
Internal Use Only

002

TR-IT-0146

Software for Design and Use of a
Speech Recognition System based on
Automatically Derived Non-Uniform

Units

Michiel Bacchiani Mari Ostendorf

。 1996.01

し

In this report, the software produced to implement the design and use of a speech recognition

system as described in technical report TR-IT-0147 is described. It describes three software pack-

ages which implement automatic unit unit design, lexicon building and pronunciation modeling.

◎ ATR音声翻訳通信研究所

⑥ ATR Interpreting Telecommunications Research Laboratories

3 Unit design: ASSM 1

1 Introduction

This technical report describes the software that w邸 producedto design and use a speech recognition

system, b邸 edon automatically derived acoustic units. The software described in this report covers the

available software at this time, January 1996. The software w邸 developedbetween March 1995 and January

1996. The theoretical description of the t狙 ksperformed by the software described in this report can be

found in technical report TR-IT-0147, "Speech Recognition System Design using Automatically Learned

Non-Uniform Segmental Units" by M. Ostendorf, M. Bacchiani, Y. Sagisaka and K. Paliwal. This report

will be refered to as "TR-IT-0147" from now on.

The software sets by default the parameters, which can be manipulated through command line options,

to typical values.

2 Software description

The currently available software consists of 3 packages. The first package implements the unit design

algorithm described in TR-IT-0147 and is named ASSM. The second package implements the lexicon building

algorithm described in TR-IT-0147 and is named LEXBLD. The third package implements some of the ideas

on pronunciation modeling described in TR-IT-0147 and is named CMPM.

To compile each of these packages, the following is required:

• A C compiler (all packages were only tested using gnu's C compiler gee though).

• The HTK libraries.

Each of the packages are archived using the UNIX tar utility, The archives are compressed using the

the GNU compression utility gzip. The files, neccessary for compiling the packag~can be extracted directly
from the compressed archive using the GNU tar utility by the command:

tar xvfz <compressed package archive>

where <compressed package archive> denotes the name of the compressed archive that is to be unpacked.

This process will build a directory structure containing the files of the package. In this directory structure, the

source files for a particular software tool are found in a subdirectory with the same name as the software tool.

In the top directory, a file can be found with the name Make. glob. Only this file needs to be edited before

compilation to define where the different resources (i.e. libraries) can be found and where the executable

should be placed. All the Make. glob for the 3 software packages have the lines shown in the following

example configuration:

MACHINE = LINUX

CC = gcc

DPTLIB = /usr/local/lib/HTKLib.P90.a

HTKHDRS = /usr/local/include/HTK/

DESTDIR = /home/chiel/src/LEXBLD_1.0/bin/

The MACHINE line can take the values HP, SUN, DEC, LINUX for the HP-UX, SUN4, DEC OSFl and Linux

operating systems respectively. The CC defines the C compiler that is to be used. The OPTLIB should define

the name of the HTK library or libraries that should be used in linking. The HTKHDRS line specifies the

location of the HTK header files. The DESTDIR defines where the resulting executables should be placed. For

the ASSM package, there is an extra line in the Make. glob file which specifies where the files HRmID .h and

HRmID. c can be found. This line is of the form HRMIDDIR = <directory>. For the CMPM package, there

is an extra line in the Make.glob file which specifies where the files BLexID.h, BLexID.c, BfMdlID.h and

BfMdlID. c can be found. This line is of the form IDMHDRS = <directory>. After editing the Make. glob

file, all software tools will be compiled by simply giving the command make in the top directory.

The different packages and the software tools found in these packages are described in detail in the

following subsections.

3 Unit design: ASSM 2

3 Unit design: ASSM

The ASSM package implements the unit design algorithm described in TR-IT-0147. It consists of 4 core

programs which perform the different steps of the unit design algorithm. Besides these 4 core programs,

a number of utilities are included which allow the user to investigate the results produced by the 4 core

programs. The following subsection gives a brief overview of the 4 core programs and the information and

file formats that these programs use to interact with each other. Then, in the subsequent subsection, a more

detailed description of the core programs and the utilities will follow.

3.1 Core programs and file formats

The first step of the algorithm performs the acoustic segmentation. The program that implements this

is named asegm. This program takes an utterance in the form of a series of feature vectors as input and

produces 2 types of files as output. As the HTK library is used to build the programs, the input file is

assumed to be in the HTK file format. For details on this format, please look in the documentation that

comes with the HTK package.

The 2 output file types are a label file which indicates where the segment boundaries are placed and a

SegFile format file which contains sufficient statistic representations of the resulting segments. The default

output format of the label file is HTK format but other file formats are supported. For a detailed description (

of the supported file formats for the label file, please look in the HTK documentation. Note that all the

functionality for input and output files, found in the HTK tools are also available for the software described

here (i.e. input and output file formats can be manipulated by the setting of environment variables).

The SegFile format file contains information on the segmented utterance. It contains:

• the number of segments found in the utterance

• the dimension of the feature vectors

• the regression order used in the segmentation

• the regression order of the sufficient statistics of the resulting segments

• the frame duration

• the time offset of the first frame in the utterance

• the distance type used in the segmentation

• the covariance type of the sufficient statistics of the resulting segments

• the segment durations in frames

• the segment mean trajectory parameters (B matrix)

• the segment covariances

• the file header size

The second step of the algorithm is to cluster the segments obtained from the acoustic segmentation.

The program that implements this is named km-las, and it uses a binary splitting routine to get an initial

set of M models that are then refined by iterative re-estimation. This program takes SegFile format files as

its input and produces unit model files as output. The unit models are described by a file format named

RegModelFile. The RegModelFile contains the following information:

• the dimension of the feature vectors

• the regression order of the model

• the number of segments used to estimate the model parameters

（＼

『

ヽ

i

、

ァ9
,

3 Unit design: ASSM 3

• the number of frames in the segments used to estimate the model parameters

• the minimum and maximum duration in frames among the segments used to estimate the model
parameters

• the covariance type of the model

• the relative frequency of the segment lengths among the segments used to estimate the model param-

eters

• the segment mean trajectory parameters (B matrix)

• the covariance of the model

The third step of the unit design algorithm performs a Viterbi re-segmentation of an utterance using a

model inventory. The program that implements this is named vitsegm. It takes a collection of RegModelFile

format files, an utterance represented by feature vectors and an initial segmentation file (in the label file

format) as inputs and produces a new segmentation file (label file format) as output. The model inventory

is represented by the collection of RegM ode/File format files. The input label file of the utterance is used

to constrain the search space of the re-segmentation process to reduce computational costs. The output

label file describes the new segment boundaries and segment identities in terms of the model inventory.

The re-segmentation can be constrained further by specifying a boundary constraint file. The boundary

constraints dictate that a segment boundary in the resulting segmentation is found at the specified fixed

time. This feature is incorporated to facilitate re-segmentation given boundary constraints imposed by the

lexicon building algorithm. The format of such a file is equal to a label file. The "label boundary" times

indicate the boundary constraints that are to be imposed. If an odd number of~oundary constraints is to
be imposed, the last "label" definition in this boundary constraint file will have equal boundary times. All

functionality found in the HTK package with respect to input and output of label files also applies to this

program.

The fourth step of the algorithm is implemented by a program that is named reclust. The inputs to the

reclust program are a previous model inventory, represented by a collection of RegM ode/File format files,

and a collection of label files with the corresponding feature vector representation of these utterances. The

output is a new model inventory, also represented by a collection of RegModelFile format files. The new

model inventory is estimated from the segments specified by the label files. Again, all HTK file input and

output label file functionality also applies to this program.

The reclust produces a bigram probability file in addition to the new model inventory. The bigram prob-

ability file is an optional to the vitsegm program. The bigram file is in text format and each line specifies

one bigram probability in the log domain. The format of such a line is:

context target probability

This line specifies that log(P(targetJcontext)) = probability. As an example, the line

Unit3 Unit16 -4.3685519

indicates that the log-probability of Unit16 in the context of Unit3 is -4.3685519.

3.2 Th e acoustic segmentat10n program: asegm

Executing asegm with no command line arguments gives the following output:

USAGE: asegm [options] filenames ...

3 Unit design: ASSM 4

Option Default

．
-m J.

-n i

-cs Set covariance type of models to s FULLCOV

-d n f1 f2 .. , .fn

Set n distortion threshold(s) to

f1, ... ,fn

Set minimum segmentlength

Set maximum segmentlength

-v Verbose o江

-w f Parameterisation window width (ms) 25. 6

-Cs Set regression model dir. to s current

-D s Set distortion measure to types MAHALANOBIS

-F fmt Set data file format to fmt HTK

-Ls Set segmentation info dir. to s current

-R i Set segmentation-regression order 0

-S f Set script file to f none

,
1
s
s

H
"
X
Z

I

I

I

Distance measures:

SQ_EUCLID :for squared Euclidean distance

MAHALANOBIS :for Mahalanobis distance

1 1.0

2 frames

70 frames

Set model regression order 0

Set extension for segm. info files alab.<dist>

Set extension :for model files mdl. <dist>

Covariance types:

DIAGONALCOV for diagonal covariance

FULLCOV for full covariance

The files containing the feature vector representations of the utterances that are to be segmented have

to be specified on the command line after the options.

The S switch allows the user to specify a text file which contains a list of filenames of files to be processed.

The list of filenames is appended to the command line and is available to avoid problems with command

lines extending over the maximum size allowed by the operating system.

The allowable average distance per frame controls the number of segments in the resulting segmenta-

tion. The value for this threshold is set using the d switch. This switch also allows one to write out the

segmentation corresponding to a number of different thresholds. The first argument of the switch specifies

the number of segmentations that are desired, the following arguments specify the threshold values for these

segmentation. For example, if the segmentation for the thresholds 3, 4 and 2.37 are desired, the d switch

part of the command line should look like -d 3 3 4 2. 37.

The directory where the label files are written is controlled by the L switch, the directory where the

SegFile format files are written is controlled by the C switch.

The extension of the label files are by default alab.D where D indicates the value of the distance threshold

set by the d switch. For example, if a file x.mfc is segmented using thresholds 1 and 7, the default setting

will generate 2 label files with names x.alab.1 and x.alab.7. The extension of the label files can be

manipulated using the X switch. The extensions of SegFile format files are derived in a similar way and can

be manipulated through the Z switch.

／
＼

(‘

3.3 The clustering program: km-las

Executing km-las with no command line arguments gives the following output:

3 Unit de,;ign: ASSM 5

USAGE: km-las [options] filenames ...

Option Default

-cs Set the covariance to types FULLCOV

-d s Set distance measure to s MAXLIKELIHOOD

-e f Set splitting parameter to :f 0.01

-:f :f Set variance floor to f ie-05

-m 1 ． Set minimum clustersize in frames 25

-t f Set convergence threshold to f 0.001

-v Verbose off

-B s Set codebooks directory to s current

-c i Set codebook size to i 1000

-Di Set codebook export interval to i 10

-Is Set initial modellist to s none

-J s Set initial models directory to s current

-Mi Set max. nr. of bin. split. iters. 10

-Ni Set max. nr. o:f K-means iters. 30

-sf Set script file to f none

-us Set new units name to s Unit

-vi Set start index of new units to i 1

Distance measures:

SQ_EUCLID for squared Euclidean distance

MAHALANOBIS for Mahalanobis distance

MAXLIKELIHOOD for MaximumLikelihood distance

Covariance types:

DIAGONALCOV for diagonal covaェ・iance
FULLCOV for full covariance

The SegFile format files containing the sufficient statistics representations of the segments that are to

be clustered have to be specified on the command line after the options. The S allows the expansion of the

command line as described under the description of the asegm program.

The desired number of models is specified by the C switch.

The final model inventory is written in a directory called "codebook.km" which will be made in the

directory specified by the B switch. The model inventory during the binary split clustering can also be

written to this directory every time the model inventory has increased with N models. The value for N

can be specified by the I switch. The model inventories during the binary split clustering are written in a

directory named "codebook加 'whereM indicates the size of the model inventory.

The maximum number of iterations that are performed during each step of the binary split clustering

is specified by the M switch. The maximum number of iterations that are performed during the final full

K-means clustering is specified by the N switch. The iterations in both types of clustering steps are stopped

as soon as the decrease in summed distance is less than a fraction of the last distance. This fraction is

specified by the t switch.

During the binary spit clustering, a new cluster representative is derived from an existing representative

by adding a perturbation to the existing representative. The perturbation is a fraction of the existing

representative values. This fraction is specified by the e switch.

If during the binary slit clustering a cluster is found which contains less than F frames in the segments

contained in it, it is no longer considered for further splitting. This minimum number of frames is specified

3 Unit design: ASSM 6

by the m switch. If a cluster with less that F frames is found during the K-means clustering step, the cluster

is removed from the cluster inventory and the segments that were contained in this cluster are reassigned

to the closest cluster (i.e. smallest distance to the cluster representative). If the verbose option (v option)

is turned on, the cluster with too little frames are identified in the inventory listing by an asterisks at the

start of a line.

The clustering process can be started with an initial inventory that is to be split further by specifying

the initial model inventory by a text file which contains a list of model names through the I switch. The

models are assumed to be found in the directory, specified by the J switch.
l

The f sets the minimum allowable variance for any dimension of any model. If the estimated variance of

a particular model is smaller than this value, it's value is replaced with this minimum.

3.4 The re-segmentation program: vitsegm

Executing vitsegm with no command line arguments gives the following output:

USAGE: vitsegm [options] modellist filenames ...

Option Default

-bf

-if

-v

Beamwidth in loglikelihood

Segment insertion cost

Verbose

100

-22

off

-w :f Parameterisation window width (ms) 25. 6

-B s Set bigram stats input :file to s none

-C Ignore bigram probabilities o:f:f

-D Ignore duration probabilities o:f:f

-F :fmt Set data :file :format to :fmt HTK

-H s Set :fixed boundary desc. :file dir none

-I s Set :fixed boundary desc. :file ext :fix

-J s Set models directory to s current

-0 s Set Viterbi segment. output dir current

-P s Set Viterbi segment. :file ext. vit

-sf

-x s

Set script :file to :f

Set segmentation input dir

none

current

-Y s Set segmentation input extension alab

-Z :fmt Set segmentation input :file:format HTK

A text file containing the names of the unit inventory is to be specified first, the feature vector repre-

sentation files that are to be re-segmented after that. The S allows the expansion of the command line as

described under the description of the asegm program.

The program assumes to be able to find a previous segmentation of the utterance that is to be re-

segmented in a file with the same core name and extension which is specified by the Y switch in a directory

specified by the X switch. If the program is unable to open such a file, it exits.

The resulting segmentation label files are written to the directory specified by the O switch and will have

the same core name as the feature vector representation file with an extension specified by the P switch.

Boundary constraints can be specified in a file with the same core name as the feature vector representa-

tion file in the directory specified by the H switch. If this switch is not set, it's assumed that no boundary

constraints will be specified. The extension of such a boundary constraint file is specified by the I switch.

The B switch allows the user to define a file containing the bigram probabilities that are to be used.

If no such file is specified, unigram probabilities are used. The unigram probabilities are estimated from

c

／ヽ

9,＼

3 Unit design: ASSM 7

the relative frequencies found in the RegM ode/File format files. If a bigram probability file is specified, the

beam-width, used in the Viterbi search in log-likelihood can be specified through the b switch.

Three switches influence the likelihood computation, used in the dynamic programming loop. Setting

the C switch indicates that the bigram (or, if no bigram probability file is specified, unigram) probabilities

are to be ignored. The D switch will cause the duration probability to be ignored. Finally, to control the

resulting number of segments, an additive segment insertion penalty can be specified through the i switch.

The HTK label file format has a field for the "score" of a segment. The output of the vitsegm program

set the values of this score field of the segments. The score only includes the log-likelihood of the frames,

given the Gaussian model. These scores do not include the log-likelihood of the duration model. Bigram or

unigram and insertion cost are also not included in these scores.

3.5 The re-clustering preogram: reclust

Executing reclust with no command line arguments gives the following output:

USAGE: reclust [options] ModelList labelfiles ...

Option

-f f
．

-m 1

Set variance :floor to :f

Set training :frame minimum

Default

ie-05

25

-v Verbose off

-w f Parameterisation window width (ms) 25.6

-B s Set output bigram file to s bigram.out

-F fmt Set label file format to fmt HTK

-J s Set models input dir to s current

-0 s Set models output dir to s current

-S f Set script file to f none

-X s Set data file directory current

-Y s Set data file extensュon cep

-Z fmt Set parameter fileformat HTK

A text file containing the names of the previous unit inventory is to be specified first, the label files

specifying the new segmentation are to be specified after that. The S allows the expansion of the command

line as described under the description of the asegm program.

The feature vector representation file, corresponding to each specified label file is expected to be found

in the directory specified by the X switch. The core of the file names of these feature vector representation
files are expected to the same as the label files, the extension is expected to as specified by the Y switch.

The previous models, are expected to be found in the directory specified by the J switch. The newly

estimated models are written to the directory specified by the O switch.

The bigram file is written to the file specified through the B switch.

The minimum number of frames, necessary to be able to estimate a new model is specified by the m

switch. If in the new segmentation, a certain model does not contain enough data for re-estimation, the

model is removed from the inventory. A segment that was labeled as that unit is reassigned to the unit for

which the likelihood of the segment is larger than any other unit in the new inventory.

The f sets the minimum allowable variance for any dimension of any model as the f switch in the km-las

program.

4 Lexicon building: LEXBLD 8

3.6 ASSM utilities

There are 7 utility programs in the ASSM package which allow the user to investigate the results from

the core programs. A brief description of these utilities are given below. The use of these programs is mostly

self-explanatory.

• lmdl: Allows the user to look at the contents of a SegFile format file or RegM ode/File format file. The

file-type must be specified by the F switch.

• mdl2cep: Allows the user to generate a feature vector representation file of an utterance represented

by a SegFile format file. The resulting feature vector representation file will have the number of

segments specified in the SegFile format file. Each segment will have the specified length and within

each segment, each dimension of the the feature vectors will follow the mean trajectory.

• seglab2cep: As mdl2cep except that the number of segments and segment lengths are determined
by a label file. The feature vectors within a segment will follow the mean trajectory of the model

corresponding to the label of the segment.

• lenstat: Computes the statistics of segment lengths for the segments found in a number of SegFile

format files.

• lhcomp: Computes the summed log-likelihood from a number of label files which have log-likelihood

scores specified for e~ch segment.

• viewer: Tool to look at a grey-scale representation of the contents of a feature vector representation

file under X-windows. A feature vector representation file followed by a label file are to be specified

on the command line. For each dimension, the available gray-scale values are used for the dynamic

range of that dimension within the utterance (therefore, gray-scale values are not comparable between

dimensions). The boundaries found in the label file are indicated in the gray-scale plot as red lines.

• segclass: Tool to classify segments. This program takes a model inventory (in the form of a collection

of RegMode/File format files) and feature vector representation files as input. The feature vector

representation files are then classified as belonging to the class in the model inventory that results in

the highest likelihood.

4 Lexicon building: LEXBLD

The LEXBLD package implements the lexicon building algorithm described in TR-IT-0147. It consists

of 1 program which, on termination creates a file containing the lexicon consisting of all unique single words

found in the training data as well as a number of multi-word entries. The following subsection describes

the file formats used in this package, the following subsection describes the use of the program to build the

lexicon.

ー―
~
~

（＼、

e

4.1 File formats

The lexicon building program takes label files邸 inputand produces a lexicon file and boundary constraint

label files as output. The default format for the label files is the HTK format but other file formats are

supported. Ple邸 elook in the HTK documentation for a detail description of the supported label file formats.

All functionality found in the HTK package with respect to input and output of label files, also applies to

this program.

The lexicon file produced by the lexicon building program is in ascii form. For each lexical entry in the

lexicon, a line using the following format is declared:

＂くlexicalentry>" :freq score

5 Pronunciation modeling: CMPM 9

The field <lexical entry> is a lexical entry of possibly more than one word. To clearly indicate the

start and end of the lexical entry, it is embraced by " characters. The freq field indicates the frequency

of the lexical entry in the training data. The score field specifies the score (used in the lexicon building

algorithm) of the lexical entry. As single word entries do not have a score in the algorithm, the score field is

ignored. The lexicon building program will put a O in this field. An example of a possible line in the lexicon

file is:

"in the" 478 824.632

which would indicate that the lexical entry "in the" occurs 478 times in the trainingdata and has a score

of 824.532.

4.2 The lexicon building program: lexbuild

The lexicon building program takes as input a number of label files specifying where acoustic unit

boundaries are located. It also takes as input, label files specifying where word boundaries are located. An

ascii file containing the lexical entries in the lexicon as well as information on frequency and scores (as used

in the lexicon building algorithm) is produced as output.

If the lexbuild program is executed without any command line parameters, the following output is pro-

duced:

USAGE: lexbuild [options] filenames ...

Option Default

-v Verbose off

-As Set auto-segment. labelfile dir current

-B s Set auto-segment. labelfile ext vit

-Ff Set max time to fixed boundary 10 ms

-H s Set fixed boundary label file dir current

-J s Set fixed boundary label file ext fix

-Mi Set the lexicon size to i 1000

-0 s Set lexicon output file to s lexicon.out

-sf Set script file to f none

-w s Set word labelfile format HTK

-x s Set auto-segment. labelfile format HTK

After the options, a list of label files is to be specified. These label files define the position of word

boundaries. The program assumes that for each word-label file, a label file containing the positions of the

boundaries between acoustic labels in the corresponding utterance can be found in the directory specified by

the A switch. The core part of the name of such an automatic-segmentation label file is assumed to be equal

to the core part of the word-label file. The extension of the automatic-segmentation label file is specified by

the B switch. If such a file can not be found, the program exits.

The desired resulting lexicon size is specified by the M switch. The boundary constraint files, necessary

to prune the lexicon down to the desired size are written in the directory specified by the H switch. The

boundary constraints for an utterance are placed ip. a file whose filename's core part is equal to the utterance

file name with an extension as specified by the J switch.

The threshold for considering a word boundary to be crossed by an automatic segment can be specified

by the F switch.

The S switch allows the user to specify a text file which contains a list of filenames of files to be processed.

The list of filenames is appended to the command line and is available to avoid problems with command

lines extending over the maximum size allowed by the operating system.

5 Pronunciation modeling: CMPM 10

5 Pronunc1at10n modeling: CMPM

The CMPM package implements some of the ideas described in TR-IT-0147. This package is still very

much under development and should therefore be used with caution. Currently available are 4 programs.

The 2 main programs are ssm」in_initand csrec. The ssm_/in_init program generates statistics files for the

mapping of acoustic units to phones or diphones. The csrec program is a segment model Viterbi decoder for

recognition of a string of acoustic units given a lexicon and statistic files that correspond to the phones found

in the lexicon. The other 2 programs are binconvlex and vstat. The vstat program is used to see the contents

of statistics file generated by ssm」in_init.The binconvlex is used to convert a lexicon file and pronunciation

dictionary into a binary, fast loadable format. In the following subsection, the used file formats will be

described, the subsequent subsections will describe the programs found in the package.

5.1 File formats

All label files that are used in this package are by default assumed to be in HTK format but other file

formats are supported. Please look in the HTK documentation. for a detail description of the supported label

file formats. All functionality found in the HTK package with respect to input and output of label files, also

applies to this program.

The ssmぷn_initprogram will map the acoustic label sequence to a phone-label sequence by a simple

linear mapping. The program will then gather statistics of this mapping so that the parameters of the

pronunciation can be estimated. The pronunciation model will estimate the pronunciation given a phonemic

baseform found in a pronunciation dictionary. As it is possible that allophones occur in the transcriptions,

it might be necessary to preprocess the phone transcription so that only phoneme labels occur before the

mapping is performed. The preprocessing is defined by a number of preprocessing rules. The preprocessing

rule file has one line per rule and each line has the following format:

/
¥

<tgt> : [<lcontext>+]<tgt>[+<rcontext>J=<repl>

The tgt string identifies the phone label the rule applies to. The lcontext and rcontext are optional

and specify that that replacement rule should be applied if the tgt phone in that context. The repl string

is the new phone label for an occurrence of the tgt phone in the given context. More that one replacement

rule can be specified on a line.

The repl label can be a special character -to indicate that the word in which the tgt label occurs i,

should be looked up in a pronunciation dictionary and should be replaced by the phone label it finds in this

dictionary. Two examples of rules are:

tel : tcl+t=t tcl=t tcl+ch=ch

dx : dx=-

The first rule indicates that the phone label tel followed by the label t should be replaced by the la—

belt, tel followed by a ch should be replaced by ch and tel should be replaced by tin all

other cases, The second rule indicates that if the label dx is encountered, the word it occures

in should be looked up in the pronunciation dictionary and the replacement for the dx label

will be the phoneme label found in the transcription of the word in the pronunciation dictionary.

The lexicon and pronunciation dictionary are converted into a fast loadable binary format

named LexBFPronDat. This file format contains the following information:

• the number of phones found in the pronunciations of the the lexical entries

• the phone labels

• the size of the lexicon

5 Pronunciation modeling: CMPM 11

• the lexical entries

• the pronunciation lengths (i.e. the number of phonemes) in each of the lexical entries

• the pronunciations of the lexical entries

• the frequency of the lexical entries in the training data

• the total count of all lexical entries in the training data

The mapping statistics files produced by the ssm」m_initprogram are in a format named Base-

FormStatDat. These files contain the following information:

• the inventory size of acoustic units found in the training data

• the labels of the acoustic units found in the training data

• the minimum and maximum length of a sequence, mapped to a phone

• the total number of mappings (equals the number of phones) in the training data

• the total number of unique acoustic unit sequences found among the sequences

• the number of unique acoustic unit sequences specified by sequence length

• the acoustic unit sequences and their丘requency

• the inventory size of acoustic units found among 2-length sequences

• the inventory size of acoustic units found among~3-length sequences

• the acoustic unit labels of the units found among 2-length sequences

• the acoustic unit labels of the units found among~3-length sequences

The csrec program takes a decoding task descriptionがilewhich has the北ollowingformat:

LEXICDNFILE={<lex:file>}

LANGUAGEMODEL={<langmodel>}

INTERLEXICDNUNITS={[<ilunit>, ...]}

AUXUNITS={[<sunit>], [<eunit>]}

The lexfile field specifies the LexBFPronDat format file that specifies the lexicon and

pronunciation dictionary for the task. The langmodel will in the future be used to specify

the type of language model that is to be used fo:i:-the task. Currently it can only take one

value UGRAM specifying a unigram language model. The unigram probabilities are estimated from

the wordfrequencies found in the LexBFPronDat format file, specified by the lex士ilefield.

In the future, other language model types aェeto be implemented. One could think of a specification

of a bigram or trigram language model type where the field would then be used to specify this

modeling type and reference a certain file containing the probabilities of such a model. The

ilunit fields specify the phone labels that are possible inserted in between lexical entries

such as inter-word silences. The sunit and eunit fields are optional and specify the utterance

start and utterance end units respectively.

5 Pronunciation modeling: CMPM 12

5.2 The linear initialization program: ssm_lin_init

The ssm_lin_init program takes as input a number of label files for acoustic unit transcriptions

and phone unit transcriptions. It produces BaseFormStatDat format files for each of the phone

labels as output. The mapping from acoustic units to phone units is done by a simple time

allignment. The next avaiable acoustic unit in the transcription is mapped to the next phone

unit in the transcription as long as the end of the acoustic unit is before the end of the

phone unit.

If the ssm」in_initprogram is executed without any command line parameters, the following

output is produced:

USAGE: shmm_lin_init [options] filenames ...

Option Default

-b Baseform statistics output file phonestat,bfs

-v Verbose off

-As Set auto-segment. labelfile dir current

-B s Set auto-segment. labelfile ext vit

-L s1 s2 Label prep.: s1 cmnds, s2 lexicon off

-Ms Set the word labelfile dir. to s current

-N s Set the word labelfile ext, to s wrd

-0 s Set baseform statistics dir to s current

-D Compute diphone statistics o五

-S s Set script file to s none

-W s Set baseform labelfile format HTK

-X s Set auto-segment. labelfile format HTK

-Y s Set word labelfile format HTK

（
＼

／

紅 terthe options, a list of label files is to be specified. These label files define the

position of phone label boundaries. The program assumes that for each phone-label file, a

label file containing the positions of the boundaries between acoustic labels in the corresponding

utterance can be found in the directory specified by the A switch. The core part of the name

of such an automatic-segmentation label file is assumed to be equal to the core part of the

phone-label file. The extension of the automatic-segmentation label file is specified by the

B switch. If such a file can not be found, the program exits.

The S switch allows the user to specify a text file which contains a list of士ilenamesof

phone label files to be processed. The list of filenames is appended to the command line and

is available to avoid problems with command lines extending over the maximum size allowed by

the operating system. ・

The phone label files can be preprocessed by a set of rules. The rules should be specified

in a format as described in the previous section. The file containing the preprocessing rules

can be specified through the L switch. This also requires a LexBFPronDat format file to be

specified. If a preprocessing rule is used that requires that the pronunciation o:f a word

has to be looked up in a pronunciation dictionary, this LexBFPronDat :format file should cover

the words that require to be looked up. It also requires that the word label files corresponding

to the phone-label files can be found in the directory specified through the M switch. The

core part of the name of a word-label file is assumed to be equal to the core part of the correspond

phone-label file. The extension of the word-label file is specified through the N option.

The ssm」in_initprogram computes besides statistics on mappings from acoustic units to phone

units also statistics on phone labels. These statistics are stored in a BaseFormStatDat format

／
ー
＼

f

9

゜

5 Pronunciation modeling: CMPM 13

file. The name of this file can be specified through the b switch.

5.3 The Viterbi decoding program: csrec

The csrec program takes as input a label file with the transcription of an utterance in terms

of acoustic units and a task description file in the format described above. It produces a

word-label file as output.

If the csrec program is executed without any command line parameters, the following output

is produced:

USAGE: csrec [options] taskdescript filenames ...

Option Default

-v verbose o:f:f

-B s set baseform bigram file name phonestat.bfs

-Ls set acoustic label file format HTK

-Ms set baseform model directory current

-P s set phone recognition results ext prec

-Q s set百ordrecognition results ext wrec

-R s set the recognition results dir current

-sf set script file to f none

紅 terthe options, the task description file is to be specified. After that, the user should

give a list of labelfiles which contain the transcription in terms of acoustic units of the

utterances which are to be decoded.

The complete phone inventory for the task consists of the phones found in the LexBFPron-

Dat format file specified in the task description and in the task description itself. The

BaseFormStatDat format files corresponding to this phone inventory are assumed to be found

in the directory specified by the M switch. The BaseFormStatDat format files are assumed

to be named as the phones in the inventory. The phone bigram statistics are assumed to be

- found in a BaseFormStatDat format file in the same directory and is• assumed to be named as

Q specified by the B switch. ェfany of these files are not found, the program exits.

The resulting word-label (and phone-label) file are written in a directory specified by

the R switch. The core part of the file name of these result files are the same as the core

part of the acoustic label file. The extensions are specified through the P and Q switch.
As with the ssm_lin_init program, the command line can be extend by use if the S s口itch.

5.4 CMPM utilities

There are currently 2 utilities available in the CMPM package. The use of these utilities

is self-explanatory. A brief description of the 2:

• binconvlex: Converts an ascii form lexicon file as described under the LEXBLD package

subsection and a pronunciation dictionary into a LexBFPronDat format file. The only supported

format for the pronunciation dictionary is the format of this pronunciation dictionaェy
in the TIMIT database.

• vstat: Prints the contents of a BaseFormStatDat format file in ascii form.

	001
	002
	003

