
Internal Use Only

TR-IT-0149

A comparative study of

Query Reformulation methods

on Vector-Space Models -.

Stephane Auberger Eiichiro Sumita Hitoshi Iida

January 31, 1996

Abstract

004

Relevance feedback is a well-known method developed to improve the effectiveness
of information retrieval systems. It is based on the automatic and iterative improve-
ment of the textual queries supplied by the users. After a brief overview of the system
performance, this paper describes several different approaches and further refinement
of a standard query reformulation method ("Ide-dec hi formula"). The main research
was focused on using information about the origin of each particular term in the query
("modified Ide-dec hi formula") and especially information on terms in non-relevant
documents ("Common Term System"). Also reviewed are less-expensive methods for
decreasing the retrieval time as well as the size of query and document vectors ("fixed
expansion size" and "fixed vector size"). In general, all methods are found to be ef-
fective in improving the performance on a standard test suite, the Virginia Disc One
collections.

@ATR Interpreting Telecommunications Research Laboratories

Contents

ー

2

3

4

Introduction
1.1 System Overview .. .
1.2 Database Representation .. .
1.3 Query Processing

Relevance feedback using the Ide-dee hi formula
2.1 Retrieval Effectiveness
2.2 Retrieval Time ・・・ ．．．．．．．．．．．．．．

2.3 System Performance
2.4 Conclusion and Further Studies

Comparison of Query Reformulation Methods
3.1 Modified Ide-dee hi Formula .
3.2 Common-Term System
3.3 Fixed Expansion Size ・..........
3.4 Fixed Vector Length

Conclusion and Future Work

Appendices

A

B

C

D

E

Statistics on the Virginia Disc One Collections

Evaluation of relevance feedback for the LISA collection.

Implementation details

Relationship between Query Size and Retrieval Time

Graphs

1

1

1

2

3
3
4
4
5

6

6

8

0

2

5

7

7

1

5

7

8

1

1

1

1

1

2

2

2

2

1 Introduction

Text retrieval systems are computer-based systems the function of which is locate user-requested docu-
ments in text databases. The requested documents which are commonly stored in electronic form may
include news articles, technical abstracts, office memos, electronic mail messages, among many others.
In fact, the recent widespread of such electronic documents has greatly enhanced the importance of text
retrieval systems and made them vital components in modern information systems. A wide variety of op-
erational text retrieval systems already exist, however, their performance vary significantly with respect
to retrieval effectiveness and retrieval speed.

We used a parallel vector processing text retrieval system. This system is implemented on the KSR
parallel computer; a MIMD multiprocessor machine which has large memory units capable of accommo-
dating sophisticated document and query word weights. These systems are based on the vector space
model in which documents and user queries are modeled as weighted vectors. The retrieval operation
consists of scoring documents vectors as to how well they match the query vector, and then returning
the top ranked documents to the user. The retrieval effectiveness of these systems is usually high by

virtue of using weighted vectors and ranking. Furthermore, these systems can be implemented to yield
fast retrieval speed as they are amenable to parallel implementations using large-scale computers, where
a large number of vectors can be accommodated and processed in parallel.

An overview of the retrieval system and its implementation is given in section 1. Performance of the
system with respect to retrieval effectiveness and retrieval speed is evaluated in section 2, as well as many
different query reformulation methods in section 3. Concluding remarks and future work direction are
given in section 4.

1.1 System Overview

The system consists of four components; text database, weighted vectors generator, weighted vectors
database, and parallel query processor. The vectors generator and the text database are implemented on
the system's host (a SUN Sparc workstation), and the weighted vectors database and the parallel query
processor are implemented on the KSR parallel machine.

Figure 1: Bolek diagram of the system

The database contains the texts of the documents or articles to be searched. The generator operates
directly on the text database to produce a much smaller weighted vectors database. The parallel query
processor operates directly on the weighted vectors database by performing a parallel match operation
between a given query vector and all document vectors. It also runs the relevance feedback operation by
reformulating a new relevance feedback query depending on the query's relevance information.

1.2 Database Representation

The first step in the implementation of a vector-model text retrieval system is to represent each document
in the given full-text by a weighted vector. The generation of a weighted vector is carried out on the host
machine by running the following three pre-processing operations:

ー

The weighted vectors generator consists of three main components; stop list words filter, suffix strip-
ping stemmer, and word weights assignment function [l]. A brief description of each component is given
below:

• The stop list filter removes from the text of each document or query the most frequently occuring
words in English such as (and, of, or, but, the, etc, …） • These words are poor discriminatories, and
their removal would have no effect on the retrieval effectiveness. Moreover, the filtering process
reduces storage requirements and increases query processing speed. The filter was applied using a
stop list consisting of 425 words derived from the Brown Corpus (2].

• The suffix stripping stemmer replaces the words preserved by the stop list filter to their stem forms.
For example, the stemmer replaces a variety of different forms such as analysis, analyzing, analyzes,
and analyzed by a common word stem analy. The stemming operation reduces storage requirements
since many words are replaced by a single stem word. Furthermore, it might increase the retrieval
effectiveness since the stem word has a higher frequency of occurrence than that of the words re-
placed. In this system we used the well-known Porter stemming algorithm [3].

• The weight assignment function assigns a real-number weight to each word stem produced by the
stemmer. The weight distinguishes the degree of importance of the word in the document (query),
and thus leads to improved retrieval effectiveness. Moreover, it adds user-friendliness to the system
as it facilitates ranking of the retrieved documents. In this system, we used the following weight
assignment function for both the documents and the queries [4].

(0.5 + 0.5~).log茫
w;=

喜1:~((0.5+ 0.5辛）2 .(log奇）2)

where,
叫： weight of word i in the document (query).
/;: frequency of occurrence of word i in the document (query).
n;: number of documents(queries) to which word i is attached.
N: number of documents (queries) in the database.
W: total number of words in the document (query).

The denominator of the function above is a weight normalization component which ensures that
the lengths of document (query) vectors are equal. The function assigns weights varying between 0
and 1, where O represents a word that is absent from the vector, and 1 represents a fully weighted
word.

1.3 Q uery Processmg

The parallel query processor scores documents vectors as to how well they match a given query vector,
and then returns a ranked list the top scored documents. It also executes the computation-intensive
relevance feedback method which is applied to improve retrieval effectiveness. A detailed description of
the processor's operation is given below:

i. Read into the main memory of KSR the documents weighted vectors and the query weighted vector.

ii. Distribute the processing of the query vector matching operation on all KSR processing elements by
assigning different document vectors to different processing elements. This邸 signmentattempts to
achieve evenly-balanced processing so as to assure high utilization of the parallel machine resources.

2

iii. Perform in parallel the query vector matching operation. This corresponds to performing an inner
product between the query vector and each document vector. Every inner product operation pro-
duces a real-number score which corresponds to the similarity between the document vector and
the query vector.

iv. Rank the documents in decreasing order of their similarity scores, and retrieve the top n documents
to judge for their relevance to the example query. This experimental system runs in a batch
mode operation, and thus the relevance judgment is made automatically be referring to a relevance
information file which contains names of the example query's relevant documents (in an interactive
mode of operation, however, the relevance judgment would be made by the user).

v. Reformulate the query vector by expanding and re-weighting its elements according to the following
Ide dee-hi relevance feedback method [5]:

Qnew = Q01d + ZAil rel.docs - Top nonrel.doc

Qnew is the new query vector which is obtained by (1) adding to the previous query vector Q01d
all words and corresponding weights of all relevant documents vectors, and (2) subtracting from
the new query vector all words and corresponding weights found in the top ranked non-relevant
document vector. Query reformulation using the Ide dec-hi method has proved to be superior to
many other relevance feedback methods [6].

vi. Repeat steps (iii -v) for a given number of iterations.

2 Relevance feedback using the Ide-dee hi formula

We evaluated the performance of the relevance feedback system using five experimental document collec-
tions (LISA, CACM, CISI, CRAN and MED) covering various subject areas and taken from the Virginia
Disc One files -statistics about these collections are presented in Appendice (A) [7]. The performance
data reported in this and the following sections are mainly those obtained using two collections only; the
LISA library science collection which consists of 6004 documents and 35 example queries, and the MED
collection, which consists of 1033 documents and 30 example queries. Results for the other collections are
presented in Appendice. We conducted a series of retrieval experiments especially on the LISA collection,
in each of which we used every query in the collection. We evaluated performance of the system with
respect to its retrieval effectiveness and retrieval time.

2.1 Retrieval Effectiveness

Retrieval effectiveness of text retrieval systems is normally evaluated using the recall and precision mea-
sures. Recall is defined as the proportion of relevant documents that are retrieved from the document
collection, and precision is defined as the proportion of retrieved documents that are relevant. All recall
and precision ratios given in this paper were computed under the assumption that the top 20 documents
retrieved in each search iteration were judged for relevance, and the weighted words contained in all the
relevant documents and the top non-relevant document were used to reformulate the query vector.

To evaluate the true effectiveness of the relevance feedback process, it is necessary to compare the perfor-
mance of the feedback iterations search with the results of an initial search performed with the original
query vector by retrieving the same total number of documents (without the use of relevance feedback
methods).

In addition to the average recall and precision measures over all the queries in the collection, the average
query length (in number of terms, i.e. a stemmed word produced by the stemmer) and the average num-
ber of relevant documents retrieved were also computed. To represent the performance of the system by

a single number, an average Recall-Precision measure was computed: it is proportional to the area below
the well-known Recall-Precision graphs (to be precise it is the value of this area multiplied by 10り

3

2.2 Retrieval Time

The measured retrieval time corresponded to the time spent by KSR to match the query vector against
all the document vectors plus the time spent to rank the similarity scores in decreasing order.

The experiment was conducted using either 25 processors or a single processor. A speedup ratio (S)
was computed as Run Time(lPE)/Run Time(25PE). Dividing (S) by the total number of processors,
gives the Speed-up ratio.

2.3 System Performance

Below are presented the retrieval graphs for LISA, CRAN and MED, and the other collections are in

appendice (E). More complete results for LISA are given in Appendice (B).

Use of Relevance Feedback on the LISA Collectton
0.18

0.16

0.14

0.12

_>§ 0.1

0.08

006

0.04

0.02

゜0.4

亡
k

k

c
c

a
a

b

b

d

d

e
e

e
e

F

F

e
e

、牛

c
c

n
n

a

a

¥

v
>

ヽ

e
e

、

I
I

e
e

、

R

R

.

¥

ヽ

o
u
t
i
t
h
¥

h

w

,

、`

ー

、

｀

,
1

‘

w

、ヽ―

、‘̀
‘ヽ

‘

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Recall

0.2

uo,spa,d

0.1

0.05

Use of Relevance Feedback on the CRAN Collection

二
k

k

c
c

a

a

¥

ヽ

b

b

d

d

‘

e
e

、ヽ

f

e

f

e

¥

.̀

e
e

c

c

‘

n
n

‘ヽ

a
a

、
ヽ、`

v
>

e
e

、̀

elel

、

r
r

、̀
‘ ヽ

utth

I

o
i

ヽ

w

ith w

[

f
i

[

]
 ＼

_r

5

ーn5

゜0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 I
Recall

0.6

0.5

U
O
!
S
1
0
0
.
J
d

0.4

0.3

0.2

0.1

Use of Relevance Feedback on the MED Collection

ヽ
ヽ`
＊ ‘.

‘ヽ

•
•• ＼

=-
｀`

k

k

¥

．．
 ．
 ｀

c
c

a
a

、、̀`・

b

b

d

d

、‘
ヽ

e
e

•• ••

fefe

、‘ヽ

e
e

f

c
c

n
n

a
a
f

v
>

l
e
e

rerel

utth w
i

o
i

th
・1w

i

l

l

、̀

[

i¥

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 I
Recall

4

On average, the relevance feedback system is very effective on every collection except the LISA
collection. For CRAN, MED, CACM and CISI, the improvement in term of average Recall-Precision
is respectively +65%, +64%, +69% and +84%. For LISA, although the performance with relevance
feedback is good in the first couple of iterations, the recall increases very slowly then and after 100
documents are retrieved, the performance is lower than when using no relevance feedback process (the
final average recall improvement is +2%). In other words retrieving 100 documents and judging them for
relevance directly gives on average the same or better results than retrieving 100 documents using 10 or
20 search iterations of the relevance feedback (see graphs 4&5 in Appendice B).

2.4 Conclusion and Further Studies

Given the results using the Ide-dee hi formula, the following factors are of main concern:

• Accuracy: With respect to the number of feedback iterations, although it has been set beforehand,
results on example queries show that the relevance feedback operation should be suspended once

the previous iteration produced no new relevant documents. The average Recall and Precision mea-
sures taking into account only the previous option show a clearer separation between results with
relevance feedback and without relevance feedback (see figure 8 in Appendice (B) for example).
This beeing said, the problem is that the "no new relevant document" case occurs in general very
early during the relevance feedback process: out of 35 queries, 30 already have been discarded after
the second iteration (see table 1 Appendice (B)). As a result this technique prevents the system
from achieving high recall and would leave the user very frustrated. The aim of the further studies
will be to find a query reformulation that may give some improvement.

With a closer study of example queries (for example query 35 in the LISA collection), one can see
that very often the original focus of the query is completely lost because the terms in the original
query generally appear in non-relevant documents and the decreasing of the term weight in that
c邸 eis quite strong. This problem is particularly worrying when no new relevant item is discovered,
in that case the query reformulation consists only in decreasing the weights of words that are in the
top non relevant document. There is no relevant document(s) to compensate this fact by increasing
the weights of these terms and the final effect is that these terms which, even if in non relevant
documents, are none-less describing the focus of the query, are "removed" iteration after iteration
in favor of terms that have much less to do with the focus of the query. This is one of the problems
that we tried to solve in the further studies, notably in sections 3.1 and 3.2.

• Retrieval Time: The other purpose of the futher studies is to accelerate邸 muchas possible the
speed of the retrieval program. To decrease the retrieval time, we tried to bound the sizes of the
different query and document vectors (sections 3.3 and 3.4).

5

3 Comparison of Query Reformulation Methods

3.1 Modified Ide-dee hi Formula

Previously, the query vector was expanded and re-weighted according to the Ide dee-hi formula:

• The original Ide dee-hi formula:

Qnew = Qold

+ I: ((wt terms zn relevant documents)
re/docs

wt (Top nonrel doc)

Several modifications were performed and tested on this original formula, using a modified Ide dee-hi

formula, and introducing coefficients a, fjl, {32 and T

．

Qnew = a X Q old

+ L ((31 X wt terms in the old query
rel docs

+ (32 X wt terms not in the old query)

'Y X wt terms in top non-relevant document

The introduction of coefficients on the modified formula allows to study the effectiveness of each part

of the formula and compare the importance of each type of terms. Terms not in the old query are the
terms that are only in the relevant documents (and not in the old query-i.e the query from the previous
feedback iteration) and could be called "new terms".

terms already
in the old query

RELEVANT DOCUMENT

new terms

Figure 2: different types of terms in the expanded query

As one can see, the original IDE-DEC-HI formula is the modified IDE-DEC-HI formula whose coef-
:fi cients are all equal to 1. The reformulated query was evaluated against the test set of documents. A

large number of coefficients was experimented, computing Recall-Precision graphs on all collections and
especially on LISA. From these experiments we can make the further assumptions:

• a should be put at 1.

6

• /32 should be inferior to /31. That is to say that terms in the original query (/31) should have more
importance than new terms (/32, terms in relevant documents only).

• 1 should be very small, showing that terms in non-relevant documents are relatively insignificant.

Although all collections have different responses, in general, the most effective batch of coefficients was

(a= 1, /31= 0.75, /32= 0.5, 1= 0) and this batch was used in all later experiments. Assigning I to O may
seem rather strong at first but the experimental result in doing this produces always a real improvement.
a= 1, /31= 0.75, /32= 0.5, 1= 0.25 is also a good choice on most collections (except on LISA).

QUERY

NON RELEVANT DOCUMENT RELEVAN"「DOCUMENT

Figure 3: Modified Ide dee-hi formula

The results are given in the table below:

I Method I Average Recall-Precision I Improvement I Coefficients I

〗こii蕊 i窃〗笠〗(~~::~笠I 底! I : }: i :: ~5,1贔
Table 1: Original and modified Ide dee-hi formula (see Fig.l Appendice E) * LISA

The list of coefficients gives the values of respectively a, /31, /32 and'Y・

Retrieval times were also computed:

Method I Run Time with Run Time with Speedup Coefficients average
25 PE (sec) 1 PE (sec) Ratio Query Size

Original formula 0.542 12.24 22.6 1, 1, 1, 1 147.9
Modified formula 0.610 14.00 22.9 1,.75,.5,0 162.6

Table 2: Run Time for the Ide dee-hi formulas * LISA

In conclusion, the modified formula performs 45% better than the original formula on LISA, and re-
quires 13% more retrieval time. As one can see the query size is larger for the modified formula because it
is retrieving more relevant documents, therefore allowing more query expansion. As a result, this increase
in query size naturally leads to a proportional increase in the retrieval time -see Appendice (E) for more

7

details on this subject.

Other Collections: On the CACM collection the modified formula performs 12% better than the
original one. On the other collections the improvement is: +5% (CISI), +4% (CRAN), +0.5% (MED) [
see the corresponding Recall-Precision graphs].

3.2 Common-Term System

The previous results show that assigning O to the coefficient'Y improves retrieval effectiveness. The only
problem is that it means using no informations from non-relevant documents in the relevance feedback
process (in the original formula we subtracted from the query vector all weights corresponding to the
words found in the top ranked non-relevant document).

The idea behind the Common-Term System is once again to distinguish between the terms that are
in the original (old) query and the terms that are added to the query because they are in relevant docu-
ments. As a matter of fact, terms in the query at the beginning of the relevance feedback iteration have
been proven more important than terms exclusively in relevant documents (see the effectiveness of the
modified Ide dec-hi formula). Therefore this system keeps track of the'origin'of the term, and allows
the reduction of the weight only for terms that are both in relevant and non-relevant documents, but not
in the'unexpanded'(i.e. old) query. It has also been tried to assign O to the weight of these'common'
terms (if they are in relevant and non-relevant documents, but not in the query, they may have most
likely little to do with the actual query).

QUERY

weight• 1

NON RELEVANT DOCUMENT RELEVANT DOCUMENT

Figure 4: Common Term System (modified formula)

The results are given is the table below: * means "using the common term system".

Method

Original formula

With common term weight modified

With common term weight to 0

No use of non-relevance info

I Average Recall-Precision I Improvement I
279

381 + 37%

373 + 34%

376 + 35%

Coefficients]

1,1,1,1

1,1,1,1 *

111-* ， ,'
1 1 1 0 ','

Table 3: Common Term System, Original Ide dee-hi formula (1,1,1,1) (see Fig.6 App E) LISA

8

The Common Term System present a significant improvement over the original formula: The (1,1,1,1*)
batch performs 37% better than the (1,1,1,1) batch (original formula), confirming our hypothesis regard-
ing the importance of terms in the old query. However, using no relevance information at all (1,1,1,0)
produce approximately the same results in term of average Precision-Recall (+35%).

The same experiments were conducted on the modified formula:

Method

Modified formula

With common term weight modified

With common term weight to 0

I Average Recall-Precision I Jmpro~ement I C疇 cientsI

>i I : :~~I HU: ゚~5'
Table 4: Common Term System, Modified Ide dee-hi formula(l,.75,.5,0)(see Fig.7 App E) LISA

These results confirm the fact that using a common-term system or using no non-relevance information
(1=0) produce approximately the same performance, with again a very slight advantage to the common-
term system.

Method

Original formula
Common term weight modified

No use of non-relevance info・

Run Time
1 PE (sec)

0.542

0.599

0.604

Run Time
25 PE (sec)

12.24
13.66

13.66

Speedup
Ratio

22.6
22.8

22.8

Coefficients

1,1,1,1

1,1,1,1*

1,1,1,0

average
Query Size

147.9
159.6

159.0

Table 5: Run Time for the common term system on the Ide dee-hi formula * LISA

In comparison to the original formula, the retrieval time is 12% higher in the case of both the common
term system and the (1,1,1,0) batch.

MED Collection: For the MED collection, the common term system gives the same performance
than the original Ide dec-hi formula (less than 1 % of improvement or deterioration) [see fig.12 Appendice
E).

In conclusion, the common term system offer a little improvement (around 1%) over the (l,1,1,0) batch
of coefficients (which is the original Ide dec-hi formula using no information from non-relevant documents
during the query reformulation process), and requires the same retrieval time. It is 12% more time-
consuming than the original formula, but this is once again due to the fact that the query is larger.

，

3.3 Fixed Expansion Size

Relevance feedback is based on the continuous expansion of the original query, by adding to the query
vector all words and corresponding weights of all relevant document vectors. Therefore, the size of the
query expansion and the choice of the terms added to the query is of main interest. In these experiments,
we tried to limit the number of terms added to the query: First by restricting the expansion size to a
given number of terms (5, 10, 20 terms only). Or seconds by using only a certain percentage of the added
terms (33%, 50%, 67%, 75%). In each c邸 e,the terms in the relevant documents were ranked by weight
and only the highest weighted terms were added. A last option tested was using no query expansion at
all, only re-weighting the terms in the query.

Method I Average且ecall-Pre匹四廿_ImprovementI Average Query Size I
Add ALL terms 279 147.9

No Query Expansion 246 -12% 20.9
Add 10 terms only 221 -21% 60.7
Add 20 terms only 264 -5% 101.0

Add 50% of the terms only 231 -17% 92.5
Add 75% of the terms only 276 -1% 130.7

Table 6: Comparison with the ORIGINAL Ide dee-hi formula (1,1,1,1) * LISA (see Fig.10 App E)

Method) Average Recall-Precision j Improvement I Average Query Size j

Add ALL terms 404 162.5
No Query Expansion 372 -8% 20.6
Add 5 terms only 331 -18% 43.3
Add 10 terms only 350 -13% 66.8
Add 20 terms only 390 -3% 111.1

Add 33% of the terms only 348 -14% 75.0
Add 50% of the terms only 367 -9% 104.1
Add 67% of the terms only 390 -3% 132.3
Add 75% of the terms only 405 +0% 144.3

Table 7: Comparison with the MODIFIED Ide dee-hi formula (1,.75,.5,0) * LISA (see Fig.8&9 App E)

The advantages of such methods are that they require less data and less retrieval time:

Method Run Time with Run Time with Speedup Coefficients average
1 PE (sec) 25 PE (sec) Ratio Query Size

Original formula 0.542 12.24 22.6 1, 1, 1, 1 147.9
Add 10 terms 0.229 5.17 22.6 1, 1, 1, 1 60.7
Add 20 terms 0.367 8.35 22.8 1, 1, 1, 1 101.0

Add 50% of the terms 0.339 7.47 22.0 1, 1, 1, 1 92.5
Add 75% of the terms 0.467 10.62 22.7 1, 1, 1, 1 130.7
No Query Expansion 0.068 1.42 20.7 1, 1, ー， 1 20.6

Table 8: Run Time for the ORIGINAL Ide dee-hi formula* LISA Collection

For the LISA collection; the more added terms you use the better the result is. Using the first 5 or 10
terms, or up to the first 50% of the terms requires much less retrieval time (40 to 60% less than the full

10

expansion), but presents a large deterioration of the performance in return (more than 10%). Surpris-
ingly, using no query expansion is more preferable, giving a better performance than the above-mentioned
techniques, requiring an extremely low retrieval time (-90%!) [unfortunately, this is very LISA-specific
and is not true for all other collections]. Also surprising is the poor efficiency of the first added terms and
the large improvement between adding 10 terms or 50% and adding 20 terms or 75% of them, signifying
that latter terms are more important than the highly weighted ones. A good choice, however, is using
75% of the terms, and 67% or the first 20 terms, although the performance falls a little bit. They allow
a significant gain of time (13 to 30%) for almost the same performance than a fully expanded query
(especially for the 75% choice).

In all cases, the speedup ratio remains steady at 22.7.

MED Collection: The results on this collection are given in the tables below:

Method ¥ Average Rec~ll-P_re叩…廿 Jmprove_ment I Average Query Size I
Add ALL terms 207 568.0

No Query Expansion 145 -29.7% 10.9

Add 5 terms only 157 -24.3% 86.1

Add 10 terms only 195 -6.0% 165.0
Add 20 terms only 207 -0.1% 299.4

Add 33% of the terms only 206 -0.4% 267.7

Add 50% of the terms only 214 + 3.3% 375.7

Add 67% of the terms only 201 + 1.4% 463.1

Add 75% of the terms only 209 + 0.9% 500.6

Table 9: Comparison with the ORIGINAL Ide dee-hi formula (1,1,1,1) * MED Collection

Method I Average Recall-Precision I Improvement I Average Query Size I
Add ALL terms 208 569.1

No Query Expansion 146 -29.7% 10.9

Add 5 terms only 171 -17.9% 88.7
Add 10 terms only 203 -2.5% 167.8

Add 20 terms only 213 + 2.4% 302.8

Add 33% of the terms only 210 + 1.1% 269.7

Add 50% of the terms only 217 + 4.1% 377.1

Add 67% of the terms only 214 + 2.8% 465.9

Add 75% of the terms only 211 + 1.6% 502.2

Table 10: Comparison with the MODIFIED Ide dee-hi formula (1,.75,.5,0) * MED (Fig 13&14 App E)

These tables show that using no query expansion or the first 5 terms gives poor results. Selecting a
fraction of the added terms seems a very good technique, and for 50% and up, the average Recall-Precision
is higher than the one for the full query expansion. The excellent results obtained are not so surprising.
The average size of the MED query is very high (570 terms) and the documents don't contain more than

199 terms (see table 11). The query is so big that it tends to cover (too) many topics, therefore a reduced
query is as good if not better as a fully expanded one.

Overall, we can draw the same conclusion as for the LISA collection (except for the performance of
the non-expanded query which is rather poor in MED): using the first 20 terms or a given percentage
of the added terms produces approximatly the same, if not a slightly better performance while requiring
much less retrieval time. Moreover, for both collections, the modified formula gives slightly better results
than the original one.

11

3.4 Fixed Vector Length

As we have seen before, the relevance feedback process tends to be very costly in term of memory, and
this leads to high retrieval times. Therefore, the aim of the following experiments is to limit the size of

the vectors representing both documents and queries.

• Documents: The size of the document vectors is limited according to a threshold value, and the
lowest weighted terms are removed (the reduced vector is used for matching, query expansion, etc ..).

• Queries: We previously tried to limit the expansion size, but the selection concerned the added
terms only. In these experiments, all terms are added to the query, and then the query is sorted
and only the highest weighted terms are kept.

collection

LISA
MED

number of
documents

面
1033

average (&-maximum)

document length

34.7 (95)

53.3 (199)

number of
queries

35

30

average query size
iteration 0

言
average query size

all iterations

147.9

568.0

Table 11: DOCUMENTS & QUERIES: average sizes (all lengths in number of terms)

The results are shown in the table below:

Do::::~:ize I ;:; 芯1:i;eI reca悶芦窃しion

I 95 (all) I all I 279 」
95 40 270 -3.2% 35.1

95 60 284 + 2.1% 49.0

95 80 287 + 6.7% 61.9

95 100 293 + 5.1% 73.6

95 140 292 + 4.7% 92.1
--

Improvement I average
query szze

1 141.9 1

20-60

―-60-80

80-80

―-60-60

234
翠―-281-283

-16.2%

亭+ 1.4%

雷
言

Table 12: FIXED VECTOR LENGTH -Original Ide dee-hi formula* LISA Collection (Fig. 11 App. E)

This method is much more powerful than the fixed expansion size because it makes the selection on
a much more global level, i.e. the fully expanded query. Again one can notice in the previous tables
that the average query size during the relevance feedback process is quite big compared to the aver-
age (or even maximum) size of the documents. Therefore it is not surprising to have similar results even
when heavily bounding the size of the query vector (this is particularly true for MED, as we will see later).

12

maximum
Document size

Ide dee-hi

60

80

maximum
Query size

..
ongmal

60

60

Run Time with
25 PE (sec)

0.542

0.160

0.161

Run Time with
1 PE (sec)

12.24

言

Speedup
Ratio

22-5-22
Table 13: Run Time -Fixed vector length * LISA

The two selections (60,60) and (80,60) of threshold values perform approximately 1 % better in term of
effectiveness, and offer a gain of 70% in term of retrieval time.

Space Overhead: We calculated the document and the query overhead, taking into account the number
of terms in the queries and documents.

maxzmum maximum average improvement average change
Document size Query size Document size Query size

Ide dee-hi original 34.7 147.9

60 60 34.4 -1% 48.8 -67.0%

80 60 34.7 48.8 -67.0%

Table 14: Space overhead -Fixed vector length (length in terms) * LISA

The best thing to do is to bound the size of the query as much as possible: it affects every matching
operation whereas a threshold value on documents concerns only a certain number of them. Moreover,
bounding the size of documents too much is dangerous and recall decreases (particularly in the first
iterations). Therefore bounding the query size is a good way to save a lot of retrieval time.

MED Collection:

maximum maximum Average Improvement Average
Document size Query size Recall-Precision Query Size

200 (all) all 207 568.0

200 10 196 -5.1% 10.1

200 50 204 -1.5% 46.1

200 70 206 -0.4% 64.1

200 100 208 + 0.7% 91.1

200 200 209 + 0.8% 180.8

80 60 201 -2.7% 55.1

80 70 205 -0.9% 64.1

80 80 207 -0.1% 73.1

50 70 200 -3.5% 64.1

100 70 204 -1.4% 64.1

Table 15: FIXED VECTOR LENGTH -Original Ide dee-hi formula * MED (Fig. 15 App. E)

13

Run time e3 Space Overhead:

maximum
Document size

Ide dee-hi

80

maximum
Q uery szze

．．
ongmal

80

Run Time with
25 PE {sec)

0.553

0.063

Run Time with
1 PE (sec)

11.594
戸雨

Table 16: Run Time -Fixed vector length* MED

maximum
Document size

Ide dee-hi

80

ご：：：：~:e I Do:::::!te size

ori~~nal I~~:~

improvement

-5%

average
Query size

568.0

73.1

Table 17: Space overhead -Fixed vector length * MED

Speedup
Ratio

21.0

21.9

improvement

-87%

Although there is no improvement (the relevance feedback process performs originally very well on the
MED collection), bounding the size of the documents and query vectors offer and large improvement
with respect to the retrieval time and space overhead. Again, this is mainly due to the fact that we are
bounding the query size. Moreover, for MED, the bounded query performs better in the first iterations
but present a lower recall at the last iteration.

Using the modified formula (LISA & MED)

This improvement in retrieval time can be applied on the modified Ide-Dec-Hi formula which present
an excellent pormance in average Recall-Precision. On LISA, bounding the query size to 60 terms and
the document size to 80 terms, presents the same performance in average recall precision than the normal
modified formula and gives a 73% gain in retrieval time. On MED, the (80,80) batch of coefficients
requires 89% retrieval time for a 1 % decrease in average recall-precision.

14

4 Conclusion and Future Work

The graphs below show the relationship between accuracy (average Recall-Precision) and retrieval time
for the various vector space methods used in this paper. Collections tested are LISA, CRAN and MED:

Comparison of Vector-Space Methods * LISA
0.7

喘盟冒
0.6ト foorirmgiunlaa l 1110•C• ST ◇

◇

0.5 r +75%

・E-<旨←

◇

0.4 +20

厄~ 且
+50% ◇

◇

0.3 +10 (mod)
+10 ◇

◇

0.2 60,60(/) 80,60 60,60§Q,60

0.1 I (mod)
NoQE

◇

゜200 250 300 350 400
Average Recall-Precision

g
U
J
1
.
L

p~Agplg~

0.35

0.3

0.25

0.2

0.15

0.1

0.05

゜

Comparison of Vector-Space Methods * CRAN

Todified
. . ormula111(匹mal ◇ o

ormul釘 CST

応
―

5
0

切

cm
◇

％
①

0
0

盆

100,100

+10
100,100◇ ◇ ◇

(mod)◇
(modXl 110~

NoQE
◇

.l ＇
350 400 450 500

Average Recall-Precision
550

15

CTS

+50%

+10
No QE
1110

40,60
(mod)

Comparison of Vector-Space Methods * MED
0.7 I

0.6ト original formula / CTS / modified formula
究

0.5 1-
1110

> 0.4

>
(mod)

+50% ◇

◇

0.3

0.2

0.1
NoQE
<≫(J.110d)

+IO terms
◇ ◇

(mod)

80,80
%

I I

゜140 150 160 170 180 190 200 210
Average Recall-Precision

Common Term System.
Fixed Expansion Size, add only 50% of the terms.
Fixed Expansion Size, add only the first 10 terms.
No Query Expansion.
No Use of non-relevant document informat10n (a, (Jl, (32 =1, ャ=0).

220

Fixed Vector Length: gives respectively the documents and query threshold values.
indicates that the query expansion method was performed using the modified formula.
If nothing is specified, it means that the original ide dec-hi formula was used.

Once again, the results are still very dependent on the collection, however all methods produce an
improvement of some sort and the following general assumptions can be made:

• The modified formula produces a better performance in term of retrieval effectiveness.

• The common term system gives a very small improvement over the formula with which it is used.

• By selecting only a given number of the added terms (fixed expansion size), we can save a lot of
retrieval time.

• The fixed vector length method is preferable to the previous one because it gives a lower retrieval
time with no loss of the performance. Using this technique on the modified formula produces the
best result in both efficiency and effectiveness.

Future work could consists of combining the different query reformulation techniques described in this
paper, for example applying the common term system to the fixed size methods. Detailed performance
using the TREC collection should also be investigated. Our ultimate goal is to develop an effective
and efficient retrieval system to support the on-going massively paralell example-based spoken language
translation project at ATR Interpreting Telecommunication Research Laboratories.

16

A Statistics on the Virginia Disc One Collections

We measured the sizes of each collection in the Virginia Disk One Collections.

Six collections were considered: ADI, CACM, CISI, CRAN, LISA and MED.

The items considered were the minimum, maximum and average lengths of the vectors representing
the queries and documents, as well as the standard deviation of these vector lengths. Also measured were
the number of vectors in the collection and the total size of the collection. These lengths were measured

twice:

l. Before the filtering operation.

2. After the weighting operation (therefore after the consecutive filtering, stemming, counting and

weighting operations).

The lengths were measured:

i. In number of bytes. This is the number of bytes of the whole file.

ii. In number of words or terms.
A word is considered as in its everyday meaning and concerns the documents in their original forms
(a word repeated twice in the text will be counted twice). A term is the component of a file after
the filtering, stemming, counting and weighting operations. It is the result of a stemmed word -
in that way, different words, identical or not, can be represented by the same term. Therefore the
number of terms is in general significantly lower than the number of words thanks to the filtering
and stemming techniques.

Here is an example:

• Before the filtering operation, we consider here the original document. For example, considering
the document file number 5458 of the LISA collection,

5458
LITERARY PERIODICALS.
REVIEWS 46 SELECTED LITERARY PERIODICALS.

This document has 9 words (115 bytes).

• After the filtering,stemming, counting and weighting operations and considering the same example,
the file is now stored the following way:

6060 0.800520
7796 0.416218
8866 0.296909
9300 0.312689

The first column contains the code number associated to a term, the second column contains
the corresponding weights of this term.

This document has 4 terms (58 bytes).
(note that the number of bytes takes the weights into account contrary to the number of terms)

17

Note: some documents contains numbers. For example CISI document number 1:

.I 1

.T
18 Editions of the Dewey Decimal Classifications
.A

C ornarorn1, J.P.
.w
The present study is a history of the DEWEY Decimal Classification. The first edition of the DDC was
published in 1876, the eighteenth edition in 1971, and future editions will continue to appear as needed.
In spite of the DDC's long and healthy life, however, its full story has never been told. There have been
biographies of Dewey that briefly describe his system, but this is the first attempt to provide a detailed
history of the work that rnore than any other has spurred the growth of librarianship in this country and
abroad.
.x
1 5 1
92 1 1
262 11
556 1 1
1004 1 1
1024 1 1
1024 1 1
This numbers were counted as words in the statistics (these numbers are removed through the filtering
operation, consequently they don't appear in the statistics after weighting).

This first table gives the number of DIFFERENT terms in the whole collection, before filtering and
after weighting (in this table only, a word repeated twice or more in the text will be counted only once).
We computed the compression ratio defined by:

number of different terms after weighting
compressionratio =

number of different terms before filtering

Collection number of different terms number of different terms
before filtering after weighting

ADI 1780 996

CACM 30158 7223
CISI 23289 6725

CRAN 16661 5303
LISA 42236 11739

MED 21041 8826

Table 18: Number of different terms in collection

18

compression
ratio
0.560

0.240
0.289

0.318
0.278

0.419

Table 19: QUERIES: {All lengths in number of WORDS -Before FILTERING)

Collection Number Total Size of Average Standart Deviation min length max length

of vectors the collection Length of vector length of a vector of a vector

ADI 35 604 17.26 7.39 7 38

CACM 64 2064 32.25 16.91 11 94

CISI 112 10180 90.89 69.67 7 361

CRAN 225 4719 20.97 7.12 ， 49

LISA 35 1986 56.74 21.81 19 110

MED 30 679 22.63 14.58 5 65

Table 20: DOCUMENTS: (All lengths in number of WORDS -Before FILTERING)

Collection Number Total Size of Average Standart Deviation min length max length

of vectors the collection Length of vector length of a vector of a vector

ADI 82 5897 71.91 21.58 29 194

CACM 3204 401264 125.24 107.34 28 1566

CISI 1460 439886 301.29 155.06 34 1005

CRAN 1400 266299 190.21 89.95 45 708

LISA 6004 530513 88.36 37.21 ， 309

MED 1033 161925 156.75 82.25 23 652

Table 21: QUERIES:(All lengths_ in BYTES -Before FILTERING)

Collection Number Total Size of Average Standart Deviation min length max length

of vectors the collection Length of vector length of a vector of a vector

ADI 35 4076 116.46 51.23 48 248

CACM 64 13683 213.80 113.77 73 621

CISI 112 66632 594.93 455.78 48 2204

CRAN 225 28111 124.94 44.95 50 278

LISA 35 14000 400.00 157.68 117 779

MED 30 4608 153.60 105.65 28 444

Table 22: DOCUMENTS: (All lengths in BYTES -Before FILTERING}

Collection Number Total Size of Average Standart Deviation min length max length

of vectors the collection Length of vector length of a vector of a vector

ADI 82 37158 453.15 142.88 167 1303

CACM 3204 2187740 682.82 566.78 119 6486

CISI 1460 2119351 1451.61 643.81 172 5107

CRAN 1400 1648226 1177.30 556.75 282 4390

LISA 6004 3849946 641.23 244.49 115 2031

MED 1033 1091357 1056.49 548.90 174 4219

19

Table 23: QUERIES: (All lengths in number of TERMS -After WEIGHTING)

Collection Number Total Size of Average Standart Deviation min length max length

of vectors the collection Length of vector length of a vector of a vector

ADI 35 261 7.46 3.11 3 17

CACM 64 973 15.20 7.23 4 37

CISI 112 3547 31.67 23.04 3 99

CRAN 225 2012 8.94 3.18 3 21

LISA 35 721 20.6 8.60 ， 41

MED 30 327 10.90 6.73 2 30

Table 24: DOCUMENTS: {All lengths in number of TERMS -After WEIGHTINGl
Collection Number Total Size of Average Standart Deviation min length max length

of vectors the collection Length of vector length of a vector of a vector

ADI 82 2189 26.70 8.45 14 70

CACM 3204 92935 29.01 20.00 7 155

CISI 1460 67228 46.05 19.18 ， 165

CRAN 1400 78231 55.89 22.46 14 159

LISA 6004 208441 34.72 13.51 4 95

MED 1033 55099 53.34 24.44 ， 199

Table 25: QUERIES:(All lengths in number of BYTES -A且erWEIG且TIN_Ql
Collection Number Total Size of Average Standart Deviation min length max length

of vectors the collection Length of vector length of a vector of a vector

ADI 35 3201 91.46 38.13 37 207

CACM 64 12417 194.02 92.65 49 474

CISI 112 56370 414.02 301.38 39 1288

CRAN 225 25770 114.53 40.72 39 269

LISA 35 9189 262.94 109.77 116 521

MED 30 4111 137.03 84.40 25 376

Table 26: DOCUMENTS: {All lengths in number of BYTES -Aft WEIGHTING}
Collection Number Total Size of Average Standart Deviation min length max length

of vectors the collection Length of vector length of a vector of a vector
ADI 82 28247 344.48 109.19 179 904

CACM 3204 1281664 400.02 277.35 95 2146

CISI 1460 930048 637.02 265.42 125 2287

CRAN 1400 1077721 769.80 309.37 14 2185

LISA 6004 2920772 486.47 189.40 54 1333
MED 1033 764401 739.98 339.06 125 2764

20

B Evaluation of relevance feedback for the LISA collection.

We studied the effectiveness of relevance feedback in term of precision and recall using all the 35 example
queries from the LISA library science collection. The performance of the system was evaluated through
three different experiments.

The first experiment consisted in retrievin芦2りnewdocuments at each iteration, considering 10 itera-
tions of relevance feedback (that is to say retnevmg a total number of 200 documents in all). In addition
to the average recall and precision measures over the 35 queries in the collection, the average query length
(in terms) and the average number of relevant documents retrieved were also computed. The results were
compared to the results achieved by retrieving the same total number of documents, but without the use
of relevance feedback methods.

The second and third experiments followed the same principle, but retrieving respectively 10 new doc-
uments at each iteration (over 10 iterations) and 5 new documents at each iteration (over 20 iterations)-
both experiments retrieving 100 documents in all.

System Performance:

The results are given in the Recall-Precision figures 4 to 6. The following main assumptions can be
made:

• On average, the relevance feedback system is not very effective on the LISA collection. In other
words retrieving 100 documents (for example) and judging them for relevance directly gives on
average the same or better results than retrieving 100 documents using 10 or 20 search iterations
of the relevance feedback.

• A comparison of the three graphs shows that relevance feedback is more effective when a large
number of documents is retrieved and judged for relevance in each iteration: As a general rule
executing 5 iterations using the top 20 documents retrieved to reformulate the query vector gives
better results in the end than executing 20 iterations using the top 5 documents retrieved to
reformulate the query vector.

• With respect to the number of feedback iterations, although it has been set beforehand, results on
example queries show that the relevance feedback operation should be suspended once the previous
iteration produced no new relevant documents. The average Recall and Precision measures taking
into account only the previous option are shown in tables 1 to 3 and their corresponding graphs
(figures 7 to 9).

21

0.2
with relevance feedback -original formula -+--

without relevance feedback→ -----

015f~ '¥" _, £ g ；；； 0.1

・・-...
~------~

'] 叉-~--~--~..ヽ

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Recall

Figure 5: Use of relevance feedback on the LISA collection -Retrieving 20 documents per iteration

0.3
with relevance feedback→一

0.25
without relevance feedback・・ ← ...

0.2

＼ ＼ 星£ 0.15
0.1

0.05'

、、ヽ~---、ト、、ー、

゜0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
Recall

Figure 6: Use of relevance feedback on the LISA collection -Retrieving 10 documents per iteration

0.3

0.25

0.2

U
O
!
S
F
J
a
!
d

0.15

0.1

0.05

ごk

k

c

c

f

a

a

f

f

f

dbdb

e
e

↑

ヽ

fefe

e
e

、
‘

c
c

ヽ

n
n

a
a

．̀
、＊

v
>

、̀‘

e
e

~

、`ヽ
ヽ
~

rere

ithut

、

ふ

＼

｀

ヽ

w

＼、
＼

゜0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
Recall

Figure 7: Use of relevance feedback on the LISA collection -Retrieving 5 documents per iteration

22

Case when the relevance feedback operation was suspended automatically when
the top retrieved documents were judged to include no relevant documents:

Table 1: Retrieving 20 documents per iteration:
total number of average average number of iteration of
retrieved docs Recall Precision queries computed feedback

20 0.404 0.170 35

゜40 0.599 0.191 20 1

60 0.560 0.168 12 2

80 0.571 0.200 5 3

100 0.664 0.207 4 4

120 0.631 0.233 2 5

140 0.755 0.286 1 6

160 0.830 〇.275 1 7

180 0.849 0.250 1 8
200 0.906 0.240 1 ，

Table 2: Retrieving 10 documents per iteration:
total number of average average number of iteration of
retrieved docs Recall Precision queries computed feedback

10 0.323 0.234 35

゜20 0.536 0.325 16 1

30 0.571 0.312 11 2

40 0.648 0.329 6 3
50 0.701 0.330 4 4

60 0.547 0.483 1 5

70 0.623 0.471 1 6
80 0.642 0.425 1 7

90 0.660 0.389 1 8

Table 3: Retrieving 5 documents per iteration:
total number of average average number of iteration of
retrieved docs Recall Precision queries computed feedback

5 0.214 0.297 35

゜10 0.456 0.444 16 1

15 0.492 0.496 ， 2
20 0.512 0.500 7 3
25 0.586 0.472 5 4

30 0.585 0.433 3 5
35 0.377 0.571 1 6
40 0.396 0.525 1 7
45 0.434 0.511 1 8
50 0.491 0.520 1 ，
55 0.509 0.491 1 10
60 0.528 0.467 1 11

23

0.4

0.35

0.3

星i:,.. g 0.25

0.2

I ~
0.15

with relevance feedback ◇

without relevance feedback +

＋

0.1
0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

Figure 8: Use of relevance feedback on the LISA collection -Retrieving 20 documents per iteration

0.6

0.55

0.5

:i ~
0.45

0.4

0.35

0.3

0.25

0.2
0.2 0.3

with relevance feedback•
without relevance feedback +

. .

0.4 0.5 0.6 0.7 0.8
Recall

Figure 9: Use of relevance feedback on the LISA collection -Retrieving 10 documents per iteration

0.7

0.65~
with relevance feedback•

without relevance feedback +

0.6

0.55

0.5~ ゜
_』§

..
0.45「 ＋

゜
＋

0.4
＋＋

0.35

0.3 t"•

0.25

0.2
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Recall

Figure 10: Use of relevance feedback on the LISA collection -Retrieving 5 documents per iteration

24

C Implementation details

• Modified Ide-dee hi formula: See file make_query _modified.c

This formula is very easily implemented by adding coefficients to the various term weights:

-(31= 0.75 is done with the line:
(query_cod+J)-> weight = (query_cod+j)-> weight + . 75*(doc_cod+i)-> weight;

-/32= 0.5 is done with the line:
(query_cod+qcod_n um+new_term)-> weight= . 5 *(query_cod + qcod_num+new_term)-> weight;

-,= 0 is done with the line:
/* delete_from_relevance_documents(iniLparams, queries, iterations); * /

• Common-Term System: See file make_query_common.c

The query is copied in a 3 fields structure (qJarge whose type is CQD_DATA_LARGE) during
the relevance feedback process -one field more than the previous structure (COD_DATA size is 18
bytes whereas COD」)ATA_LARGE size is 24 bytes). This new field of type int ("seen") is used to
store the "origin" of the term.

In the query reformulation process, the first step is to use informations from relevant documents
to modify query weights and add new terms. During this step, the query vector is copied in the
enlarged structue through:
sma!Uo_large (query_cod, q_large, qcod_num};

The field seen, initialized at 1 is then modified during the use of information from relevant docu-
ments: new terms have their seen field assigned to 3, terms from the query whose weight is modified
have their seen field assigned to 2.

During the use of the top non-relevant document step, only common terms are affected by the
following operation:

if (((q_large+J)->seen)==3)
(q_large+j)-> weight = (q_large+j)-> weight -((doc_cod+i)-> weight};

At the end of the function, the modified and/or enlarged query vector is restored in the initial
format used in all remaining programs.
large_to_small (q_large, query_cod, qcod_num + new_term};

(Of course processor.h was modified to create the CQD_DATA_LARGE type).

25

• Fixed expans10n size: See file make_query _expansion.c

The document is sorted by highly weighted terms (qsort(doc_cod,dcod_num, sizeof(CQD_DATA},
maxw_minw);) and the selection mode (percentage or given number of terms) is given by:

dcod_num = ((dcod_num <= 10} ? dcod_num : 10);
(selects only the 10 highest weighted terms)
dcod_num =((l*dcod_num)/忍）；
(selects a given percentage of the added terms)

dcod_num=aux ; (aux contains the size of the original document) and
sort(doc_cod, dcod_num,sizeof(COD_DATA), maxp_minp);
restitute the document in his original form (real size and sorted by padding number).

maxw_minw(a, b) and maxp_minp(a, b) are functions used to sort the vector by highest weighted
terms and by padding number respectively.

• Fixed vector length: See files make_query_size.c and read_code且le...size.c

-The threshold QUERY size value is implemented in make_query_size. c:

After all modifications are performed, the query vector is first sorted by highly weighted
terms (qsort(query_cod, qcod_num + new_term, sizeof(COD_DATA),maxw_minw)) and then a
threeshold value is selected by:

qcod_num_final=BO;
qfd-> coding. word_num =
((qcod_num+new_term<=qcod_num_finaり?qcod_num+new_term:qcod_num_final);

The query vector is then sorted again by padding number, using this new value of the vector
size (qsort(query _cod, gfd->coding.word-11um, sizeof(COD_DATA),maxp皿 inp))

-The threshold DOCUMENT size value is implemented in read_code_file_size.c and using the
same method:

が(type==Documents)[for documents only]

｛
qsort(fd-> coding. data,fd-> coding. word_num,sizeof(COD_DATA}, maxw_minw);
(sorts by weight)

top=BO; [threshold value]

fd->coding.word_num= ((fd->coding.word_num<= top) ? fd->coding.word_num : top};

qsort (Jd->coding.data, Jd-> coding.word_num, sizeof(COD_DATA), maxp_minp }; [sorts by padding
number with new size]

｝

26

D Relationship between Query Size and Retrieval Time

As a matter of fact there is an roughly linear relation between the retrieval time and the average size
of the query. If a vector space method performs better than another one, the query size will be larger
because more relevant documents will be retrieved and used for query reformulation purposes. As a
result the retrieval time will increase to some extent "naturally". Presented below is the graph giving
the retrieval time as a function of the query size, covering various experiments used in this study:

Relationship between Retrieval Time and Query Size
0.7

0.6 も◇

尻ヽ

◇

0.5
◇

·>
0.4

I
◇

◇

一ell 0.3

．出昔苔 ◇

0.2

I
◇

0.1

I
•

゜゚20 40 60 80 100 120 140 160
Average query size

27

E Graphs

Comparison between Recall-Precision graphs for retrievals without relevance feedback, with relevance

feedback using the original Ide dec-hi formula and with relevance feedback using the modified Ide dec-hi

formula:

0.18

0.16

0.14

暑占~
0.12

0.1

0.08

0.06

0.04

Fig I: LISA collection

亡
G

k
a
a

l

l

u
u

c

a

b

a

d
n
n
n
n

.̀
・

e
f
o
f
o

f
e
i
i

e
h
h

••

c
-
．

d

.̀

c
c

a

n

e

e

.

.

d

d

.

.

.

＞

．

e

e

e

A

1

、

I
I
d
I
d

叫
、
‘
,
｀
¥

、盲

r

e

.

ヽ
．
ヽ
‘
9

、
9,
ヽ`

u
t
a
l
e
d
.
.
｀
.

0
.
m
f
i
.`
．ヽヽ‘ヽ

•••

‘

.lgdi

‘

・̀ ・:‘

i
t
h
r
o

•
.

｀

p

W
0
m

し》f

＼ヽ
＼

ヽゞ

＼

、ヽ
，七

ロ、
・ヒ

．．．．．

危-.

UO!S!J~Jd

7

6

5

4

3

2

1

0-

••

0

0

0

0

0

0

Fig 2: MED collection

without relevance feedback→一

original Ide dec-hi fonnula ---
modified Ide dec-hi fonnula

＼

.. o

ヽ
•
日
、

＼

．．．
咤、

．＂
し`f

•..
”

．．
 f

f
 ヽ

f

l

l

l

l
l

l
l

l

l
 ↑

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Recall

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 I
Recall

Fig 3: CACM collection
0.22

0.2 without relevance feedback→―-

moordigifiinead l Ide dee-hi fonnula --+----

0.18 ー- Ide dee-hi formula --a----

0.16

:占~ g
0.14

0.12

0.1

0.08

0.06

0.04

0.3 0.4 0.5 0.6 0.7 0.8
Recall

Fig 4: CRAN collection

0.2

0.15

・.占"' ~ "' o
0.1

0.05

＿．
一
~

↑
d

[

k
l
a
a

、
a
 .p.‘.

a
c
u
u
l

db
皿

血

亙

．

ヽ

、

t

e
f
o
f
o

汽＼`
‘

f

e

.

.

.

.

f

．．ヽ．．
 ．

、

渇、

ce
韮
韮

v
a
n
d
e
e
d
e
e
f

碑

I
d
e
I
d
e
.
¥

u
t
a
l
e
d
5
r

三
：
＼

5
.
 ．

｛

｝

[

]

゜0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Recall

Fig 5: CISI collection

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Recall

without relevance feedback→一
original Ide dec-hi fonnula --~---·
modified Ide dec-hi fonnula・・<>・・・・

u
o
,
s
p
a
l
d

•一~-浸0、、'、ミ｀、．：、ミ．ロ

28

0.18

0.16

0.14

0.12

U
O
!
S
!
0
8
J
d

0.1

0.08

0.06

0.04

Fig 6: COMMON TERM SYSTEM with the ORIGINAL Ide dee-hi formula• LISA

original IDE DEC-HI formula(1,1,1,1) --e-
with common term weight modified (1, 1, 1, 1·) —+-

with common term weight to O (1, 1, 1, ー＊） ・ロ・・

no use of non-relevance info (1, 1, 1,0)・・ 沢・...

0.4 0.45 0.5 0.55 0.6
Recall

0.65 0.7 0.75 0.8

0.18

0.16

0.14

0.12

u
o
,
s
,
o
a
J
d

0.1

0.08

0.06

0.04

Fig 7: COMMON TERM SYSTEM with the MODIFIED Ide dee-hi formula• LISA

modified IDE DEC-HI formula (1,.75,.5,0) • 一
with common term weight modified (1,.75,.5, 1') -+--・

with common term weight to O (1,.75,.5, —') . 日・・

0.4 0.45 0.5 0.55 0.6
Recall

0.65 0.7 0.75 0.8

0.18

0.16

0.14

0.12

U
O
J
S
!
:
J
8
J
c

―

0.1

0.08

0.06

0.04

Fig 8: FIXED EXPANSION SIZE with the MODIFIED Ide dee-hi formula• LISA

Add All terms (1,.75,.5,0)←
Add 5 terms only -+--・

Add 10 terms only ・ロ・・
Add 20 terms only··><•····

No query expansion ...,.__一

0.4 0.45 0.5 0.55 0.6
Recall

0.65 0.7 0.75 0.8 2 ，

Fig 9: FIXED EXPANSION SIZE with the MODIFIED Ide dee-hi formula• LISA
0.18

紐 A!(●ms(, ((('..'5,S,o,0) 0) 0) I • 一Add 33% of the terms 1,.75,.5, —+--·

0.16 r
＼

Add 50% of the terms 1,.75,.5, ・ 日・・

Add 67% of the terms 1,.75,.5, X・・・ •
Add 75% of the terms 1,.75,.5, _.,,_・ー

0.14

0.12

屠屡
ヽ竺•••

0.1

0.08 r

0.06ト ．
0.04

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Recall

0.18

0.16

0.14

2

1

゜

ー

゜U
O
I
S
l
:
J
9
J
d

．．

0.08

0.06

0.04

Fig 10: FIXED EXPANSION SIZE with the ORIGINAL Ide dee-hi formula* LISA

Add All terms (1,1,1,1) 一令一

Add 10terms (1,1,1,1) -+---
Add 20 terms (1,1,1,1) ・日・・

Add 50% of the terms (1, 1, 1, 1)・・><・・・・・・
Add 75% of the terms (1,1,1,1) _,,__一
No query expansion (1,1,1,0) _,.. __

0.4 0.45 0.5 0.55

0.18

0.16

0.14

0.12

>5
0.1

0.08

0.06

0.04

I
0.4 0.45

0.65

Fig 11: FIXED VECTOR LENGTH• LISA

0.7 0.75 0.8

0.5

original Ide dee-hi formula • 一
modified formula -+--・

modified formula, document size< 80, query size< 60・El・・
original formula, document size< 60, query size< 40・・X・・・・・
original formula, document size< 60, query size< 60 -ん•一
original formula, document size < 60, query size < 80 —濠・一

0.55 0.6 0.65
Recall

0.7 0.75 0.8 30

0.6

0.55

0.5

0.45

0.4

C

゜の 0.35
善
D..

0.3

0.25

0.2

0.15

0.1
0.5

Fig 12: COMMON TERM SYSTEM with the ORIGINAL Ide dee-hi formula* MED

ご
5

王

↑

↑

＂

崎

｀

k
a
a
0

り

り

＼

迦、

u
u
,
1
-
，

c

，

ゃ

a

しい、．

＄
迦
冷
｀

b
m
m
ー

'
1
J

ー

r
r
1
,

0
0
,
1
,

d

ふ
汎
‘
.

e
f
f
1
,
1

e

.

I

i

(

1

(

‘

、、

f

h

h

(

心
ヽ
＼

e
―

-
f
o
d
0

遍‘
T‘

c
c
c
n
e
o

e

e

i

i

t

`

‘

‘、

n

v
a
e
d
e
d
e
e
d
i
t
h
t
¥

{`

l
e
d
d
n
o
g

ゞ

え
<
,

eー
ー

a
m
e
l

姿

ー

d
>

ふゞ

t
a
e
e
h
t
w

u
.
I
n
f
i
e
l
g
m

．．ゞゞ

o
g
i
r
i
.
.
-
‘

i

d

-

e

r

.

4

、
．．`
..;‘‘

t
h
r
o
n
w
t
e

.`‘.
‘̀‘ ．

．
••

‘̀.

•Wi0mon

o
x
.`べ‘

n
m
 m

逹

f
r

o
e
 m

t

n

e

s
o
o
i
l
.
i

訊
c

{
．

l

o

h

i

l

n
m
i
t
i
w

}
l

0

W

c

th

翌
}l.

．

w
 [l

[l

•[[

[

[・
[

0.55 0.6 0.65 0.7 0.75
Recall

0.8 0.85 0.9 0.95

0.6

0.55

0.5

0.45

0.4

C
0
en

0.35
怪
0.

0.3

0.25

0.2

0.15

0.1
0.5

Fig 13: FIXED EXPANSION SIZE with the original Ide dee-hi formula* MED

.
d
 ．．

 ．．

..•••.

，＇ヽ
r

田
内

•••
x

匂・

．．．
 ．．

•••

•••

‘、

．．

．

白

.X̀

．．

``

．．

•••••

、口’

‘ヽ、

．．
 ．．

 ．．．

｀

｀

斗

．．．．．

匂
｀

A

.

.

.

.

.

、

｀

＊

、

•..

,

｀

、

ヽ

｀

.

、

｀

、

．

．

、

｀

十

．

.

.

.

、

‘

、

ヽ

ヽ
ヽ

．．
 ．．

 ．

．

．

、

口

、

‘

冷

ヽ

．．
 .

.

.

、

｀

米

、

`

‘

ヽ

＾

1

、

‘

‘

‘

、

A

ヽ

、

ヽ

．

••`

A

＼

ヽ

、‘
‘

‘

‘

‘

、

、

ヽ

．

ヽ

•.
[

｝

、

‘

ヽ

十

、

A•

...

、

‘

ヽ

．

＼

．

．

ヽ

＼

、

．

、

＼

．

ヽ

．

．

‘

‘

‘

、

¥
¥
A
.

.

.

、

‘

ヽ

．

．

．

ヽ

＼

.

.

、

‘

ヽ

．

ヽ

．

f̀‘

斗

．

ヽ

..
、

¥

ヽ、
、

.̀

治
1

、
‘
△•

.

-

、

ヽ、、ヽ
ヽ

ヽ

ご

ヽ

、ヽ
.

竺―巧

、

‘

ヽ

．

ヽ
、ヽ
、

5

-

i

-

．

ヽ

ヽ

5

-

、

5

-

、
ヽ
．
、
.
、、

i

`

5

-

．

•
—
+
‘
、

？

ヽ

ヽ

．

;

｀

△

l

.

i

-乏

｀

‘

[

、

ミ

．

・̀

I

• •
`

t

-

`

‘

ss.

・`

t
`

‘` ミ．

t
-

『
●
-l.

・` ̀‘

i

`

l
.

―

、ヽ`．

•-[

[

-

、

ì.、

｀ヽ．`．

[-．

t

-

•-̀ ̀t
`

・` ̀‘

．
』

｀ゞ

t
`
 ．`

｀`
 ヽ・

[

‘、
、
●
l
.

i
 -̀‘‘

i

、ゞ．
．ヽ

「--、
.

•
―‘‘
・ヽ

[

i

‘

、
．ヽL

r
f

『、
．ヽ
・ヽヽ

｀

I

Add All terms • 一
Add 5 terms only —+--·

Add 1 O terms only -正

Add 20 terms only・・ ※•••••
No query expansion ーム・ー

0.55 0.6 0.65 0.7 0.75
31 Recall

0.8 0.85 0.9 0.95

0.6

0.55

0.5

0.45

0.4
C

゜の 0.35
琶
0..

0.3

0.25

0.2

0.15

0.1
0.5

0.6

0.55

0.5

0.45

0.4

の§
0.35

信
0.3

0.25

0.2

0.15

0.1
0.5

Fig 14: FIXED EXPANSION SIZE with the original Ide dee-hi formula* MED

0.55 0.6

0.6

0.65 0.7 0.75
Recall

0.8

Add All terms • 一
Add 33% of the terms -+---
Add 50% of the terms -□--
Add 67% of the terms・・ ※•••••
Add 75% of the terms 全•一

0.85 0.9 0.95

Fig 15: FIXED VECTOR LENGTH* MED

Add All terms今 一

original formula, document size< 100, query size< 100 -+---
original formula, document size< 80, query size< 80 -日--

modified formula, document size< 80, query size< 80・X・・・・

0.7 0.8 0.9
3祖 ecall...,

』
●
-
．
~
~

,．'
,

I

References

[1] Frakes, W. and Baeza-Yates, R., Information Retrieval Data Structures f3 Algoirthms, Prentice
Hall, New Jersey, 1992.

[2] Fracis, W. and Kucera, H., Frequency Analysis of English Usage, Houghton Mifflin, New York,
1982.

[3] Porter, C., "An Algorithm for Suffix Stripping," in Program, 24(3), pp. 56-61, 1980.

[4] Salton, G. and Buckley, C., "Term weighting approaches in automatic text retrieval," in Information
Processing and Management, 24, pp. 513-523, 1988.

[5] Ide, E., "New Experiments in Relevance Feedback," in The SMART Retrieval System, ed. Salton,
G., pp. 337-354, Prentice Hall, New Jersey, 1971.

[6] Salton, G. and Buckky, C., "Improving Retrieval performance by Relevance Feedback," in Journal

of the American Society for Information Science, 24, pp. 288-297, 1990.

[7] Fox, E., ed., Virginia Disk One, Virginia Polytechnic and State University, Blacksburg, 1990.

゜

゜

33

	001
	002
	003

