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Abstract 

Our goal has been to develop an effective and efficient document retrieval system 
for very big databases, based on the vector space model. Thus we (1) implemented 
a massively parallel retrieval kernel on a SIMD-machine and (2) devised a fast non-
hierarchical clustering method for restricting its search scope without hurting retrieval 
effectiveness. 

This paper discusses score-computing algorithm and load-balancing method of the 
parallel kernel, the document clustering method and how those two parts combine to 
a large-scale retrieval system .. 

Evidence for the efficiency and effectiveness of this approach is given for standard 
test suites: (i) Virginia-collections; (ii) Tipster-collection with some gigabyte of text. 

@ATR Interpreting Telecommunications Research Laboratories 

().0,2 



Contents 

ー Introduction 

1.1 Introduction ... .. ．． ．． .. 

1.2 The Vector Space Model ... ．． ． ... 

1.2.1 Database Representation ....... . .. .. ．． 

1.2.2 Query Processing . . . . ．． .. ．． ．． ．． 

1.2.3 Remarks ... ．． . ...... .. 
The MasPar MP-2 1.3 

2

2

4

5

6

7

7

 
2
 

2.2 

3
 

The CRISP-system 

2.1 The parallel retrieval kernel 

2.1.1 Load balancing routines 

2.1.2 Query Computation 
2.1.3 Summary 

Cluster-Subsystem . . . . . . . ．． ．． 

2.2.1 Clustering method 

2.2.2 Cluster generation 
2.2.3 Cluster search . . .. .. ．． .. .. 

3.2 

Results 
3.1 Effectiveness .................................. . 

3.1.1 Measurement method ......................... . 

3.1.2 The Effectiveness of the CRISP-system ............... . 
Efficiency 

4

A

 

B 

Conclusions and Future Work 

Implementation Details 

A.l Clustering behaviour ............................. . 

A.2 Improving the clustering methods 

A.3 Implemented Clustering Methods 

Statistics on Document Collections 
B.l Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

B.2 V ector Generation of the Tipster-collection . . . . 

9
9
1
2
1
8
2
2
2
2
2
3
2
4
2
5
2
8
2
8
2
8
3
0
3
1
3
3
3
4
3
4
3
7
3
7
4
0
4
0
4
2
 

ー



Chapter 1 

Introduction 

1.1 Introduction 

In the past decades the Vector Space Model (VSM) proved to be a effective and easy-to-
use method of document retrieval. The Usability of a retrieval system can be enhanced 

further by relevance feedback techniques (e.g. [SaBu90]), which reformulate an initial, 
manually generated query in several iterations according to relevance judgements of the 

user for formerly presented documents. 
However, the computational requirements for processing those automatically gener-

ated queries increase drastically. Re-formulated queries tend to contain considerably more 

terms than the initial query, depending on the size and number of documents, that were 
used for relevance feedback, and within those typically a big proportion of the high— 

frequency terms of the database. 

Let J w denote the frequency of occurrence of word w in the document collection, i.e. 

the number of documents in which the word w occurs. Then including word w in the 
query changes the evaluation of fw documents by matching the occurrence of w in those 
documents. The number of terms in the document collection that are matched by a query 
Q is expressed by 

MQ := L fw 
wEQ 

If we set this value in relation to the overall number of words in the document collec-
tion (i.e. the sum of the fw, where w ranges over all distinct index), we get the percentage 
of database-terms matched by a query. This percentage depends heavily on the number 

and size of relevant documents that were used to re-formulate the initial query: Table 1 
demonstrates this for several standard test sets: the original queries of the investigated test 

Database 
Original Queries re-formulated with # relevant documents 
Queries 5 10 30 

CISI 4.9% 25.0% 32.6% 48.7% 
Cranfield 1.5% 24.8% 34.2% 60.3% 
LISA 3.2% 17.1% 27.4% 40.8% 
Tipster Vol l 2.2% 15.3% 30.4% 50.3% 

Table 1.1: Average percentage of database terms matched by original and re-formulated 
queries (IDE-DEC-HI-formula [SaBu90]) 
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collections match on average between 1 % and 5% of the document vector terms. A query 

re-formulated with 30 relevant documents already approximately 50% - independent of 

the size of the database in concern - making the retrieval process a computationally very 

demanding task. 

Conventional ways to overcome this problem: 

I. By using an inverted-index-representation of the database only those terms of the 

database have to be processed, that are actually matched by a given query. This 

method allows to skip all document terms, that do not have any effect on the 

outcome of the search, because they correspond to words, that do not occur in the 

query. Thus the outcome of the VSM-search process is not changed by using an 

inverted index. 

II. Restrict the search scope to the most promising parts of the document collection by 

clustering the document database and examining only those clusters, that are for a 

given query likely to contain relevant documents. 

Document clustering methods have been used for this purpose for long: Early work 

concentrated on non-hierarchical document clustering methods [Salt71] with the 

objective to increase the efficiency of the retrieval process. Due to their lack of the-

oretical soundness and their minor effectiveness they lost however soon interest and 

were all but abandoned in the last years. Hierarchical document clustering methods 

took over their role and showed good results, both in terms of retrieval effectiveness 

and efficiency [Voor86] [RiCr75] for a variety of mostly relatively small databases. 

The cost of clustering document collections is however for most of them (containing 

the more effective methods like complete link and HBC [IwTo95]) prohibitively high 
for large collections. 

So in spite of being thoroughly investigated on small test-databases, clustering mech-

anisms are very seldomly applied to real world collections for retrieval purposes. (The 

work of [CKP92] [CKP93] used clustering mechanisms on big databases in order to 

support document browsing.) 

III. The intrinsic parallelism of the computation intensive part of the retrieval process 

led to a number of parallel implementations for various parallel architectures and 

retrieval models. 

To mention but a few: [StCa88] implemented an overlap-encoded signature based 

system on a connection machine CM-2, a SIMD1-machine with up to 65536 process-

ing elements. The document representation can be stored to a parallel disk array 

(PDA) and thus the resulting system is able to handle very big databases. But al-

though retrieval speed gains were obtained, the level of retrieval effectiveness was 

not satisfactory due to the use of binary (not weighted) vector representations. 

Parallel implementations of the pure vector space model have been reported for ex-

ample by [EGMS95], using a Parsytec GCel3 with 512 processing nodes (MIMD) and 

by [ASI95a] using a KSR-2 with 32 processors (MIMD). Both obtained considerable 

performance gains with almost linear speedup. 

1 SirvID: single instruction multiple data, 
MIMD: multiple instruction multiple data (classification method for parallel architectures due to 

Flynn) 
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Our work has been aimed at building an retrieval system, that is efficient and effective 

for very big databases. 
For its effectiveness the well known vector space model has been chosen to base the 

retrieval system. 
In order to meet the claim of efficiency, a massively parallel SIMD-machine (MasPar 

MP-2, 8192 processing elements) has been used as hardware platform for the retrieval 

kernel. 
We explicitly do not assume, that it is possible to store the whole document collection 

in the RAM of the underlying machine, not even in the internal representation which is 

used for the retrieval process. 
For processing a user posed query it is thus inevitable to load the database or at 

least parts of it from a secondary storage medium. The VSM-retrieval phase has the 

same space and time complexity for processing a single query2 and require only very few 

instructions per loaded term of the database. The time required to transfer the database 

from secondary to primary storage will thus dominate the computing time. 

So it is necessary to review also methods of reducing the percentage of the database 

that is examined for an individual query (I,II), in order to avoid the bottleneck of trans-

£erring the whole database to and fro a secondary storage for each individual query. 

Since the benefits of using an inverted index in reducing the computational and IO-

requirements of the retrieval phase is clearly bounded by the percentage of database-terms 

that is actually matched by a given query (cf. Table 1), the use of an inverted index (I) 
will not pay in the assumed relevance feedback environment. 

The use of clustering methods has however the potential of reducing the search scope 

of the VSM to a manageable fraction of the database. For reasons that we will discuss in 

chapter 2.2.1 we fell back to a non-hierarchic document clustering approach, in spite of 

being considered in recent research to be less effective than hierarchical ones. 

Consequently this work comprises the following topics: 

1. development of a massively parallel retrieval kernel on a MP-2 

2. design and investigation of clustering methods for big document collections 

3. combination of the retrieval kernel and clustering methods to a document-retrieval 

system 

The rest of this chapter gives a brief introduction in the vector space model and the 

architecture of the MasPar MP-2. The massively parallel document retrieval system for 

clustered databases resulting from this work, the CRISP3, will be described in chapter 2. 

The discussion of the retrieval performance of the CRISP-system will form the content of 

chapter 3 and 4. 

1.2 The Vector Space Model 

The fundamental problem of document retrieval is, given a collection of documents, how 

to identify efficiently and effectively the documents susceptible of satisfying an imperfectly 

described user need. 

2Things are different for batch mode query-processing, where several queries are evaluated at the same 
time. 

3Cluster-based Retrleval with Simd-Parallel machines 
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In the Vector Space Model (VSM) proposed by Salton 1971 [Salt71] documents and 

queries are represented by weighted vectors in the n-dirnensional space, where n denotes 

the number of distinct index terms (sterns of words that were used for retrieval purposes) 

of the document collection. During query processing, documents are ranked according to 

their similarity to the query vector, usually measured by the cosine angle between query 

and document vectors and returned to the calling instance according to this ranking. 

A VSM based retrieval systems consists of at least the following four components: the 

plain text database, a vector generator, a database of document vectors and a unit for 

processing queries. 

Vector 
Generator 

Query 
Processor 

Figure 1.1: Block diagram of a VSM based document retrieval system 

The database contains the texts of the documents or articles to be searched. The gen-

erator operates directly on the text database to produce a usually much smaller database 

of weighted vectors, which is used by the query processor to rank the documents of the 

collection according to their similarities to a given query. 

1.2.1 Database Rep 
． 

resentat1on 

The generation of a weighted. vector is carried out by running the following three pre-

processing operations: 

• The stop list filter removes the most frequently occuring words (such as and1 ofi o几
but1 the1 etc1…) from the text of each document or query. These words are poor dis-
criminators, and their removal has no effect on the retrieval effectiveness. Moreover, 

the filtering process reduces storage requirements and increases query processing 

speed. The filter was applied using a stop list consisting of 425 words derived from 

the Brown Corpus [FrKu82]. 

• The suffix stripping stemmer replaces the words preserved by the stop list filter to 
their stem forms. For example, the stemmer replaces a variety of different forms such 

as analysis) analyzing) analyzes) and analyzed by a common word stem analy. The 

stemming operation reduces storage requirements since many words are replaced by 

a single stem word. Furthermore, it might increase the retrieval effectiveness since 

the stem word has a higher frequency of occurrence than that of the words replaced. 

In this system we used the well-known Porter stemming algorithm [Port80]. 

• The weighter assigns a real-number weight to each word stem produced by the stem-

mer. The weight distinguishes the degree of importance of the word in the document 

(query), and thus leads to improved retrieval effectiveness. Moreover, it adds user-

friendliness to the system as it facilitates ranking of the retrieved documents. In this 

system, we used the following weight assignment function for both the documents 
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and the queries [SaBu88]. 

Wi=  

(0.5 + 0.5~).log舟

四二~((0.5 + 0.5土）2 .(log~)り

where, 

叫： weight of word i in the document (query). 

f;: frequency of occurrence of word i in the document (query). 

巧： number of documents(queries) to which word i is attached. 

N: number of documents (queries) in the database. 

W: total number of words in the document (query). 

The denominator of the function above is a weight normalization component which 

ensures that the lengths of document (query) vectors are equal. The function assigns 

weights varying between O and 1, where O represents a word that is absent from the 

vector. The resulting document vectors are consequently very sparsely filled. 

1.2.2 Query Processing 

Taking as input the vector representation of a user-formulated query, the query processor 

computes a ranking of the document collection according to the similarities between query 
and document vectors. 

The common measures of similarity between queries and documents are based on 

the inner product between their corresponding vector representations. Those include for 

example the Dice-, Jaccard-and Cosine-coefficient M,。

Mc(q, d) = こ了~l qidi 

直：q; * I: dz 

the latter of which we used in the current implementation. The computationally demand-

ing, i.e. the for a parallel implementation interesting, part of the VSM based search process 

is formed by the computation of the document-query interrelation. 

The top-ranked n documents are returned to a user, who will judge the documents 

for their relevance to the example query and, in case his information need is not satisfied, 

will return the relevance judgements to the query processor. 

The query vector is reformulated by expanding and re-weighting its elements according 

to the following Ide dec-hi relevance feedback method [Ide71]: 

Qnew = Qoid 十 ~All rel.docs - Top nonrel.doc 

Qnew is the new query vector which is obtained by (1) adding to the previous query 
vector Q01d all words and corresponding weights of all relevant documents vectors, and 

(2) subtracting from the new query vector all words and corresponding weights found in 

the top ranked non-relevant document vector. Query reformulation using the Ide dee-hi 

method has proved to be superior to many other relevance feedback methods [SaBu90]. 
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1.2.3 Remarks 

Some remarks: 

• We will not always make a clear distinction between'documents'and'document 

vectors', respectively'queries'and'query vectors'. As well we will -a little bit 

inaccurately -use'word'as a synonym for'index term', describing the units of 

document and query vectors. 

Since this report is only concerned with the query processing part of a VSM-retrieval 

system this should not lead to confusions. 

• The VSM described above is actually only one variant of VSM based document 

retrieval methods. The CRISP-system extends however easily to a number of related 

methods: 

-similarity function: 

the CRISP system is designed to compute similarity functions between one 

input vector (query) and a given set of document vectors, based on the inner 

product between query and document vectors. 

As mentioned above this class comprises the most common similarity functions, 

as for example the cosine-Dice-and J accard coe缶cient.

-relevance feedback methods: 

the ranking routines of the CRISP should enable it to be applicable for a 

wide class of relevance feedback methods, including for example the Rocchio-

methods, or the Common Term System [ASI96]. For restrictions confer to the 

discussion of the document ranking routine,'Document Ranking'in 2.1.2. 

1.3 The MasPar MP-2 

The MasPar-2208 SIMD-computer used in this work consist of the following main com-

ponents (cf. Figure 1.2): 

PE-array 

゜
127 

PDA 

□□ 
Figure 1.2: Structure of a MasPar MP-2208. 

• a Front-End-Workstation 

• the array co1;1trol unit (ACU) 

• an array of processing elements consisting of 8192 processing elements (PEs) ar-
ranged in a two-dimensional mesh of 128 x 64 processors. Processors are connected 
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in this mesh to their four neighboring PEs (north, south, east, west) by a high speed 

local communication structure. Each PE is equipped with 64 K-Bytes of local RAM, 

making a total of 512 M-Bytes local memory capacity for the PE-array. 

• a parallel disk array (PDA) consisting of 8 hard-disks (in total 11.5 gigabyte). 

A MasPar-program consists of two parts: (1) a sequential part, executed on the front-
end and (2) a parallel part that is executed on ACU and PE-array of the MasPar. 

The sequential part consists mostly of routines for interacting with a user-interface 

(usually running on a second, external workstation), for creating parallel data-structures 

and for communicating with and calling of the parallel part of the program. 

SIMD-parallel machines execute, as sequential machines, only one operation at a time. 

The array control unit decodes the program instruction and executes the part of the SIMD-

code, that operates on singular data. Instructions operating on plural data are translated 

in a sequence of micro-code instructions and broadcasted for execution to the PE-array. 
Processing elements can either participate in the current computations on their own local 

data, or pause until the other processors executed the current instruction. 

The peak performance of a MP-2208 is reported to lay somewhere around 3 G-Flops 

using 8192 processing elements . 
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Chapter 2 

The CRISP-system 

Figure 2.1 gives an overview over the structure of the CRISP-system. CRISP consists of 

two major components: 

1. the Parallel Retrieval Kernel, 
an implementation of VSM-based document retrieval on a MasPar MP-2, 

2. the Cluster-Subsystem, 
routines for clustering document collections and for searching the resulting clustered 

databases. 

Query processing of the CRISP system is as follows: a user formulated query is trans-
lated as ususal into its vector representation and possibly re-formulated by a relevance 

feedback process. The resulting query vector forms the input of the CRISP retrieval sys-
tem. The query processing divides into three steps: 

z. rank the cluster centroids according to the query 

zz. select and load the top-ranked r% clusters 

箪.rank the documents of those clusters and return the locations of the top-ranked n 
documents 

In contrast to the regular VSM, CRISP's search process does not produce a ranking of 

all documents of the collection, but only of a part of it, whose sizer depends on the users 
need of precision and response time for an individual query. In order to detect the parts 

of the document collection that most likely contain relevant data, an incoming query is 
first used to rank the centroids of the clustered document collection, in a second step to 

compute the scores and ranking of the documents, that are contained in the top-ranked 
clusters. The highest ranked documents are returned to the calling instance. 

Since the parallel implementation of the VSM is largely independent of the cluster-

search routines of the kernel, we will discuss it isolated from the rest of the retrieval 
system in 2.1 and describe the clustering and cluster-search methods in chapter 2.2. 

2.1 The parallel retrieval kernel 

Figure 2.2 shows a flowchart of the retrieval part of CRISP without clustering routines 
and cluster-search mechanisms. 

The database and query pre-processing (filtering, stemming, weighting) is the same 

for the parallel retrieval kernel of CRISP and for the VSM-implementation on the KSR 

，
 



Text Display 

Text Database 

A TR develops massively parallel 

retrieval system ..• 
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Re-Formulated Query 
(r) 

Document 

Clustering 

Queries for 
Cluster Generation 

Query to Centroid-
Collection 

Query to Top-
Ranked Clusters 

Top-Ranked 
Centroids 

I -----'~----' 

Parallel Retrieval-Routines 

Clustered Database (PDA) 

Cluster Centroids Document Clusters 

Figure 2.1: Structure of the CRISP-system 

Top-Ranked 
Documents 

CRISP: 

Cluster-

Subsystem 

Parallel Retrieval-

Kernel 

[ASI95b]. But in contrast to the KSR-implementation, the Maspar-kernel needs some 

more pre-processing steps, in which a distributed representation of the document vector 

collection is computed and stored to the parallel disk array of the MP-2. 

The vector representation of the query is generated analogously, the distributed data 

structures for the query vector are build according to the distribution of the database (cf. 

2.1.1) and are broad casted to the PE-array. 

The storage capacity of the MP-2 is by assumption not big enough to store the vector 

representation of the complete document collection. Thus for a given query the document 

collection or at least some selected parts of it (cf. 2.2.1) have to be loaded from the parallel 
disk array. The scores of the respective document vectors are computed (Parallel Inner 

Product) and ranked (Incremental Parallel Ranking). 

If the part of the database that has been selected as the search scope is bigger than 
the local memory capacity of the PE-array, the loading, scoring and ranking steps are 

iterated until the full search scope has been examined. The document ranking is build 

incrementally over the iterations by ranking the scores of the documents in each iteration 

and succes$ively merging the current local ranking with the result of prior iterations. 

The resulting list of the top-ranked documents is returned to the calling instance for 

relevance feedback. 

The performance of a SIMD system depends heavily 
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Figure 2.2: Implementation flowchart of the MP-2 retrieval system 
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(1) on how evenly the computational load is balanced between the processing elements: 

the processing element with maximum load determines the computing time of the 

full system. 

(2) on the homogeneity of program instructions performed on the local data of the 

processing elements. 

Thus an efficient SIMD-implementation has to assure, that no processing element gets 

significantly more work to do than its colleagues and that all processing elements want to 

execute the same instructions on their share of data at the same time. 

The first point (1) holds for almost all parallel machines, independent whether it is 

a SIMD or MIMD-architecture. But while the distribution of the document vectors on 

the processing elements is a minor problem on systems with relatively few processing 

elem en ts (due to the high inherent parallelism of the retrieval phase) and high local 

memory capacity, it becomes increasingly critical with growing number of processing 

elements, respectively with decreasing local memory capacity. The load balancing routines 

required for generating the evenly distributed database are described in 2.1.1. 

The second point (2) is specific to the SIMD execution model. Section 2.1.2 describes 

the SIMD-parallel algorithms for scoring the document collection and ranking it according 

to this score. 

The selection and loading of the parts of the database, that have to be examined for 

a given query are the task of the cluster-search routines. Its discussion will be postponed 
to chapter 2.2.1. 

2.1.1 Load balancing routines 

Some considerations concerning the load distribution of the query processing-task on a 

MP-2 (This list of 6 straightforward arguments contains some basic design descisions of 

the CRISP. They are not a cogent string of arguments, rather they describe only one 

possible solution for the given parallelization problem.) 

i. The scores of many documents are computed at the same time for one and the same 

query, resulting in multiple concurrent accesses to different parts of the correspond-

ing query vector. To serve this requirements, the query-vector should be stored iri、

the local memory of the PEs. 

ii. Queries that were re-formulated in a relevance feedback process might well contain 

some thousand terms with non-zero weight. Thus it is impracticable to store a 

complete copy of the query-vector on each processing element. Instead, one has to 

split the query vector and distribute the parts on the local memory of a set of PEs. 

iii. The distribution of the query vector determines where the terms of document vectors 

should be located on the PE-array: corresponding terms have to be stored to the 

same PE. Thus the terms of each document are distributed on a set of PEs. 

zv. In order to reduce the communication overhead caused by recombining the partial 
results, each document has to be stored on a small number of adjacent processing 
elements. 

v. Each PE contains parts of more than one document in order to exhaust the PE-
arrays storage capacity. 
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一

Disk Array (POA) 

Section 1 

Section n 

Document database 
divided in n sections 

Figure 2.3: The PE-array is subdivided into buckets. Each processing element of a bucket 
is assigned to one part of the partitioned dictionary. 

vi. Finally, the storage capacity of the MasPar MP-2 may not be sufficient to store the 

whole database. In this case we have to divide the database into several sections and 

process a sufficiently small subset of those parts at a time. 

The distribution of document and query vectors, claimed in points i. and ii., can 
be defined uniquely by partitioning the dictionary of distinct words of the document 
database and dedicating each PE to one dictionary partition (2.1.1). PEs will only store 
and compute terms of document-and query-vectors that correspond to the words of the 
partition to which they are assigned. In the following we call a row of adjacent PEs, which 

covers the whole dictionary exactly once, a'bucket'. 

Figure 2.3 gives an overview of the resulting PE-array organization of the database. 

Figure 2.4 describes the data structure of one bucket, containing a copy of the distributed 

query and 3 document vectors, in more detail. 
Let us assume for the moment, that the distribution of documents on the sections of 

a database vi. is known (we will discuss this in 2.2.1, using the term'clusters'instead of 
'sections'). Given the distribution of documents on the database sections and the distri-

bution method for assigning the document terms to the processing~lements of a bucket, 
it remains to be addressed, which document to place on which bucket of the PE-array. 

This is of some importance, since this distribution determines the maximum number of 
terms per PE (in Figure 2.4 on PE 126) and therewith not only the computation time, 

but also the storage requirements of the parallel database (storage overhead caused by 

the parallelization). This part of the load balancing routines is discussed in 2.1.1. 
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distributed according to the partitioning of the database. 

Dictionary Partitioning 

The distribution of document and query terms on the PEs of a bucket is determined by 

partitioning the database of distinct words and assigning each PE to exactly one partition 

of the dictionary. PEs will only store and compute those terms of the document collection, 

that correspond to words of their dictionary part. 

In the example of Figure 2.4 and 2.1.1 the dictionary has been divided into 4 disjunct 

sets. Consequently, each document and query-vector is divided into four parts, each con-

taining the terms of only one partition. The 4 parts of each vector are stored on a row of 

four adjacent processing element (a'bucket'). 

Thus the term distribution is fully described 

1. by chosing a number n of dictionary partitions and 

2. by assigning each word of the dictionary to one partition. 

Since the queries that will be posed to the retrieval system are not known during the 

generation of the distributed database, one cannot guarantee the distribution of query 

terms on the processing elements of a bucket to be even. Assuming that each term occurs 

with the same probability in a query, and that this probability is independent of the other 

terms in the query1, the best one can do to assure an even distribution of query terms is 

to assign the same number of words to each dictionary partition . 

Let the number of dictionary partitions be denoted by n and the overall number of 

words in the dictionary by IDI. Then each PE is responsible for 

s = r亨］
1 At least in a relevance feedback environment this assumption is not quite correct, since the co-

occurence of words in the documents of the database bears some information about the co-occurence of 
words in relevance-feedback queries. 
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words of the dictionary. 
The current implementation computes a suitable value for n according to the following 

considerations: 

1. n should be sufficiently large to enable the system to store each of the documents 

(even the longest ones) in one bucket, 

2. the number of words s per dictionary partition should be less than 216 

3. favour small values of n to bigger ones in order to reduce the communication over-

head, caused by recombining the partial results of the distributed document parts. 

The second point of the above list guanrantees, that each partition of the dictionary 

contains less than 216 distinct terms (without loss of generality). Thus each PE has to 

handle terms with indices out of a index set of at most 216 different terms. Consequently 

it is possible to store term indices in only 2 Bytes (one of those rare synergy-effects of 

parallel computing). 

Typical values for n lie between n = 2 for the Virginia-collections (LISA, CISI, CRAN, 

...) and n = 8 or n = 16 for the Tipster-database. 
By now we only considered, how to balance the query-terms. Far more important is the 

distribution of document terms: The partitions of the database dictionary are assigned 

to same sized, disjunct sets of processing elements (cf. Figure 2.3). A necessary claim 

for achieving an evenly balanced load distribution is therefore, that the total number of 

references (terms of the document collection) is roughly the same for each partition of the 

dictionary. 

Dictionary-
partition 1 2 3 

a) alphabetical order 

16 1 2 3 

b) zigzag order 

16 1 2 3 16 

c) after swapping 

Figure 2.5: Number of terms per dictionary partition using different load balancing meth-

ods (LISA-collection, 16 partitions). 

As figure 2.5.a) suggests, it is not a very good move to simply slice the alphabetically 

ordered dictionary in same sized pieces (pieces with the same number of words). Much 

better results are achieved by ordering the words according to their reference frequency 

and assigning them in a zigzag-manner to the dictionary partitions (fig. 2.5.b). The dis-

tribution can further be improved by swapping words with different frequencies between 

the partitions (fig. 2.5.c)主

Document Placement 

The previous chapter described how the terms of documents and queries are distributed 

on the processing elements of a bucket. Since each database section is typically stored on 

2 An even better method would be to analyze the co-occurence of words in the document collection 
and assign words that occur oftenly together to different dictionary partitions. The performance gains 
are however unlikely to be significant. 
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more than one bucket of the PE-array, it remains to be addressed, where (i.e. on which 

bucket) to place documents. 

Again the documents have to be allocated in such a way, that 

1. the number of documents per bucket is roughly the same for each bucket, 

2. the maximum number of terms per PE is as small as possible. 

The number of buckets per section of the database depends on whether the section in 

respect is one part of a unclustered database, in which case all buckets of the PE-array are 
used for storing a section (in case of the TIPSTER-collection: 1024 buckets), or a cluster 

of the clustered one. In the latter case the number of buckets per cluster is typically 

significantly smaller (Tipster: 8 or 16 buckets per cluster). 
It suggests itself to use the same kind of zigzag-allocation technique to distribute 

the documents on the buckets, as the one used for partitioning the database dictionary. 

However, while showing good results in partitioning the dictionary, it can only be used to 
generate a fast initial solution in document placement (cf. 2.1.1). 

This initial distribution is refined by swapping documents between different buckets 

with the goal to reduce the maximum number of terms per PE. This is not as easy as 

in the case mentioned above (s. 2.1.1), where we just swapped words between different 
dictionary-sections. Now each swap not only affects two partitions, but all PEs of two 
participating buckets. If a swap reduces the number of terms on one PE of a bucket it 

may well increase the number of terms on the others. Figure 2.6 shows an example of two 

buckets (n = 4 PEs) filled with 3 documents each. 
In the original distribution the processors O and :3 contain the same maximal number 

of document terms. Swap a) reduces the number of terms in these two, but increases the 
number in PE 7 to a new, higher maximum load. Swap b) moves the maximum load to 
PE 7, swap c) reduces it. 

In the CRISP the following two methods to find a sequence of加improving'document
swaps are implemented: 

1. greedy: 

as long as there are'improving'swaps, one bucket is selected, that contains a pro-

cessing element whose load is maximal in the set of all PEs (in the example: bucket 
1) This bucket offers its documents one by one to all other buckets. Those buck-
ets test, whether they have a document to give in exchange by which either the 
maximum number of terms over both buckets, or at least the number of processing 

elements containing the maximum number of terms is reduced (in the example swap 

b) and・c) would be considered to be improving steps). The best swap is selected 
and performed. 

The algorithm terminates since the maximum number of terms per PE is mono-

tonically decreasing, or while not changing, the number of maximum PEs decreases 
strictly. 

2. probabilistic: 

swap documents randomly between buckets. Accept those swaps, that improve the 
load balancing of the two affected buckets. 

Terminate if no improving swaps occur within a sequence of randomly chosen swaps 

of pre-de且nedlength. 
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Figure 2.6: Swapping documents between two buckets. 
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Neither of the two algorithms can guarantee to find an optimal solution, but both 

perform well on the examined databases (cf. 2.1.1). 
The running time of the greedy-algorithm is however for each swap quadratic in the 

number of documents per bucket and it may take some time to compute the document 

allocation for big document collections (even so it is implemented on the MP-2). 

Therefore the CRISP-system uses by default the probabilistic allocation-algorithm. 

Load Balancing Results 

The following tables summarize the load balancing results for the LISA-database, the 

unclustered Tipster-database ('ucl') and the clustered Tipster-database ('cl'). The latter 

two differ in the size of the database-sections (ucl: full database, cl: average over 2000 

clusters) and the number of buckets per section (ucl: 1024, cl: 8). 
Results are given a) using a alphabetic dictionary partitioning b) the balanced die-

tionary partitioning of 2.1.1. The term-average gives a bound for the best possible, i.e. 

even distribution of terms on processing elements. The'dumb'-distribution results from 
assigning document i of the database to bucket imodb, where b denotes the number of 

buckets per section. 

LISA 

TIPSTER (ucl) 
TIPSTER (cl) 

II term-av I dumb I greedy I prob. I 

6~~7 I 7二 I 〗 I 6ニ
391 

Table 2.1: Load balancing results with alphabetic dictionary partitioning 

LISA 

声 TER(ucl) 

TIPSTER (cl) 

II term-av j dumb j greedy I prob. I 
" 27 I 46 I 28 I 30' 

6107 

391 

7278 

480 

6147 

427 

Table 2.2: Load balancing results with balanced dictionary partitioning 

The maximum load per PE of the probabilistic allocation algorithm lies for all observed 

databases maximal 10% over the one of the best possible distribution (evenly distributed 
document terms). 

2.1.2 Q uery Computation 

The data-structures described above are awkward, compared with the ones required for 
a sequential or the KSR-implementation of the vector space model. But this is not due 
to the SIMD-execution model of the MP-2, but they grew compicated because of the 

huge number of processing elements and their relatively small local memory capacity. 

The following section will concentrate on the peculiarities of the scoring routines caused 

by the SIMD-execution model of the MP-2. 
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Using the data-structures described above, the ranking of a already loaded part of the 

database can be computed as follows: 

1. distribute the query according to 2.1.1 on the PEs of a bucket 

2. broadcast distributed query to the PE-array 

3. compute the partial document scores on all PEs 

4. sum up the partial results for all documents 

5. rank results 

The distribution of query terms on the PEs of a bucket has been described in 2.1.1. The 

communication overhead of the interprocessor communication steps 2 and 4 is negligible 

(the data structures have been designed so as to allow them to be carried out by using 

the extremly fast local communication structure of the Mas par). 

Point 3 will be discussed in detail below, because these routines form the core and 
most time consuming part of the retrieval system and reflect the peculiarities of SIMD-

programrmng. 

The ranking routines (5) are only mentioned in so far, as they restrict the computa-
tional scope of the retrieval system in respect to relevance feedback methods. 

Computat10n of Document Scores 

Sparse vectors are usually stored as a list of index/value-pairs containing all non-zero 

terms of the vectors. The inner product between two sparsely filled vectors q and d in 

this representation is on sequential and MIMD-machines usually computed by merging 
the sorted lists of indices: 

I: 

Notation: 

it-:_.n) 
V(d,n) 

→ 

number of non-zero terms in d 
→ 

index of n'th term in d 
→ 

value of n'th term in d 

Input: sorted index-representation of vectors J and『

id = 0 
iq = 0 

result = 0 
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ififif 
result = result + V雇，幻） * V0す，％）
幻＋＋

iq++ 
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｝
 

`~ 
→ 

Output: result = d xり

Complexity of the algorithm: The number of multiplications『hits')depends on the 

proportion of matching terms in the two vectors. It is bounded by min([d[, [町）. One might 
expect it to depend in a quadratic way on how sparsely filled the vectors are (e.g. if both 

vectors contain evenly distributed 1 % of all possible terms with non-zero weight, only one 
of 10000 possible'hits'would occur statistically). This is however not true for relevance 

feedback: even so both query an document vectors contain a very small percentage of terms 

with non-zero weight (e.g. LISA-collection: documents 0.3%, queries typically between 

1.5% and 3%), Table 1 (chapter 1.1) states, that the number of multiplications can be 

assumed in a relevance-feedback environment to lie between 0.3団and0.5[礼
Thus using this algorithm, on MIMD and sequential machines the computation of the 

inner product between two vectors takes [di+ I可indexoperations and 0.5[d[ multiplica-

tions. 

On SIMD-Machines however some thousand processing elements execute the above 

code simultaneously with different data. Chances are, that at each step some PEs want 
to proceed in one, somJ in the other vector and others have encountered a'hit'. The code 
complexity is still O ([d[ + [可）， butin each step a SIMD-machine executes all three if-cases 

including the case of a韮t',thus leading to 4([迅+I月） index operations and』+『
multiplications. 

Moreover m computing the product between one vector q and a set of vectors { dふ;,
the (in the case of document retrieval usually relatively long query-) vector q has to be 
traversed once for each (relatively short) ;L (if one wants to avoid intermingling terms of 

different documents, which would lead to some memory overhead). 

A better way of vector multiplication using a SIMD-architecture is to extend one of 

the sparse vectors (り toits full vector representation, i.e. to an array containing also the 

zero-terms of the vector. The indices of the non-zero terms of the second vector d can 
then be used to address the corresponding terms in the full vector示

II: 

Notation: 

q[i] term i of extended vectorダ

Input: (un-sorted) index-representation of d 

full-vector representation of『
result = 0 

for (幻=0; 幻<I履；幻＋＋）
｛ 

result = result + V(忍幻） * q{I(d~ 幻）］

｝→  
Output: result = d x q 

This algorithm requires ldl multiplications for computing the inner product between two 

sparse vectors, independent of the number of non-zero terms in q. The conversion ofダ
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from index-list to full-vector representation requires 0(1可） operations, but has to be done 

only once in computing the inner product between one query vector and a set of document 

vectors. 
Algorithm II is suitable for SIMD-architectures since all processing elements execute 

exactly the same instructions at a time, independent of the structure of the sparse vectors. 
If each processing element contains exactly one document (respectively the part of one 

document), the running time of algorithm II on a SIMD-machine will be 

→ 

T1 = 0(1月） +tm *max(jdpel) pe 

Where tm denotes the execution time of the loop-body of algorithm II. 
If parts of more than one documents are computed by each processing element, in each 

loop-iteration some processing elements might change from one document to another. Let 

tc denote the time for transition from one document to the next (i.e. switching the variable 

used for accumulating the result), then the running time of the above algorithm with p 

documents per PE is 

p 
→ 

TP = 0(1月） + (tm +む） *max・  pe (I: ldpe,J I) 
j=l 

Algorithm II has however one major drawback: the dictionary of distinct words of a 
real-world database might well contain some hundred thousand words, making it infeasible 

to store the full-vector representation of q on the PE-array. 
So the full vector representation is replaced in the CRISP-system by a hash-table for 

the non-zero terms of the query, leading to algorithm III: 

III: 

Input: (un-sorted) index-representation of d 
hash-table representation of q: hq 

result = 0 

for (幻=0; 幻<ldl; 幻＋＋）
｛ 

result = result + V (d., 心）＊加[hash (I(, 忍幻））］

Output: result = d x cf 

The formulas given for the execution time of algorithm II hold unchanged for algo-
rithm III, with a slightly bigger time constant tm. The current implementation uses a 
modulo-hashing function with a power of 2 as hash table size (i.e. the hashing function 

is a projection on the lower bits of query-term indices). Collisions are resolved by linear 
progression in the hash-table. 

｝
 

Document Ranking 

The output of the CRISP-retrieval kernel for a given query consists of a list of the highest 

scored documents, the length of which depend on the users need of information. The 

CRISP-system does usually not return a list of the scores of all documents to the calling 
instance. 

One raw ranking of the document scores is however not enough to meet the require-
ments of a relevance feedback system. The IDE-DEC-HI formula requires 
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• the ranking of the top scored not yet retrieved documents 

• the top ranked non-relevant document that hasn't been used by now for re-
formulating a query. independent of whether it has been retrieved in this or in 

prior relevance feedback iterations. 

In order to meet the needs of as wide a range of relevance feedback methods as possible, the 
CRISP ranking routine returns two ranking lists and discerns three types of documents: 

1. documents that are ranked in list 1 

2. documents that are ranked in list 2 

3. documents that are not included in either list 

For the IDE-DEC-HI-formula, list 1 consists of the ranking of the d highest scored, not 

yet retrieved documents. List 2 of the one highest ranked non-relevant document of prior 
iterations, that hasn't been used for query-reformulation. All documents that have been 

used for query-reformulation are not ranked in further iterations. 
The retrieval kernel should thus be applicable for most relevance feedback methods 

(e.g. the Rocchio-formulas, Ide-regular, Common-term-system). 

2.1.3 Summary 

This chapter described 

a) the data structures and load balancing routines of the parallel retrieval kernel of the 
CRISP-system 

b) a SIMD-algorithm for scoring the documents 

The load balancing results lay for the Tipster-database for all observed distributions 

within 10% from the optimal solution. The communication overhead, caused by inter-
processor communication during query-processing is negligible. 

The data-structures have been chosen in a way, that makes it possible to formulate the 

multiplication of sparsely filled vectors in a pure SIMD-manner. Due to the typically high 
proportion of matching terms in query and document vectors, the program complexity of 
this algorithm is comparable to the one of the List-Merging algorithm used on sequential 
or MIMD-parallel machines. 

Thus it has been possible to formulate the retrieval phase of the VSM-model in a 

pure SIMD-fashion. However it has to be noted, that the complexity of the required 

code and data-structures lies far beyond the one for comparable MIMD or sequential 

implementations. This reduces the changeability and therewith the flexibility of SIMD-

systems considerably and is a major drawback of the presented approach. 

2.2 Cluster-Subsystem 

The task of the cluster-subsystem of CRISP is to restrict the search scope of the full-

database search, without disturbing the search process, i.e. loosing the retrieval effective-
ness of the VSM. In order to do so it has to 

1 cluster document collections, assigning documents that are to be relevant to the same 

queries in the same clusters (of course without knowledge of the actual query), 
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2 identify those clusters that are most likely to contain relevant documents for a given 

query. 

The relevance of documents to queries, used to formulate the two goals above, is actually 

a very vague concept, especially as long as the queries are unknown. So for clustering 

purposes we accept the relevance estimations of the VSM-retrieval system: 

1'cluster document collections, assigning documents with the same response behaviour 

under the VSM to the same clusters 

2'identify those clusters, that are most likely to contain the documents, that would 

occur in the top-ranked documents of a corresponding full-database search 

Section 2.2.1 is concerned with the clustering method chosen in the CRISP-system. 

One important property of this clustering method will be, that the resulting system can 

use the same parallel retrieval kernel for clustering purposes (2.2.2), for selecting the 

most promising clusters of the database (2.2.3) and for ranking the documents within 

these clusters. 

2.2.1 Clustering method 

The clustering algorithm has to meet the following requirements: 

1. it has to be precise enough to identify for a given query a (small) subset of clusters 

that contain a'sufficient'proportion of relevant documents. 

2. its time and space complexity has to be small. Methods with space-complexity 

over O(N), where N denotes the number of documents, are clearly not feasible for 

databases with probably millions of documents. 

3. The resulting clusters should be of the same size, in order to be computed efficiently 

by a SIMD-machine. 

In order to keep the storage requirements for the cluster centroids reasonably small 
the cluster structure will have to be coarse. 

4. The algorithm should be stable under small changes in the database (e.g. adding . 
more documents to the database). 

Unfortunately, the clustering mechanisms that showed best results in terms of retrieval 

effectiveness (1.) and whose cluster hierarchy tends to be balanced (3.) (complete link, 

HBC), are prohibitively expensive to be used for big document databases. 

Moreover, even if one would be able to compute the cluster hierarchy for big databases, 

a SIMD-system as the one described in this paper could not profit much from this hier-

archy: SIMD-machines favor broad, extensive searches (and offer the required computing 

power to do so), while their performance on tree-searches is comparatively poor. 

On the other hand, non-hierarchical methods, which meet requirement 3. by defini-

tion, are relatively inexpensive to compute (2.) and reasonably stable under changes in 

the database (4.). Therefore we chose a non-hierarchical re-allocation method for the clus-

tering subsystem of CRISP. Experiments will have to clarify its suitability in the current 

setting with respect to point 1. of our above requirements. 
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The clustering algorithm of CRISP 

The clustering subsystem of CRISP uses the following re-allocation method to compute 

a non-hierarchical cluster structure of document collections: 

1 # given the number of documents per cluster: n 

2 # (and thereby the number of clusters) 
3 initialize: distribute documents randomly on clusters1 

4 compute cluster centroids 

5 WHILE not stable 

6 

1 Iandomize order of clusters 

8 FOR each cluster 

9 { 

10 look for the 2n documents with highest cluster-centroid-similarity 

11 take the n best documents into the cluster1 that are 

12 -either not yet assigned to any 

cluster in this iteration 

13 -or have a higher similarity to this centroid 

14 than to the centroid of its current cluster 
15 . } 

16 force unclustered documents in incompletely filled clusters 

11 compute cluster centroids 

18 

19 output: ~luster assignment 

The choice of the cluster representatives (line 4 and 11) turned out to be crucial in 
order to avoid premature convergence of the clustering p:ocess: in using the normalized 

sum of the document vectors, a cluster centroid will contam, among others, all the unique 

terms of its documents. Those terms add only to the score of the documents that are 

already in the cluster, without carrying any information about the interrelation between 

them, making the clustering process very conservative. So we only use those terms in the 

clustering process, that occur in at least two documents of the cluster. 

Furthermore it proved worthwhile to truncate the centroid vectors in early iterations 

to the words with highest weight in order to overcome the bad initial distribution fast. The 

number of words in the cluster centroid is then gradually increased over the iterations. 

2.2.2 Cluster generation 

The above method is actually nothing else than a variant of the k-means-algorithm. It 
differs in the following points: 

• all clusters contain the same number of documents 

• an already assigned document can be re-assigned to a better fitting cluster in line 

10. The cluster from which the document is taken cannot select a new document in 

the same iteration. Thus the distribution of documents on clusters in lines 8-14 is 

incomplete. 
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We already mentioned the reason for the first modification of the k-means-algorithm 

(requirement 3.). Its quite unnatural formulation and the incomplete assignment of doc-

uments on clusters follows from how the cluster subsystem is embedded into CRISP and 

will be explained below. 

The usual way to describe the k-means-algorithm is something like this: "assign each 

document to the cluster with highest document-centroid similarity, iterate this process". 

Thus the algorithm computes for one document its similarities to all clusters-centroids, 

assigns the document to the best fitting cluster and continues with the next document. 

In contrast the algorithm as formulated above takes one cluster, computes the simi— 

larity of one centroid vector to all documents and assigns the best-fitting n documents to 

this cluster. 

This is an important difference because the parallel retrieval kernel is a highly efficient 

tool for computing exactly this (using the centroid vector to query the database). 

At this stage of the database generation there usually exists only the unstructured 

collection of document vectors as they are returned by the vector-generator. In order to 

be used by the parallel retrieval kernel during the clustering process, the original collection 

has to be translated into an intermediate, distributed representation (Figure 2.7). 

Original 
Database 

Intermediate 
Database 

--------------- ---------------
-unstructured -unclustered 
-seq. 

Cluster 
Parameter 

-par. 

Clustering 

Figure 2.7: Generating the clustered, distributed database. 

Distributed 
Database 

---------------
-clustered 
→ par. 

The database is divided into several sections, each of which is small enough to fit 

completely in the local memory of the PE-array. The parallel data-structure for this 

sectionized database is computed using the same load balancing routines, that are applied 

afterwards to generate the final, clustered database. Of course it would not make sense to 

use a cluster search on the intermediate database, but it can be used for the full-database 

searches performed during the clustering process. 

The clustering routines operates on this intermediate database. The discussion of the 

clustering process left the choice of clustering parameters, e.g. the number of clusters and 

the number of terms per cluster centroid, open. Suitable values have to be determined 

experimentally (A.l). 

The IO-overhead caused by transferring very big databases in multiple parts to the 

memory of the PE-array is no serious problem in the full-database searches required for 

clustering a database, since several hundred or thousand queries (centroid vectors) have 

to be processed at the same time. After loading one part of the database, the partial 

results for all queries can be computed for this part and be merged with the results on 

prior parts before the next part of the collection has to be loaded. 

2.2.3 Cluster search 

The search process in the clustered database consists of the following two parts 
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1. identify the most promising噂 clusters,

2. load clusters, 

3. perform a regular VSM-search in those clusters. 

The CRISP-system uses the same cosine-measure for computing the similarity of the 

query to the cluster centroids as is used for ranking the document collection according to 

the query. So both stages turn out to require the same computations, namely the ranking 

of a vector collection according to their similarities to a given query-vector. It does not 
matter, whether the collection consists of document vectors or of cluster centroids. Since 
the centroid collection has to be queried once for each user-query, it is stored permanently 

in the PE-array. 
Thus we can use the same retrieval kernel for clustering databases, the identification 

of the most promising clusters and for retrieval purposes within the selected part of the 

database. 

Loading the top-ranked clusters 

The percentage of the database r that is inspected during query processing is a user 
defined parameter. The best r% clusters are selected as described above. 

The loading of these clusters poses however yet another load balancing problem: By 

now we used the term'same sized'for clusters with the same number of documents. Now 
the system has to load a set of selected clusters and place them in a manner on the 

PE-array that balances the load, i.e. the number of terms, not the number of documents. 

Documents from different sources, treating different subjects tend to differ consider-
ably in their length. The clustering process is considered to collect documents related to 

the same topic in the same clusters. Thus one can expect the size of clusters containing 

the same number of documents to differ considerably if measured in the number of terms 
per cluster. In the example of the Tipster-collection: after stripping all clusters with exep-
tionally few document terms, (they occur so infrequently that they can be ignored for load 
balancing reasons), the number of terms per cluster differs by a factor of approximately 
10. 

Moreover it is advantegeous to store -if possible -all clusters of the current search 

scope at once on the PE-array (see 3.2). This means that for small r, the documents of 
each cluster will have to be stored on a relatively big number of processing elements, while 

the number of buckets is small for big r. 

The cluster-search routine has to solve the following load balancing problem at run-

time: find an evenly balanced allocation for a given set of clusters on the PE-array, where 

• the number of cluster depend on the run-time defined parameter r 

• and the cluster size is inhomogeneous. 

Load between two consecutive queries (e.g. two relevance feedback iterations) only the 

part of the database, that is not already present on the PE-array. 

The load balancing routines on document level described in 2.1.1 are too time consum-

ing for online-use. The current implementation of the CRISP distributes the documents 

of each cluster during the generation of the clustered database on a pre-defined number p 
of pieces using the load-balancing routines of 2.1.1. p has to be selected to be big enough 
to balance the load betwenn different sized clusters (in the Tipster collection a 1:10 ratio, 

i.e. p 2: 10) and to allow the exhaustive use of the full PE-array even for minimal r. For 
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example: the Tipster-collection is distributed on 2000 clusters, the PE-array subdivides 

in 1024 buckets. The minimal sensible load is asumed to be r = 5% or 100 clusters. In 
order to fill all buckets, each cluster has to be divided on at least p = 10 pieces. 

The database used for retrieval purposes is now structured as follows: 

• The document collection divides into clusters. 

• Each cluster subdivides into p pieces, 

• containing roughly the same number of documents and document terms. 

• The terms of each document are distributed on the PEs of a bucket. 

The cluster-loading algorithm first removes all clusters from the PE-array, which are 

not in the set of required clusters R and all clusters that are already present on the PE-

array from the set of required clusters. The load-balancing goal is to distribute the terms 

of the reqired clusters evenly on the unoccupied buckets. The average number of terms 

per bucket g is computed depending on the number of unused buckets of the PE-array and 

the number of terms in the set of still required clusters. Iteratively one of the demanded 
clusters is selected and its pieces are distributed on so many buckets, that the load per 

bucket slightly exceeds the load-balancing goal. The respective cluster is removed from 

冗， gis recomputed and the next cluster is selected. 

This allocation algorithm is far from being optimal, but produces reasonable results 

in 0(#clusters) time. 
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Chapter 3 

Results 

The clustering-subsystem of the CRISP modifies the search-behaviour of the regular VSM 

by restricting its search scope to a small portion of the database. Consequently the chosen 
approach has to be justified examining both relative retrieval effectiveness and efficiency 

compared to the exhaustive search of the regular VSM. 

3.1 Effectiveness 

3 .1.1 Measurement method 

Since the vector space model with relevance feedback is a well-known retrieval method we 

concentrate in the following investigations on the relative effectiveness of full-database and 

cluster-search. Our current parallelization does not affect the behavior of the standard-
VSM, and thus we can take the recall/precision of this system on the full database (i.e. 

without clustering routines) as a reference system. 
The effectiveness of a retrieval system is us叫 lymeasured by considering a recall-

precision-graph, showing the interdependance of recall and precision. Those graphs are 

obtained by evaluating the retrieval precision and recall at different levels of retrieved 
documents. Instead we consider the recall or the precision at only one document level, 
i.e. after a given number of documents have been retrieved and examine how these values 

depend on the percentage of the database used as search scope for the cluster-search (there 
is no need to consider both values, because they depend proportionally on each other for 

given document level and test set [Voor86]). 

The change in recall/precision due to the search scope restriction measures the effect 
of the cluster search on the regular search process. This measure might however be too 

abstract to gain much insight in the clustering process, because it gives only one combined 
evaluation for the regular search process, the feedback operations and the cluster quality. 

Figure 3.1 shall clarify the differences in the outcome of a full-database search and 

a corresponding cluster-search: the relative order of the documents in the ranking list 
of the cluster-search is the same as in the one of full-database search. Differences in the 
results of both methods occur only, if one or more of the top-rankend documents of the 

full-database search do not occur in the top-ranked clusters of the cluster search (in the 

example documents no 7 and 8). 

The disturbance of the full-database search process due to the restriction of the search 
scope can thus be measured more directly by observing the percentage of documents, that 

are retrieved by the reference system, but that do not occur in the top ranked clusters of 

the restricted search for the same query. We call this percentage the'agreement'of the 

28 



a) 

b) 

full-database search 

Query 

cluster based search 

Query Cluster 
centroids 

Cluster 
ranking 

Q
 

C 1 

C 2 

C 3 

C 4 

： ，  
: C 3 i rank : ! 

----.jc2 : ; ： 
clusters ! . ! 

： ： 
:':  
: . : 
： ： ：： 
＇ 
：．．．．．．．．．．．．．．．・i 

Document 
database 

Doc 1 

Doc 2 

Doc 3 

Doc 4 

Document 
clusters 

Doc 1 
Doc x 

Doc 12 
Doc 13 

Doc 8 

Doc x 
Doc x 
Doc x 

Doc 7 

Doc x 
Doc x 
Doc x 

Doc 3 

Doc x 
Doc 5 

Doc 14 

rank -----• 
documents 

Ranking 

....................... ・ 

Ranking 

Doc 7 

Doc 8 , ....................... . 

d

s

 

e

t

 

v

n

 

e

e

 

i
r
n
 

r

u

 

t

c

 

e

o

 

R

D

 

ー

［

} Agre=eet 

not ranked 

Figure 3.1: scheme of a) full-database search b) cluster-search. 

two search methods1. 

The agreement does not translate directly in a proportional loss of recall/precision, 

since the place of missing top-ranked documents is occupied in the cluster-search by other 

highly ranked documents (in the example documents no 5 and 13), that might be relevant 
to the given query too. 

All measurements have been made performing 8 relevance feedback iterations for each 

query of the standard test set, independent of whether preceding relevance feedback iter-

ations found relevant documents or not. In each iteration 20 documents were retrieved. 

1 An alternative measure for the cluster quality can be derived by observing for all clusters the average 
of the full-database search-ranks of all cluster members. The average rank of documents in top-ranked 
clusters (now in cluster-search mode) should be significantly lower than in lower ranked clusters. 
The results of this measure were in all observed cases consistent with the agreement measure. 
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3.1.2 The Effectiveness of the CRISP-system 

Different databases have been shown to respond very differently to clustering approaches. 

Thus the performance of the CRISP-system is eval叫 edon three different standard test 

sets of the Virginia-collections (Cranfield, CISI, LISA) and disk 1 of the Tipster-database. 

Of those the Cranfield collection has been noted in the literature [Will88] to be quite well-

disposed in respect to document clustering, while the contrary holds for the CISI-collection 

[Voor85]. 

Figures 3.2 and 3.3 show the influence of the search scope restriction on the retrieval 

effectiveness of the CRISP-system, in dependency of the percentage r of the database 

to which the search scope has been narrowed down. For LISA, CISI and Cranfield the 

number of terms in the centroid collection amounts to approximately 5% of the respective 

database-size, for Tipster approximately 2%2. 
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The relatively high agreement between the two search processes, i.e. the percentage 

of documents that are retrieved for the same query by both the cluster search and the 

unrestricted search for small r (e.g. at r = 10% the agreement is approximately 70%) 
indicates, that 

2LISA, Cranfield, CISI: 50 documents per cluster, centroids truncated to highest weigthed 100 terms 
Tipster: 250 documents per cluster, centroids truncated to highest weigthed 500 terms 
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• the adopted clustering method has been able to assign documents, that are retrieved 
by a unrestricted search process (in average over all queries of the test-set) to the 

same clusters. 

Moreover, the gap between relative effectiveness and agreement at low r shows, 

that the clustering process collected documents that tend to be relevant to the same 

queries in the same clusters. 

• the cluster-search could detect those clusters in which they are concentrated. 

In restricting the search space to 10 % of the database, the cluster search reached 

only 75% of the effectiveness of the exhaustive search on the CISI-collection, but 90% 

on Cranfield and 95% on the LISA-database. On the Tipster collection we measured a 

performance of 86%. 
In order to get a relative effectiveness of over 95% we have to inspect 23 % of the 

CISI-database, 20 % of the Cranfield-database, 16 % of the Tipster-and 11 % of the 

LISA-collection. 

3.2 Efficiency 

What are the benefits of the cluster-search for the retrieval efficiency of CRISP? 

We have seen that it is possible to restrict the scope of the search process to between 

r = 5% and r = 20% of the database, depending on the precision-needs of the user and 
the database. 

The selection of the concerning clusters is done by the same process as the search 

itself. Therefore the computation overhead of the cluster-search for ranking the cluster 

collection depends in the same way of the centroid collection size c (2% to 5%) as for a 

regular document collection. 

The overall computational requirements of the search process is therefore reduced by 

the cluster search to r + c percent of the cost of a full-database search (i.e. to between 7% 

and 25%). 

Even more important is what we can gain in terms of reducing the amount of data 

that has to be transfered to and from a secondary storage (obviously it makes no sense 

to look at the small Virginia test-sets in this context). 

Since a copy of the cluster centroids is stored permanently in the local memory of the 

PE-array, the IO-costs reduce to at least r % of the database or by a factor of 5 to 20 
relative to a full-database search. 

The above figure of r % is actually not quite correct, since a portion of the database 

will at each time be present in the local memory and thus does not have to be loaded for 

both search-methods. This changes, if the system has to compute a sequence of queries 

that were re-formulated by relevance feedback. Re-formulated queries tend to select the 

same clusters as the queries of prior feedback-iterations. 

If it is possible to store the r% of the database that were used by prior iterations till 

the next re-formulated query arrives, the search process will mainly proceed in the already 

loaded part of the database. 

Figure 3.4 shows the percentage of the database that has to be loaded for the user 

formulated query, respectively between two iterations of the relevance feedback process 

for r = 10%. 
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(r = 10%) 

The percentage of the database that is searched by a re-formulated query, but not by 

its direct predecessor is on average for the Tipster collection only 0.8% (r = 10%). 
An example describing the performance of the CRISP on the Tipster-collection: 
size of the centroid collection: c = 4 % 
search scope (e.g.): r = 15% 
===} 

relative retrieval effectiveness: 

computational costs: 

database loaded per query: 

-7% 

reduced to 1 7% 

reduced to 2.8% 

of the full-database costs 
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Chapter 4 

Conclusions and Future Work 

The goal of our work has been to develop a likewise efficient and effective retrieval system 
for very large databases: 

• We developed a parallel VSM-retrieval kernel on a SIMD-machine. The suitability 
of SIMD-architectures for this task has been validated by a) presenting effective 

load balancing routines b) formulating the retrieval process as a pure SIMD-task. 

• Non-hierarchical clustering methods have the potential to cluster even very big 
databases with su伍cientprecision. With a simple variant of a k-means-algorithm it 

has been possible to reduce the search scope of an exhaustive VSM-search to between 
11 % and 23% of the database with a loss of only 5% in retrieval effectiveness. The 

size of the centroid structure used to obtain these results is with 2%-5% of the full 
database small. 

The parallel retrieval kernel, clustering and cluster-searching routines based on this 

kernel form the CRISP. This system is efficient enough to handle even big databases like 
the Tipster-collection, while preserving most of the retrieval effectiveness of the original 
vector space model. 

Future work has however to be aimed at the comparison of the chosen approach 
to other, more sophisticated clustering methods. How well would hierarchical methods 
behave in the same setting? 

3;3 



Appendix A 

Implementation Details 

A.1 Clustering behaviour 

The standard clustering method of the CRISP is heuristic in nature. Its performance 
depends on the initial ordering of documents and several parameters that have to be 
determined empirically, most important: the number of clusters and the number of terms 

per cluster-centroid. 
The following results describe the behaviour of the clustering subsystem on the Tip-

ster and LISA→ database. They are however far from being complete and for thorough 

understanding of the clustering behaviour further studies are certainly required. 

Choice of Parameters 

In discussing the clustering method of the CRISP the following points have not been 
addressed: 

• the number of documents per cluster: n 

• the length of the cluster representative (centroids): l 

(from centroid vectors containing more than l terms all but the heighest weighted l 
terms are removed) 

One drawback of the heuristic clustering method of CRISP is, that suitable values will 
have to be determined experimentally. 

For the Tipster collection, divided on 2000 clusters (n = 250 documents per cluster): 

Some findings: 

n ¥ l II 50 I 100 I 200 I 500 I 1000 I 2000 I 

250 11 69.7 I 69.7 I 12.8 I 12.8 I 13.1 I 74.3 I 

• the agreement of full-database and cluster-search is higher using many small clusters, 
i.e. a fine grained cluster structure, than using a coarse cluster structure. 

(Experiments performed on Cranfield, CISI and LISA collection) 

• the longer the cluster centroids the higher the effectivenes of the cluster search. The 
cluster-search shows however acceptable results even for very short cluster-centroids. 

The collection of centroid vectors has to be searched once for each cluster-search query. 

This takes time linearly depending on the number of terms in the centroid collection. Thus 

34 



the size of the centroid collection measured in the number of non-zero terms has to be 

small compared to the size of the document database, leading to a trade-off between the 

two cluster parameters in determining suitable values for a given database. 
An interesting and still open question is, whether suitable values for the number of 

documents per cluster are related to the size of the document collection. Experiments on 

the Cranfield, LISA and Tipster-collections indicate that suitable number of documents 

per cluster is not a constant for all databases, but is positively correlated with the num-

ber of documents in the database (i.e. that the number of clusters do not have to be 

increased linearly with growing document size in order to get the same level of retrieval 

effectiveness). The results are however not conclusive. 

Convergence 

It turned out to be worthwhile to use short centroids to represent the cluster content 
during the early iterations of the clustering process and to increase the length of the 

centroids slowly with the number of iterations. For clustering the Tipster collection, the 

centroid length l has been set in the i'th iteration to: 

l = 30 + i * 5 

Cluster centroids元arecomputed by truncating the mean of the cluster members d; to 
the highest weighted l terms: 

元 ~\rune, ~,ec ,J;) 

In using this formula (it showed better results than the use of normalized centroids) it is 

hard to define a convergence-criterion for the clustering process, since the document scores 

(similarities to the cluster centroids) keep growing with increasing number of terms in the 

centroid vectors. Thus the cluster quality measured in the sum of the similarities of the 

cluster members to the cluster centroids keeps growing until the centroids are long enough 

to cover most of the terms of the cluster members (else-wise adding some more terms from 

cluster members to the centroid would result in an increase of the centroid-similarities of 

the respective documents). 

By now this problem is overcome by checking periodically the agreement between the 

full-database search and a cluster search based on the intermediate clustering. 

いtera~i三竺
10 67.1% 

20 70.0% 

30 70.8% 

40 70.4% 

50 71.9% 

60 71.2% 

70 71.7% 

80 72.8% 

Table A.1: Agreement for r = 10% in dependance of the clustering iteration on the 
Tipster-database 
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Table A.l shows the agreement between the full-database search and the cluster-search 

(restricted to r = 10% of the database) in dependance of the number of clustering-
iterations performed on the Tipster-collection. The clustering process has been initialized 

by distributing the documents randomly on the database clusters. 

Table A.l indicates, that 

(1) the agreement between both search processes reaches its final level in few iterations 

(for Tipster: approx. 20 iterations) 

(2) but keeps increasing slightly for long 

Cluster selection 

The subset of clusters used as the search-scope of a cluster-search are selected according 

to the similarity between the cluster centroids and the query, measured in the same way 

as the similarities between documents and the query (usually by the cosine of the angle 

between each two vectors). 

The suitability of this method can not be justified directly by observing the agreement-

measure or the relative retirval precision, because both measures give only one combined 
evaluation for 

a. the cluster quality, 

b. the ability of the cluster search to identify the clusters that are most likely to contain 

relevant documents. 

100 

80 

=
 
u
e
w
e
e
J
6
B
 

60 

40 

20 

一
(••• 

-•• 一
．．
 

鼻
、

，．
 
9-

．．
 
一

．．
 

2-

．．
 

,-

．．
 

9
t
 

．．
 

‘‘
 

．．
 

ー、‘‘
 

•• 

-，
 

... 
．．
 

', 

•• 
．．
 

ヽ
”

9

.

‘

 

‘, 

•• 

9
 

.

.
 

,
'
,
．
 

9
 

.

.
 

‘, 

．．
 

', 

．．．
 

＇， 

．．
 

．．
 

．．
 

,‘
 

，
 

．．
 

‘‘
 

ヽ
‘, 

．．．
 

.‘
 

ヽ

．．
 

‘’
 

,‘
 

•• 

．．
 

'，
 

‘‘
 

•• 

．．
 

’
 

．．
 

,' ，
 

,

‘

.

‘

・

‘, 

•• 

＇， 

．．
 

．．
 

．．
 

‘’
 

．．
 

‘’
 

‘

’

.

 

', 

．．
 

‘' 

••• 

，
 

,‘
 

•• 

‘, 

•• 

'
，
,
．
 

', 

．．
 

、

．
＇， 

．．
 

9

.

 ', 

．．
 

ヽ

．．
 

ヽ

,‘
 

＇ ＇ 9
 

.. 

9
 

.. 

,‘
 

’
 

ヽ

9, 
.. ,．
 ’
 ,

． 

゜゚

CRISP-clustering― 
random distribution -------

no infor・・ 

20 40 60 
part of database used in % 

80 100 

Figure A.l: Agreement of full-database and cluster-search on the LISA-collection. 

Figure A.1 shows the agreement of a cluster-search on the LISA-collection depending 

on the percentage r of the database used as the search scope of the retrieval process. 

If documents are distributed randomly on the clusters of a database, one would expect 

the agreement to depend linearly on r (Figure A.l:'no information'). But even for if one 
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distributes documentds rando叫 yon the clusters one can expect the cluster-search to do 
better if the regular cluster-selection process is used, since the information stored in the 
cluster centroids will bear some diffuse information about the contents of the cluster. The 
'random distribution'-curve of figure A.l demonstrates the strength of this effect. The 

third curve shows the results of the clustering algorithm of the CRISP. 

The first derivative of the CRISP-clustering curve (respectively its discrete equivalent) 
is strictly decreasing with growing ,. Clusters, that contribute most to the agreement of 
cluster search and full-database search are highly ranked in the cluster-search. The cluster 

search process ranks the clusters on average over all queries in the same order, as would 
be obtained by ranking clusters according to the contained proportion of top-ranked 
documents. 

We conclude, that the chosen cluster representation and cluster selection method en-
ables the cluster-search process to identify on average over all queries the parts of a given 
cluster structure that are most likely to contain relevant documents. 

A.2 Improving the clustering methods 

The cluster quality could be increased significantly if it would be possible to identify those 
documents of the database during the clustering process that are not well represented by 
the current cluster centroids, i.e. that;ヽvillnot be found in a cluster search. 

Let 

む denotethe number of queries, for which document i 

occurs in the list of top-ranked documents of the full-database search, 
mi denote the number of queries, for which document i 

occurs in the list of top-ranked documents of the full-database search, 
but not in the corresponding list of the cluster-search. 

Then both the similarity of a document to the centroid of its current cluster (Figure 
A.2) and the fact whether the document is assigned to the most similar cluster or not 

bears some (weak?) information about the proportion of failures Ji := mi/ti in detecting 
the respective document. 

A.3 Implemented Clustering Methods 

The clustering algorithm described in 2.2.1 is the default method used by CRISP for being 

a) applicable for very big databases and b) effective. The following clustering methods 
are implemented in the CRISP: 

• "Random" 
random distribution of documents on clusters 

• "FeatureVector" 

Instead of using the document vectors for clustering, use a feature vector of lower 
dimensionality that describes the retrieval-behaviour of the document. Assign doc-

uments with the same retrieval-behaviour (i.e. that receive high respectively low 

scores for the same queries) to the same clusters. 
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Figure A.2: Dependance of failure proportion on the centroid/ document similarity. 

The current implementation uses the scores of documents for f sample queries as 
feature vector of dimensionality f. One estimator for the structure of a relevance 

feedback query are the document vectors of the collections (a relevance feedback 

query is a linear combination of the original query and zero, one or more document 

vectors). Therefore f randomly chosen documents are used as sample queries to 
generate the feature vectors for the document collections. 

The resulting vectors are clustered with a k-means algorithm. 

This approach showed good results in terms of retrieval effectiveness only for man-

ually selected sample documents or for long feature vectors. 

• "Variant.1" 
"Variant_II" 

Pose randomly chosen documents as queries to the document collection. Assign the 

top-ranked documents to the same cluster. 

Iterate with the sum of the highest ranked n documents as new query ("Variant」I").

The main advantage of this method is, that it does not require the computation of 

the cluster centroids in each clustering iteration. 

The effectiveness of this approach depends 

documents and the order in which they are 

generating fast initial clusterings. 

• "Variant」I+"

Clustering method as described in 2.2.1. 

heavily on the 

used for querying. 

selection of seed-

It is suitable for 

• "MPstandard" 

Variant of the k-means algorithm, that avoids the incomplete assignement of doc-

uments to clusters of the default clustering method (2.2.1). Most effective method 
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but its memory requirements (approx. 100 byte per document) are too high to be 

used to cluster the Tipster-collection. 
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Appendix B 

Statistics on Document Collections 

B.1 Statistics 

Statistics of the document collections considered in this work, namely 

• the Virginia collections CISI, CRAN and LISA 

• Disk 1 of the Tipster-collection, consisting of 5 subcollections: 

-ap: 

stories from the AP Newswire, as collected by AT & T Bell Laboratories, 1989 

-doe: 

short abstracts from the Department of Energy 

-fr: 

whole issues of the Federal Register, a publication that serves as a reporting 
source for actions taken by government agencies, 1989 

- WSJ: 

stories from the Wall Street Journal, 1987-1989 

-ziff: 

information from the Computer Select disks, Ziff-Davis Publishing, 1989/1990 

Statistics are given for the number of documents in the collection, the total size of the 

collection in number of terms in the vector representation of the database, the minimum, 

maximum and average lengths of the vectors representing the queries and documents, as 

well as the standard deviation of these vector lengths. 

For more informations on the Virginia databases and the measurement method see 
[ASI96]. 

Table B.l gives the number of distinct words (index terms) in the document dictionary, 

i.e. the dimensionality of query and document vectors. 
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J Collection I number of index terms J 

cii~I jm 
、三

Table B.l: Number of different terms in collection 

Table B.2: QUERIES: (All lengths in number of TERMS -After WEIGHTING) 

Collection I Number Total Size of Average Standart Deviation m切 length max length 

of vectors the collection Length of vector length of a vector of a vector 

CISI 112 3547 31.67 23.04 3 99 

CRAN 225 2012 8.94 3.18 I 3 I 21 

LISA 35 721 20.6 8.60 

I TIPSTER I 200 I 9154 I 45.4s I 22.09 I 

Table B.3: DOCUMENTS: (All lengths in number of TERMS -After WEIGHTING) 

Collection Number Total Size of Average Standart Deviation min length max length 

of vectors the collection Length of vector length of a vector of a vector 

CISI 1460 67228 46.05 19.18 ， 165 

CRAN 1400 78231 55.89 22.46 14 159 

LISA 6004 208441 34.72 13.51 4 95 

TIPSTER 510637 50033800 97.98 101. 70 

゜
5144 

ap 84678 12567424 148.41 73.73 1 617 

doe 226087 10525673 46.56 19.15 

゜
143 

fr 25960 4523479 174.25 196.76 

゜
5144 

WSJ 98732 13047617 132.15 115.78 1 1552 

ziff 75180 9369607 124.63 130.18 3 3803 
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B.2 Vector Generation of the Tipster-collect ion 

The vector representation of the Tipster collection had to be generated from the original 

plain text database. The plain text database contains a number of tags, some of which 
contain a manual classification of the documents contents. Different subcollections of 
Tipster use different tags. 

These tags could give the clustering mechanism hints to which document sub-collection 
and to which topic a document belongs and should therefore be erased from the collection 
in order to get unbiased clustering results. The following list of tags is included to make 
the clustering results reproducible in different settings. 

Text fields of the original database are marked by: 

<tagname> text-field < /tagname> 
The contents of the text-field between a start-marker and end-marker of a text field 

denoted with a'O'are discarded, text-fields denoted with a'1'are included in the filtered 
database. Tags denoted with a'2'are ignored, i.e. if they occur in a text-field that is 
included in the :filtered database, the contents between this markers is also included, if they 
occur in a discarded text-field, their content is also ignored (they are used mainly in the 
'fr'-collection marking changes in the font style, e.g. bold-face or underlined characters). 

All markers are removed from the database. 

． 

DOCNO 
TEXT 
SECOND 
DATELINE 
NOTE 
DOCID 
JOURNAL 
AUTHOR 
ABSTRACT 
CATEGORY 
PRODUCT 
FTAG 
Tl 
T3 
T9 
Hl 
H3 
p 
p・ 

G 

HL 
so 
LP 
GV 

RE 
NS 
DATE 
ST 

0

1

0

 0

0

0

0

 1

1

0

0

2

2

2

2

2

2

2

2

2

1

1

0

0

1

0

 0

0

 

FILEID 
FIRST 
HEAD 
BYLINE 
UNK 
SUMMARY 
TITLE 
DESCRIPT 
COMPANY 
SPECS 
ADDRESS 
ITAG 
T2 
T4 

C 
H2 
H4 

D 

R 

G7 
DD 
IN 
co 
AN 
MS 
DOCID 
DO 

0

0

1

1

1

1

1

1

0

 0

0

 2

2

2

2

2

2

2

2

2

0

1

0

 0

0

0

0
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