Internal Use Only
002

TR-IT-0227

Reducing the complexity of the
LPC vector quantizer using the K-d
tree search algorithm

V. ﬁamasubramanian and K. K. Paliwal

Linear predictive coding (LPC) parameters are widely used in various speech coding applica-
tions for representing the spectral envelope information of speech. Transparent quantization of
the LPC parameters (average spectral distortion of 1 dB) can be achieved at 24 bits/frame using
the split vector LPC quantizer (SYLPC) which quantizes 10-dimensional line spectral frequency
(LSF) vectors in two parts. However, SVLPC suffers from a high computational complexity in
quantizing each part (one of dimension 4 and the other of dimension 6) using independent code-
books of size 4096 (corresponding to a rate of 12 bits/part). This limits the practical real-time
application of the coder. In this paper, we reduce the computational complexity of the split vec-
tor quantizer by 2 orders of magnitude using the fast K-dimensional (K-d) tree search algorithm
under the bucket-Voronoi intersection (BVI) search framework. This is of significant importance
in rendering the SVLPC amenable for practical real-time coding applications.

©A T REPEREEHIEA

©ATR Interpreting Telecommunications Research Laboratories

BX

BR
1 Introduction
2 The K-dimensional (K-d) tree
3 Bucket-Voronoi intersection search
4 Pre-processing
4.1 Construction of the K-dtree oo, e
(4.1.1) Friedman-Bentley-Finkel (FBF) criterion TP
(4.1.2) Generalized optimization criterion (GOC) ot
4.2 Bucket-Voronoi intersection (BVI) list, storage overhead and complexity of BVI search .
(4.2.1) Bucket-Voronoi intersection (BVI) list [
(4.2.2) SEOTAEE . o v v vt e
(4.2.3) Complexity of BVIsearcho covv v
5 Results
6 Conclusions

SEH

2 The K-dimensional (K-d) tree - 2

1 Introduction

Linear predictive coding (LPC) parameters are widely used in various speech coding applications for
representing the spectral envelope information of speech. For low bit rate speech coding applications, it
is important to quantize these parameters using as few bits as possible. Considerable work has been done
in the past to develop efficient quantization procedures, both scalar and vector, for quantizing the LPC
parameters with smallest number of bits. Among these, vector quantization of the LPC parameters has
emerged as an effective approach to achieve ‘transparent’ quantization (average spectral distortion of 1 dB
or less) of the LPC parameters. Currently, the lowest bit-rate for transparent quantization is achieved by
the split vector quantizer using line spectral frequencies (LSF) [1]. This quantizer requires 24 bits/frame to
achieve an average spectral distortion of 1 dB, less than 2% frames having spectral distortion in the range
2-4 dB and no frame having spectral distortion greater than 4 dB. Detailed studies supporting the choice of
LSF representation over other LPC representation, the need to resort to splitting of the LSF vector and the
distortion measure used for vector quantization have been reported earlier (1]. Following is a brief description
of the basic vector quantization encoding stage in the SVLPC quantizer.

In a typical LPC based quantization scheme, LPC parameters are obtained at a rate of 50 frames/sec,
using the 10-th order LPC analysis and are quantized prior to transmission. In the 24 bits/frame split vector
LPC quantizer (SVLPC) [1], each LPC parameter vector is transformed to the corresponding 10-dimensional
LSF vector. This LSF vector is divided into two parts — the first part consists of the first four LSFs and the
second part the last six LSFs. Each part is quantized independently using 12 bits. If the LSF’s of a frame
representing a short segment of speech is given by the vector £ = (f1, fs,..., fi0), this is quantized into a
vector f = (fl, U A , fi0), where, (fl, . .,f4) and (f5, ..., fi0) are respectively the nearest-neighbor
codevectors of the first part (f1,..., f4) and the second part (fs,..., fi0) from the corresponding codebooks
of the two parts each of size 4096, The distance measure d(f,f) between the LSF test vector f and a LSF
codevector f is the squared error distance given by d(f,f) = 2}21 (fi = fi)]?, where f; and f; are the i-th
LSF's in the test and codevector respectively. The LPC quantization of one frame of speech corresponds to
vector quantization encoding of each part using a codebook of size 4096. This requires computation of 4096
distances for each part and is a very high computational requirement for vector quantization (VQ) encoding
which limits the practical real-time application of the coder.

In this paper, we are concerned with the computational complexity of the SVLPC quantizer. The main
aim in this paper is to report the results of applying an efficient fast nearest-neighbor search algorithm to
reduce the computational complexity of the split vector quantizer. The fast algorithm is a K-dimensional
(K-d) tree search algorithm under the bucket-Voronoi intersection (BVI) search framework [2]. This paper is
organized as follows. In Section 2, we give a brief description of the K-d tree data structure. In Section 3, we
describe the bucket-Voronoi intersection (BVI) framework. Section 4 describes the preprocessing procedure
in constructing the K-d tree for using in the BVI framework. This involves optimizing the tree using efficient
criteria and finding the bucket-Voronoi intersections. In this section we describe two optimization criteria
used for the simulation study in this paper. In Section 5, we present results obtained in reducing the
computational complexity of the SVLPC quantizer for the two parts (one of dimension 4 and the other of
dimension 6) under the squared error distance.

2 The K-dimensional (K-d) tree

An important approach towards fast VQ encoding is the use of data structures which facilitate fast search
of the codebook which is normally unstructured. In this context, the K-d (K-dimensional) tree structure is
a powerful structure in providing efficient space localization of a vector in K-dimensional space (R¥X) with
very low overheads: A K-d tree structure of depth d partitions the RX space into 2¢ disjoint hypercuboidal
regions (buckets) and allows identification of the bucket containing any given vector in R¥ in d scalar
comparisons.

The R¥ space is split into two half spaces by means of an hyperplane orthogonal to one of the K
coordinate axes. Such an hyperplane H, given by H = {x € R¥ : z; = h}, defines two half spaces, Ry and
Rg as Ry, = {x € RX : z; < h} and Rg = {x € R¥ :z; > h}. The initial region corresponds to the root

4 Pre-processing 3

of the tree at layer 1 and the two subregions R; and Rp obtained by the division correspond to the left
and right sons at layer 2. Each of these two half spaces are successively divided by hyperplanes orthogonal
to the coordinate axes and d such successive divisions starting with the initial region as the root at layer 1
creates a tree of depth d with 2¢ terminal regions termed ‘buckets’ at the (d + 1)** layer.

Every non-terminal node is associated with a region and a partitioning hyperplane of the form x : z; = h,
which needs storage of two scalar quantities (4, h) at each node, where j is the index of the coordinate axis
orthogonal to the plane (referred to as the ‘partitioning’ or ‘discriminator’ axis), and, h is the location of the
plane on this axis. Given any vector in R, it can be located with respect to the dividing plane H at any
node by the scalar comparison z; < h, i.e., comparing the vector’s j** component value with the partition
value h. Starting from the root node, a sequence of d such scalar comparisons of the vector’s j** component
value with the partitioning hyperplane (j, k) at that node leads to the leaf (or bucket) containing the vector.

3 Bucket-Voronol intersection search

Given a set of N codevectors C = {c1,...,cn}, alongwith a specified distance measure, the R¥ space
is partitioned into N disjoint regions {Vi,Va,...,Vn}, known as Voronoi regions. V; is the Voronoi region
of ¢; and contains all points in R¥ nearer to ¢; than any other codevector, i.e., Vi = {x € R¥ : d(x,¢;) <
d(x,¢;),5 = 1,...,N}. Thus, if q(x) denotes the nearest-neighbor quantization of x then, V; = {x € RX :
q(x) = c;} is the nearest-neighbor locus region of ¢;. If a vector x in R¥ is contained in the Voronoi region
Vi, the associated codevector ¢; will be the nearest-neighbor of x.

In the bucket-Voronoi intersection search framework, each bucket is associated with a set of'codevectors
whose Voronoi region intersect with the bucket region. This subset is referred to as the bucket-Voronoi
intersection list (or BVI-list) of that bucket. The buckets and the Voronoi regions provide two independent
partitioning of the same space using disjoint regions. Therefore, if the test vector is contained within the
bounds of a particular bucket region, then the test vector can be present only in one of the Voronoi regions
having a non-empty intersection with the bucket. Thus, the BVI-list of a bucket contains the nearest-
neighbor codevector of any vector within the bucket. For any given test vector, its nearest-neighbor can
therefore be determined by a fast and localized BVI search in two steps:

1. Determine the bucket containing the test vector. This requires d scalar comparisons for a tree of depth

d.

2. Perform a search (by actual distance computation) among the small set of codevectors whose indices
are stored in the BVI - list associated with that bucket.

4 Pre-processing

The BVI search requires a pre-processing phase consisting of 1) Constructing the K-d tree for a given set
of codevectors and, ii) Finding the BVI list for each bucket of the resulting tree. Subsequent to this, the
K-d tree structure can be used for fast encoding of arbitrary new test vectors. The following gives a brief
description of the steps involved in this pre-processing phase.

4,1 Construction of the K-d tree

The construction of the K'-d tree involves the choice of the partitioning hyperplane at each node of the
tree. This is referred to as optimization of the tree for the given set of codevectors. A non-terminal node
region in the K-d tree is associated with a bounded region R € RX, defined as R = {x € R¥ :q; < z; < b5,
j=1,...,K}. As noted earlier, a hyperplane {x : z; = h; a; < h < b;} (represented as (j, k) henceforth),
divides R into two subregions R and Rg. Optimization of the K-d tree involves making a choice of the
partitioning hyperplane (j*, h}.),5* € {1,..., K} and a;. < h}. < b+ under some criterion with respect to
region R. This is termed loca{ optimization of the tree and has been addressed earlier in detail in [2]. Here,
we consider two main optimization criteria in designing the tree for use with the BVI search. These are

4 Pre-processing 4

namely, 1) the Friedman-Bentley-Finkel (FBF) criterion [3], (4], and, ii) the generalized optimization criterion
(GOCQ) [2].

(4.1.1) Friedman-Bentley-Finkel (FBF) criterion

If Cp = {c; : ¢; € R} is the set of codevectors lying within the region R represented by the node to be
partitioned, the FBF criterion chooses the partitioning hyperplane (5*, h;-‘.) as follows:

1. j* is chosen as the the axis along which the corresponding codevector coordinates have the maximum
variance and,

2. h;. 1s chosen as the median of the codevector coordinate distribution on axis j*,

where, the codevector coordinate variance and median are computed using codevectors in Cg.

(4.1.2) Generalized optimization criterion (GOC)

The FBF criterion was originally obtained for using the K-d tree under a backtracking search [3] and hence
optimizes the tree only with respect to the codevectors. However, for the bucket-Voronoi intersection search,
a more direct optimization results with the use of information about the Voronoi regions intersecting with
the region corresponding to the node being optimized [2]. One of the optimization criteria proposed under
this framework is the generalized optimization criterion (GOC) which is briefly described in the following;

Let Cg, Cg, and Cg, be the set of codevectors whose corresponding Voronoi regions intersect with
the regions R, R; and Rp respectively, ie., ={ci: iNR # 0}, Cr, = {ci : VN Ry # 0},
Crr = {c; : ViN Ry # 0}, where V; is the Voron01 region associated with codevector ¢;. Let n, nr and ng
be the size of the sets Cr, Cg, and Cpr, respectively.

Given x € R, the nearest-neighbor of x belongs to Cgr and can be found with a cost of n distance
computations. However, the partitioning of R reduces the search complexity from n to ny or ng after one
scalar comparison. The Voronoi intersection numbers ny, and ng for a given division (7, h) of R determine

the complexity reduction that can be achieved for x € R. The generalized optimization criterion (GOQC)
chooses the optimal partitioning hyperplane (5* ,hj.) such that ny and ng are as small as possible. GOC
performs this in two steps:

1. Find the optimal partition location A} on each coordinate axis j = 1,..., K as the partition which
minimizes |ny (4, h) ~ ng(J, h)|:

h] = arg I<n;n InL(],h)—nR(j) h)l » (1)

2. Find the optimal partition axis j* as the coordinate axis for which its optimal (ny,ng) division at
R} is closest to the balanced division value (n/2,n/2), i.e., which minimizes the Euclidean distance
d(p, a) between p = (nr(hj),nr(h})) and q = (n/2,n/2), where n is the number of Voronoi regions
intersecting with the region to be partitioned:

J" = arg n;1<n d(p;q) (2)
The main information required by the GOC are n, and (nr(j,h),nr(j,h)) (the number of Voronoi
regions intersecting respectively with the left and right regions for a candidate division A on coordinate
axis j) for any (j,h). These are obtained using the projections of the Voronoi intersection regions in R
corresponding to the codevectors in Cg. If (V;)g is the intersection of Voronoi region V; inside the region
R, ie., (Vi)g = ViR, then P! = (PfL, .U) is the projection of (V;)gr on coordinate axis 7, P],L and»PZU
being the lower and upper boundaries of the projection interval Pj Cpr is obtained using a large set of
training vectors 7" = {x1,%3,...,Xp} (or uniformly distributed set of vectors inside R) as,

Oy

4 Pre-processing

Cr={c;:VinR#0} = |J a(x) (3)
Xi€R

where, q(x;) is the nearest-neighbor codevector of x; in the codebook. Subsequent to the determination of
Cgr, the projection estimates P} for j = 1,..., K of each ¢; € Crg is obtained from T' = {x;},I=1,...,m

as,

Pl = ,glggwj!CFQ(xz)
Fiy = maxe;:c=dqlx) (4)

Given P} = (P,-’;L,P;i,U),j =1,...,K, ng(j,h) and ng(j, h) are obtained for any (j, h) as,

no(jih) = ISL(A)L, {SL(h) =i Ply < B}
nr(ih) = |Sp(W), {Sk(h)=i: Ply > h} (5)

In the first step of GOC (1), the function {nz(j, k) — ng(j, h)| changes only at the projection boundaries
(Pz.’:L, Pz-’;U),i = 1,...,n. Hence it has to be evaluated only at these 2n locations as the candidates for the
optimal A*. If the projection boundaries (R{L,P,-{U),i = 1,...,n are distinct, then |nz(j, h) — ng(j, h)|
has a minimum at the n' interval among the 2n — 1 intervals formed by the ordered sequence (PZL, Pz.’;U),
i=1,...,n. In this case, h* can be located at the n® interval directly, incurring only the O(2nlog(2n))

cost for ordering the 2n projection boundaries.

4.2 Bucket-Voronoi intersection (BVI) list, storage overhead and complexity of
BVI search

(4.2.1) Bucket-Voronoi intersection (BVI) list

In order to use the K-d tree (subsequent to its optimization), for bucket-Voronoi intersection based search,
it is necessary to find the set of codevectors associated with each bucket corresponding to the Voronoi regions
intersecting with the bucket. This set (henceforth, referred to as bucket-Voronoi Intersection list or BVT list)
can be determined after the optimization (by FBF or GOQ) is completed. This is done in the same manner
as finding Cr using (3) from the training data T'. This requires a total cost of O(mlog N) scalar operations
to find the bucket (at depth d = log N) containing each test vector in T updating the corresponding bucket-
Voronoi intersection list.

(4.2.2) Storage

The storage for BVI search consists of representing the tree using two scalar quantities (j,2) per non-
terminal node to describe the partitions along with the BVT list indices of the terminal bucket nodes. For
a tree of depth d, the total storage is (2¢ ~ 1) integer words for the partition index j, (24 — 1) real words
for the partition location k, and (b + 1)2¢ integer words for the the BVI list indices at the terminal bucket
nodes. For tree depth d = log N this amounts to a storage equivalent of (3 + 5)2¢ integer words, where b is
the average bucket size. b has been empirically observed to approach a constant O(1), i.e., independent of
N for tree depth d = log NV, and the total storage of the K-d tree for BVI search is linear (O(N)).

(4.2.3) Complexity of BVI search

Given the tree and the BVI list, the nearest-neighbor search for any new test vector proceeds in two phases
— first identifying the bucket containing the test vector and, then, searching within the list of codevectors
associated with the bucket. The resulting solution will be optimal if the bucket-Voronoi intersection list of
all the buckets have been obtained correctly. The BVI search complexity is directly determined by the size
of the BVI lists in the tree. The size of the bucket regions decreases linearly for increasing tree depth. This

5 Results 6

results in a decrease in the number of Voronoi regions which intersect with the bucket (size of the BVI list)
which inturn reduces the BVI search complexity linearly with tree depth. The tree depth can be increased
indefinitely, with the search complexity decreasing monotonically, limited only by the storage requirements.

For searching a set of N codevectors, a properly optimized tree of depth d = log N can achieve O(1)
(constant, i.e., independent of the codebook size N) complexity reduction with linear (O(N)) storage and
O(log N) memory access overhead cost [2]. In the experiments carried out here, we have limited our tree
depth d to log V and the tree is uniform with N buckets at the terminal layer.

5 Results

Here, we present simulation results using the K-d tree based BVI search for reducing the complexity
of SVLPC quantization of 10 - dimensional LSF vectors with the squared error distance. We have two
codebooks C4 and Cg, respectively for the first part of dimension 4 and the second part of dimension 6,
each of size N = 4096. The data and codebooks used here are the same as used in [1]. The codebooks were
obtained using a training set of 60000 LSF vectors. The test set consists of 8000 LSF vectors 1.

In order to apply the BVI search to the split-vector quantizer, the K-d tree is constructed first using the
given codevectors for the two parts separately. Since the codebook size N in this case is 4096, the tree depth
used here is d = log V = 12 such that there are 4096 (= 2¢) buckets in the tree. Here, we report results
for trees optimized using the FBF and GOC criteria. For the GOC criteria, 60000 vectors are not adequate
in estimating the Voronoi projections for codebook size 4096 in dimensions K = 4 and K = 6. Therefore,
we have increased the training data set to 1,200,000 vectors by a factor of 20 by generating 20 new vectors
by random perturbation of each vector in the 60000 vector set within a small radius around the vector.
We use this 1,200,000 vector set for the GOC optimization and for generating the BVI lists subsequent to
optimization by FBF and GOC.

Here we report results for the following optimization and search procedures:

1. BCK: Backtracking search ? with tree optimized using FBF criterion.
2. BVI-FBF: Bucket-Voronol intersection search with tree optimized using FBF criterion.

3. BVI-GOC: Bucket-Voronoi intersection search with tree optimized using GOC criterion.

Table I shows the results for BCK, BVI-FBF and BVI-GOC in the split-vector quantizer of codebook
size N = 4096 for the two parts of dimensions K = 4 and K = 6. Here, the full-search complexity is 4096
distances per test vector, The performance of the fast search is measured in terms of the average (7c) and
worst-case complexity (n¢) of the search. Here we have shown results for quantizing two sets of data for
tree depths d = 8 and d = 12: i) 1,200,000 vectors used in optimizing the tree using GOC criterion; this is
referred to as the training data (Trg) and, ii) test data of 8000 vectors (Tst).

From this table, it can be seen that both backtracking search BCK and the BVI search (with either FBF
or GOC optimization) have comparable average complexity i¢. However, the backtracking search algorithm
BCK suffers a very high worst-case complexity in comparison to BVI search. Considering the BVI search,
it can be noted that the GOC optimization offers lower worst-case complexity in comparison to the FBF

1These were obtained from the ‘FM radio’ data base described in detail in [1]. This consists of 23 minutes of speech recorded
from 35 different F'M radio stations. The first 1200 seconds of speech (from about 170 speakers) forms the training set and the
last 160 seconds of speech (from 25 speakers) forms the test set. The 10-dimensional LSF vectors were obtained by 10-th order
LPC analysis performed for every 20 ms using a 20-ms analysis window,

2 Backtracking search: The FBF criterion (3], [4] was proposed for optimizing the tree to minimize the expected search time
under a backtracking search procedure. The backtrécking search consists in first finding a tentative (current) nearest-neighbor
of the given test vector X from among the set of codevectors within the bucket containing the test vector X and then in
determining the actual nearest-neighbor from among other buckets which overlap with the current nearest-neighbor ball. The
overall search is carried out by a recursive procedure which implicitly performs a backtracking to move from one overlapping
bucket to another, the overlap being detected by a bounds-overlap-ball test. The algorithm based on this optimization and
backtracking search has a O(log N} average complexity performance, However, the main shortcoming of the backtracking search
is its high computational overhead and the resulting high worst-case complexity {4].

~

BHXE 7

criterion. The BVI‘search is able to reduce the search complexity of both parts (K = 4 and K = 6) by 2
orders of magnitude for depth d = 12 over the full-search algorithm. The consistency of performance of BVI
search for both the training and test data can also be noted.

6 Conclusions

The quantization of the LPC parameters at very low bit-rates to achieve transparent quality quantization
is an important problem. Recent solutions to this are based on vector quantization (VQ) of the LPC vectors
using large codebook sizes. However, the resultant high computational complexity of VQ encoding is a main
problem in these quantizers. In this paper, we have used a fast vector quantization encoding procedure
termed the bucket-Voronoi intersection (BVI) search to reduce the computational complexity of the split-
vector quantizer. We have shown that the BVI search algorithm can offer over 2 orders of magnitude
reduction in the computational complexity of the split vector quantizer, thereby rendering it amenable for
practical real-time coding. -

1: Performance comparison of the K-d tree search algorithms BCK, BVI-FBF and BVI-GOC

Part-I Part-I1
Data Search K=4 K=286
d | set | Algorithm | Ai¢ | n¢ | 7we neé

BCK | 64.0 | 325 | 181.6 | 1460
Trg | BVI-FBF | 63.6 | 103 | 133.1 | 231
BVI-GOC | 60.8 | 71 | 125.1 | 154
8 BCK | 68.7 | 286 | 185.0 | 949
Tst | BVI-FBF | 63.9 | 103 | 131.7 | 231
BVI-GOC | 61.1 | 71 | 124.9 | 154

BCK |[285 162 915 | 1211
Trg | BVI-FBF | 143 | 33 | 317 | 83

- | BVIGOC 128 | 22| 269 51
12 BCK | 314|130 | 937 | 637
Tst | BVI-FBF | 144 | 33 | 318 | 83
BVI-GOC | 12.9 | 22| 26.7| 51

ZE TR

(1] K. K. Paliwal and B. S. Atal, “Efficient vector quantization of LPC parameters at 24 bits/frame”, IEEE
Trans. Speech and Audio Processing, vol. 1, no.1, pp. 3-14, Jan. 1993.

(2] V. Ramasubramanian and K. K. Paliwal, “Fast K-d tree algorithms for nearest-neighbor search with
application to vector quantization encoding” IEEE Trans. on Signal Processing, vol. 40, no. 3, pp.
518-531, Mar. 1992.

(3] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best matches in logarithmic
expected time”, ACM Trans. Math. Seflware, vol. 3, No. 3, pp. 209-226, Sept. 1977.

[4] V. Ramasubramanian and K. K. Paliwal, “Fast vector quantization encoding based on K-d tree back-
tracking search algorithm”, Digital Signal Processing, 1997, vol. 7, no. 3, 1997.

	001
	002
	003

