
(>(

し＼

Internal Use Only

002

TR-IT-0228

The ATR Parser of English Text

Stephen Eubank

July 1, 1997

Abstract

This paper gives a brief description of how to use the ATR parser, what sort of

performance to expect, and an outline of how it operates. It includes a detailed

description of the algorithm currently used for pruning the decision tree models.

ATR Interpreting Telecommunications Research La.bora.tories

e ecornrnunica.tions Research La :iora.tones ◎ 1997 by ATR Interpreting T 1 I

Contents

ー

2

3

4

Using the ATR Parser and Tagger

1.1 Executables and Configuration Para.meters
1.2 R esource reqmrements .

Performance

What the parser does

4.5

Appendix: Pruning Algorithm for Classification Trees
4.1 S1noothing

4.2 Hypothesis Testing
4.3 The Null Hypothesis

4.4 The Null Distribution
4.4.1 A ssumpt10ns: Binary Refinement, Binary Features,
Uniform Null .

4.4.2 Notation
4.4.3 Organize by Misclassification Rate

4.4.4 Total number of partitions
4.4.5 Counting vVays to Classify n1 Events Correctly

4.4.6 Counting・ways to Classify Q Events Correctly
4.4.7 Counting Ways to Apportion Remaining Events .. .

4.4.8 Probability Distribution for Miscla,ssification Rates ..
Expernnents
4.5.1 Description of the Problem
4.5.2 Description of the rJxperiment
4.5.3 Results

1

1

1

2

4

6

6

7

7

8

8

9

9

9

0

1

1

2

3

3

3

4

1

1

1

1

1

1

1

1

1 Using the ATR Parser and Tagger

The best place to :find out how to use the ATR Parser and Tagger is on

a set of vVeb pages I have begun to write. These can be reached via my

ATR home page at: www.itl.atr.co.jp/ eubank. See especially the link to

the "quick start guide" and information on the meanings and use of con:fig-

uration parameters.

1.1 Executables and Configuration Parameters

Configuration parameters are currently passed through UNIX environment

variables. The two・which must be set (ModelPath and GrammarPath)

tell the software where to find (machine-dependent) models and the gram-
mar itself. Models and executables are maintained for Sun and DEC Alpha

workstations. Pathnames mentioned below assume you are using an Al-
pha. In general, users should be sure to get the most up-to-elate models

available, but for eX})erimental purposes in the near future, use "setenv

ModelPath /home/as18/eubank/travel/model" and "setenv GrammarPath

/home/as18/eubank/travel/grammar"). You may also need to add a path
to your "LD_LIBRARY_PATH" environment variable on a DEC Alpha.

Both the tagger and pr1.rser (eubank/bin/alpha/TaggerTool and en-
bank/bin/alpha/ParserTool) read English ASCII text from standard input

and write analyses to standard output. They al.so produce voluminous di-
agnostic information on standard error.

The tools assume the input consists of a single sentence (utterance) per

line. The text will be tokenized by a rudimentary, rule-based tokenizer.
There is a description of the rules it follows available from the Web page.

Output is in the form of an N best list (N controlled by configuration param-

eter) with the likelihood of each analysis. Because of the way the models are

constructed and used, the likelihoods a.re not normalized over aU possible

analyses.

1.2 Resource requirements

The executable itself takes 2 -4 Megabytes of disk space. The models,

grammar, a.nd fea.ture extraction module for both Sun and Alpha, take an

add.itiona.l. 30 Mega.bytes. Unfortunately, there are some hard-coded absolute
path-names in the compiled version of the grammar, so the grammar and

mod.els should not be moved around.. Pa.rsing on an ALpha will. require

anywhere from 100 -400 Megabytes of RAM, depending on sentence length

and the settings of search parameters. Initialization requires from one to

several minutes. After initialization it should be possible to tag at a rate of

roughly 10 words per second. Parsing time is much more variable, though
the results presented below required roughly 30 seconds to 4 minutes per

parsed sentence.

2 Performance

Table 1 summarizes the performance of the models mentioned above as
a function of sentence length. In general, the performance of the parser

decreases for longer sentences because of two effects:

• We score performance on a. per-sentence basis rather than a per-word
basis, but the number of model evaluations required to produce a parse

is roughly quadratic in the number of words.

• The number of parses which are legal according to the gra,mmar in-
creases exponentia.lly with the number of words in a sentence, so :find-

ing the best predicted parse becomes exponentially harder.

The table shows cwnv. 切tiveperformance as a function of sentence length.

This reflects the relative frequency of various sentences in our test database,

and thus provides a properly weighted estimate of the chance of successfully

parsing a sentence picked a.t random from the test set, For ea.ch set of test

conditions, the res11lts for both the single sentence predicted to be the best

parse and for any of the top ten parses are shown.

The measure of correctness is a very strong one. Each sentence in the

test set has been assigned a ,parse by a human treebanker. There may be

other correct parses, but they are not noted in the test set. For a parse to be

judged correct, we require an exact match of both the parse tree structure

and the labels at each node of the tree with the parse found in the tree bank.
The :fi.fth and sixth columns in the table indicates the performance of

models trained solely on ATR tra,vel data (a different set from the test set,

of course). These models were given correctly tagged text a.nd asked to

predict the parse. This does not reflect performance on untagged text, hut

it allows us to distinguish the performa.nce of m.odels in the parser from

those in the tagger.

The results in the third and fourth. colurnnR are also based. on correctl.y

ta,gged text, but used models trained on general English text instead of

（

／ ＼

2

Table 1: Performance of various models on an ATR travel data test set.

from correct tags from predicted tags

travel model

travel general template exact

models English match match

len #sents top 1 top 10 topl top 10 top 1 top 10 top 1 top 10

1 117 98.3 99.1 98.3 98.3 84.6 85.5 84.6 84.6

2 167 97.0 99.4 94.6 98.8 85.3 94.5 79.1 87.7

3 114 86.8 97.4 70.2 85.1 71、9 82.5 60.5 72.8

4 139 86.3 95.7 67.9 74.5 72.6 80.0 58.5 69.6

5 149 87.9 92.6 61.7 71.8 68.9 75.0 52.0 61.5

6 109 90.8 93.6 66.7 75.0 63.0 64.8 38.0 49.1

7 119 75.6 84.0 60.5 72.3 55.6 62.4 30.8 42.7

8 113 72.6 80.5 47.8 59.3 53.3 56.1 24.3 37.4 ， 100 72.0 83.0 47.0 63.0 53.6 60.8 25.8 41.2
10 98 65.3 79.6 45、3 54.7 47.9 51.1 18.1 31.9

11 72 58.3 73.6 32.8 4.0.3 11.9 19.4

12 67 50.7 511.2 37.1 43.5 19.4 25.8

13 73 48.6 65.3 15.2 19.7 4.5 9.1

14 52 44.2 59.6 19.6 25.5 5.9 7.8

15 48 33.3 58.3 20.9 34.9 7.0 11.6

16 43 37.2 72.1 24A 34.l 4.9 4.9

17 31 27.6 41.4

18 29 24.1 37.9

19 26 23.1 38.5

20 21 35.0 60.0

21 20 11.8 11.8

22 16 31.2 4:.3.8

23 10 20.0 50.0

24 7 14.3 28.G

25 8 12.5 25.0

2G 6 0.0 0.0

27 12 20 ;30

28 7 28.6 28.G

29 4 （）．（） 0.0

30 2 0.0 （）．（）

3

ATR travel data. I expected these models to perform well, beca,use they

were trained on more than twice as much data as the ATR travel models.
Indeed, on a general English test set, they do perform comparably to the

upper curve. The degradation in performance on ATR travel data indicates
how task-de1)endent the parser is、Italso emphasizes the need for adaptive

models.
The remaining columns in the table give the performance of models

trained solely on ATR travel data and tested on raw (i.e. untagged) text. The
seventh and eighth columns give results for parsing structure only, ignoring
the predicted tags. It is 1wssible to :find the correct parse tree topology and

label each node correctly even if the tags are not correct, since information in
the parse tree lalrnls is primarily syntactic. Thus, if the predicted tags ha,ve

the correct syntax, even if the semantic portion is incorrect, the parse tree
itself may be correct. Finally, the last two columns show the performance
of the models predicting from raw text, where a pa,rse is considered correct
only if:

• every tag matches the tags in the treebank exactly

• the parse tree topology exactly matches the treebank

• every node of the parse tree receives the same label it did in the tree-
bank.

It is not yet clear exactly how performance of tlie tagger and parser affect
applications which may rely on them, or whether certain types of errors are

more serious than others.

3 What the parser does

Raw text (one sentence per line) is tokenized and fed to the parser. Using

the ATR English gramma.r, the parser builds a "chart¥ which lists all legal
parses in a compact form. The parser uses the chart as a guide for creating

"parse states", which are incomplete parse trees. Because the parser works

from the bottom up, left to right, the intermediate parse states are not

necessarily subtrees, but more like collections of subtrees, togethervヽitha
cursor indicating which subtree's root is currently under consideration.
Parse sta.tes are produced by a taking a series of "parse steps" fro.m an
initial parse sta.te consisting of the words in a sentence. A parse state's

（

＇ (‘,＼，

4

derivation is unique, so its probability can be written down simply as the
product of each parse step required in the derivation.
The parser is responsible for providing parse states to a feature extraction
module. This module defines methods for navigating around a parse state
and asking for information about nodes in the parse state's subtrees. For
example, a question might ask about the "pos" feature value of the most
important word (head word) in the second constituent to the left of the
current position. Answers to all questions are transformed into bitstrings
based on mappings defined in ASCII files. These mappings are built either
by machine or human clustering.
Parse state dependent hit strings produced by the feature extraction
module are passed to the models for scoring. A model estimates the proba-
bility of ea,ch possible step out of the parse state.
Probabilities are fed into the search, which decides which steps to con-
sider and tells the parser¥vhich new parse states to construct.
One surprising development has been that a depth first, 01胄 "greedy",
search is close to optimal. Apparently, this is because, unlike in the case
of speech recognition, the entire context (for example, the entire sentence)
is available even when the first decision is made. Thus there is no need
to develop a hypothesis ahout the correct parse which must be changed as
more information or context becom.oes availa.hle.

Of course, it is still possible that the greedy parse is not the best, so I
have implemented the fo且owingsearch procedure:

• Find a greedy parse

• Use the greedy parse to seed a stack based decoder -that is, insert all
the incomplete parse states from the greedy parse into the appropriate

stacks.

• Use the proba,hility of the greedy parse as a,n absolute threshold for
the stack decoder.

• Let the stack decoder suggest some alternative states. (Alternatives
can arise from any of the stacks.)

• Find the greedy parse for each a.lternative and repeat the stack decocト
ing until all parses"ヽ1ithinthe decoder's thresholds have been found.

r
J

4 Appendix: Pruning Algorithm for Classifica-

tion Trees

The problem of determining where to prune is recast as choosing a "sig-

ni:ficance level" for the proposed refinement. The threshold chosen will, in
general, depend on three things:

• the number of input features

• the number of training data points in the partition,

• the sample conditional distribution of classes for those points.

Because the last two of these may vary widely from one partition to another
in the same classifier, the criterion must be ap1)1ied locally in the classi:fier.

Wray Buntine has done similar work on decision trees l)efore but I do not

yet have a citation for his papers. Also see J. Mingers, Machine Learning 4
(1989) p 227 -243, and references therein.

Some people advocate including a random input to detect overtraining.
Others a1)ply a global threshold to the cost reduction.1 The present approach

differs from both these because it frames the question as a statistical test

against a null hypothesis with an exact null distribution. That is, it does

not rely on a single realization of a random variable to estimate the null

distribution; nor does it use a、narbitrary global threshold、

4.1 Smoothing

An alternative to pruning decision trees was proposed by ? ? In this ap-
proach, the estimated distribution for a partition is smoothed by forming a

linear combination with the smoothed distribution of its parent partition.
Ideally, the a.mount of smoothing is controlled by a separate parameter for

each partition. However, this would mean using the cross-validation set

to estimate a large number of parameters -roughly the same nu.mber as

were estimated using the entire training set. Hence the partitions a.re buck-

eted, usually according to number of data points, with the result that the

same smoothing parameter is used for several different partitions. Opti-

maJ values for the parameters are determined using an E-M algorithm on
cross-va.Udation data、

（
．
＼

(
＼

F
¥
I

1Fdedma、n,et a.I. ,ug11e tha.t Lids appro叫 1does not, in fact, irnpi:ovc CART trees.

ヽ
‘
J
、し

4.2 Hypothesis Testing

The alternative advocated here is to prune the tree from the bottom up by

testing at each node whether any partition is significantly different from the
parent. The test becomes a standard test for significance once one chooses a
discriminating statistic for measuring differences between two distributions.

There are several obvious possibilities, including:

• chi-squared on the sample conditional distributions;

• classification error;

• the impurity function used to split the nodes -entropy, Gini, etc.

At each of the tree's leaf nodes, the algorithm compares the value of the

statistic against the distribution of values under the null hypothesis. Any

node whose children are all deemed insignificant becomes a leaf node. The

process continues up the tree until all leaf nodes have been considered.
The null distribution, and thus the threshold value of the statistic for a
given confidence level, will differ from node to node depending on the number

of training events which reach that node, the number of input features, and
the sample distribution of training event classes. In this sense, the test for

significance is "local" in the tree. In particula.r, it is not reasonable to specify
a globally-applicable threshold value for reduction in classification error or

impurity.

The experiments reported here use classification error as the discrimi-

nating statistic because it is feasible to build the exact null distribution for

this statistic quickly. Ideally one could choose among the various statistics

on the basis of their power and size in the particular problem of interest.

One of the interesting features of the results reported here is that there is

no indication that the statistic need be matched to the splitting criterion.

For example, even if entropy red nction is used to select a split, classification

error is useful for pruning the tree.

4.3 The Null Hypothesis

Once the statistic for measuring the difference between distributions has

been chosen, there is only one decision to make a.bout the null hypothesis:

what constitutes a. "rand.om" partition'?
We choose a random partition to be one which assigns each data point

to a set independently with uniform probability over sets, In othervヽord.s,

7

the null hypothesis is that the input features are independent, identically

uniformly distributed, and independent of the true class. Of course, the

input features may have dra.matica.lly different properties, including statis-

tical dependence among features and non-uniform distributions over classes.

One would expect a better-specified null hypothesis to improve the pruning.2

Nevertheless, even this simple null hypothesis will suffice here.

4.4 The Null Distribution

We require the distribution of misclassification rates given by random as-

signments of data to partitions. This seems a daunting task, given the

astronomical number of ways to partition even a small data set. Indeed it

is impossible to calculate the cla.ssi:fication error separately for each parti-

tion. However, by organizing the entnneration of possible pa,rtitions as in

the example below, the exact distribution ca.n be determined quickly and

efficiently. The trick is to count how many ways each possible misclassi:fi-

cation rate can be obtained. An additional benefit of this organization is

that the counting is required only for the tail of the distribution -those

classification error rates less than or equal to the observed rate at any node.

Because the total number of ways to partition the data is easily computed,

the counts can be normalized to probabilities.

4.4.1 Assumptions: Binary Refinement, Binary Features, Uni•
form Null

The following case is suffi.cie11.tly simple to allow a detailed description of the

enumeration process:

• discrete•valued inp11t features

• binary re恥 ements

With no loss of generality for the case of discrete.valued inputs, I further

assume the input features a.re binary valued. I also assume the refinement

consists of splitting the original set into two subsets, as is the case for a

binary decision tree. The predicted class for each element in a partition is

the class occurring most commonly in that partition.:3

d

/

＼

＇

（

●

,
1
1峰

2It would not be difficult to incorporate bias in pa.rtiしionassigumcu t i11 toしhenull
hypothesis, However, as is often the case, it is much hai:dcr to account for dependence
among the input fea.Lni:es,
3Iu the case of ties, either class can be assigned,

8

4.4.2 Notation

Let N be the total number of events to be partitioned into two sets A and

B. Q is number of events correctly classified by the partition. Of these,
似 arein set A and qB in set B. The number of partitions which classify
exactly Q events correctly is denoted #Q, A partition assigns each of the
附 eventsof every class i to either set A or set B. In all, ni,A events of class
i are assigned to set A and ni,B = ni -ni,A to set B. Obviously, 似=ni,A
and咋＝巧，Bfor at least one -i and at least one j. It may be the case that

i = J・

4.4.3 Organize by Misclassification Rate

As discussed above, the first step in evaluating the null distribution is to

group together all partitions which yield the same overall number Q of cor-
r~ct classifications. Q must satisfy

附 s;Q s; 附十叩・ (1)

This constraint is similar in spirit to the observation that the entropy of the

partition cannot be larger than the entropy of the original set. The original
set, by definition, correctly classifies n1 events. The partition must divide

all n1 events between the two subsets A and B. Either events of class 1 are
the majority in subset A, in which case exactly n1,A are correctly classified,

or there is some other class c with more elements in the subset, in which case

叫，A> n1,A events are correctly classified. Of course, the same argument
applies to subset B, so

Q=似 t(JB 2 n、1,At n1,B =叫・ (2)

The maximum Q results from correctly classifying the two largest subsets.

4.4.4 Total number of partitions

There are 2N possible ways to assign events to two subsets, but since inter-

changing the identity of A and B makes no difference to the partition, we
must divide by two. Furthermore, the partition which sends all events to

one subset is not allowed. Thus the total number of ways to partition the
events is 2N-l -1.

，

4.4.5 Counting Ways to Classify n1 Events Correctly

A particularly easy case to emnnerate is the worst case, when Q = n1, vVe
must enumerate all possible ways of assigning the events of class 1 to the

two subsets, ensuring tha.t they constitute a plurality in each. Consider

a partition which assigns n1,A events of class 1 to subset A. There are

(Q) ways to arrange this part of the partition. For each of these ways,
n1,A

how many ways are there to assign the n2 :::; n1 events of class 2, ensuring

that no more than附，Aend up in A and n1,B in B? vVe see that n2,A must
satisfy:4

四，A~n1,Aand 叩，B= 加ー n2,A~n1,B

仁⇒ 附，A~n2,A~r砂ー n1,B,

ヽ
．
~
ヽ
｀

j

3

4

（

（

Given n2,A, there are (1::~A) 1'・1 c 1stmct wa,ys to c wose exactly wluch叩A

events are placed in set A.5 This counting must be repeated for each of the

remaining k -2 classes. That is, for each different value of n1,A, there are
exactly

＼

ー

）A
 ，

t

t

）
 ̂
‘ l
n

「

＇̂’

？

（

ー

＼
B
 ’

ー.,a ？
 ，

i

ノ

ー
,

t

t

？

l

I

nl

こ
A
 ＇
“ヽー、,̀’) ̂‘. 2

Krr』？

(5)

ways of assigning events from the remaining classes to the two sets. Finally,

we must allow n1,A to take on all possible values between 1 and n1 -1.
Because of the symmetry between the sets A and B, it is more efficient to
allow n1,A to take on only half of its allowed values, throwing in a correction

factor of 1/2 for the case in which n1 is even and n1,A =附/2= n1,B. All
together, then, we obtain

＼

ー

）

t

‘‘~
?
n
v
-

'ヽu？

（

ー

＼
ー
ー
，

ーLヽ？

A

I

吐区
iim＝

i

p

j

しヽー？

し`？

KII
>

、ー、B
 ，

ー＂̀-？ ，

A
 ，

ーt

？

9

_

、

ぐ
U

2

＼

ー

）4

，

Q
l
l

、L"ー

（

ー

＼l
2

ーー

1

t

？

↓

A

仁
L-I，

ーt

?

＝

Q

＃

(6)

Sumnrnrizing, there a.re three factors in this expression:

• a factor enumerating the ways the correct class can be assigned to set
A.

／
ー
＼

（
，
＼

1 Allowing equa.lity in this snntllla.tion, eli111in,1les lhe need to consider lite possibility
tha、tclasses other than 1 acco1111l for the coi:rect.ly classified events.
5Note t;l,a.t the sels A aml B a.re distinct by virtue o[the number of elements of class
1 they contain、

10

• a facto1、enumeratingthe ways of assigning all the remaining events.

• a factor correcting for overcounting.

In the more general case below, each of these factors rea.ppears, together
with another factor enumerating the ways the correct class can be assigned
to set B.

4.4.6 Counting Ways to Classify Q Events Correctly

Remember that the classes are listed in descending order of their population

among the sample events. Define a(m) to be the last classヽvhosepopulation
is greater than or equal to m:

r.t(m)三 max{ilni> m} (7)

Now some number (JA < Q of the correctly classified events arise from as-
signing events from the class i to the subset A. That is, for some i, (JA = niA・
¥i¥Tithout loss of generality, assume (JA~ 「p/21,as above. There are

冒（こ）
ways to do this. For each of these ways, the remaining correctly classified

events will appear in subset B and must come either from some different
class nj or (if Q = ni) from the sa.me class, a partition which has already
been counted. There are:

(8)

＼

ー

）

巧

佃

/
’
ー
＼,
t

、
＇
B

#

立
と
ぃ
――
 ^l

―
-
'

.

J

'

(9)

ways to accomplish this.

4.4. 7 Counting Ways to Apportion Remaining Events

So far, we have taken ca.re of the Q correct events. All the remaining events
must now be distributed in all possible wa.ys between the two subsets, subject

to the constraint tha.t no m.ore thanぃeventsfrom any one class go to subset
A, and no more tha,n qB go to subset B. 6
All the events in the particular subsets -i and .i in the sumnrn.tions above
are already accounted for. For each of the remaining subsets, we must count

(l¥,Ve a.re guara.ateecl tlta.t this is possible because we know Q~n1~n; for ,tll i.

ーー

all possible ways of distributing events subject to the constraints. For class

m, this is:

I: (""' 加,,,=nm-rn nm,A)
(10)

A few distributions of events have appeared in other factors. If class nm,A =
qA, we will count the contribution again when i takes on the value m. Sim-

ilarly for nm,B and class j. To account for this, multiply each term by 0
when the constraints above apply. The following expression:

{1 -8(1枷，A,似）0(i, m)}

{l-8(1枷，B畑）0(J,m)},

where

G(a,b)三 lif a > b, 0 else,

will do the trick.

(11)

(12)

(13)

4.4.8 Probability Distribution for Misclassification Rates

Putting all this together yields the probability distribution for misclassifica-

tion rates under the null. There is one additional combinatorial factor that
must be accounted for:

• If Q = ni, there is a symmetry between subsets A and B which results
in overcounting by a factor of 2.

Overall then, the probability that Q events will be correctly classified by
a random partition is:

凡(Q)= (2n-l -1)-1 L~A-; 「Q/21汀馴 2-S(Qふ） (~~)

ご『，［誓(;;)mn=l,mが，、？区悶・:,言ぶ (,:::~A)
{1 -o(nm、,A, (JA)0(i, m)}{l -o(nm、,B, l]B) 0 (,j, m)},

(14)

(15)

(16)

Note that in some cases it is possible to collapse the final summation. For
example, if nm,A takes on aU possible values l ... n、m,it collapses to znm.

●,＼

I
鬱

(．＼

/，＇

・・ー・

12

4.5 Experiments

4.5.1 Description of the Problem

In the course of building a syntactic and semantic tagger for English text,
we create several large decision trees: one, the "pos" model, is used to

classify a, word according to its part-of-speech; the remaining 15 are used
to assign a semantic class to the word, given the predicted part-of-speech

classification. There are 33 possible part-of-s1rnech classes. The number of
semantic classes vaJ.・ies depending on the part of speech between 2 and 1000.

The input vector consists of features of the word and its context judged by a

grammarian likely a prior to be useful in classifying the word. The specific

features vary somewhat from model to model, but in all cases consist of

roughly 20,000 binary input features. We use roughly a million events for
training the pos model. The other models are trained on subsets containing

anywhere from tens of events to tens of thousands of events.
vVe report here both the classification performance of the individual

trees and the overall performance of the (hierarchical) combination of trees.

Strictly speaking, the decision trees are used as class probab-ility estimato1ゞ

rather than simple classifiers, and it is this use that is reflected in the overall
performance results, but not in the results for the individual trees.

4.5.2 Description of the Experiment

¥Ve varied several parameters controlling the growing and pruning process:

• Splitting criterion: Gini or entropy

• EM smoothing, CART-style pruning, or significance pruning.

• Splitting events into (a single pair of) training a.nd cross-validation
(which is required for CART-style pruning and EivI smoothing) or
not.

As m.easures of performance, we cite both cross-entropy and classification

error rates on a single out-of-s邸 1pleset.

The data was divided into an in-sample (90%) and out-of-sample (10%)

set. The in-sample set was further split into training and cross-validation

sets, where needed. Only one division was trned -multiple cross-validation

runs were not performed..

3

．．

4.5.3 Results

In the following,
"orig" → model trained on "train" data set,

no F /B smoothing or pruning
"big" → model trained on "train" + "smooth" data. set,

no F /B smoothing or pruning
"FB" → forward/backward smoothing (using "smooth" set)
"CART" → cost-complexity pruning (using "smooth" set)
''prune" → significance pruning

·マ＼~
Table 2: Tree size -total # nodes in aU trees (rounded to nearest 100)

／

criterion orig CART prune big big prune I ＼

entropy: 39700 4800 9400 46200 10800
mixed: 40000 6400 10800 46500 12300
Gini: 42250 6300 10600 49100 11700

Table 3: Number of events in train and test sets

train big test
pos 2984.81 355683 17224

n 90667 107222 5654

V 43595 52100 2202

punct 34672 41025 2155

p 31653 38135 1755

determin :35382 42432 1706
j 19438 23497 1250

numen， c 10955 12570 758
CCXX 9002 10744 584

r 10214 12440 563

CSXX 5382 6554 24:3

le 197 2a3 17

卜
0
、

ー4

oo

,ヽ‘_¥

□

J.
ー

Table 4: Performance breakdown by model-misclassification rate in percent

Models ordered by number of events in test set

A. Entropy criterion
orig CART prune big big, prune

pos 8.5 7.9 8.0 8.0 7.7

11 62.0 59.2 59.8 61.3 58.9

V 52.2 52.5 52.2 52.0 51.2

punct 4.8 7.2 4.8 4.9 4.1・

p 1.3 1.5 1.:3 1.1 1.1

determin 0.2 0.2 0.2 0.3 0.2

j 60.8 57.5 55.0 57.8 53.1

numenc 21.4 24.0 21.0 20.3 19.9

CCXX 0.3 0.5 0.3 0.3 0.3

r 32.7 29.7 28.6 29.5 28.8

csxx 3.7 4.5 3、7 3.7 3.7

le 11.8 11.8 11.8 11.8 11.8

B_._l'vlixed Criteri011
model orig CART big big, pruned

pos 8.4 7.8 7.9 7.6

ll 60.2 58.0 59.0 57.6

V 52.2 51.5 50.9 50.4

1nmct 4.7 7.3 5.1 4.1

p 1.3 1.5 1.1 1.1

determin 0.2 0.4 0.2 0.2

j 58.6 55.3 54.8 54.0

numeric 19.0 23.4 20.3 20.1

CCXX o.:3 0.5 0.3 0.3

r 31.1 28.2 :30.G 28.2

CSXX 4.1 4.5 3.3 2 . .5

le 17.G 17.6 17.G 17.G

15

C. Gini criterion
model orig CART prune big big, pruned
pas 8.1 7.5 7.6 7.8 7.5

n 54.8 53.4 53.4 54.0 51.9

V 50.3 47.9 48.3 49.2 47.8

punct 6.0 5.8 5.6 5.4 5.0

p 1.2 1.1 1.2 1.2 1.3

determi11 0.3 0.3 0.2 0.3 0.3

j 55.5 50.2 52.0 54.2 51.6

numeric 17.5 26.4 18.5 17.8 18.1

CCXX 1.0 1.4 1.0 0.9 0.9

r 32.0 30.2 30.0 30.6 28.4

CSXX 5.3 4.5 4 . .5 4.5 4.1

le 17.6 17.6 17.6 17.6 17.6 ）

1G

	001
	002
	003

