
TR-IT-0145

Internal Use Only (非公開）
002

Hierarchical Clustering of Words

Akira Ushioda

1995.12

Abstract

This paper describes a data-driven hierarchical-word-clustering method in which a
large vocabulary of English words (70,000 words) is clustered bottom-up, with respect to
corpora ranging in size from 5 million to 50 million words, using a greedy algorithm that
tries to minimize average loss of mutual information of adjacent classes . The resulting
hierarchical clusters of words are then naturally transformed to a bit-string representation
of (i.e. word bits for) all the words in the vocabulary. Evaluation of the word bits and
word clusters constructed is carried out via two measures: (a) the error rate of the
ATR Decision-Tree Part-Of-Speech Tagger and (b) the perplexity measure of class-ba.'3ed
trigram models on the UPenn Wall Street Journal corpus and ATR corpus. Portability

of word bits from one domain to another is also disscussed.

◎ ATR音声翻訳通信研究所

◎ ATR lilterpreting Telecommunications Research Laboratories

1

2

ー Introduction

(＇＼

One of the fundamental issues concerning corpus-based NLP is that we can never expect to
know from the training data all the necessary quantitative information for the words that

might occur in the test data if the vocabulary is large enough to cope with a real world

domain. In view of the effectiveness of class-based n-gram language models against the data

sparseness problem (Kneser皿 dNey 1993), it is expected that classes of words are also useful
for NLP tasks in such a way that statistics on classes is used whenever statistics on individual
words is unavailable. An ideal type of clusteis for NLP is the one which guarantees the mutual
substitutability, in terms of both syntactic and semantic soundness, among the words in the
same class (Harris 1951, Brill and Marcus 1992). Take, for example, the following sentences.

(a) He went to the house by car.
(b) He went to the appartment by bus.
(c) He went to the ? by ? .
(d) He went to the house by the sea.

Suppose that we want to parse sentences using a statistical parser and that sentences (a) and
(b) appeared in the training and test data, respectively. Since (a) is in the training data,

we know that the prepositional phrase by car is attached to the main verb went, not to the
noun phrase the house. Sentence (b) is quite similar to (a) in meaning, and identical to (a)
in sentence structure. Now if the words appartment and bus are unknown to the parsing
system (i.e. never occurred in the training data), the sentence (b) must look to the system
very much like (c), and it will be very hard for the parsing system to tell the difference in
sentence structure between (c) and (d). However, if the system has an access to a predefined
set of classes of words, and if car and bus are in the same class, and house and appartment

are in another class, it will not be hard for the system to detect the similarity between (a)
and (b) and assign the correct sentence structure to (b). Therefore, it is desirable that we

build clustering of the vocabulary in terms of mutiwl substitutability.
Furthermore, clustering is much more useful if the clusters are of variable granularity.

Suppose, for example, that we have two sets of clusters, one is finer than the other, and that
word-1 and word-2 are in different finer classes. With恥 erclusters alone, the amount of
information on the association of the two words that the system can obtain from the clusters
is minimum. However, if the system has a capability of falling back and check if they belong
to the same coarser class, and if that is the case, then the system can take advantage of the

class information for the two words. When we extend this notion of two-level word clustering
to many levels, we will have a tree representation of all the words in the vocabulary in which

the root node represents the whole vocabulary and a leaf node represents a word in the
vocabulary. Also, any set of nodes in the tree constitutes a partition (or clustering) of the

vocabulary if there exists one and only one node in the set along the path from the root node
to each leaf node. In the following sections, we will describe a method of creating binary tree
representaion of words and present results of evaluating and comparing the quality of the
clusters obtained from texts of very different sizes.

3

2 Word Bits Construction

Our word bits construction algorithm is a modification and an extension of mutual informa-

tion clustering algorithm proposed by Brown et. al. (Brown et. al. 1992). The reader is
referred to their article for details of their clustering algorithm, but we will first illustrate

the difference between the original formulae and the ones we used. Following this, we will
introduce the WOTd bits construction algorithm. We will use the same notation as the ones
by Brown et. al. to make the comparison easier.

2.1 Mutual Information Clustering Algorithm

Suppose we have a text of T words, vocabulary of V words, and a partition rr of the vocabulary
which is a function from the vocabulary V to the set C of classes of words in the vocabulary.
Brown et. al. showed that the likelihood L(rr) of bigram class model generating the text is
given by the following formula.

L(1r)=-H+I (1)

, where H is the entropy of the 1-gram word distribution, and I is the average mutual infor-

mation (AMI) of adjacent classes in the text and is given by equation 2.

I= L Pr(c1c2)log Pr(c叶砂）
Cl ,c2

Pr(c2)
(2)

Since H is independent of rr, the partition that maximizes the AMI also maximizes the
likelihood L(rr) of the text. Therefore, we can use the AMI as an objective function for the

construction of classes of words.
Mut叫 informationclustering m叫 10demploys a bottum-up merging procedure. In the

initial stage, each word is assigned to its own distinct class. We then merge two classes if the
merging of them induces minimum AMI reduction among all pairs of classes, and we repeat
the merging step until the number of the classes is reduced to the predefined number C. Time
complexity of this basic algorithm is O(Vりwhenimplemented straightforwardly, as can be
seen below,

A. There are in total V -C merging steps. ~ O(V)
B. After n merging steps, V -n classes remain, and in the next merging step we have to

investigate (V了n trial merges, only one of which will be made effective in the later

process, ~崎))
C. One trial merge at step n involves summations of (V -n)2 terms for the calculation of

AMI in equation 2. ~ O(Vり
Therefore the total time complexity is O(Vり．

By eliminating redundant calculation, however, the time complexity can be reduced to

O(V門asdescribed in slight detail below. In short, the point is that part C can be done in
constant time by:

1. computing only those terms in equation 2 whose values have changed by the previous
merge, (O(V2) =⇒ O(V))

f
"

ー'̀
.

／
＼

/
！
＼

＼

4

2. storing the result of all the trial merges at the previous merging step.

0(1))

(O(V) ==;,

Suppose that, starting with V classes, we have already made V -k merges, leaving k

classes, Ck(l), Ck(2), .. , Ck(k). The AMI at this stage is given by the following equations.

h=~ 似l,m)
l,m

(3)

保(l,m)= Pk(l,m)log .
叫 l,m)

叫 (l)prk(m)
(4)

where Pk(l,m) is the probability that a word in Ck(l) is followed by a word in Ck(m), that

is,
（
…
＼

and

Pk(l,m) = Pr(C山）ぶ(m)),

叫 (t)= I: 叫l,m), pr k (m) = L叫l,m).
m /

where

録 (i)= L似l,・i)+L詞，m)-qk(-i, i)
l m

ヽ
｀
＇
ノ
、
＼
~

5

6

（

（

In equation 3, q1,;'s are summed over the entire k x k class bigram table in which (l,m) cell

represents qk(l,m). Now suppose that we investigate a trial merge of C伝(i)and Ck(j) and

compute the AMI reduction, Lk(i,j)三 h -Ik(i,j), by this merge, where h(i,j) is the

AMI after the merge. As illustrated in figure 1, the summation region of equation 3 can

be represented as a union of three parts, (a), (b) ,(c) minus (d). Out of these four parts,

the summation over region (a) does not change its value by the merge of Ck(-i) and Ck(j).

Therefore, to calculate Lk(i, j), the summation region can be reduced from a two dimensional

region (a square region) to a one dimensio叫 region(lines), hence, the comple泣tyof part C

can be reduced from O(VりtoO(V). Using the notation Ck(i + j) which represents a class

created by merging Ck(i) and Ck(j), the AMI reduction can be given by equation 7.

Lk(i,j)=録 (i)+録(j)-qk(i,j)-qk(j, i)-(L保u,i+ j)+ I: 伶 (i+j,m)+qk(i+j,、i+j))
ほi,j m:f-i,j

｀
~
ヽ
ー
ー

7

8

(
'
／
＇
_
¥

After calculating Lぶsfor all the pairs of classes, we choose the pair for which恥 isleast,

say, C山） and C託,j)with i < j, then we merge that pair and rename the new merged class
as Cい ('i),and go on to the next merging step with a new set of k-1 classes. Except for

C山） and Ck(j), all the classes are indexed the same way after the merge, that is, we rename

仇(m)as Ck_1(m) form=/-i,j. If j =/-k, we rename Ck(k) as Cい (j).If j = k, Ck(k) just
disappears after the merge.

Further optimization is possible by storing all the valus of加 inthe previous merging

step. Suppose that the pair (Ck(i),Ck(j)) was chosen to merge, that is, Lk(i,j)~ 加(l,m)
(i,j)

for all pairs (l,m). In the next merging step, we have to calculate Lk_1(l,m) for all the pairs

(l,m). Here we use the superscript (i,j) to indicate that (Ck('i),C心）） was merged in the

previous merging step. Now note that the difference between L心胄l,m) and Lk(l, m) is that

5

一

一

1

―――:
(b)

國③

(c)

＋

(d)

Figure 1: Summation Region

Ik 屎I,m)

Summation Region for L~(I,m)

且・-;江
<LP Summation Region for L, ・1(1,m)

The circle in① indicates that class i here is
different from class i for L,(l,m), that is:
c •. 1(i) =ら(i+j)

r—

7
m冑

（

Figure 2: Summation Region

砂門(l,m) is the AMI reduction by merging class land class m after merging class i and class

j, whereas Lk(l, m) is the AMI reduction by merging class l and class m without merging
(i,j)

class -i and class j. Therefore, the difference between Lk_1(l,m) and Lk(l,m) only comes

from the terms which are affected by merging the pair (Ck(i), Ck(j)). To see it graphically,
(i,j)

the summation regions of the class bigram table for Lk-l (l, m) and Lk(l, m) are illustrated

in Figure 2. Because the summation over the region {(ぉ，y)lx-f i,j,l,m and y -f i,j,l,m}

does not change its value by the merge of class i and class j, or the merge of class land class

m, that region is ommitted in the graph. Furthermore, as shown below, most of the region in
(i,j)

the graph cancels out with each other when we calculate L炉 1(l, m) -Lk(l, m), leaving only

a number of point regions, hence the complexity of part C can be reduced to constant.

Since Lk(l,m) = h-h(l,m) and 4iこf{(l,m)=Ifこj{-If}j(l,m),
(¥、

Lkiこ!}(!,m) -Lk(l, m) = -ut!;(l, m) -h(l, m)) + ut!; -h). (9)

Some part of the summation region of I位州l,m) and h cancels ou
(i,j)

t with a part of I or a k-1

part of h(l, m); Let Jt!lu, m), ik(t, m), ii~?, and h denote the values of ri~l(t, m), h(l, m), rtjl
and h, respectively, after all the common terms among them which can be canceled are can-

celecl out. Then, we have

¥

l

L1iこi{(l,m) -Lk(l, m) = -(ik~{(l, m) -ik(l, m)) + (ik~{ -ik), (10)

where

応{(l,m) == qk_1(ltm,i)tqい (i,ltm) (11)

fk(l,m) == qk(ltm,i)+qk(i:,l+m)tqk(ltm,j)tqk(j,l+m) (12)

6

l

k

〈

I

.. ~ ロ
lk(l,m)

k-1

｛じ

訊
"(i j)
I応1Ctm)

Figure 3: Summation Regions for h, fk(l, m), fk竺{and fk竺乳l,m)

I
'(i,j)
k-1 = qk-1(i,l) + qk-1(i,m) + qk-1({,i) +屈1(m,i) (13)

fk = qk(i,l) +條(i,m)+ qk(j,l) + qk(j,m) + qk(l,i) + qk(l.j)
+ qk(m, i) + qk(m,j) (14)

The summation region of I's in equation 10 are illustrated in Figure 3. Brown et. al. seem

to have ignored the second term of the right hand side of equation 10 and used only the
(i,j)

:fi rst term to calculate Lk_1(l,m)-Lk(l,m). 1 However, since the second term has as much

weight as the first term, we used equation 10 to make the model complete.
Even with the 0(い） algorithm, the calculation is not practical for a large vocabulary of

order 104 or higher. Since part A requires O(V) time in any way, part B is the only part

which can be modified. In part B we allowed all the possible pairs of classes to be considered

for merging, but we can restrict the domain of possible merging pairs to investigate. Brown

et. al. proposed the following method, which we also adopted. We first make V singleton

classes out of the V words in the vocabulary and arrange the classes in the descending order

of frequency, then define the merging region as the first C + 1 positions in the sequence of
classes. So initially the C + 1 most frequent words are in the merging region. Then do the
following.

1. Merge the pair of classes in the merging region merging of which induces minimum AMI

reduction among all the pairs in the merging region.

2. Put the class in the (C + 2td position into the merging region and shift each class after
the (C + 2?d position to its left.

3. Repeat 1. and 2. until C classes remain.

1 Act叫 ly,it is the first term of equation 10 times (-1) that appeared in their paper, but we believe that it
is simply due to a misprint.

7

Merging History:

Merge(A, B -> A)

Merge(C, D -> C)

1v1erge(C, E -> C)
Merge(A, C -> A)

Merge(X,Y塁） reads

"merge X and Y and name

tl1e new class as Z11

⇒
Dendrogram

囚

＇ 二
R ⑧ R

Figure 4: Dendrogram Construction

゜
0 0

゜

／
ー
＼

Figure 5: Left Branching Tree

With this algorithm, the time complexity of Part B becomes 0(C2) and the total complexity

is reduced to O(C叩）．

2.2 Word Bits Construction Algorithm

The simplest way to construct a tree structured representation of words is to construct a
dendrogram as a biproduct of the merging process, that is , to keep truck of the order of

merging and make a binary tree out of the record. A simple example with a five word

vocabulary is shown in Figure 4. If we apply this method to the above 0(C叩） algorithm

straightforwardly, however, we obtain for each class an extremely unbalanced, almost left

branching subtree like the one illustrated in Figure 5. The reason is that after classes in the
merging region are grown to a certain size, it is much less expensive, in terms of AMI, to

merge a singleton class with lower frequency into a higher frequency class than merging two

higher frequency classes with substantial sizes.

A new approach we adopted is as follows.

1. MI-clustering: Make C classes using mutual information clustering algorithm with the

merging region constraint.

2. Outer-clustering: Replace all words in the text with their class token2 and execute

binary merging without the merging region constraint until all the classes are merged

(、

Il

2In the actual implementation, we only have to work on the bigram table instead of the whole text.

8

l

p
a
a
目
Is

団

9IU

p
皐
出

3ps

p
a
I
q

目
l

p~

習
n
1
d

P

器
O
S

葛
.ms

急
I

P
貶
も
'
3

月

p
gも

p
月
D
O
Z

国
殴
3
p
I

宮
苔
d
s

国
B
a
I

鵞
吾

乳図
含

S

p
g
q
且
I
3

p
g
d

目
[

p
呂
蕊

i

p
器
且
ビ

p

胄
oqar

窟
I

百
日
ゴ
回a9

1
d

ロ
S
O
c
I

P
3

啓
S

p
a
目
g

昔
B
S

冦
魯

p
a
d
d

若

IIaJ

a
s
o
i

Figure 6: Sample Subtree for One Class

into a singe class. Make a dendrogram out of this process.

constitutes a upper part of the final tree.

This dendrogram, Di・oot,

3. Inner-clustering: Let {C(l),C(2), …, C(C)} be the set of the classes obtained at step
1. For each i (1~-i~C) do the following.

(a) Replace all words in the text except those in C(i) with their class token. De-

fine a new vocabulary V'= V1 U Vi, where½= {all the words in C(i)}, 怜＝

{C1, C2, …，Ci-1,Ci+i,Cc}, and CJ is a token for C(j) for 1 < j < . _ C Assign

each element in V'to its own class and execute binary merging with a merging

constraint such that only those classes which only contain elements of½can be
merged. This can be clone by ordering elements of V'with elements of Vi in the
first I½I positions and keep merging with a merging region whose width is I聞|

initially and decreases by one with each merging step.

(b) Repeat merging until all the elements in Vi are put in a single class.

lviake a dendrogram D叫 outof the merging process for each class. This dendrogram

constitutes a subtree for each class with a leaf node representing each word in the class.

4 Combine the dendrograms by substituting each leaf node of Droot with coresponding

Dsub•

This algorithm produces a balanced binary tree representation of words in which those

words which are close in meaning or syntactic feature come close in position. Figure G shows

an example of Dsub for one class out of 500 classes constructed using this algorithm with a

vocabulary of top 70,000 most frequently occurring words in the Wall Street Journal Corpus.

Finally, by tracing the path from the root node to a leaf node and assigning a bit to each

branch with zero or one representing a left or right branch, respectively, we can assign a

bit-string (word bits) to each word in the vocabulary.

，

380

360

益
x
a
1
d
l
a
d

340

320

300

`

9
ー

；

ー

1
,
^

→

2800

(
＼

10 20 30 40 50 60

Clustering Text Size (Million Words)

Figure 7: Perplexity of Class-Based Trigram Model

3

Experiments

We used plain texts from six years of the Wall Street Journal Corpus to create clusters and

word bits. The sizes of the texts are 5 million words (MW), lOMW, 20MW, and 50MW. The

vocabulary is selected as top 70,000 most frequently occurring words in the entire corpus. We

set the number C of classes as 500. The obtained clusters and word bits are evaluated via the

following two measures (a) and (b) respectively: (a) the perplexity measure of class-based

trigram models on Wall Street Journal corpus and ATR General English Treebank and (b)
the error rate of the ATR Decision-Tree Part-Of-Speech Tagger.

3.1 Perplexity Measurement /¥~ Using a class function G which maps a word to its class, word trigram probability can be

rewritten as follows.

P(Wi[W・i-2Wi-1) = Pc(G(Wi)[G(Wi-2)G(Wi-1))Pm (Wi[G(wi)) (15)
』

1

where Pc is a second order Markov chain probability and Pm is a word membership probability.

Smoothing of Pc and Pm are done using Katz's backoff ancl Good-Turing formula, respectively.
The training text size is 1.9 MW and the test text size is l.SOKW, both from the Wall Street

Journal Corpus. The vocabulary size is 77KW. Figure 7 shows the perplexity of the test

text versus the clustering text sizes. The point at zero clustering text size represents the

perplexity with word trigram model. As the clustering text size increases perplexity decreases

monotonically, indicating the improvement of clusters. At 50MW, the perplexity is 18% lower

than the perplexity with word trigram model. This result contrasts favorably with Brown et.
al's result in which the class trigram perplexity is slightly higher than the perplexity with

word trigram model.

10

Event-128:

｛
〈word(O),"like"〉〈 word(-1),"flies"〉〈 word(-2),"time"〉〈ヽ vord(l),"an"〉〈 word(2),"arroヽv"〉

〈tag(-1),"Verb-3rd-Sg-type3"〉〈 tag(-2),"Noun-Sg-type14"〉

〈Inclass?(word(O),Class295), "yes"〉〈 WordBits(Word(-1),29), "1"〉

(Worc!Bits Questions)

〈IsMember?(word(-2),Set("and", "or", "nor")), "no"〉(IsPrefix?(Worcl(O),"anti"), "no"〉

(Linguist's Questions)

〈Tag,"Prep-type5"〉

｝

(Basic Questions)

Figure 8: Example of an event

＇｛

'-

3.2 Decision-Tree Part-Of-Speech Tagging

ATR Decision-Tree Part-Of-Speech Tagger is an integrated module of ATR Decision-Tree

Parser which is based on SPATTER (Magerman 1994). The tagger employs a set of 441 syn-

tactic tags, which is one order of magnitude larger than that of the University of Pennsylvania

Tree bank Project. Training texts, test t<:lxts, and held-out texts are all sequences of word-tag

pairs. In the training phase, a set of events are extracted from the training texts. An event

is a set of feature-value pairs or question-answer pairs. A feature can be any attribute of

the context in which the current word word(O} appears and it is conveniently expressed as

a question. Tagging is performed left to right. Figure 8 shows an example of an event with

a current word like. The last pair in the event is a special item which shows the answer,

i.e., the correct tag of the current word. The first two lines show questions about identity of

words around the current word and tags for previous words. These questions are called basic

questions. The second type of questions, word bits questions, are on clusters and word bits

such as is the current word in Class 295? or what is the 29th bit of the previous word's word

bits?. The third type of questions are called linguist's q1te8tions and these are compiled by

an expert grammarian. You can ask about membership relation of a word and a set of words

or morphological features of words.

Out of the set of the events, a decision tree is constructed. The root node of the decision

tree represents the set of all the events with each event containing the correct tag for the

corresponding word. Probability distribution of tags for the root node can be obtained by

calculating relative frequencies of tags in the set. By asking a value of a specific feature on

each event in the set, the set can be split into N subsets where N is the number of possible

values for the feature. We can then calculate conditional probability distribution of tags for

each subset, conditioned on the feature value. After computing for each feature the entropy

reduction incurred by splitting the set, we choose the best feature which yields maximum

entropy reduction. By repeating this step and dividing the sets into their subsets we can

construct a decision tree whose leaf nodes contain conditional probability distributions of

tags. The obtained probability distributions are then smoothed using the held-out data. The

reader is referred to (Magerman 1994) for the cleatils of smoothing. In the test phase the

system looks up conditional probability distributions of tags for each word in the test text

11

28

＾
26

~
ヽ

昌
24

包
22

占
20

• 習一

＇
18

16

14

゜

□ WSJ Text

• ATR Corpus
4
、9
~
.

＼
茫

（
 10 20 30 40 50 60

Clustering Text Size (Million Words)

Figure 9: Tagging Error Rate

Text Size (words)

WSJ Text

ATR Text

Training Test Held-Out

75,139 5,831 6,534

76,132 23,163 6,680

Table 1: Texts for Tagging Experiments

and chooses the most probable tag sequences using beam search.

We used WSJ texts and ATR corpus for the tagging experiment. The WSJ texts are

re-tagged manually using the ATR syntatctic tag set. The ATR corpus is a comprehensive

sampling of Written American English, displaying language use in a very wide range of styles

and settings, and compiled from many different domains. Since the ATR corpus is still in the

process of development, the size of the texts we have at hand for this experiment is rather

minimum considering the large size of the tag set. Table 1 shows the sizes of texts used for

the experiment. Figure 9 shows the tagging error rates potted against various clustering text

sizes. Out of the three types of questions, basic questions and word bits questions are used

in this experiment. To see the effect of introducing word bits information into the tagger, we

performed a separate experiment in which a randomly generated bit-string is assigned to each

worcl3 and basic questions and word bits questions are used. The results are plotted at zero

clustering text size. For both WSJ texts and ATR corpus, the tagging error rate dropped by

more than 30% by using word bits information extracted from the ,SMW text, and increasing

(‘

r"＇バ

唸incea distinctive bit-string is assigned to each word, the tagger also uses a bit-string as an ID nnumber
for each word in the process. In this control experiment bit-strings are assignee! in a random way, but it
is made sure that no two words have the same word bits. Random word bits are expected to give no class
information to the tagger except for the identity of words

9,'

~:

，＇

12

clustering text size. For both WSJ texts and ATR corpus, the tagging error rate dropped by

more than 30% by using word bits information extracted from the 5MW text, and increasing

the clustering text size further decreases the error rate. At SOMW, the error rate drops by

43%. This again shows the improvement of the quality of clusters with increasing size of

clustering text. Overall high error rates are attributed to the very large tag set and the small

training set. One notable point in this result is that introducing word bits constructed from
WSJ texts are as effective for tagging ATR texts as it is for tagging WSJ texts even though

these texts are from very different domains. To that extent, the obtained hierarchical clusters

are considered to be portable across domains. ・ ・

4

Conclusion

C>
We presented algorithm for hierarchical clustering of words, and conducted clustering exper-
iment using a large text ranging in size from 5MW to 50MW. High quality of the obtained

clusters are confirmed via two evaluation measures. The perplexity of class-based trigram
model is 18% lower than the perplexity with word-based trigram. By introducing word bits

into the ATR Decision-Tree Part-Of-Speech Tagger, the tagging error rate is reduced by up

to 43%. The hierarchical clusters obtained from WSJ texts are also shown to be useful for
tagging ATR texts which are from quite different domains than WSJ texts.

~'

,~’

Acknowledgements

We thank John Lafferty, Hitoshi Iida, Ezra Black, Hideki Kashioka and Stephen Eubank for
their encouragement and helpful comments, suggestions and discussion with us.

References

C)
Brill, E. and Marcus, M. (1992) "Automatically Acquiring Phrase Structure Using Distri-

butiona.l Analysis." Darpa Workshop on Speech and Natural Language, Harriman, N.Y.

Brown, P., Della Pietra, V., deSouza, P., Lai, J., Mercer, R. (1992) "Class-Based n-gra.m
Models of Natural Language". Computational Linguistics, Vol. 18, No 4, pp. 467-479.

Harris, Z. (1951) Structural Linguistics. Chicago, University of Chicago Press.

Kneser, R. and Ney, H. (1993) "Improved Clustering Techniques for Class-B邸 edStatistical

Language Modelling''. Proceedings of European Confer・ence on Speech Communication and
Technology.

Magerman, D. (1994) Natural Language Parsing as Statistical Pattern Recognition. Doctor叫

dissertation. Stanford University, Stanford, California.

	001
	002
	003

