very good at duration, yet. So in fact, you could attribute the problem of

the unit labels to the "bad" unit selection, too.

From a more practical point of view, the problem is caused by a too

phonemic labelling. Therefore, in order to be able to distinguish between
stressed and unstressed realizations of a vowel, the labels should be different.

2.2 Treatment: Building a new Database

2.2.1 Gathering Speech Material

The units for speaker KKO (Prof. Klaus Kohler) came from the "Kiel Corpus

of Read Speech Vol. I" (also known as PhonDat 1 and 2). Apart from the
actual speech files, the following information is available:

• orthographic representation of the text,

• canonical transcription,

• segmental labels, and

• canonical and variants lexica.

For further information, please refer to

http://www. phonetik. uni-muenchen.de/Bas /BasPD Ieng.html, and

http://www. phonetik. uni-muenchen.de/Bas /BasPD2eng.html.

Unfortunately, the same speaker is abbreviated as "k61" and "kko" for
PhonDat 1 and PhonDat 2 respectively. That's why for the KKO database

only PhonDat 2 material (approx. 17 min) was used. The improved database

(called kko) is based on PhonDat 1 and 2 (together approx. 45 min), which
gives CHATR three times more units to choose from.

In addition to the male speaker, a female speaker (called rtd) also read
the whole corpus. So we now have two German voices within CHATR.

For all the necessary commands to build a new database, please refer to

Appendix A, and the section "Making a Speech Synthesizer Database" of

the CHATR manual ([vVeeks 97]).

2.2. TREATMENT: BUILDING A NEW DATABASE

，

2.2.2 Fixing the Labels

The "Kiel Corpus of Read Speech" is already segmented and labelled, as

mentioned in section 2.2.l above. For the labelling conventions of the corpus,

please refer to

http://www.phonetik.uni-muenchen.de/Bas/BasFormatseng.html#S1.

Of course, we don't want to label all the speech data again, so we have to

take a close look at the already existing label files and convert them into a

format which is useful to CHATR.

Problems

1. "mixed" transcription:

• mostly phonemic transcription

• phonetic transcription of aspiration and glottalization

• punctuation labels

• transcription of elisions and replacements

2. phonemic transcription: As mentioned in section 2.1.1, using the same

label for stressed and unstressed (= shortened and centralized) realiza-
tions of the same vowel can cause some problems.

Solutions

1. (careful) substitution/ deletion of unnecessary labels

2. new phonemeset "sampaG", which consists of all standard SAMP A

labels for German plus extra labels for (canonically) stressed phonemes.

See Appendix C.l for the awk-scripts written for these tasks and their de-
tailed explanation.

In Figure 2.1 you can see an example of the original transcription com-

pared to the new sampaG transcription.

2. 2. 3 Training

By now we have

• sufficient speech material,

• corrected label files, and

• a new phonemeset (sampaG_def.ch).

10 CHAPTER 2. DATABASE

Figure 2.1: upper row: original transcription, lower row: sampaG

What you still have to specify, is

• the database description file,

• the database parameters file (with information about the phoneme-
set, clustering of phones in the database, parameter weights, lexicon,

intonation, duration parameters), and

• the training parameters file.

Please refer to Appendix A.3 and [vVeeks 97] for further instructions.

Finally, after having run the whole training process (which might actually

take a few days, because nothing ever runs smoothly), you get

• a full database index,

• unit descriptions for every phoneme (unit) in the database,

• pitch marks,

• acoustic parameter files,

and a lot more…

Specify the directory of the new database in your .chatrrc:

(def speaker 11 <dat abase_narne> 11 11 <dat abase_directory> 11)

After that, you should be able to call the new speaker within CHATR by

simply typing (speaker_ <database_narne>). Now enjoy the new voice (and
all its flaws)!

Chapter 3

Lexicon

Since CHATR has no module to do morphological decomposition so far, we
simply look up every word of the Input (input format (SayText 11 .•• 11)
or (Say (Syn th (Utterance Text 11 ... 11)))) in a lexicon, which therefore

has to contain not only lemmas but all possible wordforms. That lexicon has

to be in a specific CHATR format, of course (see Figure 3.1).

CompLexicon

sampaG

("Mordversuchen" (((m +06 t) (1)) ((f E6) (0)) ((z u:) (0)) ((x◎ n) (0)))
((CAT N)))

Figure 3.1: minimal CHATR lexicon (one entry)

3.1 Source

The only German lexicon that was electronically available at ITL, is the

German part of the "CELEX Lexical Database" [CELEX 95] (currently in
/DB/LTDB4/ celex_rel_2/ german/).

The CELEX databases used for the current version of the sampaG lexicon
of CHATR are:

• gpw.cd (German Phonology, Wordforms), and

• gsl.cd (German Syntax, Lemmas).

Example entries:

gpw.cd: 312069¥Mordversuchen ¥0¥25432¥'m□rt-fEr-zu-xcn ¥ ...

gsl.cd: 25432¥Mordversuch ¥12¥1 ¥1 ¥ ¥N¥N¥ ¥

11

12 CHAPTER 3. LEXICON

3.2 Problems & Solutions

In the following sections, I will describe some minor problems concerning the
lexicon and their solution. For a detailed description of how to actually build

a German CHATR lexicon, please refer to Appendix B.

3.2.1 Phonemic Transcription

Are x and C allophonic?

In the German CELEX database, the fricatives "x" and "C" (SAMPA tran-

scription) are treated as allophonic, which is probably true for the words in
the database. But since x and C are only allophones on a morphemic level
(famous example: "Kuchen" vs. "Kuhchen"), we certainly want to have two
different units in the CHATR database. That's why the original CELEX "x"
gets replaced by a "C", unless it follows a back vowel.

@r

Since CELEX transcribes the words phonemically, e.g. "Mutter" has "mUt◎ r"
as transcription. However, if "@r" is followed by a consonant or a syllable
boundary, it is realized as "6" in normal speech. That's why we replace it
according to this rule.

3 • 2.2 Orthography

The previous German CHATR lexicon (which was also based on CELEX),
only had entries starting with lower-case letters. But since capitalization
can also distinguish between entries with different part-of-speech, we want
to keep that extra information in the lexicon.

3 • 2.3 Part of h I
•

- -speec nformation

The prosody prediction rules (see Chapter 4 and [Striegnitz 97]) for simple
Text Input need some basic information about the part-of-speech of each

word. Since this is not available from gpw. cd but from gsl. cd (via the
Lemmaicl), we have to combine both sources.

3.2.4 Double Entries

This is actually a problem not yet solved. Entries that are exactly the same
can obviously be deleted from the lexicon very easily. But what is to be clone
with entries that differ only in their

!

I

3.3. ONE SPEAKER, MANY LANGUAGES

• pronunciation, or

• part-or-speech

(or possibly both)?

13

Since CHATR only looks up word by word in the dictionary, it takes the
item that comes first in the lexicon and doesn't search any further. As a

first step, only the (heuristically) most probable entry should remain in the

lexicon, but this hasn't been implemented yet.

3.3 One Speaker, Many Languages

I order to have several different speakers for one particular language, you

simply (?!) have to. make new databases. Since CHATR is a multi-lingual
system, the other way round is also possible: Let one speaker speak several

different languages!
For example, there's already an English lexicon available within CHATR,

so why not use it for your new speaker?

If you try to use the Englisch "beep" lexicon, just by typing:

(setup_beep_lex)

you won't be very successful, because CHATR will complain if you try to

make it speak English with:

(SayText 11My English is very good.11)

What is missing, is the phoneme mapping between "beep" and "sampaG".

If you

(load ,~xcaren/CHATR/all_map.ch)

then the (German) speaker will be able to speak English.
In Appendix B.4 you can see, that the English diphtong "ow" (which
doesn't exist in German) will be mapped to the German monophthong "o:"
for example. By using the German phonemeset, the speaker will have a

German accent in any foreign language, of course.

Chapter

Prosody

4

Prediction

After improving the database and the lexicon, the two new German CHATR

speakers kko and rtd were now almost perfect on the segmental level. How-

ever, the intonation was still a bit strange. Act叫 ly,a japanese (JToBI)

Linear Regression model (lib/data/mht_lrfO. ch) was used for the German

speakers, too.

Obviously, Japanese and German intonation don't have very much in

common. Therefore, the next thing we tried, was a LR model for English

(lib/data/f2b_lrf0. ch). Unfortunately, that model was trained on a cor-

pus of read news, where rising intonation was very rare. That's why it was

almost impossible to get a natural intonation for questions, even if a high

boundary tone was predicted.

Finally we resolved not to use a trained LR model, but the so-called APL

model based on [Anderson 84]. This model realizes previously predicted ToBI

tones as FO target points, taking into account speaker range and parameters.

Then it converts the set of target points to a sampled FO at desired rate by

smoothing the target points.

What we had to do now, is predict those ToBI tones and prosodic phrases

＼

＇
し

/

/

¥

9
 ..

• directly from the Text Input, and/ or

• from the output of the TDMT translation system.

In the following, I will give a very short overview of the theories that can

be used for the prediction of prosodic phrases and intones (for a description

of the German ToBI labels, see [Reyelt 96]). The syntax based approach

of [Isacenko 64] will be described in more detail, as well as the phrasing

and intonation rules for the two different input formats. For the actual

implementation, please refer to [Striegnitz 97].

14

4.1. THEORIES 15

4.1 Theories

4.1.1 Focus-based Approaches

If a human being doesn't know the meaning of the text that he or she has
to read aloud, often the prosodic realization is the first thing that suffers.

The wrong words become accented, or the global intonation contour is not

correct. So, how should a Text-to-Speech system, that doesn't know anything

about the semantic content of a particular sentence, produce an output with

a suitable intonation?
One possibility is, that the user gives the system information about the

topic-focus structure of the utterance in question. For example, [Fery 92] and

[Uhmann 91] both analyze the topic-focus-structure of German sentences and
the resulting sequence of ToBI tones and breaks.

4.1.2 Syntax-based Approaches

In [Bierwisch 66] information about the syntactic tree structure of a given
sentence is used to predict accents and intonation phrases. [Stock 82] use

part-of-speech information to form so-called "accent groups" within a sen-

tence, and predict the placement of accents within those groups.

[Isaもenko64] carried out experiments concerning the relation between

the pitch accents (called "tone switches") of an utterance and the perceived

sentence type. If you "translate" their tone switches to ToBI labels, the
following rules can be derived:

rules concerning nuclear accent

1. L *+ H as last pitch accent and a high boundary tone→ question

2. L+ H* as last pitch accent and a high boundary tone (= continuation
rise)→ "un恥ished"statement

3. L* or H+L* as last pitch accent and a low boundary tone→ complete

statement

4. H* as last pitch accent and a low boundary tone→ "contrastive1'state-

ment (focus on the nuclear accented word)

It doesn't matter which pitch accents are used before the last one.

rules concernmg boundary tones

1. two words are seperated by two different tones (namely the boundary

tones H-and L-or 1% called "interrupter")→ the two words belong
to different phrases

16 CHAPTER 4. PROSODY PREDICTION

2. no boundary tones between two words→ words belong to the same

phrase

A sentence consists of one or more phrases. A phrase contains at least

one pitch accent and is separated from other phrases by boundary tones.

rules concerning focus

1. the word with the nuclear accent (last pitch accent) is the one that is

focussed

2. "main stress" = last pitch accent of the whole sentence,

"secondary stress" = last pitch accent of a phrase or (if the sentence
consists of only one phrase) the penultimate pitch accent of the sentence

3. if a word carries two tones (namely L+H* and a low tone immediately

after the accented syllable), it is contrastively focussed

4. the neutral position for "main stress" is the right-most accentable word,

if shifted to the left, the last pitch accented word gets contrastive focus

rules concerning the intonation of lists

1. each list item can either have the intones (L *+ H H-) or (L+ H* H-)

(but the same for each item of one particular list)

2. emotional connotations: (H* L-) on the list items

3. in natural speech it is possible(?? usual!!) to gradually lower the pitch

of each listed item

4.1.3 Syllabification and Lexical Stress

Instead of looking up every word in a lexicon, it might be desirable to predict

the pronunciation with

• letter-to-sound rules,

• syllabification rules, and

• rules concerning lexical stress.

[Fery 95] applies Optimality Theory to German stress patterns and can

thus predict syllable boundaries and lexical stress. It would be at least in-

teresting to implement her theoretic framework and apply it to those words,

that are not in the lexicon. But then we would need reliable letter-to-sound

rules, as well.

4.2. POSSIBILITIES 17

4.2 Possibilities

4.2.1 Available Information

If CHATR has to synthesize an utterance from Text Input, following infor-

mation is available from the lexicon:

• phonemic transcription,

● syllable boundaries,

• lexical stress, and

• part-of-speech.

In addition, we know about the punctuation within each sentence.

If the input is in the TDMT format (output of the translation system),
then we have extra information about

• topological fields, and

• sentence type.

Therefore, we don't have to predict syllable boundaries and lexical stress,

but get the information via lexicon look-up instead.

So far, we don't have any knowledge about the topic-focus structure of

any given sentence, nor its syntactic tree structure. That's why we based our

prosody prediction on

• [Isacenko 64],

• [Stock 82], and

• common knowledge about phrasing.

In the following, the rules used for the prosody prediction of TDMT Input

and Text Input respectively are specified.

4.2.2 TDMT Input

VVe have four different levels of phrasing: Discourse (D), Sentence (S), Clause

(C), and Phrase (P), all of which are associated with specified pauses at the

end of the respective phrase. E.g. in the <database_name> _synth.ch you can

put in a definition like:

18 CHAPTER 4. PROSODY PREDICTION

(Stats Pause

（

(discourse 500)

(sentence 500)

(clause 200)
(phrase 10)

））

The phrases are used like intermediate phrases, and the clauses like in-

tonation phrases (of the ToBI system). That means that a phrase has to
contain at least one pitch accent and ends with a H-or a 1-as boundary

tone. A clause consists of at least one phrase and ends with a X-Y% as

boundary tone.
First, we have to group the words of a sentence into phrases, the phrases

into clauses, the clauses into sentences, which constitute a discourse. (We

could take every line of the tdmt-input as a new phrase. But then we would
generate too many intones which would make CHATR sound very unstable.)

Following rules are applied:

1. put a sentence boundary whenever you encounter one of the following

four: . ? ! ・

2. put a clause boundary between a MAINCLAUSE and a SUBORD-
CLAUSE (see key to abbreviations below) -or the other way round

3. put a clause boundary between two different MAINCLAUSes

4. if there isn't one yet, put a clause boundary whenever you encounter: :

5. if there isn't one yet, put a phrase boundary whenever you encounter:

, (for example between two SUBORDCLAUSes)

6. every tdmt-line that contains a NOMEN (noun) or an ADJEKTIV
(adjective) builds a phrase together with all its preceding tdmt-lines

(that don't contain NOMEN or ADJEKTIV)

7. The lines after the last NOMEN/ ADJEKTIVE line don't build their

own phrase but belong to the previous phrase.

Having piled up a series of phrases, we have to decide which intones to
take ...

1. last phrase before a sentence-boundary:

• SATZ, IMP, DES: H+1* as pitch accent and 1-1% on last syllable

• FRAGE: 1*+H as pitch accent and H-H% on last syllable

4.2. POSSIBILITIES 19

2. last phrase before a clause-boundary: L+H* as pitch accent and H-1%

on last syllable

3. all other phrases: H* as pitch accent and 1-on last syllable

…and where to put the pitch accent:

1. go through the phrase from right to left

2. check the POS of every word

3. if it is NOMEN or ADJEKTIV, put the pitch accent on that word and

stop searching

4. if you cannot find any NOMEN or ADJEKTIV in the whole phrase,

look for an ADVERB, VERBZUSATZ, KARDINALZAHL, VERB,

FIX-EXP, or PRAEPOSITION (in that order! always going from right

to left through the whole phrase), put the pitch accent on the respective

word and stop searching

5. if 3) and 4) fail, put the pitch accent on the last word in the phrase.

Either before or after building up phrases and deciding on intones, we

have to put a stress mark on the syllable that carries lexical stress. But only

for words with certain part-of-speech: VERB, VERBZUSATZ, NOMEN,

ADJEKTIV, FRAGEADVERB, INTERROGATIVPRONOMEN, KARDI-

NALZAHL, ORDINALZAHL, ADVERB, FIX-CAP, FIX-UP, STOP-WORD,

FIX-INTRO, FIX-END

Abbreviations:

• SATZ is SATZ, SATZ+, SATZ_VERB-FIRST

• IMP is IMP-S-I, IMP-S-II

• DES is DES-S-I, DES-S-II

• FRAGE is vVH-Q, YN-Q, FRAGE_VERB-FIRST

• MAINCLAUSE is SATZ, IMP, DES, FRAGE

• SUBORDCLA USE is REL-S, KA U-S, KONS-S, KONZ-S, TEM-S, KOND-
S, FIN-S, MOD-S, IND-R, INH-S-xxx

20 CHAPTER 4. PROSODY PREDICTION

4.2.3 Text Input

From the lexicon we have information for each word in the following format:

(11blinkte11 (((b 1 IN k)(1))((tc)(O))) ((CATV)))

orthography phones stress syl.boundary part-of-speech

Following rules are applied:

1. put a sentence boundary whenever you encounter one of the following

four: . ? ! ;

2. put a clause boundary whenever you encounter: : ,

3. put a phrase boundary after a CONTENTWORD, but only if it is
followed by a FUNCTIONWORD (see below for a list of abbreviations)

4. delete the last phrase boundary, if there is no CONTENTWORD in

the following phrase.

Having piled up a series of phrases, we have to decide which intones to

take ...

1. last phrase before a sentence-boundary:

• sentence恥isheswith a .
1-1% on last syllable

or ; → H + L * as pitch accent and

• sentence finishes with a ? → 1*+H as pitch accent and H-H% on
last syllable

2. last phrase before a clause-boundary: L+H* as pitch accent and H-1%

on last syllable

3. all other phrases: H* as pitch accent and L-on last syllable

…and where to put the pitch accent:

1. go through the phrase from right to left

2. check the POS of every word

3. if it is N or A put the pitch accent on that word and stop searching

4. if you cannot且ndany N or A in the whole phrase, look for an ADV,

NUM, PRON, PREP (in that order! always going from right to left

through the whole phrase), put the pitch accent on the respective word

and stop searching

5. if 3) and 4) fail, put the pitch accent on the last word in the phrase.

4.3. EVALUATION 21

Either before or after building up phrases and deciding on intones, we

have to put a stress mark on the syllable that carries lexical stress. But only

for words with certain part-of-speech: N, A, NUM, V, ADV, I.
Abbreviations:

• CONTENTWORD is N, A

• FUNCTIONWORD is NUM, V, ART, PRON, ADV, PREP, C, I

4.3 Evaluation

Unfortunately, the time was too short, to evaluate the "new" German voices

of CHATR experimentally. Therefore, evaluation has to remain on a some-

what impressionistic level.
Compared to the previous speaker, German CHATR has been improved

substantially. Even with an input in the Utterance Phoneme format (with no
syntactic information), impressively intelligible and natural utterances can
be produced. Please have a look at

http:/ /www.itl.atr.co.jp / cha tr/ german.html

and judge yourself.

For examples that were produced with Text Input, go to

http://www.itl.atr.co.jp/ xcaren/examples.html

Still, the prosody prediction rules have been put up in a heuristic manner,

so they sometimes make CHATR chop its words quite unnaturally. And even

if the predicted prosody suits the utterance, you can never be sure that the
right units will be selected from the database.

In Figure 4.1 you can see that the falling contour at the end of the syn-

thesized utterance is exactly the opposite of the rising FO contour that was
predicted for that question1.

So, as always, there is more than one possible reason for a bad CHATR
output ...

1 the example is taken from the TDMT output, so it is not totally correct German

22 CHAPTER 4. PROSODY PREDICTION

',. : ： "'CJ. な冷吼' ,., ,.,. ぶ浴 " ,. 認埒，,,,_--------,，．

・□゚←□:'.:'. 竺竺竺ピl□□
~

!¥ J
: 9

:
; , i ，

.,,, __叫；co 1.c, 念涵•こ.,......... :

； ... : 『~~~·;.r·............

--ー--

や,.,,,;.・, な深9焚ゞ

I

I
I

I
I
I

............... , ・・・・t・...... ・.-..、遍．．．
．． ,

・-..... -~'. ー一
I

＞

f-=-_
~i-

—=____-_—_-____-_-_-_-_

-h—-_-=-___-_-_-__-

·•·\
t}
'~

，．
 ・ゞ
＇『

゜
ー t; ・.t .'.... 4

.

·
·
冑
•↓

"5
苓 ＠

ダ・
3

£”” .
6

t代し→

zsmrnet

Figure 4.1:

contour
second row: synthesized FO contour, forth row: predicted FO

Chapter 5

Future Work

The following points should be regarded as suggestions to those who want to

further improve the German voice of CHATR. This collection is by no means

complete but might be somewhat helpful.

5.1 Database

• The sampaG phonemeset was set up because of practical reasons, as
explained in section 2.1.2. In theory, there should be no difference

between the phonemic transcription of stressed and unstressed variants

of the same vowel. They should be predictable from different lexical

stress and the durational difference that follows it.

• The same argument holds also for the "Q"-label which marks glottal-
ization or glottal stops. Glottalization is predictable from the context,

and therefore should not be labelled separately.

5.2 Lexicon

• As mentioned in section 3.2.4, the problem of double entries in the
lexicon is not solved yet.

• In section 4.1.3 you can find some suggestions regarding pronunciation
of unknown words (LTS rules) and the prediction of lexical stress and
syllable boundaries.

5.3 Prosody Prediction

• Thorough (experimental) testing of the so far implemented prosody
prediction rules is certainly necessary.

23

24 CHAPTER 5. FUTURE WORK

• As German ToBI-labeled corpora become available, a (linear regres-
sion) model should be trained on natural speech material, so that the

German prosody of CHATR becomes more natural.

• Implement another theory of prosody prediction (see section 4.1 to get
some ideas) and compare it to the one that has been implemented so
far!

Chapter 6

Conclusion

At first, CHATR seemed to be an impenetrable jungle of modules, variables

and functions. I doubted that anything substantial could be achieved during

those eight weeks of my stay at ITL. But looking back, quite a bit has been

improved regarding the German voice of CHATR. At least on the segmental

level everything is stable by now.

・what certainly became clear, is that without any knowledge about the

semantic (and pragmatic) content of a sentence, prosody prediction cannot

be perfect. The so far implemented syntax-based prediction gives acceptable

results for simple "everyday" utterances, but it must fail inevitably when try-

ing to synthesize literature. Fairy-tales, for example, were noticeably worse

(regarding prosody) than hotel reservation dialogues. A reason for this両 ght

be, that our expectations are much higher when listening to a story that has

been read to us many times.

We could show, that by simply expanding the database the output be-

comes much more intelligible and natural. But in order to avoid the problem,

that a unit with the wrong FO gets selected, we need a database that is

• even bigger, and

• contains a wider variety of prosodic patterns.

25

Bibliography

[Anderson 84] M.D. Anderson, J.B. Pierrehumbert, and M.Y. Liberman.

Synthesis by rule of english intonation patterns. In Pro-

ceedings of the IEEE International Conference on Acoustics!

Speech! and Signal Processing, IEEE, New York, 1984.

[Bierwisch 66] M. Bienvisch. Regeln for die Intonation deutscher Satze. In

Untersuchungen砂erAkzent und Intonation im Deutschen,

pp. 99-201. Akademie-Verlag, Berlin, 1966.

[CELEX 95] R. H. Baayen, R. Piepenbrock & L. Gulikers. The CELEX
Lexical Database (CD-RONI). Linguistic Data Consortium,

University of Pennsylvania, Philadelphia, PA, 1995.

匹ry92] Caroline Fery. Focus! Topic and Intonation in German. SFB

340: Sprachtheoretische Grundlagen for die CL / Bericht Nr.

20. IBM Deutschland, Heidelberg, 1992.

[Fery 95] Caroline Fery. Alignment! syllable and metrical Structure

切 German.SfS-Report-02-95. Eberhard Karls Universit五t,

詞 bingen,1995.

[Isacenko 64] A.V. Isacenko and H.J. Schadlich. Untersuchungen iiber die

deutsche Satzintonation. Akademie-Verlag, Berlin, 1964.

[Reyelt 96] Matthias Reyelt et al. P rosodzs-

che Etikettierung des Deutschen mit ToBI. Verbmobil-Report

154, DfKI, Saarbriicken, 1996.

[Stock 82] E. Stock and C. Zacharias. Deutsche Satzintonation. VEE
Verlag Enzyklopadie, Leipzig, 1982.

[Striegnitz 97] Kristina Striegnitz. Teaching CHATR German Intonation -

Lesson One. ATR Technical Report, TR-IT-0237 (1997-09).

[Uhmann 91] S. Uhmann. Fokusphonologie. Eine Analyse deutscher Into-

nationskonturen im Rahmen der nicht-linearen Phonologie.

Niemeyer, Tiibingen, 1991.

26

BIBLIOGRAPHY 27

[Weeks 97] Martyn Weeks. The CHATR User Guide. http://www.itl.
atr.co.jp/-mweeks/. ATR Interpreting Telecommunications
Research Laboratories, 1997.

Appendix A

Building a German Database

A.1 Speech Files

List of files read by Klaus Kohler (male speaker): (.16 for speech wave, .slh

for label且le)

~nick/german/kiel/kiel_cors/ph90/berlin/k61/*.16 or *.s1h

-nick/german/kiel/kiel_cors/ph90/marburg/k61/*.16 or *.s1h

-nick/german/kiel/kiel_cors/ph90/restkorp/k61/*.16 or *.s1h

~nick/german/kiel/kiel_cors/ph90/butter/k61*.16 or k61*.s1h

~nick/german/kiel/kiel_cors/ph90/nord切ind/k61*.16 or k61*. s1h

-nick/german/kiel/kiel_cors/ph92/erlangen/kko/*.16 or *.s1h

~nick/german/kiel/kiel_cors/ph92/siemens/kko/*.16 or *.s1h

List of files read by "rtd" (female speaker):

-nick/german/kiel/kiel_cors/ph90/berlin/k62/*.16 or *.s1h

-nick/german/kiel/kiel_cors/ph90/marburg/k62/*.16 or *.s1h

~nick/german/kiel/kiel_cors/ph90/restkorp/k62/*.16 or *.s1h

~nick/german/kiel/kiel_cors/ph90/butter/k62*.16 or k62*.s1h

-nick/german/kiel/kiel_cors/ph90/nordwind/k62*.16 or k62*.s1h

~nick/german/kiel/kiel_cors/ph92/erlangen/rtd/*.16 or *.s1h

~nick/german/kiel/kiel_cors/ph92/siemens/rtd/*.16 or *.s1h

In the directory where you want to build the database, type:

mkdir wav

Using the Kiel Corpus of Read Speech, you have to change the byte order

of the .16 files. While in the directory where you want to build the database,

type (you have to repeat this for every pathname in the list above):

for i in ~nick/german/kiel/kiel_cors/ph90/berlin/k61/*.16

> do n='basename $i .16'
> echo $n

> dd conv=swab if=$i of=wav/$n.wav
> done

28

A.2. LABEL FILES

A.2 Label Files

In the directory where you want to build the database, type:

mkdir lab

29

The label files have to be changed to the XWAVES format. While doing

that, we want to get rid of some labels and change some of the characters

used in the original transcription:1

for i in ~nick/german/kiel/kiel_cors/ph90/berlin/k61/*.s1h

> do n='basename $i .s1h'

> echo $n

> gaw'k -f ~xcaren/Phondat/kiel2xlb_ne1iJ.a1iJk $i I ga訂k-f
~xcaren/Phondat/postkiel.a切k> lab/$n. lab

> done

For a detailed documentation of the awk-scripts used in the loop above,

see Appendix C.1 below.

A.3 Training

In the directory where you want to build the database, type:

mkdir index

ln -s /dept2/訳ork11/src/chatr-0.92/Sun0S/chatr-0.92/db_utils

Make a list of all speech files:

ls団av/*.団av>files

Copy the following files and change them accordingly叫

cp -xcaren/kkx/db_description db_description

cp -xcaren/kkx/remake_db remake_db

cp -xcaren/kkx/index/kko_synth.ch index/<your_database_narne>_synth.ch

cp -xcaren/kkx/index/kko_train.ch index/<your_database_narne>_train.ch

Checking the database:

db_utils/check_labs

db_ utils/ check_phoneset

db_ utils/ check_align

1Attention: After having left ATR, the contents of my home directory will probably
be stored somewhere else, and therefore they won't be accessable via xcaren anymore. In
that case, you will have to change the paths for the awk-scripts.
2Check [Weeks 97] for further details.

30 APPENDIX A. BUILDING A GERMAN DATABASE

If the checks find any segments that are too short (or whatever) change the

label files by hand (using XWAVES) or take the file out of the "files" list.
・when everything is ready:

remake_db > make.log 2>&1

If a message like "Serious network problems" pops up, it might be because
you are not one of the VIPs who can check out HTK. Let the system manager
fix this for you, so that you can use HTK to build the MFCC etc.

Appendix B

Building a German Lexicon

B.1 Available Awk Scripts

In order to create a CHATR lexicon from the data available on the CELEX

CD-ROM, you can use the following awk-scripts (see Appendix C.2 for a

detailed documentation of the more complex ones), which are currently in

~xcaren/ CHATR/ AvVK/Lexicon/1:

1. celex2g_dic_new.awk gives you an uncompiled CHATR lexicon with or-

thographic and phonetic information (SAMPA transcription) only

2. celex2g_dic+pos.awk gives you an uncompiled CHATR lexicon with

orthographic, phonetic (SAMPA transcription) and part-of-speech in-

formation

3. nospace.awk takes a CHATR lexicon (compiled or not) and gets rid of

the entries with a space in the orthographical string (detached prefixes)

4. onlyspace.awk keeps only those entries with a space in the orthograph-

ical string, in case you want to use them later on

5. delete_doubleentries.awk deletes those entries that are exactly the same

as the preceeding entry

6. double_entry.awk gives you a list of all entries in the lexicon with the

same orthographic representation

7. sampa2sampaG.awk converts the SAMPA transcription into sampaG,

as defined in sampaG_def.ch

1 Attention: After having left ATR, the contents of my home directory will probably
be stored somewhere else, and therefore they won't be accessable via xcaren anymore. In
that case, you will have to change the paths for the awk-scripts.

31

32 APPENDIX B. BUILDING A GERMAN LEXICON

B.2 Lexicon Recipe

Suppose you would like to create a compiled CHATR lexicon for German, us-

ing the sampaG transcription, with information about part-of-speech, with-

out "spacy" entries, and without entries that are exactly the same. Then

you would have to type the following commands (or something similar, if

you don't like the filenames or use a different directory):

ga可k-f /DB/LTDB4/celex_rel_2/german/gsl/awk/synlabel.awk

/DB/LTDB4/celex_rel_2/german/gsl/gsl.cd 4 CL> -xcaren/CHATR/lemma_pos.cd

cp /DB/LTDB4/celex_rel_2/german/gpw/gpw.cd -xcaren/CELEX/gpw.cd

gawk -f -xcaren/CHATR/AWK/Lexicon/celex2g_dic—+pos.a訂K

-xcaren/CELEX/gpw.cd > -xcaren/CHATR/celex+pos.ch

gawk -f -xcaren/CHATR/AWK/Lexicon/nospace.a吐
-xcaren/CHATR/celex+pos.ch > -xcaren/CHATR/celex+pos_nosp.ch

Go to your CHATR window, and type:

(Lexicon Compile /home/as70/xcaren/CHATR/celex+pos_nosp.ch
/home/as70/xcaren/CHATR/celex+pos_nosp_comp.ch)

If this doesn't work because of memory problems, you should delete the
first two lines and the last line of celex+pos...11osp.ch by hand, thBn sort the

file with the UNIX sort command, and insert

CompLexicon

sampaG

as the first two lines into the sorted file, which you should call celex+pos_nosp_comp.ch.
Then continue with:

ga百k-f ~xcaren/CHATR/AWK/Lexicon/delete_doubleentries.a訂K

gawk -f -xcaren/CHATR/AWK/Lexicon/sampa2sampaG.awk
-xcaren/CHATR/celex+pos_nosp_comp.ch >
-xcaren/CHATR/celex+pos_nosp_G_comp.ch

B.3 Tell CHATR about it

In order to make CHATR use the newly created lexicon, you have to change
the lib/data/lexicons. ch file within CHATR1 or (which is recommended

while testing the new lexicon) load a file into CHATR1 which is similar to
the following ~xcaren/ CHATR/ sampa」exicons.ch:

B.3. TELL CHATR ABOUT IT

;;; Functions to specify the different lexicons

'''
; ； ; temporary locations~hile testing ! ! !
(defvar sampaG_compiled_lex

"/data/as70/xcaren/celex+pos_nosp_G_comp.ch"

"Celex based lexicon for German in sampaG")

(defvar sampa_compiled_lex

"/data/as70/xcaren/celex+pos_nosp_comp.ch"

"Celex based lexicon for German in SAMPA")

''
; ; ； Lexicon for German in sampaG:

''
(define setup_sampaG_lex ()

(require'sampaG_def)

; (Lexicon Select sampaG_compiled_lex)

(Lexicon Phone_Set sampaG)

(Lexicon Use sampaG_compiled_lex)

(Lexicon Fail Error)

(Lexicon Add sampaG

("Caren" (((k +a:)(1))((rcn)(O))) ((CAT N)))

）

("Kristina" (((k r I s)(O))((t +i:)(1))((n a:)(O))) ((CAT N)))

）

''
; ； ; Lexicon for German in sampa:

''
(define setup_sampa_lex ()

(require'sampaG_def)

; (Lexicon Select sampaG_compiled_lex)

(Lexicon Phone_Set sampaG)

(Lexicon Use sampa_compiled_lex)

(Lexicon Fail GLTS)

）

''
(provide'sampa_lexicons)

'ok

To load this file into CHATR, you simply type:

(load J-xcaren/CHATR/sampa_lexicons.ch)

33

Then, you have to tell CHATR to actually use this lexicon for the cur-

rently selected speaker by typing:

(setup_sampaG_lex)

(or whatever the name of the function is, that you defined in the file you just

loaded).

34 APPENDIX B. BUILDING A GERMAN LEXICON

B.4 Mapping between "beep" and "sampaG"

(Phoneme Map beep sampaG

（

(ax 6)

(axr 6)

(aa +a:)

(ao +o:6)

(ah +a)

(ay +aI)

(a切 +aU)

(ae +E)

(ea +E:6)

(ia +i:6)

(ua +u:6)

(el 1)

(en n)

(er +96)

(eh +E)

(ey +e:) , , should put +EI here (t刃oseparate phonemes)

(iy +i:)

(ih +I)

(uh +U)

(uw +u:)

(em m)

(oh+□)
(o刃 +o:)

(oy +DY)

(y j)

(r r)

(1 1)

(mm)

(n n)

(ng N)

(nx n)

(jh Z)

(ch S) ;;

(zh Z)

(sh S)

(th s)

(dh z)

(pp)

(b b)

(d d)

(dx d)

should put dZ here (two separate phonemes)

should put tS here (匹oseparate phonemes)

B.4. MAPPING BETWEEN "BEEP" AND "SAMPAG"

Ct t)

(k k)

(g g)

(ff)

(v v)

(z z)

(s s)

(hh h)

(hv v)

(w v)

(sil #)

(brth #)

））

35

Appendix C

AWK Scripts

C.1 Changing Labels

C.1.1 kiel2xlb_new.awk

name: kiel2xlb_new. awk

written by: caren & nick

last change: 1997/8/11 by caren and nick

＃＃

input: *.s1h phoneme label files from "The Kiel Corpus of Read Speech"

(currently in -nick/german/kiel/kiel_cors/)

[for a detailed description of the label format see

http://日ww.phonetik.uni-muenchen.de/Bas/BasFormatsdeu.html#S1]

＃＃

output: label files in the XWAVES format

＃＃

attention: use the output of kiel2xlb_new as

input of -xcaren/Phondat/postkiel. a訂K

to get rid of unwanted labels (切hichcannot be removed at once) !

＃＃

explanatory remarks:

The *.s1h-label files have the label at the beginning of the segment,

but we want it at the end of the segment.

So, at the current time we甘antto stick in the previous label.

To make it even more complicated, we want to get rid of the'-h'label,

which marks aspiration after plosives before vowels. We don't 可ant

to throw it away completely, but shift the label of the plosive to the

time of the'-h'label (because the aspiration really belongs to the

plosive).

That's口hywe have to store not only the previous label, but also the

previous previous label (in case a'-h'follo匹s).

＃＃

36

C.l. CHANGING LABELS 37

BEGIN{print "#";clr=123;lbl="#";"7hile ($1!-/hend/) getline;}

｛

if (1h12 -/¥-h/) {

time=$1/16000; # previous label, current time

lbl2=$2;

getline;

｝

if (lbl!="" && time!=O) {

printf("'/.9.4f'/.4s'/.7s¥n", time,clr,lbl);

｝

gsub(/¥r/, 1111 ,lbl2); # kill -M

gsub(/¥#¥#/, "¥$" ,lbl2) ;# transform special boundaries to normal ones ($ marks

gsub(/¥#/, "¥$" ,lbl2); # the beginning of the phone-string)

gsub(/¥$・*ー/,"",lbl2);# get rid of transcribed elisions, replacements or

gsub(/¥. /, 1111 ,lbl2);

gsub (/¥? /, 1111, lbl2) ;

gsub (/¥ ! /, 1111 ,lbl2);

gsub (/¥, /, 11#11 ,lbl2);

gsub (/p: /, 11#11, lbl2);

gsub(/c: /, 11#11 ,lbl2);

gsub (/v: /, 1111, lbl2) ;

#insertions-> just use the transcription of the

phone that is actually produced

information about punctuation not needed

(only the comma will be transformed into a

pause-character, which might get deleted in the

post-processing "postkiel.a訂k")

p: = pause

c: = beginning of first 訳ord= pause

information about mispronunciation not needed

(as long as transcribed correctly)

if (lbl2 -/¥-. /) # get rid of f・ ュnetranscrJ.ption of nasalJ.zatJ.on
gsub(/¥-/,1111,lbl2); # (e.g. -E), but leave in the (originally French)

nasal vo曰els(e.g. E-)

gsub(/¥'/./, 1111,lbl2);

gsub(/¥=/, 1111,lbl2);

gsub (/¥+/, 1111 ,lbl2);

gsub (/¥'/, 11+11, lbl2);

gsub (/¥" /, 11+11, lbl2);

gsub(/q/, "Q" ,lbl2);

gsub(/¥$/, "" ,lbl2);

kill information about uncertain boundary

no fine transcription of diphthongs

kill information about function words

new phonemeset sampaG:

mark stressed vowels with a+ in front

no difference bet匹eenq and Q for post-processing

finally kill$ (= marked beginning of phone-string)

38

｝

time=$1/16000; # previous time

lbl=lbl2; # previous previous label

lbl2=$2;

APPENDIX C. AWK SCRIPTS

END{if (lbl!="") # print the last label

{printf("'/49.4f'/44s'/47s¥n",$1/16000,clr,lbl)}}

C.1.2 postkiel.awk

name: postkiel.awk

written by: kristina & caren

last change: 1997/8/19 by caren

＃＃

input: label files in XWAVES format produced by kiel2xlb_new.awk

＃＃

output: cleaned label files in XWAVES format (cleaned = no double labels

at one time, and without unnecessary information about glottal

＃＃ stops or glottalization)

＃＃

explanatory remarks:

The'Q'labels (glottal stop or glottalization) will be deleted or

not, depending on their neighbouring labels: between two consonants or

two vowels the'Q'is redundant (predictable), but between a consonant

and a vowel (or the other way round, if that ever happens) we have to

mark it somehow. That's why we insert the'Q'label just 10 ms after

the first of the two sounds.

Also, we remove (or shift tb.e time of) any label, that has the same time

as the preceeding label. So we have to look ahead, in case there are more

than t研olabels with the same time.

＃＃

function rules(tpprev,lblpprev,tprev,lblprev,lblcurr) {

v["a"]; v["a:"]; v["E"]; v["E:"]; v["u:"]; v["U"]; v["o:"]; v["D"]; v["i:"];

v["I"]; v["e:"]; v["y:"]; v["Y"]; v["2:"]; v["9"]; v["@"]; v["6"]; v["u"];

v["o"]; v["i"]; v["e"]; v["y"]; v["2"]; v["aI"]; v["aU"]; v["DY"]; v[11a~11];

v["E-11]; v["9-"]; v["□-11]; v["a6"]; v["a:6"]; v["E6"]; v["E:6"]; v["u:6"];
v["U6"]; v["o:6"]; v["D6"]; v["i:6"]; v["I6"]; v["e:6"]; v["y:6"]; v["Y6"];

v["2:6"]; v["96"]; v["u6"]; v["o6"]; v["i6"]; v["e6"]; v["y6"]; v["26"];

v["aI6"]; v["aU6"]; v["DY6"]; v["+a"]; v["+a:"]; v["+E"]; v["+E:"]; v["+u:"];

v["+U"]; v["+o:"]; v["+O"]; v["+i:"]; v["+I"]; v["+e:"]; v["+y:"]; v["+Y"];

v["+2:"]; v["+9"]; v["+u"]; v["+o"]; v["+i"]; v["+e"]; v["+y"]; v["+2"];

v["+aI"]; v["+aU"]; v["+OY"]; v[11+a~11]; v["+E-11]; v["+r"J; v["+□-11]; v["+a6"];
v["+a:6"]; v["+E6"]; v["+E:6"]; v["+u:611]; v["+U6"]; v["+o:6"]; v["+06"];

C.1. CHANGING LABELS 39

v[11+i:611J i v[11+r611J i v[11+e:611J i v[11+y:611J i v[11+y511J i v[11+2:611J i v[11+9511J i

v[11+u511J i v[11+0611J; v[11+i611J i v[11+e611]; v[11+y611]; v[11+2511J; v[11+aI61'J i

v [11+aU611J i v [11+□Y611] i
c[11b11J; c[11d11]; c[11g11]; c[11p11J; c[11t11J; c[11k11]; c[11f11]; c[11v11J; c[11811];

C [llzllJ; C [11511]; C c11z11J; C c11c11J; C [llxll]; C [11h11]; C [lll11]; C (llrllJ; C [llmllJ; C [llnllJ;

C [llNllJ j C [llj 11] j

｝

clr = 123;

if (lblprev == 11Q11)

｛

｝

if (lblpprev in v && lblcurr in v)

｛

printf(11'/,9.4f'/.4s'/.7s¥n11,tpprev,clr,lblpprev);

｝

if (lblpprev inc && lblcurr inc)

｛

printf(11'/.9.4f'/.4s'/.7s¥n11,tpprev,clr,lblpprev);

｝

if (lblpprev in v && lblcurr in c)

｛

｝

tprev += 0.01;

printf(11'/,9.4f'/.4s'/.7s¥n11,tpprev,clr,lblpprev);

printf(11'/,9.4f'/.4s'/.7s¥n11,tprev,clr,lblprev);

if (lblpprev inc && lblcurr in v)

｛

｝

tprev += 0.01;

printf(11'/.9.4f1/.4s'/.7s¥n11,tpprev,clr,lblpprev);

printf (11'/,9. 4f'/.4s'/.7s¥n11, tprev, clr, lblprev);

if (lblpprev == 11#11 11 lblpprev == 11Q11)

｛

printf(11'/,9.4f'/.4s'/.7s¥n11,tpprev,clr,lblpprev);

｝

else

｛

printf(11'/,9.4f'/.4s'/.7s¥n11,tpprev,clr,lblpprev);

｝

BEGIN{tprev = -1; clr = 123; tpprev = -1;
print 11# II ; }

$1 ! = 11#11認 $1 != 0 {

if (tprev ! = -1) # if a label has been read already

40 APPENDIX C. AWK SCRIPTS

｛
 if (tprev == $1)

｛

if current time equals previous time,

and if current time also equals

if (tpprev == $1) # preprevious time,

{ # save only the current label,

lblprev = $3; # but thro刃 aw'aythe previous label.

｝

else # and if current time does not equal

{ # preprevious time,

tpprev = tprev; # keep on reading (don't throw away

lblpprev = lblprev;# any labels)

lblprev = $3;

｝

｝

else # if current time does not equal previous time,

{ # and if preprevious time does not exist or

if (tpprev == -1) # has been dealt'i7ith already,

{ # then print previous time with its label

printf ("'/.9 .4f1/,4s'/.7s¥n", tprev, clr, lblprev);

tprev = $1; lblprev = $3;

｝

else # and if preprevious time equals previous time

{ # then apply the rules (which also print)

rules(tpprev,lblpprev,tprev,lblprev,$3);

tpprev = -1; # and reset the times and labels

tprev = $1; lblprev = $3;

｝

｝

｝

else # if no label has been read yet

｛

tprev = $1; lblprev = $3; # read it!

｝

｝

END {

printf("'/.9.4f1/.4s'/.7s¥n",$1,clr,$3);

printf("1/.9.4f1/.4s'/.7s¥n",$1+=0.02,clr,"#"); # add a pause label at the end

} # of the label file

/
,
.
¥

/¥-

C.2 Lexicon

C.2.1 celex2g_dic_ +pos.awk

name: celex2g_dic_+pos.a叫K

written by: caren

C.2. LEXICON

last change: 1997/9/8 by caren

＃＃

input: CELEX's gpw.cd (German Phonology Wordforms)

[currently in /DB/LTDB4/celex_rel_2/german/gpw/J

＃＃

output: German dictionary in the uncompiled CHATR format

41

(orthography, phonemic transcription _and_ part-of-speech)

＃＃

attention: if there isn't one yet, please create the file "lemma_pos.cd"

with the following command:

ga訂k-f /DB/LTDB4/celex_rel_2/german/gsl/awk/synlabel.awk

/DB/LTDB4/celex_rel_2/german/gsl/gsl.cd 4 CL> -xcaren/CHATR/lemma_pos.cd

＃＃

advice: This script takes a looong time to run, and over the network

it is even much slooower. So, you'd better copy gpw.cd onto

your machine and possibly split it into smaller pieces (I don't

know, if the splitting contributes to the speed, but try it

any曰ay).

＃＃

explanatory remarks:

Since there is no information about the part-of-speech of each word

in gp団.cd, we have to look it up in gsl. cd (German Syntax Lemmas) . To make

processing easier, 切efirst convert gsl. cd into a file of three fields:

LemmaNurnber¥Lemma¥POS.

The PDS information of every lemma is then read into an array at the

beginning of the script.

BEGIN{

FS="¥ ¥" # backslash as field separator

while (getline <"/home/as70/xcaren/CHATR/lemma_pos.cd" > 0) {

pos [$1] =$3 # create array with POS information

｝

cons ["C"]; cons ["N"]; cons ["S"]; cons ["Z"]; cons ["b"]; cons ["d"];

cons["f"]; cons["g"]; cons["h"]; cons["j"]; cons["k"]; cons["l"];

cons ["rn"] ; cons ["n"]; cons ["p"]; cons ["r"]; cons ["s"]; cons ["t"];

cons ["v"]; cons ["x"]; cons ["z"];

all consonants in SAMPA for German

bvow ["u: "]; bvow ["U"] ; bvow ["o: "] ; bvo口["□"];bvow["a:"]; bvo団["a"];
bvow["aU"]; # field of backvo口elsin SAMPA for German

bvo切["u"];bvow["o"]; bvow["a"]; bvow["&"]; bvow["B"];

additional backvo切elsin DISC for German

42 APPENDIX C. AWK SCRIPTS

r
 print "(Lexicon sampaG";

print 1111;

｝｛

printf("(¥111/.s¥11 (", $2); # lexical word (orthography)

str=O;

lastphon=O;

txt="("; # beginning of first syllable

for(i=1;i<=length($5);i++)

｛

if (substr($5,i,1)==11-11 I I substr($5,i,1)==" 11){
txt=phfix(txt"-", lastphon, cons, bvow); #cleanup syll

printf("(1/,s)(%d))", txt, str); # print syll

lastphon=substr($5,i-1,1); # store last phone of the syll

str=O;

txt=11(11; # beginning of next syllable

｝

else# check for stress

if (substr($5,i,1)==11¥'11){

str=1;

｝

else# get next phone

txt = txt 11 11 substr($5,i,1);

｝

txt=phfix(txt"-11, lastphon, cons, bvo岡）； # last syll

printf("(%s)(1/.d))) ((CAT 1/.s)))¥n", txt, str, pos[$4]);

｝

function phfix(syl, Lastphon, Cons, Backvowels){

fix the phones (DISC transcription to SAMPA for German)

gsub(/¥(/,11¥(11,syl);

gsub(/a/, "a:" ,syl);

gsub(/e/, "e: ",syl);

gsub (/1/, "e:", syl);

gsub(/2/, "aI" ,syl);

gsub(/4/, "DY" ,syl);

gsub(/6/, "aU" ,syl);

gsub(/w/, "v" ,syl);

gsub(/¥+/,"p f",syl);

gsub(/¥=/,"t s",syl);

C.2. LEXICON

gsub(/J/,"t S11,syl);

gsub(/¥_/, "d Z" ,syl);

gsub(/i/, "i: 11,syl);

gsub(/¥#/, "a: 11 ,syl);

gsub (/¥$/, 110611, syl);

gsub (/u/, "u: 11, syl) ;

gsub (/¥3/, 119611, syl);

gsub(/y/, "y: 11 ,syl);

gsub(/¥)/, "E: 11,syl);

gsub(/¥ I/, 112: 11 ,syl);
gsub(/o/, 110: 11 ,syl);

gsub(/W/, "aI" ,syl);

gsub (/B/, 11 aU", syl) ;

gsub(/X/, "DY" ,syl);

gsub(/¥//, 11911 ,syl);

gsub(/¥{/, 11E11 ,syl);

gsub(/&/, 11a11 ,syl);

gsub(/A/, 11a11 ,syl);

gsub(/V/, 11a11 ,syl);

gsub(/¥-/,119 N11,syl); # simulation of French nasals

gsub(/c/, 11E m11 ,syl);

gsub(/q/,11a N11,syl);

gsub(/0/, "E N11, syl);

gsub(/¥-/,110 N",syl);

rules for distinguishing bet百eenx and C

gsub(/x/, "C" ,syl);

for (q in Backvo切els){

gsub(q" C",q" x",syl);

｝

43

if (Lastphon in Backvowels) { #xis used after backvowels

gsub (/¥ (C/, "¥ (x" , syl); # also after syllable boundaries

｝

replace'<vo切el>r'in front of a consonant, syllable boundary, or切ord

##boundary-with'<vo-wel>6'

for (x in Cons) {

gsub("E: r "x,"E:6 "x,syl);

gsub("E r "x,"E6 "x,syl);

gsub("9 r "x, "96 "x,syl);

gsub("I r "x,"I6 "x,syl);

gsub("O r "x,"06 "x,syl);

gsub("U r "x,"U6 "x,syl);

gsub("Y r "x,"Y6 "x,syl);

gsub("a: r "x, "a:6 "x,syl);

44 APPENDIX C. AWK SCRIPTS

gsub("a r 11x,"a6 "x,syl);

gsub("e: r "x,"e:6 "x,syl);

gsub("2: r "x,"2:6 "x,syl);

gsub("i: r 11x,"i:6 "x,syl);

gsub(1'o: r "x,110:6'1x,syl);

gsub (11u: r 11x, "u: 6 11x, syl) ;

gsub(1'y: r "x,1'y:6 "x,syl);

gsub (11@ r 11x, 116 "x, syl);

｝

gsub ("E: r-", "E: 6", syl);

gsub('1E r-", "E6" ,syl);

gsub("9 r-", "96" ,syl);

gsub(1'I r-", "16" ,syl);

gsub("O r-", 110611 ,syl);

gsub(1'U r-", "U6" ,syl);

gsub("Y r-11, "Y6" ,syl);

gsub("a: r-", 11a:611 ,syl);

gsub(11a r-", "a6" ,syl);

gsub('1e: r-", "e :6", syl);

gsub (112: r-", 112: 611, syl);

gsub("i: r-11,"i:611,syl);

gsub (110: r-", "o: 611, syl);

gsub("u: r-11, "u:6" ,syl);

gsub("y: r-", "y:6" ,syl);

gsub("@ r-11,11611,syl);

gsub(/¥ー/,1111,syl); # remove remaining syllable markers

return syl;

｝

END {print")"}

＃＃ FYI: DISC phones

＃＃

＃＃ " p " , "b" ， "t" ， "d" ， "k" ， "g", "N"' 11 m II ， 11 n II , "l" ，

＃＃ 11 r II ， "f" ， 11 V II ’ II s II ， 11 z 11 ’ "S" ， "Z"' 11J• I I ' II X II , "h" ’
＃＃ II+ II ， ＂一ー・＂ "]" ， 11 II 11l• I I ' "#"' II a II , 11$11, II u II ， "3" ， ー，
＃＃ II y11 ' II) II ， II e II ， II 111 ， 11 0 II , II 1"' "2" ， "4" ， "6"' 躙＂，

＃＃ "B" ， "X"' "I" ， "Y" ， "E", II /11 ， II { II ， ＂＆＂ ， "A" ， "V" ，

＃＃ "□" ， 11u11 ， "c"' II II 11 CII ' II qII ' "O" ， 11 -II II 切 II

~

C.2. LEXICON 45

C.2.2 sampa2sampaG.awk

口

name: sampa2s ampaG. awk

written by: caren

last change: 1997/9/8 by caren

＃＃

input: CHATR dictionary for German with SAMPA transcriptions and

part-of-speech information,

e.g. -xcaren/CHATR/celex+pos_comp.ch

＃＃

output: CHATR dictionary with sampaG transcriptions, where stressed

vowels are marked with'+'

＃＃

explanatory remarks:

The basic CHATR dictionary for German should use the standard SAMPA

transcription, so that it can be used in various situations. But for

the current German speakers kko and rtd, we use aェ1extended SAMPA,
defined in sampaG_def.ch.

sampaG came to life when the transcription on the PhonDat CD-ROM

proved to be too phonemic, so that CHATR would sometimes choose very

centralized and short realizations of phonemes, that should have been

stressed (and therefore not centralized). Therefore, the stressed variant

of a phoneme is no切 markedby a'+'.

So, for kko and rtd we need a different lexicon, which can be derived

from the basic one using this script. For the time being, this is the

easiest way to do it ...

＃＃

BEGIN{

し） FS=" [(][(]II;

DFS=11 ((11

V ["a"]; V ["E"]; V ["u"]; V ["U"]; V [11011]; V [11011]; V ["i"]; V ["I"];

V ["e"] ; V ["y"]; V ["Y"] ; V [11211] ; V [11911] ;

｝

$0 !~ /ARTIPRON/ {

for (i=1; i<=NF; i++) {

if ($i ~ /1/) {

for (j=1; j<=length($i); j++){

k=substr($i,j,1);

if(k in v){

46

gsub(k,11+11k,$i);

j=length($i)+1;

｝

｝

｝

｝

APPENDIX C. AWK SCRIPTS

gsub(/¥(¥+/, 11¥(Q ¥+11); # this adds a glottal stop before every

vowel at the beginning of a stressed

syllable

print;

｝

	001
	002
	003

