
Internal Use Only (非公開）

002 

TR-IT-0195 

Tied-Mixture Based SSS 
HMnet Design 

ジラルジアレサンドレ
Alexandre Girardi 

シンガーハラルド・.

Harald Singer 

（． 
1997.03 

This report describes a new approach to ML-SSS algorithm that uses tied-mixture represen-

tation of the output probability density function instead of single Gaussian during the splitting 

phase of the SSS algorithm (Tied-Mixture SSS or TM-SSS algorithm). Due to this new repre-

sentation we increase the recognition rate of the original ML-SSS algorithm by better choosing 

the split state and the split itself. Implementation and results will be shown. 
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1 Introduction 1 

1 Introduction 

In speech recognition, modeling of accoustic contexts is very important to achieve high accuracy recogni-

tion. Due to limited training data, high accuracy recognition may be accomplished by sharing states, tying 

mixtures and sharing other parameters, in order to model the phonemes robustly and precisely. 

Parameter sharing may be implemented in two ways in the HMM training algorithm: using some useful 

rules automatically (as maximum likelihood state split) or using knowledge interactively. The automatic 

approach has the advantage that, as the level of detail in the system grows, it is still possible to manage the 

problem by questioning the rules or adding new rules to the existing ones. The knowledge approach leads 

to an excessively large number of sharing possibilities resulting in a system too complicated to be improved. 

For these reasons, an approach that generates HMM context dependent models has been chosen. In this 

area ML-SSS algorithm has been proven to outperform other HMM design algorithms [23]. However it still 

has some weak points that should be explored. 

ML-SSS is a divisive clustering algorithm. A network of HMM states is increased iteratively by splitting 

at each iteration a state either in the contextual or temporal domain. The split state is selected as the state 

that maximally increases the expected gain in likelihood, which is calculated based on the assumption that 

all pdf's are single Gaussians. The iteration is stopped when either there are no more states to split, the 

gain in likelihood is smaller than a preset threshold or the desired number of states has been reached. 

The algorithm is very consistent except that the probability density function (pdf) of a state is represented 

by a single Gaussian (SG) during the split process. Figure 1 shows qualitatively how the pdf of a state would 

be better represented by either a tied-mixture (TM) or a continuous density (CD) approach. This may also 

lead to undesired split gain values in ML-SSS, see Figure 2. 

Single Gaussian 
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図 1:TM and CD vs SG pdf 
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single Gaussian case do not change after split. 

図 2:Undesired gain values in ML-SSS 
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1 Introduction 

One solution is to represent the pdf by either CD or TM representations. Unfortunately in the CD 

case the evaluation of the gain in likelihood is computationally too expensive. On the other hand, the TM 

computational cost is reasonable, once we accept the constraint that the codebook does not change during 

a split. 

This is not a strong constraint邸 thedata affected by a split will contribute minimally to the codebook 

parameters for a large number of states. The usefulness of the TM pdf representation is the subject of this 

report. 

で
，
9
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2 TM-SSS Algorithm 

TM-SSS algorithm is in summary a tied-mixture HMM where the topology is trained with a variant 

of the ML-SSS algorithm. TM-SSS has the benefit of both algorithms in the sense that it keeps a robust 

representation of the output density probabilities even for a large increase in the number of states in the 

SSS structure, also maximizing the expected likelihood of the split states as in ML-SSS [22]. This approach 

also carries the benefits of tied-mixture in the sense that we may avoid the introduction of singularities that 

may arise in the continuous single mixture HMM implementations [19]. Following is the core of the proposed 

algorithm. 

TM-SSS Algorithm 

• Preinitialization: 

l. Create a codebook of Gaussians 

• Initialization: 

1. Run Baum-Welch (tied-mixture) 

2. Get split information for all states 

• Iterate: 

1. 恥 dbest split for each domain and factor 

2. split the state with the highest expected likelihood gain 

3. if update codebook 

(a) run BW, train means, variances, weights and transitions over all states 

(b) use only the most significant mixtures 

else 

(a) run BW over affected states, only train weights and transitions 

2.1 TM-SSS Preinitialization 

In addition to the general algorithm described in Section 2 above, two new steps are performed at the 

first time one runs the algorithm. 

1. Run Baum-Welch with N Gaussian mixtures for each center phoneme, 

2. Using the above Gaussians to create a tied-mixture HMM 

This initialization not only gives us a good initialization of the algorithm, but additionally gives us a 

good starting point for comparison with the ML-SSS algorithm. 

2.2 TM-SSS Split Information 

Initially de恥 es• as the state where the split test is applied and so and s1 as the two new hypothetic 

states generated from the split. In such a case the split test of a state s* is carried out for both context and 

time domains. 

In the context domain, a split test is performed individually for each context c with c E {preceding, 

center, s-uceeding} = {Pd, Cd, 況}phoneme categories. The split in a speci恥 contextgenerates two new 

sets of phonemes P(s0, c) and P(s1, c) originated from the original set of phonemes P(s平， c),with the gain 

G(s*, c). 
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2 TM-SSS Algorithm 

In the time domain td, the split test generate two new hypothetic states with the same sets of phonemes, 

1.e., 

P(so,Pd) = P(s* ,Pd) 

P(so, cd) = P(so, sd) = P(sいPd)=P(s1心） = P(s*, cd) 

P(s1, sd) = P(s*, 況）

with the gain G(s*, t砂

The split information is therefore composed by three informations: 

(1) 

• split factor s1 that gives the maximum gain G(s*, f), where s1 and f E {tかPd,Cふ況｝，

• maximum gain G(s*, s 1) = max{ G(s*, J)} and 

• split set of phonemes P(s0) = P(s0,s1) and P(s1) = P(s1,s1)-

The next three sections describe in detail how to calculate the gain of a split and how to split in both 

the context and time domains. 

(2.2.1) TM~SSS Split Gain 

The split gain in TM-SSS is defined as the gain in likelihood of the observed data when a state is split. 

In order to calculate this gain we choose Maximum Likelihood (ML) as criterion. 

ML tries to approximate the increase in recognition accuracy by maximizing the likelihood of the obser-

vation data. 

ML-SSS is one approach similar to TM-SSS that is based on the ML criterion. In ML-SSS it is necessary 

to store state occupancy counts and other related values during the training phase [22]. Knowing that the 

number of these values grows with the square of the length of the observed data, we choose the following 

constraint: 

Constraint: All likelihood computations assume fixed phone boundaries. 

Alternatives to this constraint are embedded reestimation and Viterbi-style training algorithm. Embed-

ded reestimation seems to be a good approach, but needs additional assumptions/constraints that are not 

the immediate purpose of this work. Viterbi-style training is an attractive alternative, but it is not used 

here, because it is known to be sub-optimal relative to Baum-Welch training. 

The calculation of likelihood over the observation data directly implies many multiplications (CPU in-

tensive), so the same approach as in the Expectation-Maximization (EM) algorithm [7] is used, i.e. instead 

of maximizing the likelihood of the observed data directly, the expected log likelihood of the observed data 

will be maximized. 

To clarify let us define the observed data yJ as yJ = {Yi, Y2, ... , y J, ... , 訂}and the related hidden or 

unobserved components sr as sr = { S1, s2, ... , S j, ... , ST}, where 

• Yt is generated by St, 

• f is a frame index, 

1

,＇, 

• u is an utterance index, 

• T the total number of frames in an utterance and 

• s1 ES= { s(l), ... , s(N)} is one of the states in the HMM where 

• N represent the actual total number of states in the HMM. 
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Finally let us de恥 eQ(g(p+l) J0(P l) as the expected log likelihood of the observed data and the hidden 

states as follows 

Q(0(p+1)10(P)) = E。(p)[log P(y『,s『IY『,g(p+ll)] (2) 

So maximizing Q(0(P+1)1g(P)) at worst gives no change to the likelihood of the observed data L(0) = 
logP(y『10),mathematically 

Q(0(p+1)10(P)) 2 Q(B(P)lg(P)) =⇒ L(0(p+l)) 2 L(B(P)). (3) 

Equation 3 allows to change the objective function from expected log likelihood to expected likelihood, 

which is computatio叫 lytractable. The problem now is to express Q(0(P+l)[0(P)) in terms of the sufficient 

statistics obtained in the split phase. 

Let us then expand the expected log likelihood Q(g(p+l) [0(P)) using the conditional independence as-

sumptions in the HMM 

Q(0(p+l)lg(P)) = E[log P(y『,s『IY『,g(p+l))l0(P)] = L P(s『IY『,g(P))]ogP(y『,s『10(p+l))
s『

= LP(s『IY『,g(P)) [1ogP(s『Is『,g(p+l)) + log P(y『Is『,g(p+lり］
s『

:::: LP(s『IY『,g(P)) [1ogP(s『Is『,g(p+l) A)+ logP(y『Is『,g(p+l) B)] 

s了

＝ 
s

▽
 

こら(s,s') logP(st!St-1, g(p+l) A(ぷ））
s:s=s,,s'=s,_1 t 

s 

+ L LL  1i(s, l) logP(Yt ~町[si,g(p+l)B1 (s)) 
s:s=s, t / 
s 

+LLL叫s,l) log P(Yt伽~v1,0(p+l)v1(s)) 
s:s=s, t / 

(4) 

where 

訊s,I) ＝ P(st = s, 叩～叫y『,g(P)) (5) 

lt(s, s') ＝ P(st = s, St-1 = s'ly『,g(P)) (6) 

町 ＝ {μ1, :Bi}. (7) 

Now the transition parameters 0A(s), the distribution probabilities 0B(s) and the meanμ1 and variance 

~/ for state s are separated. 

Equation 4 allows separate estimation of the likelihood for both temporal or contextual split of a state, 

as well as for separate estimation of meanμ1 and variance~I -Rearranging the terms and using a shorter 

notation, it follows that 

= t L ら(s,s1)IogP(stls1-1,B(P+l)A(s'))+ st;., ~~1t(s,l)IogP(Yt ~叫St,g(p+l)B,(s))
I s:s=s,,s =s,_1 t 

s 

+LLL叫，l)log P(Yt伽~vr,0叫 (s))
s:s=s, t I 
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＝ 
s

▽
 

s 

こら(s,ぷ）loga(s, 忍） +I:I:I: 叫，l)log b1(s) 
s:s=s1,s'=s,_1 t s:s=s, t l 

s 

+I:I:I: 叫s,l) log N(yt Iμ 心）
s:s=s, t I 

(8) 

where s E S = s(l), ... , s(N) is one of the states in the HMM, N represent the actual total number of 

states in the HMM and 

a(s, s') ＝ P(st = sist-1 = s',0A(s)) = a;j (9) 

bz(s) ＝ P(st = sl0Bi(s)) = b;(l) (10) 

N(Ytlμ 心） 1 [ 1 )―1 ] (11) ＝ (27r)M/2図1112exp --2 (Yt -μ1 I:1 (Yt一い）

Equation 8 is considering a specific context c, i.e., one of the values on c E {preceeding, center, suceeding} 

= {Pd, Cd, 況}.This grouping has also the benefit to reduce the memory storage for the'Y and~values that 

appear in Equation 4, since they are summed up for each phone j(s, c) in a specific context c for state s, 

where j (c) takes values on P(s, c). Note that for the special case of temporal domain split or the split state 

(not the hypothetical new states) we may assign j* = j(cd), So,'Y is then represented by three vectors on 

c as follows 

方(c)(s,l) ＝ ~ 孤s,l) 
t:x,=巧(c)

ら(c)(S,忍） ＝ I: (t(s, 忍）
t・x,=巧(c)

、

し

、

‘
j

2

3

 

1

1

 

ノ
＇
ー
、
，
ー
、

So, using Equations 13 on Equation 4, gives 

Q(0(P+l)lg(P)) = s

▽
 

s 

と い(s,s') log a(s, s')十 L LL乃(c)(s,l) log b1(s) 
s:s=s,,s'=s,_, j(c)EP(s,c) 

s 

+L  L L 叫，/)log N(Yt [μ1, ~1) 

＝ 

s:s=s, t:j(c)EP(s,c) I 

s 

I: I: s:s=s,,s'=•t-1 j(c)EP(s,c) 

▽
 

s
▽/] 

＋
 

s 

恥）(s,s')loga(s,s',c)+ L 

s:s=s, j(c)EP(s,c) t:x,=巧(c) I 

where a(s,s',c), b1(s,c), μ1 and I:1 are estimated as 

a(s, s', c) = Ej(c)EP(s,c)も(c)(s,s') 

'"' j(c)EP(s,c)'Yj(c)(s 

b1(s, c) = Ej(c)EP(s,c)'Yj(c)(s, /) 
Ej(c)EP(s,c)'Yj(c)(s) 

1 
μ1 = 可L L 叫）Yt] 

sES j(c)EP(s,c) 

s:s=s, j(c)EP(s,c) l 

▽
]
 

こ方(c)(s,l) log b1(s) 
s:s=s,j(c)EP(s,c) I 

L Lit(s,l)IogN(ytlμ 心）

(14) 
＼
 

ヽ
~
ヽ
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I:1 = 喜L L [叫l)(Ytー叫（初ーい）tl 
sES j(c)EP(s,c) 

、,
j
‘
‘
,
/
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where 

罰=I: 区 {}t (l) (20) 
sES j(c)EP(s,c) 

州l) = P(Yt ~町IY『,g(P)) = L 叫 l) (21) 
sES 

加）(s) = L ;j(c)(s, l) (22) 

As a(s,s',c) do not depend on j(c), Equation 14 simplifies to 

s s 
Q(0(p+1)10(P)) = L L い (s,s')Ioga(s,s',c)+L LL乃(c)(s,l) log b1(s) 

s:s:=s,,s1:=s,_1 j(c) s:s:=s, j(c) I 

s 

+LL  L L叫 l)log N (Yt !μ 心）
s:s:=s, j(c) t:x,:=xj(c) I 

＝苫凡(s,s',c)Ioga(s,s',c)+~~N2(s,c,l)logb1(s) +~~ 応 (s,j(c)) (23) 

where 

N1(s, s', c) ＝ と証）(s, s') 
j(c) 

凡 (s,c, l) ＝ ~ ~ 孤s'!)
j(c) t:x,=Xj(c) 

凡 (s,j(c)) ＝ ~ こ叫，!)log N (Yt [μ 心）
t・x,=巧(c) l 

where 

伽）(s, s1, !) ＝ I: (1(s, s', l) 
t:x,=x,(c) 

~t (s, s1, l) = p(s1=s,st-1=s',y1~叫y『，g(P))

1j(c)(s, l) ＝ I: 'Yt(S, l) 
t・ エ,=巧(c)

孤s,l) ＝ p(si = s,yt ~叫y『，g(P))

ヽ
｀
~
ヽ
・
~
ヽ
‘
~

4

5

3

6

 

2

2

2

 

(

（

'

ー

、

(27) 

(28) 

(29) 

(30) 

(31) 

and Yt ~町 meansthat Yt is quantized to v1・

Computationally the stored values are ij(c)(s, /), where l represent the quantization index of the VQ 

codebook. 

Note that八伍(s,c, l) in practice are computed once for each particular split in a particular fixed context 

c. So far, as a first result we got a way to evaluate the likelihood of the observed data using Equation 23 as 

follows 
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Q(0l0(P)) = E~og P(y『,s『l0)IY『,g(P)] 

= L叫 s,s', c) loga(s, s', c) +LL応 (s,c, l)logbz(s) +LL島 (s,j(c)) (32) 
s s I ， s I s j(c) 

Once we are splitting one state at a time and ,t(s, l) andら(s,s1, l) are fixed for alls =I= s*, then Q(0J0(P)) 

is constant for all states less that contain the split state s*. So the gain in splitting a state G(s*) may be 

calculated as a difference in Q(0J0(P)) for just the s that is being split less the gain of the corresponding 

resulting split states, namely s0 and s1, that is 

G(s*) =ご凡(s,s') log a(s, s') -N1 (s*, s*) log a(s*, s*) 

心[~的 (s,c, I) log b1(s) -N2(s*, ca, l) log b1(s→] 

+ L [N3(so,j(c)) +況(s1,j(c))-N3(s*,j(c))] 
j(C) 

(33) 

Note that the gain G(s*) does not change due to芯 (s,c), once附 issupposed to be constant over the 

contextual and temporal domain splits. 

So for the contextual split in the context c the gain is then expressed in terms of the new states s0 and 

s1 as 

G(s*, c) = L L N1(sk, 録） log a(sk, 録)-N1(s*, s*) log a(s*, ぶ）
k=0,1 Sk,Sk 

+L L叫 Sk,s') log a(Sk, s') -N1 (sゾ）log a(sべぷ）
k=0,1 sk,s' 

+ I: 応 (so,c, 1) logb1(so) +応(s1,c, I) log bい）ー凡(s*,cd,l)logb1(s*)] (34) 

For the temporal split the gain is expressed as 

G(s*,td) = N1(so,so)loga(so,so) +凡(so,s1) loga(so, 釘）

＋凡(s1,sサloga(s1,si)-N1(s*,s*)loga(s*,s*) 

+~ 応 (so,Cd, I) log b1(so) +兄(s1,cd, I) log 61(s1)-N2(s*, Cd, I) log61(s*)] (35) 

Note that応 (so,cd, l), N2(s1, cd, I) and N2(s•, cd, I) don't have the same value, once~(j ・ (s) will now be 

up-dated for each s. In other words, is a function of j(c) in the contextual domain (fixed for s*, s。ands1 on 

each element of j(c)), but in the temporal domain it depends on s*, so and s1 and not on j(c) = j(cd) = j* 
which is constant. 

The gain in Equation 35 guarantees that the likelihood of the observed data is increased or at least 

kept at the same level if the split state chosen is the one with the greatest gain G(s) in a specific domain 

(context or temporal splitting). This does not assure an increase in likelihood, as the gain G(s) refers to 

expected likelihood instead of likelihood as pointed out in Equation 3. The constraint of fixed boundaries 

may be relaxed if an embedded training was performed, i.e. to align the training data to states in some 

pre-specified topology (driven by the labels) and then cluster the resulting state distributions to maximize 

the joint likelihood of the data and the given state sequence. 

＼

ー

・
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3 Contextual Split 

In the contextual split as used in TM-SSS the aim is to split a state s* in two new states so and s1 based 

on the observation data y associated to the split state s*. 

Note that an observation y may pass many states. In fact we assume we can cluster only the data Yt 

that passes through a specific state. The differences that may arise are minimized using a Baum-Welch-style 

clustering and a Baum-Welch reestimation of affected states after the split. 

Each observation is described by a set of factors, i.e., its preceding, center and succeeding phonemes. 

So, we must group the observations according to its factors which correspond to a context domain c with 

c E {preceeding, center, suceeding} = {Pd, c小況}.In such a case a context split is performed on a context 

domain at a time, in order to keep the convexity of the state split space As•. In the same way we define the 

space of observations to the new states Bk as Ak, where k = 0, 1 and As• = A。UA1・

Additionally let us group the observation data Yt by phonemes j(c) in a certain context c, namely Yj(c)・

By definition j(c) is generated according to the split state s*, regardless if it will be used by any of the 

hypothetical new states so, s1. To take care of the different phonemes that will pertain to a certain state s 

we define P(s, c) as the set of phonemes j(c) that pass in a certain states. 

As in the TM-SSS the purpose is to represent the HMnet using tied-mixtures, the split state s will be 

represented by its output distribution vector b(s) = (b1(s), ... , b1(s), ... , h(s)), where l represents one of 

the codebook index of the VQ. 

The goal is then to estimate two new vectors of output distribution coefficients b(s0), b(s1), so that the 

maximum likelihood criteria is observed. This is basically a divisive clustering problem. To solve this problem 

we use Chou's partitioning algorithm (6] as in ML-SSS (22]. That is, we can design a function f; = f(x) 
that predicts the observation data y from the input data x. So the function f may be used to estimate the 

probability distribution p(y/x) = p(ylf (x)), as in the tree language model (3]. The tied-distribution estimate 
interpretation corresponds to the use of divisive distribution clustering in speech recognition, e.g. (15, 27], 

and so decision tree design methodology applies here. 

Chou's partitioning algorithm is applied here, since it is linear on the number of clustered phonemes 

j(c) and on the number of dimensions of the observed data M and therefore faster compared to similar 

algorithms (CART [5]). 

According to Chou's theorem (6] in the maximum likelihood sense, the loss function .C(y, b) is -log P(yf b). 

Under this objective, the "centroid" function becomes 

b(s) = argmin E[£(y, b(s)) Is] = argmax E[log P(ylb(s)) Is] 
b(s) b(s) 

= argmax L logP(Yj(c)lb(s)) 
b(s) jEP(s,c) 

(36) 

which is the output weight estimate vector of b1(s) given by the reestimation formulas, since it must be 

estimated from data and the true P(yJs) is unknown. The divergence equation becomes 

d(s, b) = E[L(y, b(s))ls] -i(s) 

~-[ I: 区 logP(y, lb(,0))十 I: I: logP(y,lb(釘））
j(,)cP(,..,) .... ,. ,i,, j(,)a(... ,) .. ,,,. ,i,, l 

+ L L log P(Yt Jb(s*)) (37) 
j(c)EP(s•,cd) t:x,E巧(c)

For the Baum-Welch style training the divergence Equation 37 changes to 

d(s, b) = E[I(y, b(s))ls] -i(s) 
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= -[ I: I: I: 印•,I) log P(y, jb, (,0)) 
j(c)EP(s0,c) t:x,E巧 (c) I 

＋｀釘,)'"'~*'2,>, (,•,/)Jog P(y, jb,(,,)) ] 

+ I: I: I: 叩*,l) logP(y心(s*))
j(c)EP(s• ,cd) t:x, E巧(c) I 

(38) 

which corresponds to the sum of the distribution probabilities 0B'.(s) terms of Equation 14 where the 

expected log likelihood of the observed data Q(0(P)lg(P)) for interact10n (p) was used instead of (p + 1). 
That's why the estimated frequency occurrence of the l codebook'Yt (s*, l) at the split state s* was used 

instead of the estimated frequency occurrence for the hypothetical new states sk, k = 0, 1 (i.e., ,t(s k, l) in 

the first two terms of Equation 38. 

Not considering the minor effects that meanμ1 and variance凶 haveon the distance, once only part of 

the data necessary to update them will be used the divergence equation and using b1(s) = P(Yt ~叫s,b1(s)) 

becomes 

d(s, b) = E[.C(y, b(s))ls] -i(s) 

~- [ L L L 7,(s",l)logb,(sc) + L L L叩•,/)logb1(s,) 
j(,)eP(,.,,)''"'巧(<) I j(<)EP(" ,,) le,, E巧,., , l 

+ L L L"Yt(s*,l)Iogb1(s*) (39) 
j(c)EP(s*,cd) t:x,E巧 (c) I 

Binary split design of a states in the context c = {preceeding, center,suceeding} = {Pd, cd, sd}, proceeds 

as follows. 

Maximum Likelihood Split Design Algorithm 

• Iterate for a context c = Pd, cd, sd 

1. Split state s in the context c 

2. Cal叫 atethe gain G(s) 

3. If it is the greatest G(s) 

(a) Save the context 

(b) Save the splitting information (A。,Aサ

• Get the gain for a temporal splitting 

デ

＼

Note that the algorithm above is repeated for every affected state in step 3 of the T.M-SSS algorithm. 

The information saved in this step is used to find the state to split and to split it in one specific domain 

and/or context, based on the greatest gain stored for each state in the H.Mnet. Following is the splitting 

algorithm for a state s* in the specific context c, i.e. step 1 of the above algorithm. 
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Split Design Algorithm in a Context c 

(All the terms below depend on c, but c is fixed here so it will be omitted) 

• Initialization (p = 0) Initialize the distribution parameter centroids for the two new hypothetic states: 

b(0>(so) = [b1(so), ... b1(so), ... h(so)] = [bi(s*), ... b1(s*), ... h(s*)] = b(s*) 

砂 (s1)= (b1(s1), ... b1(s1), ... bL(釘）］ b1(s1) = (1 + (-1)信）b1(s*) VI 

• Iterate for p = l, 2, ... 

l. Find new binary partition { A炉，A印｝：

For each j : j E P(s), assign all the叩：叫 E巧 toA炉if

こ印*,l)logbfp-l¥so)2'. L乃（ぶ， l)log bfp-l)(s1) 

otherwise, assign all the Xt to AiP). 

2. Find centroids {b(P)(い： k=O,l}. 

炉(sk)= 
ZjEP(sk)(P) Jj (s, l) 

こjEP(sk)(P)1j(s) 

where ij (s, l) and ij (s) comes from the reestimation formulas. 

3. Test for convergence: stop if the partition does not change or if 

G(s*)(P) -G(s*)(P-1) 

G(s*)(P-1) < T) 

(40) 

(41) 

where G(s*) is the contextual gain (Equation 34) and'T/ is an heuristically chosen convergence 

threshold. Note that G(s")CP)~G(s*)CP-1). 

The particular choice of the distribution parameter centroids in the initialization step of the above 

algorithm ensures that likelihood will not decrease since one of the states has the original state distribution 

parameters, analogous to the approach used in vector quantizer design. 

The "/j (s, I) terms must be computed using both a forward and backward pass for each context c, in 

other words "/j(c)(s, I). This information is in principle available from the Baum-Welch iteration and must 

be stored in order to calculate the moments above in TM-SSS algorithm. 
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図 3:Temporal split of q into q。andq1・

4 Temporal Split 

In Section (2.2.1) a constrained EM approach to determine the split state was used, as it can be assumed 

that a state split does not change the counts for the two new states. 

However, replacing one state for two states in sequence, the increase in expected likelihood is not a simple 

difference in expected likelihood, as their counts are affected by the split. 

As in ML-SSS [22] we make use of a constrained EM criterion in the design of temporal splits, with the 

constraints being that the likelihoods of states other than the split state do not change in the parameter 

estimation stage of the split design. Here too, it is not a problem once later all affected states are updated 

in the Baum-Welch that follows the state split. 

To be more explicit, let s* be the split state and let q。andq1 be the two states resulting from a temporal 

split, as illustrated in Figure 3 .. (We use the notation q for the hypothetical new states and s* for the 

candidate state to be split.) 

The parameters that must be estimated to describe the new state are 0 = {b1(q0), bパ小）}, where b1(q) 

is the weight of the probability density functions of the tied-mixture and l represent the codebook index of 

the tied-mixture. In order to insure that only these parameters in the HMnet change and no others do, we 

require the following constraints: 

孤ぶ） =~(碍O, l) +孤q1,l))
I 

lt(s*, s*) = lt(qo, qo) +と(q1,qo)+ら(q1,qリ；

where 

孤i,l) = p(s1 = i, 防～叫Y)

et(i,j) = p(st = i, St-1 = jlY) 

are the standard terms needed for HMM re-estimation, Yt ~ v1 means that Yt was generated by v1 and Y 

represents the full training set. 

These constraints can be easily satisfied by defining 

祠q) = p(qt = qlst = s*,Y) 

ぷ(q,q1) = p(qt = q, qt-1 = q1ls1 = s*, s1-1 = s*, Y) 

and using the definition of conditional probability and the redundancy of St = s・to get 

愈
ー
，

'Yt(q, l) = p(qt = q, Yt ~町IY)= p(qt = q, St = s*, 狛 ~v叶Y)=名(q,l),t(s*) 

ら(q,q') = p(qt = q,qt-1 = q'IY) =p(qt = q,qt-1 = q',st = s*,st-1 = s*IY) 

＝ も(q,qりら(s*,s*). 
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図4:Illustration of data and states used in computing名(q)et(q, qりfora temporal split. The zeroes indicate 

impossible state-observation pairs. 

The terms名(q,l)andぷ(q,q') can be. computed using the standard forward-backward algorithm using 

only data where'rt (s*) > 0 and having non-zero state likelihood only for states q0 and q1 so that I:1全(qo,l)+ 

示(q1,l) = l. The constrained forward-backward is accomplished by passing a subset of the full data only 

over the two new hypothetical states as illustrated by the shaded region in Figure 4. 

Once the terms名(q,l)are computed, the parameters 0 are estimated according to 

b1(q) ＝ 
=t名(q,lht(s*) 

=tこぷ(q,lht(s*) 
(42) 

The other parameters are straightforward. 

Four iterations of the Baum-Welch algorithm are used to computeうt(q,l) andぷ(q,q'). The initial 

estimate for the transition probabilities use the observation distribution of the original state and choose the 

transition probabilities such that the expected duration of the two hypothesized states together is the same 

as the expected duration of the original state . This procedure is similar to the one in ML-SSS [22] and give 

us no garantee of decrease in likelihood. 
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5 TM-SSS Experiments 

Phoneme classification experiments using 25 phonemes for one male speaker (speaker MHT of the Aset 

of ATR's speech database [28]) were performed with the aim of comparing the performance of TM-SSS and 

ML-SSS. 

魯
ー

5.1 Train/Test Data and Preprocessing 

The training data is the set of phonemes taken from the even-numbered words and the test data is the 

set of phonemes taken from the odd-numbered words of the 5240 words for speaker MHT. Table 1 describes 

the preprocessing conditions. 

表 1:Preprocessing conditions 

[ Parameter 

sample rate 12000 Hz 

frame shift 5 ms 

frame length 20 ms 

pre-emphasis coef. 0.98 

parameters 16 lpc cepstra, 16△ lp c cepstra, 1 log power, 1△ log power 

frequency warping none, i.e. linear 

total dimension 34 

~Value 

5.2 Experimental Setup and Scoring 

The training conditions for both ML-SSS and TM-SSS are as follows: 

• HMnet topology training starts initially from 3 states that are aligned left to right, i.e. a 3 state model 

for all phonemes. 

• Only contextual split is performed. 

• VQ code size of TM-SSS is kept fixed at 256 Gaussians. 

• Topology growing for HMnet is performed up to 400 states. 

For scoring, phoneme classification was performed using the preceding and succeeding contexts (see 

Figure 5). Each phoneme test sample is scored against all those HMM allophone models in which the 

preceding and succeeding context match the preceding and succeeding context of the test sample. This 

works as if a perfect language model had chosen the model to test the phoneme sample. 

5.3 Results and Discussion 

Recognition results for both TM-SSS and ML-SSS algorithms, are summarized in Table 2 for closed 

(training data) and open (test data) conditions. 

For the same number of Gaussians, the results using TM-SSS are about 10% (relative decrease in error 

rate) better than using the ML-SSS algorithm. An appropriate point for comparison is when the number of 

states is 256, because then the number of gaussians in both algorithms is identical. 

However, the present implementation of TM-SSS algorithm requires a larger amount of computation 

time, i.e. about a factor of (codebook size x number of states) greater than ML-SSS during training. There 

is practically no difference in recognition time. 

During the split, certain phoneme label contexts might be lost for allophones that are not observed in the 

training data. This is called the unseen triphone problem. For recognition, we have to extrapolate models 
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図 5:Phoneme classification scheme 

表 2:Phoneme misclassification rate (%) for speaker MHT 

Number of ML-SSS TM-SSS 

states closed open closed open 

100 12.4 % 12.7 % 5.2 % 5.4 % 

200 4.2 % 4.6 % 3.3 % 3.7 % 

256 3.4 % 3.9% 3.1 % 3.6% 

300 2.7 % 3.1 % 2.7 % 3.3 % 

400 2.2 % 2.7 % 2.2 % 3.0 % 
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for these unseen triphones. Currently, this is implemented by mapping states from the raw HMnet to a filled 

HMnet with a program called Exe. fill且Mnet.

In the trained HMnet there exist many state paths, each of them representing a separate allophone. Each 

allophone is represented by a set of preceding, center and succeeding phonemes (subsets of all the possible 

phonemes). To compare the quality of the HMnet's, we calculated the phoneme occurrence as an average, 

i.e. the total number of phonemes in a certain context summed up over all the HMnet allophones, normalized 

by the total number of allophones in the HMnet. Results are shown in Table 3 

表 3:Phoneme/allophone occurrence comparison for 256 state TM-SSS and ML-SSS HMnet's 

Phone II ML-SSS II TM-SSS 

Context Raw Filled Raw Filled 

Preceding 1.61 2.73 1.92 2.95 

Center 1.09 1.14 1.00 1.00 

Succeeding 2.45 4.04 2.33 3.91 

#Allophones 1020 1466 860 1343 

As an example, suppose we have only the allophones m,n/a/m,n and b,d/e,a/s in an HMnet. In this case 

there are 2 allophones in the HMnet and there are 4 preceding phonemes m,n,b,d, so the preceding phoneme 

average is 4/2 = 2. Similarly there are 3 center phonemes a,e,a, so the center phoneme average is 3/2 = 1.5, 
and the succeeding phoneme average is 3/2 = 1.5. 

Despite the fact that all the center phonemes have been split in some context, there are still some unsplit 

center phonemes even for a 256 states ML-SSS. Table 4 summarizes them. For example, in the raw ML-SSS 

HMnet, there are 92 out of 1020 allophones, where the center contexts have not yet been split. 
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表 4:Non-split center contexts and corresponding allophone counts 

ML-SSS TM-SSS 

Raw Filled Raw Filled 

o, w o, w h,p 

q, t q, t 

k, q 

k, t 

92/1020 205/1466 0/860 1/1343 

These differences may be due to the ML-SSS deficiency in gain evaluation discussed in Section 1 and 

Figure 2. 

6 Conclus10ns 

TM-SSS is an alternative for automatic HMM state topology generation of acoustic models. It compares 

favorably with the state-of-the-art ML-SSS. More precisely, it is now possible to better evaluate the split 

gain and hence to get a more representative and robust HMnet from the training data. For a similar number 

of Gaussians, we observed a relative decrease in error rate of about 10% compared to ML-SSS. 

The major drawback of TM-SSS is it computational cost that is theoretically (codebook size x number of 

states) greater than that of ML-SSS during training. With some tricks, we can reduce this training penalty 

to about a factor of 100, i.e. TM-SSS takes about 2 weeks vs 3 hours for ML-SSS. Nevertheless, there are 

no penalties during phoneme recognition and we can expect considerable time savings for word recognition 

using statistic language models. 

We will continue with the development of an optimal HMnet generation algorithm. One possible approach 

is to split a state as a whole, i.e. not split a context at a time, but all the contexts at the same time. This 

seems possible for TM-SSS even without incr羹 ingsubstantially the computational requirements. 
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