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This report describes a new approach to acoustic modeling that combines segmental acoustic 

modeling with automatic learning techniques to determine the appropriate acoustic units. Since 

the units are not constrained to be phonetic (or tied to any other linguistic unit) and can optionally 

span word boundaries, an important problem is automatic determination of the lexicon, which 

includes both the list of lexical entries and the "pronunciation" in terms of the segmental units. 

The solution to these problems is outlined below, and some preliminary experimental results are 

described. 
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1 Introduction 

Speech recognition researchers have long sought methods for automatically learning subword units and 

representations of words in terms of these units, in order to more efficiently represent words for large vocab-

ulary speech recognition and take best advantage of limited training data. Automatic learning of units for 

speech recognition was an active research topic in the late 1980's [1, 2, 3], with the motivation being that 

human labor required to build phonetic baseforms was costly and error-prone and that recognition perfor-

mance could be improved by using more detailed units than phones. However, research in automatic learning 

of sub-word units lost momentum in the early 90's when large dictionaries became more widely available 

and context-dependent phone modeling with distribution clustering techniques [4, 5, 6, 7, 8, 9] allowed for 

efficient acoustic sub-word modeling without the added problem of finding a lexical mapping. Research in 

lexical mapping proceeded in two new directions then, focusing on problems of finding pronunciations for 

out-of-vocabulary words (particularly important for names) and designing phonetic pronunciation networks 

to allow for some variability in word pronunciation. 

While great progress has been made in these areas for recognition of continuous read speech, recognition of 

conversational speech still lags far behind in performance. For example, the same basic system that achieves 

90% recognition accuracy on unlimited vocabulary read Wall Street Journal speech and 97% accuracy on 

a roughly 5000 word vocabulary spontaneous human-computer database query task [10), achieves roughly 

50% accuracy on spontaneous human-human dialog utterances in benchmarks on the Switchboard corpus. 

This suggests that a radical shift in modeling is. needed to handle some of the phenomena in spontaneous 

speech, and that it is worthwhile revisiting the problem of automatic learning of acoustic units. 

Two problems are faced in automatic learning of acoustic units: 

• searching for acoustic units that optimize some objective function, e.g. maximum likelihood, and 

• finding a mapping from these units to the lexicon. 

Here, we will address the first problem by following the same basic approach as outlined in early work, 

but extending it to accommodate segmental models with parametric mean trajectories and to use iterative 

maximum likelihood estimation. In addition, an important difference in our work is that we allow non-

uniform unit size: units may be bigger or smaller than a phone and may span word boundaries. Because 

we allow units that span word boundaries, the problem of finding a mapping from these units to the lexicon 

becomes a two step problem of first finding the lexicon (since it may sometimes be appropriate to include 

word strings in addition to single words) and then finding the mapping from the segmental units to the 

lexicon. The approach to lexical mapping will involve estimating a probabilistic network, using a hybrid of 

previously proposed approaches for lexical modeling. 

The remainder of the report is structured as follows. Section 2 describes the approach to learning 

recognition units, which builds on work in speech coding and segment recognition. Next, Section 3 outlines 

the approach to finding the lexicon as well as the mapping from the segmental units to lexical entries, i.e. the 

word "pronunciations". In Section 4, we outline different issues associated with the speech recognition search 

algorithm, which is more difficult with a segmental model. Preliminary experimental results are reported in 

Section 5, followed by a summary of the work and discussion of possible extensions in Section 6. 

2 Unsupervised Learning of a Segmental Inventory 

The first step in acoustic modeling with non-uniform units is clearly finding the units. In this section, 

we summarize previous work on this problem based on hidden Markov modeling and speech coding, as well 

as previous work on segmental modeling of phonetic units, and then show how the two techniques can be 

combined to automatically derive segmental units for speech recognition. 

2.1 Previous Work 

In work aimed at automatic segmentation of speech, Svendsen and Soong [11] describe an algorithm for 

finding quasi-stationary regions of speech without phone transcriptions, by using a dynamic programming 
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algorithm to find the maximum likelihood segmentation, assuming a multivariate Gaussian model for each 

segment with a single, diagonal covariance used for all segments. In their approach, the desired number of 

segments in an utterance was pre-specified. A variation of this algorithm was used by Lee et al. [1] to find 

a segmentation assuming an autoregressive stochastic process model of speech and using the Itakura-Saito 

distortion measure. Lee et al. took the work further, however, by applying it to the problem of learning sub-

word units for speech recognition. The resulting segments are then clustered according to the IS distortion 

and each cluster is then trained as an HMM state. Paliwal [3] used a similar approach in his lexicon-building 

study, except that he clustered the segment centroids, rather than clustering the data directly as in [1]. 

At the same time, IBM was developing a technique for representing non-phonetic sub-word units called 

"fenones". They used vector quantization (VQ) as a segmentation technique, then defined initial fenonic 

baseforms based on the VQ output sequences associated with a single training token for each word, and 

finally determined a new baseform using maximum likelihood fenone decoding on a collection of training 

tokens [2]. The result was a linear string of fenones to represent the pronunciation of a word, extended later 

to the multone model [12], which effectively introduced mixture distributions. 

Automatic learning of sub-word units has long been studied in speech coding, since it is fundamental 

to the problem of quantization. Most closely related to the speech recognition work are the variable-length 

speech segment coding techniques. Roucos et al. [13] developed the first "segment" coder, which used fixed-

length segment codewords and a variable-to-fixed-length mapping to encode the variable length observations. 

The segment vocoder later inspired the stochastic segment model for recognition [14]. The segment vocoder 

design algorithm was a simple extension of the standard VQ design algorithm [15], but had the disadvantage 

that it did not directly minimize quantization error on the decoded segment. This problem was address in 

work by Shiraki and Honda [16], who assumed that a segment is represented by a sampled regression function, 

in order to represent variable-length segments with a fixed number of parameters. They also introduced an 

iterative segmentation/ quantizer design algorithm. More recently, Chou and Lookabaugh [17] developed a 

different segment coder design algorithm that mapped variable-length segments to codewords of the same 

length (rather than assume a parametric model of the segment) and built on entropy-constrained vector 

quantization techniques to obtain a more efficient quantizer. 

In the work described in this report, our ultimate goal is to use Gaussian models, since continuous distri-

bution models have proved to outperform discrete distributions in recognition tests. (As evidence, consider 

that all recognition systems participating in the 1994 ARPA benchmark tests used some form of continuous 

distribution, whether Gaussian mixture or neural network predictor.) Hence the segmentation approach 

described in [11, 1, 3) is more appropriate for our work than fenonic baseform derivation. However, iterative 

re-estimation techniques outlined in the coding work point to a method for improving previous work, though 

／ 

we would work with a maximum likelihood rather than minimum distortion objective function. Between the ( 

variable-length coding schemes, our intuition suggests that the Shiraki-Honda parametric segment model 

[16] is the best choice for representing speech where units are stretched and compressed in time. 

2.2 Parametric Trajectory Segmental Models 

lFrom coding theory, we know that quantizing sequences of vectors makes it possible to achieve lower 

distortion for a given bit rate than quantizing individual samples. If a segmental coding strategy is more 

efficient than a frame-based coding strategy, it seems reasonable to expect that a segmental recognition 

strategy will be more effective than a frame-based (e.g, HMM) recognition strategy, since minimum distortion 

is related to maximum likelihood in a Gaussian model. In addition, an HMM can be viewed as a special 

case of the class of segment models, so by working with a more general model we ailow automatic learning 

to determine the appropriate structure. Consequently, this work will focus on segment-based modeling, 

particularly the version that uses a regression function to describe the mean trajectory, which is essentially 

a probabilistic variation of the Shiraki-Honda segment [16]. In this section, we give a brief description of 

segment-based modeling, focusing in particular on the parametric mean trajectory case used here. A general 

overview of segment modeling can be found in [18]. 

Let Yt be a d-dimensional observation vector, such as a vector of cepstral coefficients representing a 
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window of speech at time t. A general segment model provides a joint model for a random-length sequence 

of observations叫=[Y1,, ・ ・, 叫， asegment, generated by unit a according to the density 

P(Yt, .. ,, YI, Ila)= P(Yt, .. ,, Yill,a)p(lla) = ba,1(yi)p(lla), (1) 

where l is the segment length. Letting .C be the set of possible observation lengths (in frames), a segment 

model for label a EA is characterized by 1) a duration distribution p(lla) that gives the likelihood of segment 

length l E .C and thereby the likelihood of a particular segmentation of an utterance, and 2) a family of 

output densities {b(l,1(YDi I E .C} that describes observation sequences of different lengths. In addition, a 

Markov assumption for sequences of ai is made either implicitly or explicitly, by embedding phone segments 

in a word pronunciation network or other probabilistic finite-state network. 

The segment duration distribution {p(lla); l E .C} can be either parametric (e.g. Gamma) or non-

parametric (relative frequency). In practice, any reasonable assumption works well, since the contribution 

of the duration model is small relative to the segment observation probability which is in a much higher 

dimensional space. The family of output densities {b(l,1(yi); I E .C} represents /-length trajectories in vector 

space (約 E釣 witha sequence of distributions that can be thought of as dividing the segment into separate 

regions in time, where a "region" is similar to an HMM state. A distribution mapping (or, time-warping 

transformation) associates each frame Yi in the variable length observation y{ with one of the model regions. 

Together the mapping and the region-dependent distributions provide a means of specifying b(I,/ (yi) for a 

large range of/ with a small number of parameters. A variety of options are possible for the mapping T1, as 

outlined in [18]. Here, we will assume a deterministic linear time sampling of a fixed mean trajectory. 

Parametric mean trajectory segment models were introduced separately by Gish and Ng [19] (as a segment 

model) and Deng et al. [20) (as a nonstationary-state HMM). In both cases, the observations in a segment 

are assumed to be conditionally independent given the segment length, and the probability of a segment is 

therefore the product of the probability of each frame: 

I 

ba,1(YD = IT P(Yi Ja, 内）
i=l 

(2) 

where the distribution used for each frame, indexed by region ri, is Gaussian: P(Yila, ri) ~ N(μi, I:). The 

covariance I: is assumed to be constant throughout the segment, which reduces training costs. The sequence 

of meansμi are parameterized by a polynomial in d-dimensional vector space. Specifically, the sequence 

of distributions used in computing the likelihood of an /-length segment Yi is described by the sequence of 

means [μ1 ... 叫=BZ1, where B is ad x m matrix of coefficients for polynomial order m -1 and約 isan 

m x / time sampling matrix. For m = 1, 局 isa row vector of l's; for m = 2, Z1 has a vector of l's in the first 

row and a vector of normalized times tin the second row. As an example, the value of the i-th component 

of the mean vector at normalized time t 1s given in the quadratic case m = 3) b （ 
--:i yμu = bil + bi2t + brnt , 

where bij is an element of the coefficient matrix B. In general, μi = Bzi where Zi is the i-th column of ZL, 

The two proposed approaches differ in the representation of time. Gish and Ng define the observed 

segment to be a linear sampling of a complete trajectory, so f = (i-1)/(/-1) E [O, l] and the segment mean 

is comparable to a codeword in the Shiraki-Honda [16]. Deng et al. use absolute time, soi区 jfor the jth 

frame in the segment, i.e. the trajectory varies with segment length. Using absolute time has the advantage 

of efficient recognition and segmentation algorithms, since the Markov assumption holds within and across 

segments, but it is only reasonable for sub-phonetic units (a phone of length / generally does not correspond 

to the first half of a phone of length 21). Since we hope to model units that are bigger than phones, we will 

follow the Gish-Ng approach [19].1 The results of both sets of researchers for constant, linear and quadratic 

mean functions and context-independent phone modeling suggest that there is little to be gained by going 

beyond linear models, with the possible exception of modeling diphthongs. However, these experiments were 

based on phone and sub-phone acoustic modeling. 

1The estimation equations given here will differ slightly from those in [19], since we use a transposed definition of Y; and 
have not included the segmental mixture tenns, 
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To estimate the parameters of this parametric segment model, which are B and~, assuming the Gish-Ng 
time warping [19], define the ML estimate of the trajectory parameter matrix for a single segment observation 

Y; as 

佑=Y;尻[Z1;z{J-1, (3) 

and the segment level sample covariance as 

凶＝［竺叩—鱈）(Y;J —鱈）t (4) 

The triple (/3ゎ恥/i)together form a sufficient statistic for segment Y; when the model regression order is 

m, and are a more efficient representation of the segment if /i > D + m. Taking this statistic for all segments 
Yi that map to the specific model of interest, the new model parameters are: 

B=[五佑z,,z:,][,~ ゚瓜z:,]―1

Ê 
＝ 長こ叫＋長こ謳—麟況(f3i 遣）t

tE'Ia iE'Ia 

(6) 

where Ia= {i: ai = a}, N = I:iex. Ii, 

2.3 Non-Uniform Unit Training 

(5) 

In this work, we extend the unit learning algorithm described in (11, 3] to handle segmental models, and 

add an iterative retraining step after clustering similar to that proposed in [16]. Unlike other work, we use 

the maximum likelihood objective function together with the segmental model distribution assumption in 

both clustering and iterative model re-estimation. 

Initial Segmentation Algorithm 

The initial segmentation algorithm is a slightly different implementation of the general approach described 

in [11]. Define Dt(n) to be the log probability of the most likely segmentation for observations Yi = {Y1, ... , Yt} 

and including n segments: 

Ot(n) = maxlogp(yi, Ir). 
1n 

The traceback information is stored in叫(n),which contains the ending time of the best previous segment 

that led to Ot(n). Since the likelihood of a segment is determined by its own mean trajectory and not 

some fixed model set, shorter segments will always be more likely than longer segments and the maximum 

likelihood segmentation will be biased to use the minimum segment length as often as possible. In order to 

find a non-trivial segmentation, we impose a constraint that the resulting average (per frame) segmentation 

error must be greater than dmin• (We empirically test different values of dmin to determine a threshold 

to give segments with average length equal that of an average phone.) Then the dynamic programming 

segmentation algorithm involves: 

(7) 

f
¥
 

／
ー
＼
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Initial Segmentation Algorithm 

... 
In1tiahze: t = lmin 

奴1)= logp(y1, ... ,Yt¥l) Vi E Ai, I= lmin 

Iterate: t = lmin + l, ... , T; Vn < t/lmin 

Traceback: 

釘(n):::: max Or-1 n-l)+logp(防，...,y北）； /::::t-r+l . ( 
t-lm4ぶ全・st-lm,n

ゅt(n)= argmax Dr-1(n -1) + logp(yr, ... , y北）； l=t-r+l 
t-lma,i'. 勺~t-lmin

N* = arg;;1ax好(n) such that声好(N*)> dmin; t = T, n = N 

Iterate while t > 0 : 1)が＝叫(n),2) t← t1,n← n-l 

The probability term log P(Yr, ... , Yt llr) is based on the assumption of a parametric mean segment model 

μsing Equation 2 with the maximum likelihood parameters for the observed data (Yr+l, ... , Yt], The partic-

ular estimate of the mean will depend on the order of the regression model. Since the segment lengths will 

almost always be too short to estimate an invertible covariance matrix, we will assume that the covariance is 

fixed for all segments in an utterance and use either the covariance estimated from all cepstra in the target 

utterance or from the full training set. It is important that some reasonable covariance matrix is used, as 

opposed to simply using Euclidean distance, since otherwise the dimensions of Yt with the highest variance 

(e.g. energy) will dominate the segmentation criterion. 

Clustering 

Once the training data has been segmented, the next step is to cluster the segments to obtain a fixed 

number of models. (The particular number of models will be chosen heuristically, to be comparable to 

an HMM context-dependent recognition system for experimental assessment.) Clustering involves initial 

codebook design, in which we use a binary splitting algorithm, followed by an iterative re-estimation algo-

rithm, similar to the standard VQ design algorithm (15] except for the use of the maximum likelihood design 

criterion. 

1. Binary splitting initialization: Obtain a set of J{ segment models by successively partitioning subsets 

of the training data. 

(a) Compute the mean and covariance for a single segment model to represent the entire training set. 

Set this model as "the model to be split". 

(b) Run a two-model clustering procedure (analogous to a two-codeword VQ design procedure) for 

the model to be split using only the segment observations assigned to that model, following the 

steps outlined in the full iterative re-estimation algorithm below. Increment the total number of 

models by 1. 

(c) If the desired number of models J{ has been reached, then stop. Otherwise, choose a new model 

to be split by finding the model with the largest average variance per frame, and go to step lb. 

2. Iterative re-estimation: Given an initial model set of the appropriate size J{, then iterate: 

(a) Partition the training data, assigning each segment Yi to坊 accordingto 

S(i) = argmaxlogp("Yil0j) 
O<j~K 

so that功 isthe set of segments that best fit model j. 
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(b) Re-estimate the model parameters using the maximum likelihood estimate for j = 1, ... , }く

0, = argmax ~ logp(Yi J0) 
Y,Eあ

according to Equations 3-6. 

(c) Test to see if the relative increase in likelihood is below some threshold or if some maximum 

number of iterations has been reached. If so, then stop; otherwise go to step 2a. 

The clustering algorithm described here is similar to that outlined in (1], with the exception that instead of 

the Itakura-Saito distortion measure we use maximum log likelihood under the assumption of a multivariate 

Gaussian with a time-varying mean specified by a polynomial function of a particular order. 

Iterative Model Re-estimation 

The iterative model re-estimation algorithm proposed here is similar to that described in (16], except that 

the objective function is maximum likelihood rather than minimum distortion. Iterative model re-estimation 

can also be seen as a Viterbi training procedure (i.e. the most-likely-state-sequence (MLSS) training algorithm 

described in (18]). The difference between this algorithm and Viterbi training with phonetic units is that 

re-segmentation is not constrained to the word sequence because there is as yet no lexical mapping. ( 

Define 0(P) to be the segment model distribution parameters at iteration p, and define S(P) and A(P) to 

be the segmentation and associated model label sequence for the training data at iteration p. Then, the 

re-estimation algorithm involves iterating: 

1. Segmentation: Jointly find the most likely segment label sequence and its associated segmentation 

(A(P),S(P)) for the training data, given model e(p-l). 

2. Estimation: Find the maximum likelihood parameters 0(P), given segmentation (A (p), S(P)) . 

3. Test for convergence: Test to see if the relative increase in likelihood is below some threshold or if 

some maximum number of iterations has been reached. If so, then stop; otherwise go to step 1. 

This algorithm is analogous to vector quantizer design: the segmentation step is equivalent to the partitioning 

step in VQ design, and the estimation step is analogous to the centroid computation. 

The estimation step is identical to the estimation step described in the clustering algorithm above, and 

the test for convergence is also the same. The segmentation step, however, requires more computation than 

the clustering re-partitioning step, since we not only want to reassign segments to models but also to allow 

segment boundaries and the total number of segments to change. As a consequence, the segmentation step ( 

is essentially a segment recognition problem, which can be solved using dynamic programming (or Viterbi' 

decoding). Since we eventually plan to have some sequence constraints via the pronunciation networks, and 

because even in phone recognition (vs. word recognition) performance improves significantly with a phone 

ngram model, we will use a segment label bigram in the resegmentation. (In the initial pass, the label 

sequence information is not easily available, in which case we use a unigram.) 

Because segment recognition can be very expensive, we have introduced several pruning mechanisms to 

speed up the resegmentation process. First, we restrict the number of segments in the hypothesis ending 

at time t to be within some fraction (e.g. 士 10%)of the number of segments at that time in the previous 

iteration. Second, we use beam search pruning to reduce the number of prior segment candidates that are 

considered in extending the hypothesis. In addition, we use the standard segment modeling technique of 

imposing minimum and maximum duration constraints as a function of the particular segment label. Below 

we outline the segmentation search using these constraints. 

Letぷ＝加(t)(l-c), np(t)(l + c)] define the possible number of segments in a sequence ending at time t. 
Define At to be the set of active segment models candidates ending at time t, which is a pruned subset of the 

entire set A based on likelihood relative to the best segmentation ending at time t. Define p(t,j) to be the 

set of allowable segment start times for a segment with label j ending at time t, which is determined by the 

minimum and maximum constraints on segment duration. Finally, define Ot (n, i) to be the log probability of 
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the most likely segmentation/label sequence ending with segment label i for observations Yi = {Y1, ... , Yt} 

and including n segments: 

釘(n,i)= nK + max logp(yi,/『,aI―1,an =i), 
If ,ar-1 

where J{ is an insertion penalty added to provide an additional control on the number of resulting segmen― 

tations. The traceback information is stored in加(n,i), which contains the ending time and label of the best 

previous segment that led to Ot(n, i). Then the dynamic programming segmentation algorithm involves: 

Re-Segmentation Algorithm 

.. 
Imtialize: t = lmin 

Ot(l,i) = logp(y1ll,i)p(lli)p(i) Vi E A1, / = lm切

Iterate: t = lmin + l, ... , T; Vi E At; ¥/n EM  

Dt(n,i)=K+ m訟 Drー1(n -1, j) + log[p(Yr, .. ,, Yt llr, i)p(lr li)p(ilj)] lr = t -r + 1 
jEA,,rEp(t,i) 

Traceback: 

心t(n,i) = argmax Dr-1(n -1, j) + log[p(Yr, ... , Yt llr, i)p(lr li)p(ilj)) lr = t -r + l 
jEAr,rEp(t,i) 

(N"', 如） = argmax好(n,i), t=T,n=N* 
nEN'T,i 

Iterate while t > 0: 1) (an-1,t') =加(n,at), 2) t← t',n← n-1 

3 Mapping to Lexical Entries 

Once the inventory of acoustic models is defined, the second main problem is to find a mapping from a 

sequence of these units to sequences of words. This mapping can be simply a linear string of sub-word units, 

or a network.• To simplify the discussion, we will refer to these mappings as "pronunciations", even though 
they may not be based on phonetic units. In addition, the units may span word boundaries, so we will use 

the terms "lexical item" and "lexicon" loosely, to include single orthographic words or sequences of words. 

Since the lexicon is not a simple list of words, the first step will be to determine the lexicon, and then the 

mapping from segment model labels to lexical entries can be derived. The proposed algorithms for these two 

problems are summarized in this section. 

3.1 Determining the Lexicon 

A problem faced in our work, not addressed by any previous work, is that the automatically learned units 

may span word boundaries, so some pronunciations will be defined for word sequences as opposed to single 

words. One could constrain the unit learning process to enforce segment boundaries at word boundaries, 

but such a constraint might limit the potential of the model. For example, if "did you" is frequently said as 

"/d/ih/jh/ax/" it might be best to represent as a single lexical item. Another solution is to allow multi-word 

entries in the lexicon, but when all possible multi-word entries are included in the lexicon, the lexicon size 

becomes so large that the search will become too costly. Therefore, the the problem becomes one of finding 

a minimal (limited) set of words and phrases that best represent the cross-word phonetic assimilation in the 

data. 

The approach we propose for building the lexicon is to start with a lexicon of all possible word sequences 

with segments that span word boundaries, and progressively prune infrequent word sequences out while 

adding segment boundary constraints. The basic algorithm is illustrated in Figure 1, and is summarized in 

more detail below. 
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lexicon-0 

Prune 

Lexicon 

lexicon-p 

Add Boundary 

Constraints 

／
ー
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Re~estimate 
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（ー、＼

model-p 

-stop when lexicon 1s small enough 

else, increment p and continue 

＇図 1:Block diagram illustrating the lexicon design process. 
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Given an inventory of models 0(0), training data marked with canonical word boundaries (labeled by hand 

or by Viterbi alignment using a phonetic word pronunciation) and segment boundaries for the non-uniform 

units, a single word lexicon, and a maximum lexicon size, then iterate: 

l. Initialize: 

(a) If an automatic segmentation boundary is within k frames of the canonical word boundary (e.g. 

k = l), move and fix the boundary at the canonical boundary location. 
(b) Build an initial lexicon, consisting of all single-word entries and multi-word entries found in the 

training data with segments spanning all word boundaries within the sequence、Asegment "spans" 

a word boundary if the time difference from the canonical word boundary to the closest segment 

boundary is more than T ms. 

2. Prune lexicon: 

Compute a score for each multi-word sequence in the lexicon that is a measure of cross-word phonetic 

assimilation, and is also based on the relative frequency of the word sequence and cross-word segments. 

Then, prune all multi-word sequences from the lexicon with a low score (stopping if the desired lexicon 

size is reached). 

3. Add boundary constraints: 

For all instances of pruned word sequences that have segments that span the word boundary, introduce 

a new boundary at the canonical word boundary time. 

4. Segmentation: 

(a) Resegment the training data using the current model inventory, retaining any boundary con-

straints from a previous iteration. 

(b) Move and fix all boundaries that are close to canonical word boundaries, as in step la. For each 

boundary that has been moved, if the word sequence at that boundary appears nowhere else with 

a segment spanning the boundary, then remove this word sequence from the lexicon. 

5. Model re-estimation: 

Re-estimate the parameters of the models 0(P) according to Equations 3-6. 

6. Stopping test: 

If the lexicon is no bigger than the maximum size, then stop. Otherwise, increment p and go to step 2. 

Critical to the success of this algorithm is the mechanism for eliminating word pairs in Step 2 above, and 

there are a variety of options. For example, one could simply eliminate the word sequence with the lowest 

frequency of actual multi-word pronunciations. Alternatively, one could also consider the frequency and/or 

length of the segment that spanned that boundary. In the experiments reported here, the score in step 2 

is computed as the time difference between the canonical word boundary time c and the closest automatic 

boundary time A(c) summed over all word boundaries in the multi-word sequence: 

1 
S(e) =可I:I: le-A(c)I 

iE{e} cEB(i) 

(8) 

where S(e) denotes the score for lexical entry e, I(e) denotes the number of word boundaries within lexical 

entry e (i.e. a 3-word sequence would have J(e) = 2) , {e} denotes the instances of lexical entry e in the 

training data, and B(i) denotes the phone-based word-boundary times of instance i. Note that the score has 

a bias toward frequent multi-word sequences. 

By applying this algorithm, we obtain a lexicon consisting of all distinct single word entries found in the 

training data plus the most frequently reduced word sequences which are better modeled by a multi-word 

lexical entry. A possible problem with this approach is that the additional segmentation passes may be costly. 

However, by imposing word boundary constraints on the segmentation, which are needed for the algorithm 
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anyway, computation is significantly reduced relative to the resegmentation step described in Section 2.3. In 

addition, we can reduce the size of the lexicon in stages, repeating steps (2)-(3) to minimize the changes in 

the acoustic units at each stage. 

3.2 Pronunciation Modeling: Previous Work 

Once we are given a lexicon word list, then the remaining task is to find the pronunciation network for 

each lexical entry. A variety of approaches have been proposed for deriving word "pronunciations", which can 

be related in terms of algorithmic structure independently of whether they are phonetically based or based 

on automatically learned units. Rather than doing a historical review, in this section we will outline three 

general approaches that have been taken and explain how they are or are not appropriate to the problem 

of interest here. In addition, we discuss possible probabilistic pronunciation modeling assumptions within 

the context of these approaches and associated trade-offs for the problem of mapping from unconstrained 

acoustic sub-word units to words. 

To describe a general approach to lexical mapping design, we begin by introducing some notation. Let 

Y = (Y1, ... , YT) correspond to a sequence of acoustic observations for a word, where Yt is a member of this 

sequence and is ad-dimensional vector, and let Yw represent the set of all such sequences in the training 

data corresponding to word W. Let</;= (</;1,,.,, 如） represent a sequence of labels of acoustic units (e.g. 

phones or automatically learned sub-word units) which we call a "pronunciation" of a word. The symbolic 

labels釘 E<I> form an intermediate representation between words and acoustics that we can use to make 

more reasonable conditional independence assumptions, i.e. a subsequence of observations is conditionally 

independent of other observations given the model label釦.W = (g1, ... , Om) will be used to represent a 

word, where 9i E 9 might be either a letter or an element of a phonetic baseform from a single-pronunciation 

dictionary. Note that each of these representations of a word -acoustic (y『)， symbolicacoustic (<pi), and 
dictionary (g『)-have different lengths. In order to estimate a mapping, we could potentially use two model 

components: 

• p(YJ</;): an acoustic model1 such as an HMM or the segment model described in Section 2.2, and 

• p(</;JW): a pronunciation mode/1 which may be a letter-to-phone probabilistic mapping if W is repre-

sented by letters and <pi is a phone, but may also be based on non-phonetic units <pか

Using these definitions, there are essentially three types of approaches that have been proposed in the 

literature, as described below. 

The first approach aimed at finding a single pronunciation, i.e. a linear sequence of sub-word units, 

accordil!-g to 

（、
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¥
 妙） = argmaxlogp(叩¥Yw,W)

cp 

= argmaxlog [p(Ywl</i)p(</i!W)] 
cp 

= "'!!fax [logp(¢1W) +ぶlogp(Y; 1¢)] 
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In equation 10, we make the assumption that the acoustic observations are conditionally independent of the 

word given the specific pronunciation, which is a standard assumption made in speech recognition work. This 

approach was proposed as described above in [12], but it can also be thought of as more sophisticated versions 
of earlier work (2, 3] that used simple models for p(YI</;) and p(叫W).For example, in the deterministic 

mapping (method 3) described in [3], the distribution p("Yil</;) corresponds to a time-warped distance and 

all possible pronunciations </; for word W are assumed to be equally likely. In [12], the acoustic model is 
an HMM, and the pronunciation model uses a decision tree estimator of the probability of a phone given 

a sequence of letters. In [21], the acoustic model is an HMM, but the pronunciation model is given by a 

baseform predicted by a synthesizer (Dectalk) expanded using a confusion matrix of synthesizer prediction 

errors. Note that this approach finds a pronunciation for each word based on acoustic observations of that 
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word. If a word in the lexicon is not observed in the training data, then the pronunciation must be derived 

from the pronunciation model only: 

＾ ¢= argmaxlogp(ゆIW), (12) 
・¢

which was first proposed using an HMM model of pronunciation by Lucassen and Mercer [22]. When acoustic 

observations are available, it is beneficial to use both sources of information [2]. 

A disadvantage of the above approach is that the pronunciation model, if trained from a dictionary, may 

not reflect the types of pronunciation variation present in the particular type of speech to be recognized. For 

example, it may not capture all of the different types of reduction phenomena in spontaneous speech. This 

is not a problem if there are a large number of acoustic training tokens per word, but could be a problem for 

infrequently observed words. Thus, a second approach is to estimate the pronunciation model based on the 

training data. Specifically, assume an acoustic model p(Y jefJ) (an HMM in previously reported work) and an 

initial pronunciation model p(</JIW) and then execute the following steps: 

1. Segment the training data for each instance of a word, yi, to find the observed pronunciation for that 

instance of that word 

2. Use the pairs {(ふ，Wり｝

炒i= argmaxp(Y漏）p(</JIW). 
cf> 

from the entire trammg data to estimate a new pronunciat10n model p(efJjW). 

3. Use p(efJjW) to find a new pronunciation network for each word W. For example, if a single pronunci-

ation is desired, then 

J(W) = argmax p(<PI W). 
cf> 

Alternatively, use p(</JIW) to expand a baseform to include all non-zero probability pronunciations. 

This algorithm, which can optionally be iterated, was initially proposed by Cohen [23], who used hand-

written phonological rules to derive an initial pronunciation network from a phonetic baseform, and then 

trained the probabilities of those rules, effectively giving p(efJjW). The same general approach was used by 

Ljolje et al. [24], where the pronunciation model used decision trees to model the phone probabilities given 

a baseform representation of the word [25]. Their initial pronunciation model was trained on the hand-

labeled TIMIT corpus. Paliwal's stochastic lexical building algorithm [3] is another example, where p(efJjW) 

is essentially a bigram model of the sequence of subword units. 

Finally, the third approach uses no pronunciation model at all, but rather uses structural inference 

techniques to either expand a baseform or compress a large pronunciation network to maximize coverage of 

the observed pronunciations and minimize the size of the network, as in [1, 26, 27]. A related technique, 

described in [28], looks at recognition errors rather than forced alignments in expanding the network, though 

this approach requires that some initial baseform be available. All of these structural inference techniques 

suffer from the problem that they cannot easily be used for unobserved words and may not be robust for 

infrequently observed words; hence we will not consider them as an option for this work. 

Although the structural inference approach is inappropriate given our need to find pronunciations for 

unobserved words, both other approaches have advantages that we can benefit from. The first method 

provides the best solution for words which are well trained, since the pronunciation is based directly on the 

observed data for specific words. The second method, on the other hand, uses a more appropriate p(efJjW) 

that is tuned to the recognition task, and so will provide a better solution for infrequently observed words. 

As a consequence, we propose a hybrid of these two approaches in Section 3.3 for our work. 

A superficial difference between the first two methods is whether a single pronunciation is derived, as 

in Equation 11, versus a pronunciation network. In fact, both methods can be used to either generate 

single pronunciation strings, as shown by Equation 12, or multiple pronunciation by using an "N-best" style 

maximization search [29] in place of the simple maximization in Equation 11 to obtain a pronunciation lattice. 

The more important question is to what extent multiple pronunciations make sense. A problem with using 

large pronunciation networks is that they increase the acoustic confusability of words, since it is more likely 
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that two different words will have a common pronunciation. The phone transition probabilities compensate 

somewhat for this problem by providing pronunciation probabilities, but they are a small part of the overall 

word score relative to the observation likelihoods. For this reason, there are numerous (unreported) anecdotal 

results showing no benefit to using multiple pronunciations, and most recognition systems use very few 

pronunciations per word. Others, however, find that good results can be obtained by appropriate estimation 

techniques and pronunciation network pruning [23, 27, 24]. Pruning techniques vary from simple elimination 

of low probability arcs in the network [30) to elimination of low probability phonological rules. Certainly in 

modeling spontaneous speech, it is likely to be beneficial to allow for some pronunciation variability. 

An important issue associated with the above approaches is the form of the pronunciation model, or 

p(c/JIW). As already mentioned, decision trees are used in [4, 24). Decision trees act essentially as variable-

order n-gram models, and thus are more powerful than bigrams. An alternative model is the hierarchical 

structure proposed by Meng et al. [31], which puts probabilities on the sister transitions within a level of a 

"parse tree" as defined by a probabilistic grammar. An advantage of the grammatical model is that it provides 

a mechanism for encoding linguistic knowledge about morphological, syllabic and phonetic structure, among 

other levels. A disadvantage is that the grammar rules must be written by hand, although it is automatically 

trained and used as a probabilistic mapping, and it may be difficult to write grammatical rules to describe 

units that are not tied in anyway to phones or syllables. 

3.3 Pronunciation Network Estimation 

しFromlessons learned in previous research, we believe that a pronunciation network design algorithm 

should have the following features: 

• the resulting lexicon includes multiple pronunciations, but not too many per word; 

• the design algorithm uses all acoustic observations where possible; and 

• the design algorithm uses a task-dependent pronunciation model for generalizing to infrequently ob-

served or unobserved cases, 

To meet these objectives, we will use a hybrid version of the methods described in Section 3.2, which uses 

training data to determine word-specific pronunciations where there is sufficient data to do so and a robust 

general pronunciation model otherwise. 

In order to make the difference between this approach and previous work clear, it will be useful to review 

the notation from Section 3.2. As before, Y = (Y1, ... , YT) corresponds to a sequence of acoustic observations 

for a word, but now we will let the intermediate representation be the labels </Ji take on values a E A, which 

are the indices of our automatically learned segmental units. In addition, we will use an expanded notion 

of a word, W = (g1, .. , ,Um, 凡(W),... , 凡(W)),where Fi(W) are features of the word, such as the part-of-

speech tag, To simplify the pronunciation model, we will assume that Ui are phonetic symbols available from 

a single pronunciation dictionary, rather than the letters in the orthographic transcription of the word, since 

learning pronunciations directly from the letters will likely require a more complex mapping and therefore 

more training data than learning from a phonetic baseform. As before, the three different representations of 

a word have different lengths. 

The hybrid algorithm, outlined below, first estimates a general probabilistic pronunciation model p(</JIW) 

from the training data, and then uses this model to find a smaller pronunciation network必(W)for each 

individual word. These two steps can optionally be iterated, in combination with re-segmentation of the 

training data, to reduce the size of the pronunciation network gradually. 

（
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Lexical Mapping Derivation 

1. Pronunciation model estimation: Use the word boundaries and segmentations to estimate a pro-

nunciation model p(</;IW), to cover all words in the lexicon. 

2. Pronunciation network generation: Using the notation LattArgmax to indicate a maximum like-

lihood search which returns a lattice of hypotheses 

• If the number of training tokens for Wis greater than N 

私(W)= LattA?max [logp(ql[W) +区
YiEYw 

logp(Y濯）］

• Els0e 

的(W)= LattArgmax [log p(</;JW)]. 
¢, 

3. Optional iteration: If desired, resegment the training data using {的(W)}and go to step 1. 

The maximization to obtain a lattice in step 2 above requires some criterion for determining the size of 

the lattice. The criterion can either be a constraint on the number of N-best pronunciations, which are then 

compressed into lattice form, or it can be a constraint on the likelihood of a pronunciation string relative to 

the most likely pronunciation for that word. Given this criterion, a two-pass (forward and backward) search 

algorithm is used to obtain a lattice for each word, which takes into account the overall path probability and 

thus gives a better result than simply pruning low probability arcs or rules. 

In initial work, we simplify the problem by omitting the word features F(W), and use a general stochastic 

model for p(¢1W) that is similar to the work described in [22, 25] in that the acoustic unit labels are treated 

as observations from an underlying state sequence. The state sequence, which in our case is the baseform 

ar, may or may not be hidden depending on whether there are multiple phonetic pronunciations for a word. 

Our work differs from previous work primarily in the use of automatically learned acoustic units rather than 

phonetic units, with the associated problem of greater variability in the observations associated with a word. 

Let g『denotethe baseform pronunciation of a word, which is given by a phonetic dictionary, and¢=¢1 

an automatic unit label sequence. Ignoring the word features for the moment, we use p(¢1W) = p(</Jla『)as 

the probability of a particular automatic label "pronunciation"¢? and baseform pronunciation g『.Let ai 

be the (possibly empty) subsequence of </Jt that are associated with 9i・Then the pronunciation probability 

is 

P(¢1,ll『) ＝ 

＝ 

I: P(¢1 ,g『,ai) 
{a『}

I: P(a『Jg『)P(g『)
{a["} 

(13) 

where af contains all the information in¢1. The set of all possible partitionings of¢r into subsequences is 

denoted by {呼}, Assuming that the baseform sequence g『isMarkov and that the叩 'sare conditionally 

independent given the "states" Ui, the probability of a particular observed pronunciation of word¢1 is 

m 

p(</>~,gf) = I: IlP(疇）P(UilUぃ）
{al_"}i=l 

(14) 

If there is a single baseform that is known for all words, then the sequence g『isknown and the Markov 

probabilities are dropped. In [25], p(a; Jg;) is represented separately for all possible subsequences a;, since 

the total number is small (the observed subsequence lengths l(ai) are limited to be :s; 2 with additional 

restrictions on the number oflength 2 sequences). In our case, on the other hand, /(ai) can vary substantially, 
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so some simplifying assumptions are needed to reduce the parameter space. One solution, implemented in 

our initial work, is to use phone-dependent unit label n-grams, e.g. 

t(a)+l(a)-1 

p(叫gi)= p(/(ai)lgi)P(¢t(a;)lgi) IT 尋鳳1,gi) (15) 
t=t(a)+l 

where t(年） is the time of the first acoustic unit label in a; and we use the fact that p(a; !Yi) = p(叩， l(a-;)IYi)・

The extension of this model to handle word features is facilitated by the use of decision trees, which 

reduces the number of parameters in the model. In equation 15, we simply replace p(</Jtl<Pt-1,gi) with 

p(糾T(虻 1,gi,F(W))),where T(•) is a decision tree mapping. 

This model is essentially a discrete distribution segment model, so the parameters・can be trained using 

the generalized EM or the MLSS algorithms described in [18]. Since the model is a generalization of an HMM, 

HMM lattice search algorithms can be used for finding the pronunciation network with some modifications 

to handle variable-length observations. 

4 Word Recognition Search Algorithm 

The goal of any word recognition algorithm based on a statistical model is to find the most likely word 

sequence叫f= { w1, ... , WK} given an observation sequence for an entire utterance y『={翡 ...'YT},or ¥ 

叫'=argmaxp(wf jy『)，
wf,K 

(16) 

where wk E Wand IWI is the number of words in the vocabulary. Using the models described in the previous 

section, the problem becomes 

叫く= argmax p(y『¥¢り）p(</J的wf)p(wf)
叫(,K,</>村，M

(17) 

M・ where妬 1sa sequence of acoustic units, p(y『l</J紅） is given by th e acoustic segment models, p(</Jf lw『)is 
K given by the pronunciation model, and p(叫） is given by the language model. The differences relative to 

the HMM recognition problem, which has analogous component models, is that the acoustic model and the 

pronunciation model are more complex and effectively operate in a higher dimensional state space. (The 

language model is not addressed as a research problem here; we shall simply use the standard n-gram language 

modeling techniques.) As a result, the cost of the recognition search is much higher, and some computation 

reduction compromises must be made. Below, we describe two approaches for reducing computation, both 

of which require a multi-pass decoding strategy. First, we can reduce the number of candidate acoustic unit 

labels in a first pass of recognition that ignores the language and pronunciation models, and then impose 

these constraints in a second pass. Alternatively, we can use an HMM search to narrow the candidate 

word hypotheses to an N-best list or a word graph, and then proceed with recognition directly from the 

cepstra. Both algorithms are similar in structure, so we begin with some notational preliminaries defining 

the decoding network structure. 

4.1 Network Structure 

The possible words in the vocabulary are w E W, JWI = V, and each word has a pronunciation baseform 

{u1 
w) , ... ,g冒}where iw) E 9 is a phone and Jwl denotes the length in phones of word w. To simplify the 

discussion, we will assume that the grammar allows all possible word sequences and that their probability is 

represented by a bigram language model: 

p(w1,、，,,w1;) = p(w1I < beg >)[np(wilWi-1)]p(< end> lw1;) (18) 

where < beg > and < end > are symbols for the beginning and end of the utterance, 
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図 2:Word network for recognition search and associated expanded phone network. 
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The pronunciation baseform can be thought of as "hidden states", with the observable acoustic segments 

{ c/Ji} being the output of these states and the cepstral features {yt} being the output observations associated 

with the acoustic segments. From a generative perspective, we have: 

{w1o}→ {gi}→ ｛釘｝→ {yt} (19) 

(Note that, in this view, automatically learned units釘EA can only span multiple phones if some phones 

have null outputs.) The likelihood of an M-length acoustic unit sequence硝 andjwj-length phone sequence 
回g1 given a deterministic mapping of the acoustic unit sequence to the phone sequence is given by: 

回

p(か，．．．，紐，Ul,,,・,g叫w)== ITP(叫u1)P(uilu1-1,w) (20) 
l=l 

lwl 1 e acoustic segment sequence <p紅tothe phone sequence g阿anda1 where a denotes the mappmg of th 

denotes the (possibly empty) acoustic segment subsequence that maps to phone gi・

For recognition decoding, all the words are put in parallel with a loop from the endings of words, as 

illustrated in Figure 2(a). Then that network is expanded in terms of the phonetic baseforms of the words. 

Figure 2(b) illustrates the expansion for the case where w1 has a 5-phone baseform, w2 has a 3-phone 

baseform, etc. Each arc in the expanded ,network is separately labeled sp, where Sp E g and there are Narcs 

in the full network. Typically, for large vocabularies, N >> IQI, The set {sp} represents all possible phones 

in all possible words. If the same phone appears in multiple words, then it will correspond to multiple Sp 

instances. Note that only a subset of arcs Sp are allowed to start the utterance, and another subset is allowed 

to end utterances. 

4.2 Recognition from Acoustic Unit Labels 

One (sub-optimal) approach to recognition search is to first find the most likely acoustic segment sequence 

｛釘，..., <i>M }, and then use this sequence as the input to the recognition search. The most likely acoustic 

segment sequence can be found using the re-segmentation algorithm described in Section 2. Assuming the 

sequence <l>f is given, the recognition problem becomes 

碕=argmaxp(wf)p(硝lwf)
吋，K

K 

= argmax IT p(</J(w1c)lu(叫））p(叫 W1c-1),
吋c,K k=l 

(21) 

(22) 

where rp(Wk) is the subsequence of釘thatmap to Wk and g(w) = {giw), ... , g冒}is the phonetic spelling 

of Wk. The solution requires dynamic programming to find the mapping between the acoustic units and the 

word pronunciation, which builds on the notion of g; as a hidden state. 
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Let釘(n,m, q) denote the log probability of the most likely phone sequence that is allowable by the 

grammar and ends with the phone corresponding to arc Sn, using the best possible alignment to the sequence 

か，．．．，転.When q = 0, there is a null output associated with the last phone sn, and there is at least one 

acoustic segment for q = 1: 

ふ(n,m, 0) = max logp(g1, ... , gi-1, gi = Sn, <p1,,.,, 如，年=0) 
i-1, 

91 ,i 

ふ(n,m, 1) = max logp(g1, .. , gi-1, gi = Sn, <p1,,.,, 転，叩 i=0). 
i-1 , 

91 ,i 

‘̀,＇ノ）
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We use Sn rather than some. g E 9 because we need to constrain the phone sequence by the word gram-

mar. We will recursively update釘(n,m, 0) and釘(n,m, 1) and then trace back the phone sequence at the 

end of decoding. This phone sequence will correspond to a unique word sequence because of the gram-

matical constraint. Define TI(sn) as the set of arcs in the network that are allowed to precede Sn, and 

N(m) = {sn: gm= sn} as the allowable arcs for segment label gm,2 Let Kmarc be the maximum number of 

acoustic units that can map to a phone. The search then involves: 

For m = 1, ... , M 

For n E N(m) 

81(n,m,O) = max (logp(clsn)+81(n',m,q)+c(n',n)] 
s .. , E江I(sn),qE{0,1}

ゅ1(n,m, 0) = argmax [logp(clsn) +ふ(n',m, q) + c(n', n)] 
s .. , ,q 

釘(n,m,1) = max [logp(</>m-k+l, .. ・,'Pm!sn)+釘(n',m-k,q)+c(nりn)]
Kmax岱くO,s.. , Eil(sn),qE{0,1} 

ゅ1(n,m, 1) = argmax (logp(</>m-k+l, ... , </>mlsn) +釘(n',m-k,q) + c(n',n)] 
k,s,.1,q 

＼
 

I'’ 

The term c(n',n) is the cost of going from Sn'to sn, which could be simply p(snlsn,) if that includes 

the word bigram probability, but it might also include word and/or phone insertion penalties. The term 

殴 mー/,... , 転 lsn)is the pronunciation model, which can be a simple n-gram, as we used in initial devel-

opment, or a more sophisticated (e.g. decision tree) model. The function妬(n,m, q) allows you to do the 

traceback at the end of decoding, after you find the best final arc: 

argmax 釘(n,M,q). 
nE.N(M),qE{0,1} 

If we assume the "observations" <pj associated with a state Sn are conditionally Markov given Sn and in-

corporate self-loops sn, then the search further simplifies and the non-null observation likelihood update 

formulas are 

／
 

ふ(n,m,l) = 

叱(n,m, 1) 

max [logp(</Jmlsn,'Pm-1) +釘(n',m-1,q)+c(n',n)]
s nl err(s n),qE {0,1} jS n'=sn ,q=l 

= argmax~ogp(<f>mlsn,'Pm-1) +釘(n',m -1, q) + c(n', n)]. 
sn1,q 

(25) 

(26) 

In this case, the length k of the substring of symbols¢1 is captured implicitly by the number of times sn is 

visited, and there is not maximum imposed on this length. 

4.3 Recognizing from Cepstral Observations 

The problem of recognizing words directly from acoustic observations takes on the same form as in the 

previous case, except that all three terms in equation 17 must be computed and the algorithm must also be 

updated with each observation time step. Since the cost of the acoustic segment likelihood calculation can be 

2Another possible definition of N'(m) would be N'(m) = {sn: gm= sn,gmー1E IT(sn)}, which has the advantage that it is 
a smaller set but the clisadvantage that it is a bit more work to find. 
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quite high, we will simplify the pronunciation model by making the Markov assumption, as in equations 25 

and 26 above. 

Let的('t,n, a) denote the log probability of the most likely phone sequence that is allowable by the gram-

mar and ends with the phone corresponding to arc Sn, using the best possible alignment to the observations 

y1, ... Yt with the best possible acoustic label sequence. In this case, we let 0 be a possible value of a, which 

occurs when there is a null output associated with the last phone Sn. 

02(t,n,a) = max logp(g1, .. ,,gi-1,lli = Sn, か，．．．，如m-1,a,y1,... ,Yt) (27) u;-1 ,i,</>;"ーi,m

As before, we will recursively update妬(t,n, a) and then trace back the phone and associated word sequence 

at the end of decoding. In decoding from the observations, the constraints on n originate from the obser-

vations rather than the (unknown) acoustic units, so we define N(t) as the set of states allowable at time 

t (which would be controlled, for example, by a likelihood pruning threshold). In addition, weヽ11illdefine 

A(n) as the set of acoustic labels allowable as outputs from state Sn, As before, Il(sn) is the set of arcs in 

the network that precede Sn. Let Lmax and Lmin be the maximum and minimum number of cepstral frames 

in an acoustic unit. The search then involves: 

Fort= 1, ... ,T 

For n E N(t) 
For a E A(n) 

妬(t,n,0) = 

剣t,n,a) = 

max [log p(01sn, a') +妬(t,n', a')+ c(n1, n)] 
sn, EII(sn),a'EA(が）

max 
'EA(n') L 

[logp(Yt-1十1,.,.,Ytla)+
sn1EII(sn)Usn,a I maぶ~1$Lmin

logp(alsn,aり＋妬(t-l, n1, a')+ c(n', n)] 

ゆ2(t,n, a) = argmax(above quantity) 
s,,, ,a',I 

for a =/: 0 

As before, the function妬(t,n, a) allows you to do the traceback at the end of decoding, after you find 

the best final arc and acoustic unit: 

argmax 的(T,n,a).
nE.N(T),aEA(n) 

Although the algorithm described above is an efficient implementation of the optimal search, using 

dynamic programming, it is still quite expensive. To make the search practical for large vocabularies, it will 

probably be necessary to run a first pass HMM decoding to provide a word graph or lattice for rescoring 

with the segment model. This first pass need not use the same unit inventory as used by the segment model, 

though it is helpful if there are some hypothesized word and/or subword unit times by the first pass search 

to constrain the sets N(t) and further reduce computation. Other computational savings can be achieved 

by segment score caching and pruning. For insights into the relative savings possible, see [18]. 

5 Preliminary Experimental Results 

To investigate the properties of the acoustic unit design algorithm, we conducted a number of experiments 

on the TIMIT database, using the male speakers from the New-England dialect-region (24 speakers for 

training, 7 for testing, 10 sentences per speaker). We generated 16 dimensional LPC derived cepstral feature 

vectors for the data using a 25.6 ms Hamming window with a 10 ms frame rate. The order of the LPC 

analysis was 24. A pre-emphasis coefficient of 0.97 was used in this parameterization. An energy coefficient 

was appended to the vectors. The increase of the average likelihood per frame on the training set, using an 

inventory size of 300 zeroth order full covariance models is depicted in figure 5. The increase of the average 

likelihood per frame on the training set, using an inventory size of 300 zeroth order full covariance models 

is depicted in figure 5, which suggests that only a few iterations of retraining are needed. The likelihood of 

iteration O is the likelihood of the models obtained after the initial clustering step. 
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図 3:Likelihood邸 functionof iterations on training data. 
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表 1:Vowel classification results using different orders of the trajectory model, and full vs. diagonal covari-

ances. 

trajectory 

0-th order 

1-st order 

diagonal covariance 

47.86% 

53.42% 

full covariance 

53.41% 

56.26% 

To compare the performance of the automatically-derived acoustic units versus phonetic units we con-

structed a set of allophonic unit models starting from the TIMIT phone segmentations. We separately 

clustered the segments corresponding to each phonetic label in the same way as for the acoustically-derived 

units described in section 2. The stopping criterion used for each cluster was that the average likelihood per 

frame was higher than some threshold P or that the number of frames was lower than some threshold M. We 

obtained 277 zeroth order allophonic unit models with diagonal covariance for 48 phone labels in this way. 

As a comparison, we computed an inventory of 277 acoustically-derived unit models with diagonal covariance 

and compared the likelihood, performing a Viterbi segmentation of the test set. The test set likelihood using 

the acoustically-derived unit models was higher than that based on the allophonic unit models given by the 

hand-labeled phones, which suggests that the acoustically-derived units fit the data better. 

It has already been shown that higher order segment models outperform the zeroth order model in 

TIMIT vowel classification experiments [19], but we confirmed these results in our own vowel and phone 

classification experiments. In these experiments, we parameterized all the utterances in the TIMIT database 

using: 10 dimensional Mel-frequency scale cepstral coefficients computed from 24 filterbank outputs, a 5 ms. 

frame shift, a 25.6 ms Hamming window, a pre-emphasis coefficient of 0.97, and cepstral mean subtraction, 

where the cepstral means were computed from a whole utterance. In some of the experiments, we expanded 

this feature representation by adding delta and/or delta-delta parameters. The window size used for these 

computations was 2 frames. 

Given this feature vector representation, we extracted the frames corresponding to a certain phone 

segment using the phone segment boundaries found in the label files of the TIMIT database and using the 

utterances from half of the speakers in the training set of TIMIT (231 speakers, 10 utterances per speaker). 

The distribution according to male and female speakers as well as the distribution according to dialect region 

was eq叫 tothe distribution found in the training set of the TIMIT database (i.e. every other speaker was 

selected). The full, 168 speaker TIMIT test set was used. These 168 speakers were not included in the 

training set. This resulted in a training set of 89166 phone segments and a test set of 62856 phone segments. 

Context independent (CI) models were constructed using the phone segments in the training set. For a 16 

vowel experiment, we made CI model for the 16 TIMIT vowel labels. We also conducted a phone classification 

experiment using a model inventory of 48 phone labels (the Kai-Fu Lee phoneme set). The conversion to 48 

labels is detailed in appendix付録 A. All experiments use a relative frequency duration model. 

For the 16 TIMIT vowel classification task using a feature representation of cepstral coefficient and delta 

coefficients, we obtained the results summarized in Table 1. As expected, the results show significant gains 

in performance from both types of increases in model complexity (first order trajectory and full covariance). 

For the 48 phone classification task, the results are summarized in Tables 2 and 3. Again, note that using 

higher order models consistently improves classification performance. The gain from going from a zeroth 

order model to a first order model is greater than going from a first order model to a second order model. The 

phone labels that improve most by going from a zeroth order model to a first order model are the diphthongs. 

Another trend is that full covariance models consistently out perform diagonal covariance models. There is 

also a significant benefit to using delta cepstra, but performance drops when double derivatives are added, 

probably because the regression problem becomes ill-conditioned. 

We tested the lexicon building algorithm by constructing a lexicon based on the automatic segmentations 

obtained by using 292 zeroth order models with diagonal covariance for all of the TIMIT corpus. The data 

included 326 male and 136 female speakers and 8 utterances per speaker, giving a total number of 4891 
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表 2:Phone classification results using a diagonal covariance, different orders of the trajectory model and 

different features. 

J trajectory J cepstra only J cepstra +△ cep J cepstra +△△ cep J 

'0-th order I 31.73% I 41.81 % I 37.73% 1 

1-st order 

2-nd order 

40.29% 

42.03% 

46.73% 

48.30% 

43.14% 

44.58% 
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表 3:Phone classification results using a full covariance, different orders of the trajectory model and different 

features. 

I trajectory j cepstra only j cepstra +△ cep j cepstra十△△cep I 
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distinct single word entries in a corpus of 30132 non-unique words. Using a 20 ms threshold for step 1 of 

the algorithm described in Section 3, 3422 distinct multi-word sequences were found. Multi-word sequences 

were pruned until a lexicon of size 5000 was obtained. The multi-word sequences were typically function 

word combinations, such as "in the", "do you", "of the", "on the", etc., as one might expect. Almost all 

additional lexical items were two word sequences. Many of the multi-word sequences that were not included 

were singleton examples of that word sequence. 

6 D' lSCUSSIOil 

In this report, we have proposed a method for designing acoustically-derived segmental units, a lexicon 

containing multi-word entries for representing cross-word phonetic reduction/assimilation, and the mapping 

between a phonetic baseform associated with the lexicon and the observed segmental units. Preliminary 

experiments on the TIMIT corpus demonstrate the feasibility of each step, but it remains to be shown that 

the different components together offer a significant advantage over phonetic lexical modeling in continuous 

word recognition, However, we believe that the use of units that are potentially longer than phones and 

that can span word boundaries will be span word boundaries will be important for handling the reduction 

phenomena that occurs in spontaneous speech. 

Two main issues are still to be addressed for obtaining good word recognition results. First, the model 

is unlikely to provide significant gains for piecewise constant segment means, but efficient search algorithms 

are needed for practical implementation of polynomial trajectories of higher order, Second, the simplifying 

assumptions made in the pronunciation model, equations 14 and 15, are too restrictive, and we plan to apply 

decision tree clustering techniques similar to those of (25) to enable conditioning on a broader context of 

phone units. 
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付録 A Phone Label Set Conversion 

To convert the 61 TIMIT phone labels into this 48 phoneme set, the following rules were applied: 

• The /q/ label is removed from the inventory. 
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• The /ux/ label is replaced with the uw label. 

• The / axr / label is replaced with the er label. 

• The / em/ label is replaced with the m label. 

• The /nx/ label is replaced with the n label. 

• The / eng/ label is replaced with the ng label. 

• The /hv/ label is replaced with the hh label. 

• The /ax-h/ label is replaced with the ax label. 

• The /pcl/, /tel/, /kcl/ and /qcl/ labels are replaced with the cl label. 

• The /bcl/, /dcl/ and /gel/ labels are replaced with the vcl label. 

• The h#, #hand pau labels are replaced with the /sil/ label. 

• The j label is replaced with the jh label. 

For the explanation of what these labels represent, see the documentation that comes with the TIMIT 

database. 
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