
TR-IT-0163 

Internal Use Only (非公開）

002 

Building practical speech synthesis 

systems 

Alan W. Black 
アラン W プラック

1996.03 

This report discusses a history and philosophy of CHATR a generic speech synthesis system. 

Specific examples are given of various levels of use of the system. The currently released system 

is described and important aspects higlighted. Possible extensions to the system are discussed 

and current problems identified. This report is not intended as a user document for CHATR but a 

discussion of the overall system. 

◎ ATR音声翻訳通信研究所

◎ ATR Interpreting Telecommunications Research Laboratories 



Introduction 1 

1 Introduction 

This report is as a comment on my research in ATR over my three year stay (1993-1996). It 
concentrates on the development of CHATR a generic speech synthesis system. CHATR offers 
a practical system for research, development and general use of speech synthesis techniques. 

The current system allows text to speech for Japanese and English, in a large number 
of voices. It also allows automatic building of new voices from speech databases. It is 

flexible, written to be modified and documented. It is intended as the framework for future 
development of speech synthesis within department 2 of ITL. 

Although the seeds of a general synthesis workbench/system were conceived before I 

came to ATR, the birth and christening happened not long after my arrival. The name 

CHATR was chosen (by Paul Taylor) after significant discussions about possible names for a 
system. The name CHATR is an recursive acronym standing for "CHATR at ATR". It is a 

deliberate play on the English word "chatter" (to talk quickly or casually) and the inclusion 

of the initials ATR. 

After the choice of a good name, the system started to develop. It actually spoke for the 
first time on 28th April 1993 just under a month after I arrived, though the quality of the 

synthesis was virtually unintelligible. 

Although many people have made significant contributions to the development and re-

search behind CHATR, my own work has centered around the core system acting as software 

manager, as well as writing (and often re-writing) many of the modules within the system. 

A revision history of the system is provided at the end of this document showing the 
release dates and major developments of the system. 

Although often software development is not considered part of core research my own views 
are that without well engineered code, research is difficult and often unrepeatable. A well 
designed program, although perhaps taking longer to develop in the first place, will in the 

long run provide a better environment within which experiments may be carried out. Also 

due to there being a specific research goal within ITL, namely to develop speech translation 
systems, a practical implementation of our research is necessary if it is going to contribute 

to the overall project. Thus CHATR not only provides an environment for experimentation 

of new speech synthesis techniques but offers a conduit for the results of our research to be 
made available to people outside our immediate research group. 

The main advantages of a system specifically designed to be modular are as follows 

• individual researchers need not each develop their own full synthesizer but concentrate 
on their own work, benefiting from the modules already provided. 

• individual modules once integrated within a central system have a chance of running 
after a researcher has left ATR, thus offering a continuity for work. 

• A full working system, offers others outside the group a synthesis system, which can 
be upgraded as new research is completed. 



忍 Philosophy 

• A full working system allows clear identification of overall problems that require further 
work. 

To be fair there are disadvantages too, especially if the basic synthesizer system is not general 

enough, or too difficult or slow to use. A centralized system must offer interfaces and freedom 
such that it is suitable for individuals'research. However some constraints are necessary and 

good if they are to allow individual work to be integrated and used together. 

From the start CHATR was specifically de~igned to be both a working synthesis system 
and also an environment within which new modules may be integrated and tested. Where 
ever possible no fixed decisions about the language to be synthesized, the phoneme set, the 

byte order, the audio hardware etc. have been made. The system was designed to be a 

general framework that would meet the needs of future researchers long after the original 
authors had left. 

，
 

ー

1

，樽

／ ＼ 

2 Philosophy 

The general philosophy behind CHATR is that it can be used at three distinct levels, but of 

course there are often times when one person uses multiple levels. 

The first level is the person who just wants a talking computer. They have little interest 
in the actual synthesis methods, though will be worried about quality and speed of synthesis. 

At this level CHATR may be used as a black box synthesis system. They can simply take text 

(in Japanese, English or mixed) and produce an audio rendering of the text. At this level 
CHATR simply acts as a component within a large system that happens to require speech 
output. 

The second level is using CHATR as a toolkit, to develop existing sub-systems within it. 
In this mode users would most likely use the Lisp scripting Language offered by CHATR to 
investigate or train existing systems. Examples of this use are: the building of a new voice 

in CHATR from a speech database, training duration modules and intonation modules for 
supported or even new languages. Specifically, in this mode CHATR is used without any 

change in the C ,code. The installed version is used using Lisp programs or shell scripts as 
necessary. 

The lowest level is the use of CHATR as a research system during the development of 

new synthesis modules. For example in the creation of a new duration module, intonation 

or waveform synthesizer. In this case a user has their own copy of the code and writes C 

(or C++) code and adds new functionality to the system. Of course all that should be 
necessary is the addition of their new module. As CHATR offers various display mechanisms 

for waveforms, Fi。,segments etc as well as input at various levels, a user should be able to 
develop their own module and get the benefit of a whole existing system to aid their work. 

To show CHATR's use more clearly we will give some specific examples of work that has 

already been done within CHATR at the various levels described above. 

／
，
 



Philosophy 3 

2.1 Telephone-based email reader 

To show CHATR's capabilities as black-box synthesis system, a system that allows a user to 
hear their electronic mail over the telephone was written. 

Imagine you wish to check your email but do not have your laptop with you. As your 
email is in textual form there is no way to read it when all you have is a telephone. With 
the help of Rick Woudenberg (HIP), a small demonstration system was built. 

The system runs on three separate machines. One (hawaii.hip) offers the interface to the 
telephone system answering calls and routing them to the main phoneserver running on the 

second machine. The second machine (batu.hip) runs a server program that accepts calls 

and chooses the appropriate service. This mechanism on these two machines already existed, 
to implemented our email reader we had to add two things. 

First a new service was added to batu.hip. This service, written in the Phonescript 

language (a tel interface to lower level telephone commands) accepts button presses from 
the telephone (through the interface on hawaii.hip) and converts them to simple string 
commands. The second new requirement runs on the third machine (as71.itl) and is a 

CHATR server which both accesses the user's mail file and renders it as audio. The email 
service on batu.hip sends simple commands such as (SM_Start) and (SM__Message N) to the 

CHATR server. The CHATR server uses an external shell script to access the user's mail file. 
It extracts the headers or desired message as required. It then synthesizes the requested 

text, automatically dealing with Japanese and English in the same message and then sends 
the audio back to batu.hip, which in turn sends it to hawaii.hip and back out of the user's 
telephone. 

The following diagram shows the major parts of the telephone email system. 

Telephqne 

PBX/Interface 

Control 

& audio 

The telephone email interface is purely a demonstration. Currently only one mail file is 
accessed (with no security). Long messages cannot be interrupted except by hanging up the 

phone. Although there is much that could be done to improve this interface, the problems 

are not due to the synthesis system itself. This system explicitly shows how CHATR is 
appropriate to be embedded within large systems. 



4 Philosophy 

2.2 Toolkit level 

The second level is the use of CHATR as speech synthesis development system without adding 
any new C code to it. One of the important aspects of CHATR is that it o仔ersa small Lisp-

based scripting language to allow specification of parameters, flow of control and simple 
programs to be written in a standard text based form. Command line options are kept to 

the minimum. 

Many of CHATR's existing sub-systems allow quite complex external parameter setting. In 
fact it is design philosophy of CHATR that as many parameters as possible should be settable 
at run time through Lisp variables and commands rather than require recompilation of the 
system. 

A good example of using CHATR at toolkit level is using the system to train new intonation 
modules. One of the many intonation systems available in CHATR is an implementation of the 
ToBI system [Silverman et al 92]. For speech synthesis, an implementation of ToBI requires 

two parts. First the prediction of ToBI accents, tones and break indices, and second the 

realisation of an Fi。contourbased on these labels (and perhaps other data). 
The first stage is not discussed here, but the second stage, rendering an Fc。contour, will be. 
CHATR current supports two methods・for this stage. The first, based on [Anderson et al 84], 

uses hand specified rules to predict target points based on the accents and tones on each 
syllable. The results are acceptable but parameters in the prediction require tuning which 
at present can only be done by hand. The second technique, which will be discussed more 
fully, uniformly predicts three target points on every syllable, using linear regression. The 

advantage of the second technique is that there are no rules, and no parameters to hand 

tune. The resulting F;。hasboth a higher correlation, and a smaller RMS error than the 
Anderson method, and in simple listening tests, 70% of a test sample, were preferred to the 
older rule-driven method. 

As stated this second method of rendering an Fi。fromToBI labels is fully trainable, in 
addition the method is trainable for new speakers without any change the C code. For 
training data, it necessary to extract three feature vectors for each syllable in the train set. 

Feature O should be the actual F;。forthe start, mid vowel and end point of the syllable 
respectively. Features 1 through n should be features of the syllable that are to be used to 

predict the F;。value.Currently for English we use the following features: 

current accent (and that of two preceding syllables and two following syllables) 

break level after current syllable (and break level after two preceding and two following 

syllables) 

end tone after current syllable (and end tone after two preceding and two following syllables) 

number of (lexically) stressed syllables since the last major phrase boundary. 
number of syllables since the last major phrase boundary. 

number of (lexically) stressed syllables to the next major phrase boundary. 
number of syllables to the next major phrase boundary. 

number of accented syllables since late major phrase boundary 

／
ー
＼

/
,
1
¥
 

C

,

 



Philosophy 5
 

number of accented syllables to next major phrase boundary 

lexical stress of current syllable (and of two preceding and two following syllables) 
number of previous sub-phrases (break levels 2 or 3) since last major phrase break (level 

4). 

Linear regression models are trained to predict the three values for each syllable. The 

resulting targets are then smoothed. The following table shows results for a test set of 2778 
syllables (not used in the training) showing the correlation of the predicted F;。contourwith 
the original, and the RMS error in Hz. 

Correlation 

RMS 信
As we can see the correlation is significantly better, and the RMS error is smaller for the 

linear regression based model (LR) than for the Anderson et al. (APL) model. 

This same technique has been used for Japanese producing similarly better results than 

a rule based approach as described in [Pierrehumbert & Beckman 88]. Again as shown in 
the table the correlation is better and the RMS is smaller. 

Correlation 

RMS 三25.6 20.9 
There are problems with this method. Particularly if the database used for training does not 

contain all types of ToBI labels. For example the f2b news reader database only contains 3 

examples of phrase final rises. It is not possible to train from such few examples. Thus the 
model created does not in fact generate final rises for syllables labelled with H-H¼, while of 
course the APL model does. This would of course be solved by having a more appropriate 
database for the types of synthesis required. 

This whole technique and the above problem is discussed more fully in [Black & Hunt 96]. 

This concludes an example of the second level of using CHATR as a toolkit: that of using 
an existing system to retrain new modules for predicting Fi。.

2.3 New modules 

The third and lowest level of using CHATR is the development of new synthesis modules 

themselves within the CHATR framework. The advantage of development within CHATR 

rather than externally, is that you can have immediately access to the existing sub-systems 

within CHATR. The display mechanisms allow a user to view, the waveform, the predicted 

F。,segment durations, ToBI labels etc. Comparisons may be done at different levels, so 



6 Philosophy 

synthesized waveforms may be directly compared with originals. Original F;。contourscan 
be compared with predicted ones. 

But often the most mundane items are the ones that offer the most convenience. Once 

CI-IATR is set up it may play waveforms of any sample rate so results can easily be played. 
New modules may be quickly slotted in to the whole existing system so they may be check 
with text to speech modules as well as particular tests. 

Suppose a researcher was interested in the phenomenon of vowel reduction in English. 

A specific example of dealing with vowel reduction was recently added to CI-IATR. The 
phenomena causes certain vowels in certain contexts to be reduced to schwas. Roughly this 

occurs in unstressed syllables, but simply implementing that as a rule causes more vowels to 

be reduced than is really necessary. 

The following new module was added to replace an older version that was very minimal. 

An important contributions to the ease of building such a module is the use of the PhonoForm 

utterances. For some databases we have automatically built detailed representations of each 

utterance in a database containing phonemes, duration, power, F;。,syllable, word, ToBI 
labels and phrasing. (This is the same format used to generate the Fi。predictionfeatures 
discussed above.) Using this information we can easily access complex relationships within 

an utterance a extract feature vectors for some external training algorithm. 

In the case of reduction we want to know two things. First what are the reduced/unreduced 
vowel pairs for the given phoneme set. And secondly which syllables contain reduced vowels 

when compared with the lexical entry for the word the syllable is contained within. The first 
is partly defined by the phoneme set itself but it would be interesting if such a relationship 

could be found automatically. The first stage was to add a function which given a syllable 
would look up the word which contained that syllable in the lexicon. Then looking at the 

position of the syllable in the actual utternace and the lexical entry determine the lexical 
entry vowel and the actual vowel. This is not always possible, some pronunciations have 
a different number of syllables from the lexical entry, but well over 95% of the cases this 

is easy. If the lexical vowel and actual vowel are same, then there is no reduction, if they 
are different there may be reduction. At first all the differing vowels were listed and it was 

decided which were reductions (most) and which were something else (different pronuncia-

tions). Once given a list of actual unreduced vowels to reduced vowels, we again checked all 

syllables in the database and could tell if they were reduced, unreduced or unknown. The 

unknown ones were less than 1 % and hence removed from further training. We then collected 
other features about the syllables, accentedness, lexical stress (plus this information from 
surrounding syllables), position in phrase. 

We then used a CART regression tree system to learn the conditions for vowel reduc-

tion. The results were good and the tree generated was quite readable. Only unstressed, 

unaccented syllables are reduced, except in some certain cases near phrase boundaries. A 

new module was added to CHATR after lexical lookup which checked the features on each 
syllable and used the CART produced tree to predict if that syllable should be reduced. A 

lookup table for the appropriate phoneme set provides the mapping from unreduced vowel 

to reduced form. 

(
¥
 

/,．＼ 

，
 

ー
』



Highlights 7
 

This new module improves the q叫 ityof the English text to speech making it sound 

more伽 entthan before. 

This new module was written using many of the sub-systems already built in to CI-IATR. 
The initial investigation of why segmental quality of text to speech was bad was made by 
displaying the original segments with those predicted by text to speech. It was then obvious 
that reduction was a problem. After the model was created the same comparison of predicted 
segments with natual segments showed a substantial reduction in differences. With full text 
to speech and synthesis the improvements could easily be heard. 

This technique of comparing predicted segments with actual from naturally spoken ut-

terances is easy to do in CHATR and useful in cases other than English vowel reduction. 
Japanese unvoiced vowels are a phenomenon which could be dealt with in a similar way. 

The vowel "u" and "i" are commonly reduced to unvoiced versions in fast speech, and at 

the end of phrases (desu is usually pronounced as des). The above method of finding the 
syllables (or mora) where actual pronunciation differs from lexical specification could be used 
and the appropriate features used to predict this. 

This ends the example of building new modules within CI-IATR. However as many modules 
already exist that use existing tools, adding new modules can be very easy. For example, 
because there already are functions to interpret CART decision trees within CIIATR, it is 

often just necessary to call the specified decision tree of all syllables (or what ever) and make 

some simple change based on the predicted decision to add new functionality. 

As can be seen by the three examples above, CI-IATR offers multi-level use for different 

types of research. It has been specifically designed to address these needs. CHATR pro-
vides a clear route from experimental research to a stable system suitable for non-synthesis 
researchers to use. 

3 Highlights 

In this section some of the "highlights" of the CHATR system will be discussed. Particularly 
those parts which I feel make CHATR a useful system. 

3.1 Scripting language 

Although at first not thought of as a fundamental part of the system, the inclusion of a 

scripting language in CHATR is a major contribution to the usefulness of the system. A simple 

Lisp based language is integrated into CHATR allowing specification of various parameters 

to sub-systems, specifying flow of control, and general programming. This script language 

allows CHATR to be used for many tasks without having to change C code and recompile 
the system. The number of parameters available in CHATR is large. If they were to be 
set by command line options, calls to CHATR would be completely unstructured. A clear 

well-defined language which can deal with synthesis objects such as utterances and stream 



8 Highlights 

cells, as well as lists, functions, integers and floats makes it possible to specify the desired 
behavior. 

When the implementation of CHATR was first started, the idea of a scripting language 
was not as common as it is now. The ideas of including an underlying interpretive language 
in CHATR are mostly borrowed from EMACS, and it has proven to be a most useful part of 

the system. 

For example there are various parameters that need to be set when choosing between 

different speakers, as well as selecting an appropriate database itself, lexicons, intonation 

and duration statistics, phoneme sets all need to be changed when a new speaker is se-
lected. Using standard Lisp functions we have settled on a convention of de丑ninga function 

speaker_DBNAME which sets up all the appropriate parameters for a speaker. We have even 

allowed for an auto-load version of this definition. 

As Lisp allows functions to be first class objects, using functions as parameters has also 
allowed a well-defined way to increase the power of the system. Again borrowing from 

EMACS, CHATR supports the concept of hooks. A hook is a run-time definable list of 
functions which are to called at some particular time in the synthesis process. In CHATR, 

hooks are available at a number of points in the synthesis of an utterance. Most importantly 
at utterance creation time, and after waveform synthesis. With these hooks we can specify 

any functions which must also be evaluated on a utterance at that time. For example suppose 

we wish all waveforms to be power normalized to 0.7 of their maximum (so different voices 

have the same approximate volume). Without hooks we would need to call the Lisp function 

(Regain_Wave UTT'0.7) 

for all utterances after synthesis. Finding out where all calls to the Synth function is not 

easy, sometimes its called internally as in tts, or explicitly, or perhaps deep within some 

user-written function. If we define a function which takes a single utterance as an argument 
we can state that it should be called after all synthesis calls via the hook called synth_hook 

(de全inepow_norm (utt) 

(Regain_Wave utt'0.7)) 
(set synth_hook (list pow_norm)) 

Now after every call to the waveform generator the function pow_norm will be called with 

the utterance as an argument, thus allowing the normalization of the waveform power. 

Therefore we simply change one place and all calls to Syn th will go through our function. 

（
 

／
！
 

，
 

;'• 

3.2 Unit selection 

One sub-system that has attracted major development within CHATR is the sub-system for 

selecting units of speech from a speech database. This sub-system has been through many 



Highlights 

，
 

versions with substantial rewrites, although the basic index format has remained constant 
(compiled indices from two and a half years ago are still compatible). 

This sub-system was developed in response to a number of issues, its predecessor NU-

UTALK [Sagisaka et al 92] showed how the selection of non-uniform units from a speech 
database could produce high quality synthetic speech for Japanese. This work concentrated 
of using acoustic features in it selection [Iwahashi et al 93]. However [Campbell 92b], who 
exapnded NUUTALK for English, has long argued that prosodic features should be used 

in selection since even when units with good spectral characteristics are selected if they 

then must be modified by signal processing to correct pitch, duration and power differences, 

unnecessary distortion will be introduced. 

Various attempts were made to attack this problem within CHATR both refining the 

original NUUTALK system, which was ported to CHATR, and introducing new selection 
systems which used prosodic features in selection. The original NUUTALK system was, 

unfortunately, written in a way far too specific to its task making modification for a different 

language and/or different selection features too difficult. In fact even the alternative unit 
selection systems were re-written a number of times until a general system was developed. 

The current unit selection system is language independent. The features used in selection 
maybe prosodic or acoustic. Importantly the features used are no longer built in to the 
implementation and can be specified externally, allowing new features to tested without 

modifying C code—of course if that feature is to be predicted in synthesis some new code 
may be needed. 

The current model used in unit selection describes units in a database as a collection 

of features. These features may be phoneme type, duration, pitch, syllable position etc. in 
fact any integer, float or discrete value. All units have a specific type, in all our current 

databases this is equivalent to a phoneme. When selecting a unit the target must be of the 

same type as the candidate unit from the database, thus phonemes may only be synthesized 
by selecting units of the same phoneme type. It should be added that as the definition of 
phoneme is user definable, these need not follow standard linguistic definitions. In fact some 
experiments with acoustically derived segments were made. 

Given our representation of all units in the database as feature vectors, we similarly 

describe our target segments as a collection of features. We can then define a distance 

measure between a target segment and any candidate unit (of the same type) from the 

database. This distance is an estimation of the suitability of a candidate unit from the 

database being used to synthesize this target segment. The target cost is defined as a 

weighted sum of differences of each feature in the target segment and candidate unit. 

び(ti心） =I: 恥叫Cj(tゎ叫

The weights reflect the relative importance of the features (see later). 

A second distance measure is de伽ed.The concatenation cost is defined as a distance 

between two adjacent selected units. This reflects the cost of joining two selected units. 



10 Highlights 

This is determined by the weighted sum of differences of each feature between the current 
candidate and a previously selected candidate. 

ぴ(Ui-1,糾）= I°:J=l wJCJ(Ui-1, 附）

In addition we have a further condition, if the previous selected candidate Ui-l and the 
current candidate ui are actually adjacent in the database their concatenation cost is 0. 
This condition allows the selection of non-uniform units, in that selecting multi-unit strings 

from the database will be favored over disjoint ones (except of course when other factors 

overwhelm such selection). 

Note that the feature set used in the target distance and concatenation distance need not 
be the same. In fact in all our databases we have settled on only three features in calculating 
the concatenation cost. These are local absolute F;。,local power, and a quantized MFCC 
vector to represent spectral features at the concatenation point. 

The distinction between these two distance measures is illustrated in the following dia-

gram 

匹 □ Targets 
target cost 

巳 Units
concatenation cost 

Given the above two distance measures we can define an overall distance for a string of 
selected units with respect to a string of target segments. 

C(tf, u『)＝匹~1 区勾叫CJ(ti心）＋区i=2 とい w5CJ(尻1' 叫
＋ぴ(S,u1) +ぴ（叫，S)

The final two clauses define the end conditions of starting from silence and ending with 
silence, S represents a unit of silence. 

The unit selection process can then simply be defined as finding the string of candidate 
units from the database that minimises the above expression. 

Unit selection is done by a Viterbi search, which is restricted by a beam width to achieve 
real-time synthesis. [Campbell 94] first defined the above unit selection model while a more 
detailed description of the selection process described [Black & Campbell 95] but a later 
paper, primarily the work of Andrew Hunt, [Hunt & Black 96] gives a more formal account 

of this model and the training of weights. 

The quality of synthesis produced by the above model, although potentially very effective, 
is very dependent on the weights for each feature distance in the two costs. Originally these 

(
＼
 

（り



Highlights 11 

costs were hand tuned but it quickly became clear that optimal settings were not possible 

with only hand tuning. Also as we increased the number of features in selection, it became 

harder to tune the weights to take benefit from the new features. 

[Black & Campbell 95] includes a description of our first method of automatic weight 
training. This method first made the assumption that a mean cepstrum distance between 

a string of selected units and a set of targets made from an original natural string would 
be smaller as the quality of the selection improved. At least in initial experiments this does 

seem to be true. 

To find a set of weights, a range was selected for each weight and all possible combinations 

were used, and a string of units was selected. The weights and mean cepstrum distance from 
the target cepstrum vectors was recorded. This was done for a number of utterances. Then 

the best scores were collated to find the best weights. This method was to begin with 

reasonably successful. In that it would produce weights that on the whole were better than 

could be achieved by hand setting—though often hand tuning the trained weights could 
improve results. One major disadvantage of this technique was the amount of time required 
to train. For example testing three to five values for about 6 or 7 features require synthesizing 

the utterance around 100,000 times. Even on a fast workstation this took at least overnight. 
Normally around 10 different utterances were tested, requiring ten times the CPU time. More 
importantly as we increase the number of features the training time increases exponentially. 

An alternative method was sought. 

Andrew Hunt devised a solution which is fully described in [Hunt & Black 96]. Again we 
use mean cepstrum distance in our measurement. Later after testing, this acoustic measure 
was augmented with F;。informationand a duration penalty. Instead of a "guess and test" 
strategy for weights we tried to predict the acoustic distance between each unit of the same 

type using linear regression from the feature based differences. The result offers a training 
mechanism which is more that one hundred times as fast and increasing the number of 

features only increases the training time linearly. The quality of the weights produced is 
about the same as that produced by the previous method. But it is now possible to train 

many databases fully automatically in reasonable time. 

With this new method of training it became reasonable to try different features as retrain-

ing takes about one hour, even for a large database. We could also have different weights 

tailored to different phone types so for example allowing Fc。tohave different weights for 
voiced and unvoiced phonemes. At this time we also reimplemented the distance function 

mechanism to allow for distance functions between arbitrary features allowing full training 
and testing of features without any change to the C code. 

Thus our present unit selection code is language independent. It may use arbitrary 
features in unit selection and offers a training method for producing relative weights for those 

features. Speech synthesis voices may be built fully automatically from speech databases of 

waveform files and phoneme labels. 

In a test of CHATR's flexibility a phonetically labelled Korean database was used. Within 

12 hours, a Korean waveform synthesizer. No changes to the C code were necessary. The 



12 Current 

quality of the synthesis was acceptable given the size of the database even though CHATR 

had dealt with no Korean synthesis before. 

Note that the results are not quite as good as the above result suggests. The quality of the 

sy叫1esisproduced from a database does vary g匹~tly,from near perfect to incomprehensible. 
The quality depends on a number of charactenstics, some of which we have identified. 

First the size of the database clearly affects the quality of synthesis, with the general 

maxim that larger is better. Secondly speaking style of the database is important. When we 
use a database built from isolated words, the resulting synthesis sounds like isolated words 
even though the units selected are sub-word units. 

The quality of the labelling on a database is also crucial. Many databases have significant 

errors and it only takes one error in a phrase to cause the synthesis to be spoiled. For 
example our largest English database (f3a) comes from the Boston University FM Radio 

corpus [Ostendorf et al 95]. F3a consists of almost 100,000 units but its quality is much 

worse than f2b a database of only 40,000 units. The reason seems to be that f2b is much 

more carefully labelled that f3a. 

Other databases have varying recording quality throughout so when concatenating speech 
from different parts, although joins are often good, the speech quality seems "muffled" in 

one phrase but clear in the next. 

These issues point to a deeper problem with the current database building mechanism 
and unit selection in CHATR. Although for good clear databases we can build good syn-

thesis voices for others we do not do so well. There is still much to do to investigate 

why this is the case and how we can automatically detect such poor quality, misaligned 
units, different recording quality and deal with it gracefully. The idea of pruning databases 
has been addressed [Campbell 94] but there is much in this area that would increase the 
overall quality of databases in general. This is related to the work on automatically la-

belling databases from orthography using aligning technology. Although we have attempted 

this the result still requires hand correction. Investigations are continuing in this area 

[Nishimura & Campbell 96], and we feel improvement will be gained if we can automati-
cally detect (not necessarily correct) errors. 

4 Current 

The current released version of CHATR is 0.8. This version is significantly more stable than 

its predecessors as well as offering the widest range of voices, and highest quality of synthesis. 

As it is easy to add new voices, the number of speech synthesis databases available to 

CHATR increases often however the standard system currently supports 21 databases for full 

text to speech: 

（
 

(，＼、

9 English voices (3 male, 6 female) 

13 Japanese voices (8 male, 5 female) 



Future 18 

In addition a Korean database and some German databases are available, but do not yet 

support full text to speech. 

Version 0.8 includes a completely newly written suite of programs to build and train new 

databases. From a set of waveform files and phoneme labels a synthesis database may be 
built and trained fully automatically in anything between 1 and 6 hours, depending on the 

size of the database. 

In this version a completely new distance function mechanism was implemented offering a 

much more generic use of features in units. Also significant work was done on the higher level 
aspects of the synthesis process. English text to speech changed from barely acceptable to 

very acceptable for our core voices (particularly f2b from which many models were trained). 

In this version for the first time we include generic trainable modules for duration and the 
prediction of Fc。contours([Black & Hunt 96]) which have been used, with good results, for 
multiple languages. This adds to our claim of CHATR being both generic and multi-lingual. 

Over the past three months significant effort has been put into making the CHATR system 

more stable. Many memory leaks were恥edand work was done to optimize the speed, 
removing unnecessary code from the system. Although the system is written in ANSI C 

the implementation of this language in actual compilers is unfortunately not as precise as 

the standard itself. Testing on multiple machines with different ANSI C compilers has both 

fixed problems in the code and made it more likely that porting to other architectures will 
be trivial. An important addition to the list of supported machines is the DEC Alpha which 

offers a 64bit architecture. CHATR has been fully tested on this machine such that as other 
vendors offer 64bit machines (i.e. Sun) no further changes to the system need be done. 

The installed version for 0.8 in ITL currently supports the following architectures 

- SunOS 4.1.[34] 
- Solaris 5.5 
- DEC Alpha OSFl V3.2 

- HPUX A.09.05 for hppa 

- SGI IRIX5.3 for mips 
- FreeBSD 2.1 for iX86 

- Linux for iX86 

Although not all these machines currently exist within ITL, they are the machines that are 
standardly used in research throughout ATR as a whole. 

If CHATR is truly to exist as a standard tool for speech synthesis, both as a black box 
text to speech system and as a programming environment in which new synthesis modules 

can be developed, it must be stable on multiple architectures. 



14 Future 

5 Future 

The current version is just a step of CHATR's full life. There is much that can be improved, 
and the system although stable, should not be considered in anyway complete. It must be 
continually developed if it is to remain useful. 

For many years, Nick Campbell has argued for the creation of synthesis systems us-

ing databases of natural speech [Campbell 92a], [Campbell 95]. CHATR is a major step to 

realising that goal. 

Can CHATR create a synthesized voice for any speaker? The answer to this seems 
to be yes, but we still have more work to do. The waveform synthesizer using unit selection 
from speech databases successfully creates a voice in many cases, though sometimes the 

quality can be poor. The problem seems both in the labelling of the database, the q叫 ity
of the recording, and still in the unit selection itself. Given a well-recorded, well-labelled, 

reasonably sized database the quality seems reasonable. But work is still required to be able 
to take databases that are not well寸ecorded(varying acoustic quality), and bad labels and 

be able to prune them (automatically) successfully. But the waveform synthesizer is only 
part of the syn thesis system. 

We already have on trainable duration and intonation modules in CHATR. But they re-
quire prosodically labelled databases. Work on automatically labelling databases has started 
but has not yet reached the stability of other parts of the system. However given, prosodic 

labels (i.e .. ToBI labels), word, syllable (with lexical stress) , phoneme labels, CHATR can 
automatically extract information from which duration and F;。predictionmodules may be 
created. This has successfully been done for the f2b database using linear regression as 

the method (other methods may be more appropriate, but getting the data in a uniform 
automatic way is the difficult part). 

Other aspects of a speaker's characteristics can be parameterized within CHATR including 

the lexicon (for different dialects), vowel reduction, pause prediction, accent placement and 
phrasing. However these could not yet be considered as truly general or automatically 

derivable from a database. These aspects do however contain speaker characteristics and 
it would be good to be able to parameterize these modules automatically as part of the 

standard database building process. 

Can CHATR build a synthetic voice for any language? This is of course much harder 
but of course a much more interesting question. To some extent we have already tried to 

reach this goal. The waveform synthesizer from unit selection from a speech database is 

language independent. The test with a completely new language (Korean) was successful, 
further tests with a German database also confirm this. However, there are still some issues 
though about which features are the most appropriate to use in unit selection. For example 
tonal languages like Chinese may require better representation of F;。inunit descriptions but 
it does seem that the basic framework of unit selection would in general be adequate. 

The higher levels would of course require work. We already have mutli-lingual duration 

and Fi。predictionmodules (given a ToBI like intonation labelling). Though different features 

／
ー
＼
、

／ー＼、



Problems 15 

would of course be required for different languages. It does seem that being able to build 
any synthesizer for a new language without writing new C modules is probably outwith the 
scope of the current CHATR system. But it does seem feasible that CHATR could be developed 

further such that it does offer an environment where synthesizers for new languages may be 
created without much new work. 

6 Problems 

It is important to realise that CHATR is not finished. It has been developed so that it 

has provided a working system at any time but also much of it has been replaced as better 

techniques and better understanding of the problems it is addressing come to light. Hopefully 

the core architecture of the system is relatively stable but much of rest should be considered 

for reimplementation, at some time in future. Good code evolves and should rarely be 
considered complete. 

Having said that there are specific points within CHATR that are now ripe for recon-

sideration. The reasons are varied, partly that in order to get something to work, a quick 
incomplete implementation is all that there is time for, and partly due to the growth of the 

system, a module becomes too complex and should be replaced or restructured. This section 
unashamedly admits the areas in CHATR which will require specific attention in the near 
future. 

CHATR allows the definition of arbitrary phoneme sets. Each phoneme in a set is currently 

identified through a number of features: vowel/ consonant, vowel height, length, frontednes, 

roundness, consonant type, place of articulation, voiced/unvoiced. These features are used 
in various places within the system and are useful in clustering groups of phonemes together 
(and offering some degree of phoneme independence). The problem is that when new lan-
guages are imported into CHATR the current set of features and/ or their values is not general 
enough. A hacky solution to this is to edit the C code and add new values but this is not in 
the spirit of the CHATR system. A better solution is to allow the specification of phoneme 
features and their values so that new features and values may be specified externally. There 

is already a structure within CHATR for the representation of discrete values which is a good 

basis for this new system. 

CHATR's Lisp was written specifically for CHATR but it is not a complete implementation. 

Specifically it does not include a full garbage collector. Utterances do contain reference 
counts and are automatically garbage collected when there are no longer any pointers to 

them. Utterances are by far the largest objects and care has been taken in the system to 
ensure that no memory is leaked. However Lisp commands themselves can leak. It is not 

possible in general to know when a returned List object is no longer referenced. There are 
number of well-known garbage collection techniques. I feel the most suitable for CHATR is a 
reference count of cons cells. However implementing this is not easy. In order for references to 

work it is necessary that changes in pointers referencing cons cells increment and decrement 
a cell's reference count as required. Currently most references are done through simple 



16 Problems 

C assignment and would not allow this check to occur. If all references and dereferences 
went through a special set C function or macro the reference counts could be kept up to 
date and garbage collection could happen, but that would require a lot of small changes 

throughout the code. Another solution is to move to C++ where the assignment operator 

can be overloaded, if the List C structure became a C++ object. Then reference counts 

would be easier and require fewer changes throughout the whole code. 

It should be noted that during standard text to speech (including switching between 

speakers) no memory leaks occur. So the garbage collection problem is not very serious. 

Even in the interpreter when leaks occur they are mostly small so often will not be serious. 

However, leaks do exist and that is a bug. 

The HLP module which concerns itself with translating "syntactic" trees to prosodic 

phrase trees and predicts accent placement, pauses, prosodic boundaries is in somewhat of 

a mess. Although originally designed to be language independent its basic structure is now 
rather old and it would greatly benefit from a complete rewrite. Accent position is, for 

example, assigned in a number of places and depending of the intonation method selected 
may even be done more than once (the later one overwriting the previous). This is bad 

programmmg. 

A complete rewrite of the HLP module to fully accommodate Japanese (and other lan-

guages) would be worth while. The module should take a syntactic structure tree as input 

with each word labelled optionally with part of speech (in a standard defined way) and in-

elude standard defined ways to specify IFT (speech act), focus, prominence (and other as 

yet unspecified markings). It should predict prosodic phrase boundaries, and accent posi-
tion in an intonation method neutral way. The later intonation module should realise this 

information as actual accent (and tone) types. This is partly true at the moment but it is 

not at all clear (too many interacting subsystems). A full rewrite is worth while, and at the 
same time the inclusion of Japanese phrasal prediction (and pauses) would be advantageous. 

At a lower level all of an utterance's information is held in a set of streams, for words, 

syllables, phonemes etc. Various relations exist between cells of different levels allowing 
access to the syllables in a word and the word a syllable is in. This structure is powerful 
and in the most part good. The main problem is that it it difficult to know at what time in 

the synthesis process which relations exist and if values within stream cells are set, There 

is not an easy solution to this. One way to go is to completely redesign the stream cell 

so this information is more explicit, another it to require modules to explicitly state what 

information they require and what they provide so that when in a module you can guarantee 
that specific information exists. This is not a problem if you are willing to look at the 
structure itself and trace the code to find out what is set when, but it is already the case 

that developers add new fields to cells to hold information which actually already exists 
elsewhere. 

Many have complained about the speed of CHATR both in its start up time and its 

synthesis time. CHATR can synthesize speech in about 60% of the time it takes to say it on a 

fast machine (i.e. SPARCStaion 20). However if it is to say a ten second utterance you must 

wait 6 seconds before you will hear the first noise. That is a long time. However we have 

9
,
 

（
 

/＼`
 



Problems 17 

(
 

to make sure we know the reasons for this delay. First it is now known that the DATLINK 

(a common output device) adds at least 2 seconds of silence in front of any waveform being 

played. This is a fundamental aspect of the controller device, using alternative hardware 

would solve this problem. As for speed of synthesis itself, in tests, 60% of the synthesis time 
is in accessing the files containing the waveform segments. The limit here is not the CPU 

speed of the machine but the speed of the disk access and (in most cases) file access across 
the network. Note that our Ethernet, only allows transfers of about SOOK bytes per seconds, 

and that is when no one else is using the net. Local disk access (on Suns) is about 1.8M 
bytes per second. But add to the read time, the time to open a file (which takes longer than 
to read it) and the fact the automounter may have unmounted a disk, then the synthesis 

time can sometimes be very slow. 

Note that on an Alpha the synthesis time reduces to less than one fifth real time. If 
phrase by phrase synthesis is used complaints about time are simply unfair. But on a 

SPARCStation 20 accessing remote disk over a heavily used network, and playing through 

a slow audio device, speed is a problem. 

To some extent this problem will be solved through time as machines get faster. A faster 

network (lOOMBit Ethernet) is a start and better disk access will help. 

The start up time for CHATR (and when it has to load in a new speaker) may also be 
significant. When a new speaker is accessed it must load in the index which contains the 

basic index, acoustic information for each (lOms) frame of the database and pitch marks. 
This can easily be a few megabytes for our normal databases, Given that our best Ethernet 

throughput is only SOOK and for example f2b's index is 5.6M, it means it cannot take less 
than 7 seconds to load this database. 

Possible solutions to this problem have been suggested such as preloading database indices 

and using "unexec" to save versions of CHATR. Also shared libraries h.ave been suggested. 
All these will do is save the time required to unpack the information in an index (mostly 

trivial) but CHATR will still need to read that data. There is the possibility that not all of 

an index need be accessed at once and hence "unexec" or a shared library would be quicker 

than actually explicitly loading it. But I feel that we access most of our databases in near 

random fashion (at least we should) and hence there seems little point in making databases 

pre-loaded, as the bottle neck is still the reading of the information. 

Two solutions are possible, either increase the speed of the access or reduce the amount 
of information that has to be read. The first solution is easiest as it requires no program 
changes, but would restrict CHATR's use to fast network machines. The second requires more 

work but in the long run should be considered. The question is how much of a database do 

we use? And more importantly how much must we use? Although some investigation into 

pruning a database has been made it still would benefit from more work. It appears we can 
prune out almost half of f2b's units without making a difference to the synthesis quality. 

Work has started in optimising the number of units in a database. Halving the size of a 

database (in the right way) could reduce the load time by half. 

CHATR's Lisp system does not allow a partitioning of the name space. It would be useful 



18 Conclusions 

if we could have a notion of local variables for each speaker. That is, when a speaker is 

selected we move into a local name space so variables may have local names (but still access 

global ones). This would be similar to the way "buffer-local" variables work in EMACS. 
If this were the case, speaker variables could be set without the possibility of altering the 
operation of other speakers currently loaded into the system. It would be fairly easy to add 

this to the current Lisp system and then change all the. speaker definitions to conform to 
this new system. 

Debugging a synthesis method without getting deep into the C code is still a little tricky. 

For some methods resorting to gdb and the C source is the only way to do this. To be fair 
this problem is partly due to CHATR's own success. As it is possible to do investigations 

and experiments in the CHATR's Lisp system, it would be useful if this could be done with 
debugging aids. At least a backtrace of where the error occurred would be useful. Adding 

a backtrace (or even a simple trace option like other Lisps) would be possible. But there 

is the problem of tracing internally called functions as well as those that are called through 
the interpreter. A trace function could be written in Lisp as is, but minor changes would 
be required to allow the shadowing of Lisp functions which are builtin C functions. Trac-

ing internally called functions is harder though maybe not impossible as tracing only key 

utterance modules is probably sufficient. 

A better text to speech front end system would be good within CHATR. Although we 
have always said that CHATR is (primarily) not a text to speech system. Realistically text 

to speech will be how most people actually use the system. There are many simple text 

to speech problems which could be fixed without much work and they would significantly 
improve the quality of the speech output. This should be done for both English and Japanese 

(and any other language CHATR supports). 

It is also important to stress that having many users of a system can significantly improve 

the quality of a program. Listening to their needs often (though not always) improves a 
system. Currently CHATR really has very few users, even for text to speech. Making it easier 

for people to use is one thing e.g. having a program that automatically figures out what 

audio device a person has will help but also the speed and quality of the generated synthesis 

is important. Also the system that it is embedded in will help make it more interesting to 

use. In addition giving users the feeling that they are contributing to CHATR when they 
report bugs, and that their bug reports are dealt with promptly can quickly create a sound 

body of users that will help to improve CHATR as a generic speech synthesis system. 

/
，
¥
 

(
＼
 

7 Conclusions 

In many ways CHATR is a success, it has shown that non-uniform unit selection for multi-
languages is a realistic way to do speech synthesis. Of course many believed this before but 
CI-IATR actually shows this. CI-IATR also offers a practical text to speech system which is 

already being used outside the group for synthesis in other projects. 

For the most part, the work I have contributed is the implementation of existing theories 



References 19 

of speech synthesis. It can be argued that there is no new research in CHATR. And I think 

that is a valid statement, but with some caveats. The implementation of ideas always leads 
to highlighting shortcomings in the original idea. It is almost impossible to fully specify a 

concept without producing something that is as恥 elyspecified as a program-not to say that 
all programs are necessary correct implementations of ideas. Likewise in the implementation 

of ideas which have been experimented with before, those ideas have typically had to be filled 

out and made more explicit. For example the concept of unit selection existed before, even 
that of using prosody in selection, but when these were brought together in CHATR it became 

necessary to formalise this concept further. The concepts of target cost and concatenation 
cost were not as explicit even in previous implementations of these ideas. Likewise the work 

on training of weights for features was not such an issue before as previous implementations 

were not as versatile and survived with hand tuned weights. 

Implementation, in a research field such as speech technology, should not be simply 

regarded as simple job that unskilled programmers can carry out in the last part of a project. 
Implementation is inherently part of the research cycle. It provides a realisation for ideas. 
Even one-of, personal implementations of research should be regarded only as a first stage in 

the use of ideas in systems. Further, more robust implementations, will often show problems, 
often solvable ones, but without the full stable implementation problems with ideas will not 

be fully discovered, and the full benefits of ideas will not be available to anyone else. 

It is attributed to Isaac Newton that he once said that he could see further because he 
stood on the shoulders of others. CHATR is not itself a system that can see further but it 

offers, I hope, a stable pair of shoulders on which others may stand. 

References 

[Anderson et al 84] 

[Black & Campbell 95] 

[Black & Hunt 96] 

[Campbell 92a] 

[Campbell 92b] 

M. Anderson, J. Pierrehumbert, and M. Liberman. Synthe-
sis by rule of English intonation patterns. In Proceedings of 
ICASSP 84, pages 2.8.1-2.8.4, 1984. 

A. W. Black and N. Campbell. Optimising selection of units 
from speech databases for concatenative synthesis. In Eu-

rospeech95, volume 1, pages 581-584, Madrid, Spain, 1995. 

A. Black and A. Hunt. Generating fO contours from tobi 

labels using linear regression. submitted to ICSLP96, 1996. 

N. Campbell. Syllable-based segmental duration. In G. Bailly 
and C. Benoit, editors, Talking Machines, pages 211-225. 
North-Holland, 1992. 

W. N. Campbell. Synthesis units for natural English speech. 

Technical Report SP 91-129, IEICE, 1992. 



20 References 

[Campbell 94] 

[Campbell 95] 

[Hunt & Black 96] 

[Iwahashi et al 93] 

[Nishimura & Campbell 96] 

[Ostendorf et al 95] 

N. Campbell. Prosody and the selection of units for con-
catenative synthesis. In Proc. ESCA Workshop on Speech 
Synthesis, pages 61-M, Mohonk, NY., 1994. 

N. Campbell. Mapping from read speech to real speech. 
In ATR Workshop on Computational modeling of prosody 
for spontaneous speech processing, pages 3-20-3-25, ATR, 
Japan, April, 1995. 

A. Hunt and A. Black. Unit selection in a concatenative 
speech synthesis system using a large speech database. to 
appear in ICASSP96, 1996. 

N. Iwahashi, N. Kaiki, and Y. Sagisaka. speech segment se-
lection for concatenative synthesis based on spectral distor-

tion minimization. IEJCE Transaction Fundamentals, E76-
A:1942-1948, 1993. 

K. Nishimura and N. Campbell. A method for auto-labelling 
speech databases for speech synthesis. Technical Report 
TR-IT-0154, ATR Interpreting Telecommunications Research 
Laboratories, 1996. 

M. Ostendorf, P. Price, and S. Shattuck-Hufnagel. The 
Boston University Radio News Corpus. Technical Report 
ECS-95-001, Electrical, Computer and Systems Engineer-
ing Department, Boston University, Boston, MA, 1995. 

[Pierrehumbert & Beckman 88] J. Pierrehumbert and M. Beckman. Japanese Tone Struc-
ture. The MIT Press, Cambridge, Mass., 1988. 

[Sagisaka et al 92] 

[Silverman et al 92] 

Y. Sagisaka, N. Kaiki, N. Iwahashi, and K. Mimura. ATR-
v-TALK speech synthesis system. In Proceedings of ICSLP 
92, volume 1, pages 483-486, 1992. 

K. Silverman, M. Beckman, J. Pitrelli, M. Ostendorf, C. Wight-
man, P. Price, J. Pierrehumbert, and J. Hirschberg. ToBI: 
a standard for labelling English prosody. In Proceedings of 
ICSLP92, volume 2, pages 867-870, 1992. 

参

＼

＼

（
 

／
ー
＼
＼

に
~



Publications 21 

8 Publications 

The following is a list of all publications I was involved with during my stay at ATR. 

Black, A. and Hunt, A. 1996. "Generating FO contours from ToBI labels using linear 
regression" Submitted to ICSLP96, Philadelphia. 
Hunt, A. and Black, A. 1996. "Unit selection in a concatenative speech synthesis system 
using a large speech database" Proceedings of ICASSP 96, Atlanta, Georgia. 
Campbell, N. and Black A, 1996, "Prosody and the selection of source units for concate-
native synthesis", in "Progress in speech synthesis" eds. van Santen, J., Sproat, R., 
Olive, J. and Hirschberg, J. Springer Verlag. 
Black, A. and Campbell, N. 1995. "Optimising selection of units from speech databases 
for concatenative synthesis" Proceedings of Eurospeech 95, vol 1, pp 581-584, Madrid, 

Spain. 
Black, A. and Campbell, N. 1995 "Predicting the intonation of discourse segments from 
examples in dialogue speech", Proceedings of the ESCA workshop on Spoken Dialogue 
Systems. Denmark. 
Black, A. 1995 "Predicting the intonation of discourse segments from examples in dia-
logue speech", ATR・workshop on Computational modeling of prosody for sponta-

neous speech processing. ATR, Japan. Also to be published in "Computing Prosody: 
approaches to a computational analysis and modelling the prosody of spontaneous 

speech" eds Sagisaka, Y., Campbell, N., and Higuchi, N. Springer Verlag 1996. 
Black, A 1995 "Comparison of algorithms for predicting accent placement in English speech 
synthesis", Spring meeting of the Acoustical Society of Japan. 
Black, A and Taylor, P. 1994 "Assigning intonation elements and prosodic phrasing for 
English speech synthesis from high level linguistic input", ICSLP94, Yokohama, Japan. 
Taylor, P. and Black, A. 199L1 "Synthesizing Conversational Intonation from a Linguistically 
Rich Input", Proc. ESCA Workshop on Speech Synthesis, Mohonk, NY. 
Black, A and Taylor, P. 1994 "CHATR: a generic speech synthesis system", COLING94, 

Kyoto, Japan. 
Black, A and Taylor, P. 1994 "A framework for generating prosody from high level linguistic 
descriptions", Spring meeting of the Acoustical Society of Japan. 
Black, A. 1993, "Some different approaches to DRT", DYANA-II deliverable, R3.2. 
Black A, 1993, "Using Situation Theory in a computational language for natural language 
processing", 4th Natural Language Understanding and Logic Programming Confer-

ence, Nara, Japan. 



22 CHATR revision history 

9 CHATR revision history 

chatr-0.8 Mar 08 1996 

•
ー

1
*

Ports to SunOS, Solaris, HPPA, SGI, Linux, FreeBSD and DEC Alpha checked substantial 
ansi:fication done 
Language independent duration model using linear regression examples for Japanese and 

English 
Manual completely overhauled (200 pages) 
Substantial checks to all files for copyright problems and tidy up 
Fixed another round of memory leaks and optimizations 

Made NUUTALK and・formant synthesizers optional subsystems 
恥predictionby linear regression from (J)ToBI (plus alpha) same method for Japanese and 
English 
New database building software, fully automatic and does training using new distance 
mechanism 
New distance function definition mechanism, allows external specification of arbitrary dis-
tance functions. 
Pause prediction by decision tree 
Boundaries (in English) tts predicted by decision tree 
Linear regression model for duration 
Pruning of databases based on distance measures 

Syllable reduction predicted from decision tree 
ToBI prediction by decision tree 
Save supports XUnits, XSegs, XBreaks, FO, Tones, Words 
floats are held as floats in Lisp, no longer as strings. 
Tidy up of xwaves interface, now supports display of Fi。.
Start at phrase by phrase synthesis and alternative silence generation techniques 
Better tuned Beckman JToBI module 
Linear regression training method for weights 
11 new Japanese voices 
Built new duration nnets 

Added support for sylpos feature in udbs 
Redid Lexicon module: supports multiple lexicons (BEEP and CMU) 
Method for dumping udb selection stats (for beam width tuning) 
Restructured unit selection distance functions 

Introduced PhonoForm, more detailed linguistic specification of utts, for better extraction 
of information from a database. 

Removed taylor and isard di phone sets as standard (they are optional though, but distri-
bution does not include them by default) 

（
 

(
＼
 

ー

1

chatr-0. 7 Aug 31 1995 

A working psola 



CHATR revision historリ 23 

chatr_pipe client program, text in/waveform out. 
Can use cepstrum params in targets to find "best" units for natural utterance (and also for 

JOlilS) 
Korean speaker (NO changes to C or Lisp system required !!!) 
New databases, mlp350, fmp559 (bilingual) 
Documentation updates (htmlable) 
Substantial bug fixing and tuning of unit selection 
An implementation of the Fujisaki model for Japanese intonation 
Multiformat cepstrum support 
new PSOLA from Christian 

New databases (with tuned weights: wnc600, sab600, gsw200) 
Start at scripts for building new databases 
Better join measures for unit selection (vq, pros and phone) 
ToBI input method and F;。generation(and emmi-based prediction of labels) 
Updated dependent libraries, nist-sphere-2.5, readline-2.0 and nas-l.2pl 
Allow pitch marks to be preloaded (and increased accuracy) 
Various renaming in lib directory (separate code from dbs) 
f2b based nnet duration module 
Cepstrum measures for tuning unit selection 
Neural Net support (for duration) 
usable sally (200) generic udb synthesizer 

Yet another generic udb module (with MHT Bset db), as good as nus. 
Feature functions 
Separate out Japanese modules better (Kaiki duration, JLTS) 
Beckman intonation module (JToBI) 
Documentation updates 

BSD socket server mode (telephone email reader demo) 
Documentation strings for user functions, and variables 
Wave_filters, low pass, high pass, chorus, backwards etc. 
Tilt accent type predicted by decision trees (Radio data) 

chatr-0.6 Nov 17 1994 

restructuring of CHATR lisp code library files 
F2b FM Radio database 

Japanese female database(s) (NUUTALK) 
Improved EMACS interface 
Substantial bug-fixing and addition to tilt labelling code 
TTS modes through escape commands 
cepstrum resynthesis for standard units 

require and provide functions 

Reintegrated Nick's superunit selection strategy as a generic database selection stratgey 
(NUS) 

chatr-0.5 Aug 15 1994 



24 CHATR revision history 

Vector quantization for NUUTALK unit selection (much faster) 

Initial Japanese TTS support (romaji and using kakasi/KDD」mn2rom)
Added Discrimination Tree support, can be specified in lisp and changed at run time 
Another pass to remove memory leaks in the Lisp part of the system 
Added syllable structure to letter-to-sound sub-system 

Added basic arithmetic functions 
Monaghan prosodic prediction (can choose strategy) 
Moving unit boundaries (vis cepstrum distance measures) available as lisp function 

Choice of waveform resynth method in NUUTALK (PSOLA/NUUCEP) 

much faster NUUTALK (with binary dumps of DBs) 

Stream type: list, tree, (and some generic functions to traverse the叫
UDB code: selective exclusion of units 
vowel reduction in destressed words, word contractions 

chatr-0.4 May 11 1994 

NUUTALK loadable low-level databases 

new (faster) lisp reader 

NUUTALK access from segment stream 

updated documentation 

X windows utterance inspector 
CSTR diphone synthesizer 
tts stdin input mode 

Persistent history 

NUUTALK initial port 
cepstrum parameter cost function, and support 

Faster PSOLA 

fixed many memory leaks (many major paths have no leaks) 

utt_rnodules from Lisp (and Lisp language enhancements) 
builtin sample rate converter 

Hirschberg accent assignment algorithm 
the Tilt theory of intonation 
multiple speakers for intonation system, stats collected on cmu data. 

syllable input mode(s) 

audio spooler (can synthesize next utterance while playing previous waveform) 
Added print and load structure code (some streams defined) 

Many more core Lisp functions added (Lisp interface now allows functions, loops, map, 
apply, eval etc.) 

Made lisp structures honest objs (streams, utterances, functions) 

Bachenko et al style prosodic phrasing 

many malloc bugs fixed (now can compile with -0) 
lts and text (file) input method 
pisel udb selection strategy 

multi-unit segments, (selection and PSOLA) 

贔

／
ー
＼

（
＼
 

ヽ



（へ）

し）

CHATR revision history 25 

chatr-0.3 Dec 28 1993 

slightly improved PSOLA, fast udb code, phomeme structure rehash, made system compile 

with g++. 

chatr-0.2 Dec 9 1993 

Major code restructuring, HLP module, demos, udb code, PSOLA, multiple phoneme sets, 

intonation features parameterized. 

chatr-0.1 Oct 22 1993 

Basic isard diphone synth and first unit selection code. 

chatr-0.0 Sept 3 1993 

First version change, formant synth and basic architecture 

CHATR first spoke (incomprehensibly) April 28 1993 

"Her friends considered her beautiful." 

CHATR work started Apr 10 1993 


	001
	002
	003



