
4
,
．

Internal Use Only

002

TR-IT-0227

Reducing the complexity of the
LPC vector quantizer using the K-d

tree search algorithm

V. Ramasubramanian and K. K. Paliwal

Linear predictive coding (LPC) parameters are widely used in various speech coding applica-

tions for representing the spectral envelope information of speech. Transparent quantization of

the LPC parameters (average spectral distortion of 1 dB) can be achieved at 24 bits/frame using

the split vector LPC quantizer (SVLPC) which quantizes IO-dimensional line spectral frequency

(LSF) vectors in two parts. However, SVLPC suffers from a high computational complexity in

quantizing each part (one of dimension 4 and the other of dimension 6) using independent code-

books of size 4096 (corresponding to a rate of 12 bits/part). This limits the practical real-time

application of the coder. In this paper, we reduce the computational complexity of the split vec-

tor quantizer by 2 orders of magnitude using the fast K-dimensional (1(-d) tree search algorithm

under the bucket-Voronoi intersection (BVI) search framework. This is of significant importance

in rendering the SVLPC amenable for practical real-time coding applications.

◎ ATR音声翻訳通信研究所

◎ ATR Interpreting Telecommunications Research Laboratories

目次 ー

目次

1

2

3

4

Introduction

The}く-dimensional(K-d) tree

BuckeかVoronoiintersection search

2

2

3

Pre-processing

4.1 Construct10n of the K-d tree , ,

(4.1.1) Friedman-Bentley-Finkel (FBF) criterion ... ,

(4.1.2) Generalized opt1m1zat1on criterion (GOC) , , , , . , .

Bucket-Voron:oi intersection (BVI) list, storage overhead and complexity of BVI search .

(4.2.1) Bucket-Vorono1 mtersect1on (BVI) list

(4.2.2) Storage , ,

(4.2.3) Complexity of BVI search , .. , .. .

4.2

3

3

4

4

5

5

5

5

5

6

Results

Conclusions

参考文献

6

7

7

2 The K-dimensional (K-d) tree・2

1 Introduction

Linear predictive coding (LPC) parameters are widely used in various speech coding applications for

representing the spectral envelope information of speech. For low bit rate speech coding applications, it

is important to quantize these parameters using as few bits as possible. Considerable work has been done

in the past to develop efficient quantization procedures, both scalar and vector, for quantizing the LPC

parameters with smallest number of bits. Among these, vector quantization of the LPC parameters has

emerged as an effective approach to achieve'transparent'quantization (average spectral distortion of 1 dB

or less) of the LPC parameters. Currently, the lowest bit-rate for transparent quantization is achieved by

the split vector quantizer using line spectral frequencies (LSF) [1]. This quantizer requires 24 bits/frame to

achieve an average spectral distortion of 1 dB, less than 2% frames having spectral distortion in the range

2-4 dB and no frame having spectral distortion greater than 4 dB. Detailed studies supporting the choice of

LSF representation over other LPC representation, the need to resort to splitting of the LSF vector and the

distortion measure used for vector quantization have been reported earlier [1]. Following is a brief description

of the basic vector quantization encoding stage in the SVLPC quantizer.

In a typical LPC based quantization scheme, LPC parameters are obtained at a rate of 50 frames/sec,

using the 10-th order LPC analysis and are quantized prior to transmission. In the 24 bits/frame split vector

LPC quantizer (SVLPC) [1], each LPC parameter vector is transformed to the corresponding 10-dimensional

LSF vector. This LSF vector is divided into two parts - the first part consists of the first four LSFs and the

second part the last six LSFs. Each part is quantized independently using 12 bits. If the LSF's of a frame

representing a short segment of speech is given by the vector f = (fぃ'2,... , fio), this is quantized into a

vector f = f1, ... , f4, fs, ... , fio , where, (!1, ... , f4) and Us, , !10) . . . are respectively the nearest-neighbor

codevectors of the first part (!1, ... , f4) and the second part (fs, ... , fio) from the corresponding codebooks

of the two parts each of size 4096. The distance measure d(f, f) between the LSF test vector f and a LSF

codevector f is the squared error distance given by d(f, f) = I:; 比[(Ji-11)]叫wherefi and Ji are the i-th

LSFs in the test and codevector respectively. The LPC quantization of one frame of speech corresponds to

vector quantization encoding of each part using a codebook of size 4096. This requires computation of 4096

distances for each part and is a very high computational requirement for vector quantization (VQ) encoding

which limits the practical real-time application of the coder.

In this paper, we are concerned with the computational complexity of the SVLPC quantizer. The main

aim in this paper is to report the results of applying an efficient fast nearest-neighbor search algorithm to

reduce the computational complexity of the split vector quantizer. The fast algorithm is a K-dimensional

(K-d) tree search algorithm under the bucket-Voronoi intersection (BVI) search framework [2]. This paper is

organized as follows. In Section 2, we give a brief description of the 1{-d tree data structure. In Section 3, we

describe the bucket-Voronoi intersection (BVI) framework. Section 4 describes the preprocessing procedure

in constructing the J<-d tree for using in the BVI framework. This involves optimizing the tree using efficient

criteria and finding the bucket-Voronoi intersections. In this section we describe two optimization criteria

used for the simulation study in this paper. In Section 5, we present results obtained in reducing the

computational complexity of the SVLPC quantizer for the two parts (one of dimension 4 and the other of

dimension 6) under the squared error distance.

2 The K d' -1mens1onal (J(-d) tree

An important approach towards fast VQ encoding is the use of data structures which facilitate fast search

of the codebook which is normally unstructured. In this context, the I<-d (!{-dimensional) tree structure is

a powerful structure in providing efficient space localization of a vector in I<-dimensional space (冗K)with

very low overheads: A I<-d tree structure of depth d partitions the冗Kspace into 2d disjoint hypercuboidal

regions (buckets) and allows identification of the bucket containing any given vector in炉 ind scalar

comparisons,

The炉 spaceis split into two half spaces by means of an hyperplane orthogonal to one of the K

coordinate axes. Such an hyperplane H, given by H = {x E炉：巧=h}, defines two half spaces, RL and

邸 asRL = {x E冗K: Xj~h} and RR= {x E冗K > h} Th .' ：町， em1tial region corresponds to the root

r,ー

•

4 Pre-processing 3

of the tree at layer 1 and the two subregions RL and RR obtained by the division correspond to the left

and right sons at layer 2. Each of these two half spaces are successively divided by hyperplanes orthogonal

to the coordinate axes and d such successive divisions starting with the initial region as the root at layer 1

creates a tree of depth d with 2d terminal regions termed'buckets'at the (d + 1/h layer.
Every non-terminal node is associated with a region and a partitioning hyperplane of the form x : 町=h,

which needs storage of two scalar quantities (j, h) at each node, where j is the index of the coordinate axis

orthogonal to the plane (referred to as the'partitioning'or'discriminator'axis), and, h is the location of the

plane on this axis. Given any vector in冗瓦 itcan be located with respect to the dividing plane H at any

node by the scalar comparison 町 ~h, i.e., comparing the vector's Ph component value with the partition
value h. Starting from the root node, a sequence of d such scalar comparisons of the vector's Ph component
value with the partitioning hyperplane (j, h) at that node leads to the leaf (or bucket) containing the vector.

3 Bucket-Vorono1 mtersect10n search

Given a set of N codevectors C = { c1, ... , CN}, alongwith a specified distance measure, the冗K space

is partitioned into N disjoint regions {V1, ½, ... , VN }, known as Voronoi regions. ¼is the Voronoi region

of Ci and contains all points in炉 nearerto Ci than any other codevector, i.e., ½= {x E炉： d(x, ci)~

d(x, Cj), j = 1, ... , N}. Thus, if q(x) denotes the nearest-neighbor quantization of x then, ½= {x E冗K:

q(x) = ci} is the nearest-neighbor locus region of Ci, If a vector x in炉 iscontained in the Voronoi region

Vi, the associated codevector Ci will be the nearest-neighbor of x.

In the bucket-Voronoi intersection search framework, each bucket is a.5sociated with a set of'codevectors

whose Voronoi region intersect with the bucket region. This subset is referred to as the bucket-Voronoi

intersection list (or BVI-list) of that bucket. The buckets and the Voronoi regions provide two independent

partitioning of the same space using disjoint regions. Therefore, if the test vector is contained within the

bounds of a particular bucket region, then the test vector can be present only in one of the Voronoi regions

having a non-empty intersection with the bucket. Thus, the BVI-list of a bucket contains the nearest-

neighbor codevector of any vector within the bucket. For any given test vector, its nearest-neighbor can

therefore be determined by a fast and localized BVI search in two steps:

l. Determine the bucket containing the test vector. This requires d scalar comparisons for a tree of depth

d.

/
2. Perform a search (by actual distance computation) among the small set of codevectors whose indices

are stored in the BVI -list associated with that bucket.

4

Pre-processing

The BVI search requires a pre-processing phase consisting of i) Constructing the I<-d tree for a given set

of codevectors and, ii) Finding the BVI list for each bucket of the resulting tree. Subsequent to this, the

K-d tree structure can be used for fast encoding of arbitrary new test vectors. The following gives a brief

description of the steps involved in this pre-processing phase.

4.1 Construct1011 of the K-cl tree

The construction of the I<-d tree involves the choice of the partitioning hyperplane at each node of the

tree. This is referred to as optimization of the tree for the given set of codevectors. A non-terminal node

region in the K-d tree is associated with a bounded region R E炉， definedas R = {x E炉： aj~ 町こ朽，

j = 1, ... , I<}. As noted earlier, a hyperplane {x : 町=h; aj~h~bj} (represented as (j, h) henceforth),

divides R into two subregions RL and RR, Optimization of the J{-d tree involves making a choice of the

partitioning hyperplane (j•, hj・），j"E {1, ... , I<} and aド ~h* < b1 ●● ·• under some cr1ter10n with respect to

region R. This is termed local optimization of the tree and has been addressed earlier in detail in (2]. Here,

we consider two main optimization criteria in designing the tree for use with the BVI search. These are

4 Pre-processing 4

namely, i) the Friedman-Bentley-Finkel (FBF) criterion _[3], [4], and, ii) the generalized optimization criterion

(GOC) [2].

(4.1.1) Friedman-Bentley-Finkel (FBF) criterion

If CR = { Ci : Ci E R} is the set of codevectors lying within the region R represented by the node to be

partitioned, the FBF criterion chooses the partitioning hyperplane (j*, hj・） as follows:

l. j* is chosen as the the axis along which the corresponding codevector coordinates have the maximum

variance and

2. hj. is chosen as the median of the codevector coordinate distribution on axis i*,

where, the codevector coordinate variance and median are computed using codevectors in CR・

r
,
u
4

(4.1.2) Generalized optimization criterion (GOC)

The FBF criterion was originally obtained for using the K-d tree under a backtracking search [3] and hence

optimizes the tree only with respect to the codevectors. However, for the bucket-Voronoi intersection search,

a more direct optimization results with the use of information about the Voronoi regions intersecting with

the region corresponding to the node being optimized [2]. One of the optimization criteria proposed under

this framework is the generalized optimization criterion (GOC) which is briefly described in the following:

Let CR, CRL and CRR be the set of codevectors whose corresponding Voronoi regions intersect with

the regions R, RL and RR respectively, i.e., CR = {c1 : Vin R # 0}, C厄={c1 : Vi n RL # 0},
C邸={ci : Vin RR# 0} , where Vi is the Voron01 region associated with codevector c1. Let n, nL and nR

be the size of the sets CR, CRL and CRR respectively.

Given x E R, the nearest-neighbor of x belongs to CR and can be found with a cost of n distance

computations. However, the partitioning of R reduces the search complexity from n to nL or nR after one

scalar comparison. The Voronoi intersection numbers nL and nR for a given division (j, h) of R determine

the complexity reduction that can be achieved for x E R. The generalized optimization criterion (GOC)

chooses the optimal partitioning hyperplane (j*, hj・） such that nL and nR are as small as possible. GOC

performs this in two steps:

1. Find the optimal partition location hj on each coordinate axis j = l, ... , J{ as the partition which

minimizes inL(j, h) -nR(j, h)I:

hj = arg min I四 (j,h) —麻(j, h)
a心h岱j

(1)

2. Find the optimal partition a.xis J• as the coordinate axis for which its optimal (nL, nR) division at
号isclosest to the balanced division value (n/2, n/2), i.e., which minimizes the Euclidean distance

d(p, q) between p = (nL(hj),nR(hJ)) and q = (n/2,n/2), where n is the number of Voronoi regions

intersecting with the region to be partitioned:

j* = arg TI1in d(p, q)
1::;1::;K

(2) .'
The main information required by the GOC are n, and (四(j,h), nR(j, h)) (the number of Voronoi

regions intersecting respectively with the left and right regions for a candidate division h on coordinate

axis j) for any (j, h). These are obtained using the projections of the Voronoi intersection regions in R

corresponding to the codevectors in CR, I~(\I; ふ isthe intersection of Voronoi region½inside the region

R, i.e., (加：：：： ½nR, then Pf = (P/,L, P/,u) is the projection of (½)R on coordinate axis j, P/,L and P/,u
being the lower and upper boundaries of the projection interval P/. CR is obtained using a large set of

training vectors T :::: { X1, x2, ... , Xm} (or uniformly distributed set of vectors inside R) as,

4 Pre-processing ”o

CR = { Ci : ¼n R -:/= 0} = LJ q (X/)
X1ER

where, q(x1) is the nearest-neigしborcodevector of x1 in the codebook. Subsequent to the determination of

CR, the projection estimates Pf for j = 1, ... , I{ of each Ci E CR is obtained from T = { x1}, / = 1, ... , m

as,

(3)

pi
i,L ＝

pi
i,U ＝

．
皿 nx・: Ci= q(x1)
X1ER

J

max町： Ci = q(x1)
X1ER

Given Pf;:=: (Pf,L,P/,u),j = 1, ... ,K, 四 (j,h) and旺 (j,h) are obtained for any (j, h) as,

nL(j, h) = 1s{(h)I, {S{(h) = i: P/,」;< h}

nR(j, h) = ISぶ(h)I,{Sぶ(h)= i: P/,u > h}

(4)

(5)

In the first step of GOC (1), the function lnL (j, h) -nR(j, h) I changes only at the projection boundaries

(P/.L, P/.u), i = 1, ... , n. Hence it has to be evaluated only at these 2n locations as the candidates for the

optimal h*. If the projection boundaries (P/,L,P/.u),i = 1, ... ,n are distinct, then lnL(j,h)-nR(j,h)I

has a minimum at the nth interval among the 2n -1 intervals formed by the ordered sequence (P/.L, P/.u),

i = 1, ... , n. In this case, h* can be located at the nth interval directly, incurring only the 0(2n log(2n))

cost for ordering the 2n projection boundaries.

4.2 Bucket-Voronoi intersection (BVI) list, storage overhead and complexity of

BVI search

(4.2.1) Bucket-Vorono1 intersection (BVI) list

In order to use the K-d tree (subsequent to its optimization), for bucket-Voronoi intersection based search,

it is necessary to find the set of codevectors associated with each bucket corresponding to the Voronoi regions

intersecting with the bucket. This set (henceforth, referred to as bucket-Voronoi Intersection list or BVI list)

can be determined after the optimization (by FBF or GOC) is completed. This is done in the same manner

as finding CR using (3) from the training data T. This requires a total cost of 0(m log N) scalar operations

to find the bucket (at depth d = log N) containing each test vector in T updating the corresponding bucket-

Voronoi intersection list.

(4.2.2) Storage

The storage for BVI search consists of representing the tree using two scalar quantities (j, h) per non-

terminal node to describe the partitions along with the BVI list indices of the terminal bucket nodes. For

a tree of depth d, the total storage is (2d -1) integer words for the partition index j, (2d -1) real words

for the partition location h, and (い 1)2dinteger words for the the BVI list indices at the terminal bucket

nodes. For tree depth d = log N this amounts to a storage equivalent of (3 + b)2d integer words, where b is

the average bucket size. b has bee.n empirically observed to approach a constant 0(1), i.e., independent of

N for tree depth d = log N, and the total storage of the K-d tree for BVI search is linear (O(N)).

(4.2.3) Complexity of BVI search

Given the tree and the BVI list, the nearest-neighbor search for any new test vector proceeds in two ph邸 es

- first identifying the bucket containing the test vector and, then, searching within the list of codevectors

associated with the bucket. The resulting solution will be optimal if the bucket-Voronoi intersection list of

all the buckets have been obtained correctly. The BVI search complexity is directly determined by the size

of the BVI lists in the tree. The size of the bucket regions decre邸 eslinearly for incre邸 ingtree depth. This

5 Results 6

results in a decrease in the number of Voronoi regions which intersect with the bucket (size of the BVI list)

which inturn reduces the BVI search complexity linearly with tree depth. The tree depth can be increased

indefinitely, with the search complexity decreasing monotonically, limited only by the storage requirements.

For searching a set of N codevectors, a properly optimized tree of depth d = log N can achieve 0(1)

(constant, i.e., independent of the codebook size N) complexity reduction with linear (O(N)) storage and

O(log N) memory access overhead cost (2]. In the experiments carried out here, we have limited our tree
depth d to log N and the tree is uniform with N buckets at the terminal layer.

5 Results

Here, we present simulation results using the K-d tree based BVI search for reducing the complexity

of SVLPC quantization of 10 -dimensional LSF vectors with the squared error distance. We have two

codebooks C4 and C5, respectively for the first part of dimension 4 and the second part of dimension 6,

each of size N == 4096. The data and codebooks used here are the same as used in (1]. The codebooks were

obtained using a training set of 60000 LSF vectors. The test set consists of 8000 LSF vectors 1.

In order to apply the BVI search to the split-vector quantizer, the I<-d tree is constructed first using the

given codevectors for the two parts separately. Since the codebook size N in this case is 4096, the tree depth

used here is d == log N == 12 such that there are 4096 (== 2りbucketsin the tree. Here, we report results

for trees optimized using the FBF and GOC criteria. For the GOC criteria, 60000 vectors are not adequate

in estimating the Voronoi projections for codebook size 4096 in dimensions I< == 4 and I< == 6. Therefore,

we have increased the training data set to 1,200,000 vectors by a factor of 20 by generating 20 new vectors

by random perturbation of each vector in the 60000 vector set within a small radius around the vector.

We use this 1,200,000 vector set for the GOC optimization and for generating the BVI lists subsequent to

optimization by FBF and GOC.

Here we report results for the following optimization and search procedures:

1. BCK: Backtracking search 2 with tree optimized using FBF criterion.

2. BVI-FBF: Bucket-Voronoi intersection search with tree optimized using FBF criterion.

3. BVI-GOC: Bucket-Voronoi intersection search with tree optimized using GOC criterion.

＼

,
＇
＼
、
＇

J

Table I shows the results for BCK, BVI-FBF and BVI-GOC in the split..:vector quantizer of codebook

size N = 4096 for the two parts of dimensions I< = 4 and I< = 6. Here, the full-search complexity is 4096

distances per test vector. The performance of the fast search is measured in terms of the average (両） and r

worst-case complexity (冠） of the search. Here we have shown results for quantizing two sets of data for

tree depths d = 8 and d = 12: i) 1,200,000 vectors used in optimizing the tree using GOC criterion; this is

referred to as the training data (Trg) and, ii) test data of 8000 vectors (Tst).

From this table, it can be seen that both backtracking search BCK and the BVI search (with either FBF

or GOC optimization) have comparable average complexity荒 .However, the backtracking search algorithm

BCK suffers a very high worst-case complexity in comparison to BVI search. Considering the BVI search,

it can be noted that the GOC optimization offers lower worst-case complexity in comparison to the FBF

1These were obtained from the'FM radio'data b邸 edescribed in detail in [1]. This consists of 23血nutesof speech recorded'

from 35 different FM radio stations. The first 1200 seconds of speech (from about 170 speakers) forms the training set and the

la.st 160 seconds of speech (from 25 speakers) forms the test set. The 10-dimensional LSF vectors were obtained by 10-th order

LPC analysis perfo1-rned for every 20 ms using a 20-ms analysis window,

2 Backt?-acking search: The FBF criterion [3], [4] was proposed for optimizing the tree to mirumize the expected search time

under a backtracking se紅 chprocedure. The backtracking se紅 chcons is ts in fast伽 dinga tentative (cwTent) nearest-neighbor

of the given test vector X from among the set of codevectors within the bucket contairung the test vector X and then in

determin.ing the actual nearest-neighbor from among other buckets which overlap with the current nearest-neighbor ball. The

overall search is carried out by a recursive procedure wluch implicitly performs a backtracking to move from one overlapping

bucket to another, the overlap being detected by a bounds-overlap-ball test, The algorithm based on this optimization and

backtracking search has a O(log N) average complexity performance, However, the main shortco血 ngof the backtracking search

is its high computational overhead and the resulting high worst-case complexity [4].

参考文献 7

criterion. The BVI search is able to reduce the search complexity of both parts (I< = 4 and I< = 6) by 2

orders of magnitude for depth d = 12 over the full-search algorithm. The consistency of performance of BVI

search for both the training and test data can also be noted.

L ,

6 Conclusions

The quantization of the LPC parameters at very low bit-rates to achieve transparent quality quantization

is an important problem. Recent solutions to this are based on vector quantization (VQ) of the LPC vectors

using large codebook sizes. However, the resultant high computational complexity of VQ encoding is a main

problem in these quantizers. In this paper, we have used a fast vector quantization encoding procedure

termed the bucket-Voronoi intersection (BVI) search to reduce the computational complexity of the split-

vector quantizer. We have shown that the BVI search algorithm can offer over 2 orders of 111agnitude

reduction in the computational complexity of the split vector quantizer, "thereby rendering it amenable for

practical real-time coding.

表 1:Performance comparison of the K-d tree search algorithms BCK, BVI-FBF and BVI-GOC

＼）

9し

Part-I Part-II

Data Search I{= 4 K=6

d set Algorithm 荒 --- 荒 ＾ nc nc

BCK 64.0 325 181.6 1460

Trg BVI-FBF 63.6 103 133.1 231

BVI-GOC 60.8 71 125.1 154

8 BCK 68.7 286 185.0 949

Tst BVI-FBF 63.9 103 131.7 231

BVI-GOC 61.1 71 124.9 154

BCK 28.5 162 91.5 1211

Trg BVI-FBF 14.3 33 31.7 83

BVI-GOC 12.8 22 26.9 51

12 BCK 31.4 130 93.7 637

Tst BVI-FBF 14.4 33 31.8 83

BVI-GOC 12.9 22 26.7 51

。 参考文献

[1) K. K. Paliwal and B. S. Atal, "Efficient vector quantization of LPC parameters at 24 bits/frame", IEEE

Trans. Speech and Audio Processing, vol. 1, no.l, pp. 3-14, Jan. 1993.

[2] V. Ramasubramanian and K. K. Paliwal, "Fast K-d tree algorithms for nearest-neighbor search with

application to vector quantization encoding" IEEE Trans. on Signal Processing, vol. 40, no. 3, pp.

518-531, Mar. 1992.

[3] J. H. Friedman, J. L. Bentley, and R. A. Finkel, "An algorithm for finding best matches in logarithmic

expected time", ACM Trans. Math. Software, vol. 3, No. 3, pp. 209-226, Sept. 1977.

[4] V. Ramasubramanian and K. K. Paliwal, "Fast vector quantization encoding based on K-d tree back-

tracking search algorithm", Digital Signal Processing, 1997, vol. 7, no. 3, 1997.

	001
	002
	003

