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1 Speech Recognition 

1.1 Hidden Markov Model (HMM) 

[HMM] 

1.1.1 Probability context 

Notations: 

• T: observation time length 

• 0: 01,0幻...OT sequence of observations 

• N: numbre of states in the model 

• L: numbre of symbols 

• S=s: set of states 

• V =v: set of symbols 

• A: transition distribution table aij = P(St+1 = j / St = i) 

• B: symbols'probability distribution vector bj(Ot) = P(Ot/st = j) 

● 1r: initial distribution 

• A= (A,B,1r) 

• M: maximum number of members per class 

• C: maximum number of classes 

• P: total number of speakers 

Assumption the probability of the output at time t only depends on the state at time t. 

Goal P(O/入）

Recognition of a word: arg maxi P(wi/0) where Wi is a word of the dictionnary. 
And 

P(wi/0) = 
P(O/wi)P(wi) 

P(O) 

(Bayes) 

Wi is modelised by the sequence X=l,2,2, ... knowing the model M 

P(O,X/M) = a12的(01)a22的(0砂・・・

... but Xis unknown. 
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So the aproximation used 1s 

T 

P(O/M) =~ ら(O)x(l)II bx(t) (Ot)ax(t)x(t+l) 
X t=l 

... where x(O) and x(T+l) are fixed. 

Or even 

P(O/M)~m, 炉{"x(O)x(l〗崎(O,)ax(t)x(t+i)}

1.1.2 Basic algorithms 

Forward-Backward Forward 

Let's set叫i)= P(Oぃ...Ot, St= i/入）

1. Vi 0:1 (i) = 1rふ(0り

,, 

＼ 

with 
1 

1ri = - if icS1 
N1 

叩=0 otherwise 

... where S1 is the set of possible beginning states. 

2. for t=2 to T and VJcS叫J)= [I:i咋 1(i)叫 bj(Ot)

3. 

P(O/入） =~ 勺 (i)
ieSF 

... where SF is the set of finishing states. 

Backward 

Let's set凡(i)= P(Ot+i・ ・ ・Oy応=i, 入）

1. 

針(i)
1 

- - VicSF 
Np 
- 0 otherwise 

2. for t=T-1 to 1 and Vj凡(j)= [江a凸(Qt+l)/3t+l(i)] 

3. 

P(O/入）= I: 訊 (01)店(i)
ieS1 

A' 
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Viterbi 

1. Vi釘(i)=冗,bi(Oリ，叫(i)= 0 

2. for t=2 to T, ¥-/j 

{ !:~~~ ― 
3. 

maxj{い (i)叫 b3(0リ
arg maxi{ Dt-1 (i)aij} 

P* = max{好 S
se:Sp 
()} 

s; = argmax{好(s)}
se:Sp 

4. Path: Backtracking 

• sf=心t+l(sf+l) 
• P* = maxxc:x{P(O, x/入）｝

... where X is the set of all the possible sequences x of states. 

Baum-Welch 

• A-posteriori probability of transition: 

孤i,j) 

• ... of being in state i: 

叫i)

＝ 

= P(釘＝ら St+l= j/0, 入）
叫i)aりも(Ot+1)芦 (j)
乙知Sp叶 (k)

＝ 

- P(st = i/0, 入）
叫鳴(i)

江 e:Sp吋 (k)

=~ 叫i,j) ift<T 
.
J
 

. . 
re-estimat10n New parameters入：． 

屁＝
四:11叫i,j) 
四r=-1五(i)

．
 

困(k)=ごte:Ot=Vk/t(j) 
四三叫j)
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．
 

荒=,1(i) 

and 

P(O, 釘=i/入）＝叫鳴(i)⇒Vt P(O/入） = I: 叫）店(i)
i 

1.1.3 Semi-continuous HMM 

The symbols Vs of the codebook are represented by a continuous probability fonction, 
for each state. Then: 

L 

如(x)= J(x/st) = I:J(x/vj,St)P(v凸）
j=l 

... where L=card(V) is the number of symbols, 
and f() is the probability density fonction associated with the symbols. 

Furthermore, if we assume the independance of the states: 

L 

bi (X) = I: f (XIV心(j)
j=l 

1.1.4 Mixture Density Function 

M; 

応） = I: 叫 ik(X)
k=l 
M; L 

— I: Cik I: J(x/vj)如(j)
k=l j=l 

... where Mis the maximum number of mixtures, care the weights of the mixture 
components (Vi 四此Cik= 1) and如()is a probability fonction, as presented 

in 1.1.3. 

so 
T 

P(X,S/入） = Ila釘ー1ふ（叫
t=l 

—喜1..'喜；鼠a,._,.,い（叩）c磁,]
~IT as1-1s1Cs1ktい（叫
Ke:{l…M}Tt=l 

-(五a.,_,.,) と （丘らふい（叩））
t=l Ke:{l, .. Af}T t=l 

... where K is the T dimensions vecteur of the kか

t
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1.1.5 Simplification 

A good (as far as the speed of the computation is concerned) way to approximate 
this probability is to keep only the most significant mixtures: 

bi(x) = L革如(x)
kc1Jix 

1.2 Hidden Markov Network (HMnet) 

[ICASSP92] 
The HMnet is produced by the Successive State Spliting (SSS) algorithm. 

1.2.1 SSS cell 

Each cell is composed of: 

• cell number (state number) 

• class of possible contexts 

• lists of the preceding and following states 

• parameters of the output probability 

• probability of state transition 

1.2.2 SSS algorithm 

1. The initial model is a single cell S(O) with a diagonal covariance of two multi-
dimension gaussians. 

2. The cell S(I) is splited into S'(I) and S(J), where 

I= argm芭し=t畠n,}
and 

2 
知＝入

2 
il知＋入

2 i2疇＋ふ心(μilk-μi2k)2 

with知 weightcoef, μixk炉 means,び盆炉variances,ni training data, びTkkth 
variance of the whole data. 
NB: if the cell is mono guaussian, O'仇isit's variance. 

3. Spliting 

• Spliting on the context: 

Pc= m~xI:max{pm(Y叫， PM(Y叫｝
J L 
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where j is a context factor, YiL is a part of the data containing the element 
ejL, Lth element of the factor j. 
四国） is the total likelyhood when YiL is on the path of S'(m). idem PM・
Then ejL is put in the context of the cell which maximises the likelihood. 

• Spliting on temporal factor: 
S'(I) and S(J) are put on the same path in an order that maximises the 
likelihood. 

The spliting way that makes the likelihood maximum is used. 

4. Retraining to make S'(I) and S(J) with two gaussians. 

5. When the final number of cells in reached, reshape each cell into a single 
gaussian state. 

1.3 Speaker Independant Modeling and Adaptation 

1.3.1 Speaker Independant vs Speaker Dependant Modeling 

The advantage of the speaker-dependant model is that it requires only a few training 
data and achieves a good recognition rate. The advantage of a speaker-independant 
model is that it can be used for any speaker, what is usely the goal of a voice 
recognition system. 
So, a large part of the present research is related to finding a speaker independant 
model with good recognition results and needing only a small amount of data. The 
method discused here is using small speaker dependant HMnets to build a larger 
one, which aims to be speaker independant. The other goal of this method is to 
create a HMnet allowing rapid speaker adaptation. 

1.3.2 Generation of the HMnet 

Assumption: the model structure is independant of the speaker. 
Consequently, the model structure is trained with specific data from one speaker, 
with the Speaker-Independant-SSS algorithm. The speakers'variations are repre-
sented through the血xturecomponents. 

1.3.3 Modeling 

The basic idea is to train many speaker-dependant HMnets by different speakers, all 
the HMnets having the same structure; then to cluster, for each state, the mixture 
components of the different speakers, and then compose the mixtures of each cluster, 
and mix the clusters of each state. 

Training of the basic HMnets These HMnets are speaker-dependant nets, built 
on a single model. They need only a small amount of data per speaker. They only 
have few parameters, are single multidimension gaussian nets. For each speaker, 
only the states for which we have data are trained (taken into account). 
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Clustering For each state, the mixtures of the different speakers are clustered 
down to a maximum number of clusters (not necessary reached). The clustering is 
achieved according to the Bhattacharyya distance: 
The distance between the two gaussian distributions 

b1 =~(四ぶ） 妬＝切(μゎふ） is: 

l S1 +ふ―1 1 戸
{)(b1ふ）＝ー(μ1一四）t I 2 I 

8 ( 2 ) (μi一四）＋ぅlnJS1仕IS占

Composition For each cluster, a single gaussian distribution is created by the 
composition of the gaussian distributions of the speakers of the cluster. 
For the cluster 1 of the state i: 

μ! = L Wikμik 
ke:C1 

sf= L四K品 +L叫 μikー閾）2
ke:C1 ke:C1 

nik 
Wik= 
江e:C1nik 

... where Wik are the weights, and nik are the amounts of data used to train the 
state k of the speaker i (the more a mixture is trained, the more it is reliable, and 

so, the more it is weighted in the su叫

Mixing Finaly, a single gaussian mixture is generated for each state, by mixing 
the different clusters'mixtures. 

L 

bi=区釦N(四，SD
l=l 

f2il = 
江cG1nik 

以~lnik 

1.3.4 Adaptation 

The HMnet, result of the generation, is adapted to the speaker(s), the untrained 
states'mixtures'weights are estimated thanks to the correlation between the mixtures 
of the generated model. The lowest weighted mixtures are pruned, and the weights 
are recalculated. 

Correlation The correlation is the probability that for one speaker, the mixture 
of a state belongs to one cluster, knowing that the mixture of another state belongs 
to a cluster. This probability is computed as the number of speakers for whom this 
relation occures, divided by the total number of occurences for the state. 
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Weight Estimation The weights of the untrained states are estimated as the prod-
uct of the weights of the trained states weighted by the correlations. 
匹theprobability of occurance of one mixture knowing the trained model is com-
puted as the product of the probabilities of this mixture knowing each trained mix-
ture. 

互：

1. {Yi, .. ,, ぬ}untrained independent血xtures.

2. {Xい・・・ふ}trained independent, and conditionaly to只Viindependant mix-
tures. 

P(~/X1, ... , ふ） P(Yi,Xい...'ふ）

P(Xい・・．，ふ）
P(Yi, Xい...'ふ） P(Yi) 

扉） *n知P(ふ）

P(Xい・..,x叶Yi)* 酬）
叫 P(ふ）

鳳宣f)l P(Y;) 
[Up¥贔いlP(Y;) 
n 

j=l l [ II P(Y;/ X;) P(Y;)l-n 

so the weight of the mixture 1 of the state i is: 

Wi/ 
P(Ii = l/Xぃ...,x砂
四にP(Y:= l/ X1, ... , Xn) 
印~lP(Y: = l/ Xj) 
四仁1TI;=l P(Ii = l / Xj) 

Pruning The lowest weighted mixtures of each state are pruned. The pruning 
operation is stoped if the number of remaining mixtures goes under a minimum 
number, or if the weight of the lowest weighted mixture is over a threshold. 

2 Modeling 

2.1 General Algorithm 

First, the HMnet is created, with the SSS algorithm, adapted to a speaker. We 
assume that this structure would have been the same whoever the speaker would 
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have been. The same structure is used to train speaker dependant HMnets for 
each speaker of the database. Then, for each state, the mixture component of each 
speaker is extracted. The clustering is done state by state, on the pool of speak-

ers'mixtures. 
The number of states of the model HMnet can be chosen, in the rest of this doc-
ument, if it is not specified, it is fixed to 400. Diagonal covariance mixtures are 
used, since, for a same amount of data, they achieve better recognition result. The 
dimension of the mixture is D=34. 

2.1.1 Creation of the table of distances 

The first operation is to create the distance tables. For each state, for each couple of 
distributions, the Bhattacharyya distance is calculated as explained in 1.3.3 Clus-
tering. Since the gaussian distributions are diagonal covarianced, the computation 
is achieved by: 

l D 凰，妬）＝ぅ ~[(µf-µが(sf+翡） + In sf; s/ -~(Ins(+ I疇）］

研 beingthe dth component of the vector X. 

2.1.2 Clustering 

The clustering is done for each state. Only the trained mixtures are considered 
(the speakers who had training data for this state). They are clustered in a way 
that minimises the average distance inside the classes, up to a maximum number of 
classes. 

Initialisation The maximum number of clusters is set to the叫 nimumbetween 
the maximum required (option of the program) and the number of speakers for the 
state. 
A stucture is used to represent the classes. Its elements are: 

center_no Number of the center of the class, chosen among the members of the 
class for simplisity. The center is the member which minimises the distance 
between him and the other members. 

count Number of members in the class. This number includes the center. 

dist_total Total distance between the center and the other members of the class. 

All the mixtures of the state are put in an only first cluster. The other classes are 
set unaffected by puting their center to the unused number -1. The center of this 
first class is calculated, and the final conditions are checked (for instance, in case of 
only one speaker for this state). Then, this class is splited, and the final conditions 
are checked again. Each time the final conditions are checked, if they are positive, 
the procedure exits. 
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Loop If the procedure has not exited during the initialisation part, it begins a loop 
without exiting conditions (for(;;)). This loop proceeds the following steps: 

• Selection of the class to be splited. This class is the class which has the greatest 
distortion (the distortion being the total distance in the class). 

• The selected class is splited: 

-Two members are chosen to be the centers of the new classes. They have 
to minimise the sum of the total distances of the two created classes. So, 
all couple of members in the class are tested. 

-The members are affected in the class from which center they are the 
closest (the memberships are stored in a table). 

• The distortion is calculated (average distance: sum of the total distances of all 
the classes divided by the number of speakers). A loop rearanges the distribu-
tion of memberships and centers: 

-The memberships are reestimated: Keeping the centers, each speaker is 
put in the class to which center it is the closest. 

-The centers are reestimated: Keeping the belongings, for each class, the 
member who血ni血sesthe total distance is chosen as center. 

-The distortion is calculated. If it doesn't change or is greater than last 
record, the inside loop is exited. 

• The final conditions are checked: positive when the number of classes reaches 
the maximum. If positive, the loop is exited. 

Saving The informations of the class parameters and belongings are saved. 

2.1.3 C ompos1t10n 

The mixtures of each cluster of each state are composed, not exactly as explained 
in 1.3.3 but in a more simply way: 

2.2 Present work 

2.2.1 Distortion 

μi= LW紐 ik
ksC1 

図 =~Wikふ+~叫μむー（叶）2
ke:C1 ke:Cz 

Calculation way The distortion was calculated as sum of the distances inside the 
class (total distance) and the average distortion is the sum of the total distances 
divided by the number of speakers. 
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This way of calculating the distortion has the advantage of being strictly decreasing 
during the spliting operation, since each split, the sum of the total distances of 
the two new dasses is smaller than the total distance of the original class, and the 
recentering and reaffectation of thememberships can only decrease the total distance. 
The disadvantage of this calculation is that it will make the biggest classes be splited 
first, even if the speakers are close to each others. So, I've tried to use, as distortion 
of each class, the average distance inside the class, and as global distortion, the 
average distortion of the classes. It didn't show better results on few tests, and 
has the disadvantage of not being strictly dicreasing, so that the use of a threshold 
becomes difficult (see 2.2.4). But the fact that sometime the distortion increases 
is also an indication of the efficiency of the algorithm, and can be used as in 2.2.6 
'Add when worse'. 

Degree The distortion uses the distance between the speakers as a criterium for 
spliting and setting the belongings. As explained above, a class with many speakers 
close to each other is more likely to be splited than a class with fewer members, but 
far from each other. To this problem can be added the fact that a class with all 
members at an average distance from each other is more likely to be splited than a 
class with all its members very close to each other but one, far from the others. 
One way to avoid this, is to use a high moment for the clustering of the speakers' 
distribution. Instead of using the crude distance, the distance at a high power can 
be used. The informations coming from the distance and the powered distance being 
different, both are used in a first attempt to find out which gives the best recognition 
result, the distortion rate being the rate between these two distances. 
A new structure is used for the distortion of each class: 

mean the mean distance is the total distance divided by the number of members 
in the class (disLtotaljcount of the class structure). 

fifth the average powered distance, its name comes from its original degree (5). 

rate this is the distortion rate calculated during the selection of the class to be 
splited (which will become this class). It's the distortion rate that would make 
mean and fifth at the same weight in the decision of spliting. 

lmr the local mean rate is the average rate calculated on the existing rates . 

Most of the parts of the clustering algorithm have to be changed to use this new 
feature, and one problem is to handle the difference of scale created by the use of 
different degrees. Following are the changed on the procedure of selection of the 
class to be splited. 

2.2.2 Optimisation 

As explained in 2.1.2 the belongings and centers are successively reestimated to 
minimise the distortion. In fact, this happens quite few times, and is not always 
good for the global distortion. In order to check the efficiency of this action, I tried 
to test without it (test 29). The result confirms that it's better with. 
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2.2.3 Selection 

Distortion This procedure selects the best class to split, according to the distor-
tion. It returns the number of this class, if possible, and -1 otherwise. 

• Initialisation of the loop: the first class which has more than one member is 
selected as the class to be splited. If there is no such class, the procedure exits 
returning the value -1. 

• Beginning of the loop on the classes. The class with only one member are not 
further considered, and the distortion rate is set to 0. 

-The differences of distortion between the last registered'split class'(class 
to be splited) and the current class are decomposed into exponential and 

fractional parts. If an exponential part is greater than the last recorded, 
the corresponding fractional part is put to 10. 
Let's set: 

S = (1 -Distortion_rate) * frac_mean 
+ Distortion_rate * frac_Jifth 

... where frac皿 eanis the fractional part of the difference of the means. 

-The rate is calculated so that S = 0. It is added to a sum and a counter 
is incremented. 

-If S > 0 (if. the distortion is greater) the current class is recorded as new 
'split class'. 

• The rate is the sum divided by the counter, if the average value for the classes 
(only if the value is rneaningfull: between O and 1). 

• The lmr is calculated, and the distortion rate is updated by: 

Distortion_rate = Change_rate * cdist[n].lmr 
+ (1 -Change_rate) * Distortion_rate_mem 

... where Change_rate is a user parameter, cdist is the distortion structure, 
n is the indice of the class to be created and Distortion_rate_mem is the 
distortion rate at the beginning (user parameter). 

• The'split class'number is returned. 

If we assume that Distortion_rate = l (for simplicity, and because it gave a good 
result) and if me recall the equation of 1. 1 .4; the sum is done on the set J{ c:{ 1• • • M} T 
. So, 

1 C 

I{ = arg p({四!点戸） { p E五J(応心）"} 
1 C p 

- arg {二h芦ふ(k)J(~訊s}
J
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... where炉isthe set of the elements of {l・ ・ ・M}T, c1 is the center of the cluster 
C1, 1 is the degree, 8 is defined by: 

with ふ(k) = 1 if kcC1 
ふ(k)= 0 otherwise 

Then, the equation of the 1.1.4 section can be written as follows: 

P(X,S/入）＝ （五a,,_,,.)I: I: 臼I: (丘傑ぶ（叩）
<=1 1,=lk戸叫 IT=l kTeC,T <=l ) 

位a,,_,,,)I~ktl ••. I予1こ(D,仇(k,)c人 (x,))
The procedure of clustering consists in finding the good functions 8 and the good 
numbers of clusters Cs in order to minimise the distortion. 

Distribution A new parameter is added to the distortion structure: the state 
distribution variance for each class: 

1 
びi= - L ({)(ci,j) -mi)2 
Ni -1 je:C; 

... where mi =忌可区jeG;{)(ci,J), 匹 isthe average distance to the center, Ni is 
the number of members of the class i, Ci is the center of the class i, Ci is the set of 

the members of the class i. 

This variance of the distribution of the members inside the classes is used instead 
of the distortion in the selection procedure (of the'split class') if. the class with 
the greatest variance is chosen to be splited. The goal of spliting on the distri-
bution variance instead of the distortion is the avoid the spliting of the homogene 
distributions. 

Results 

Degree The degree that gives the best recognition result seems to depend on the rest 
of the program (all the more as the number of mixture components depends 
on the degree when thresholds are used: see tests 69, 10 and 73). The tests 14 
and 16 to忍1(the number of mixtures is constant) show an optimal degree of 
8. But the variations of the recognition rates seem to indicate that the tests 
are not much relevant. 

Selection The distortion and change rates give oposit results. The best results are 
achieved with a change rate of O (not used) as can be seen in the tests 14 and 
15. The inversion of the use of the change rate has also been tested (avoid the 
use of the two distortion components (mean and fifth) at the same time) but 
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gives a bad result (test 32). 
The distortion rate shows that it's better to use a high degree component as 
can be seen through the tests 8 to 14, 63 & 66 & 73, 70 & 79. The test 
81, compared with 79, confirms this. Only the tests 76 and 77 give different 
results. 

Alternance The mean and_fifth components are used in distinct parts: in the test 
81, the mean is used m all the program but the spliting which only uses the 
fifth . The test 82 computes the oposit. Both tests give worth results than 
when using only the fiれh. The test 84 uses both components for the program 
but the selection, and only the mean for the selection, and it gives a far worse 
recognition rate. This tends to show that the邸his the best component to 
use and that it's better to use the same criterium of distortion in the whole 
program. 

Variance The tests 89, 92, 107, 108, 116 and 118 use the variance for the selection 
of the split class. The two first ones give better result than the spliting on the 
distortion, but the other ones, as compared with the tests 111, 112, 114, 117 
and 132 give results about the same. 

2.2.4 Distortion threshold 

The distortion threshold is used in the final check procedure to stop the clustering 
if the distortion is low enough. 

Implementation The distortion has two components: the mean and the fifth. In 
order to limit the number of parameters, only one threshold is used. So, the two 
components have to be brought to a same scale. Furthermore, the initial distortion 
depends greatly on the state, since some states have a lot of speakers and some other 
ones have very few. Consequently, I used: 

X = -log10 (vmean) * (1 -Distortion_rate) 
-log10(v fifth) * Distortion_rate/ Degree 

... where vmean is the present mean divided by the initial one (calculated during 
the first step of the clustering). 

Note that the initial distortion components can be nul if there are only two speakers 
for the state. 

The spliting is stoped when the distortion indicator X becomes greater than the 
threshold. 

Results As the tests from 38 to 54 show it, the best recognition results are achieved 
when the threshold is not used. But it can be noticed also that, after a decrease 
(for small thresholds) the recognition rate increases, sometime up to a better value 
than the initial one (without threshold): tests 38 to 43, and 49 to 54. 
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This may indicate that the states which go easely over the threshold should be 
kept splited, probably because they are easy to split what means that the speakers 
are naturaly building classes. But the increase in the recognition result for high 
thresholds shows that it's good to stop spliting when the state has a distribution of 
speakers difficult to set into classes. 

2.2.5 State distribution 

The use of a higher degree shows good results of recognition. The effect of the use 
of a high moment for the spliting in the distribution of the speakers is to increase 
the variance of this distribution. 

Parameter The parameter used is: 

△ =~ 立n;-n/ 
i=l 

with 1 N 

~n; n=-
N 
i=l 

... where N is the number of classes and n; is the number is members if the class i. 

The variance or the standard deviation could also be used as well. 

Algorithm The spliting is stoped if△ decreases after having increased. Some 
precautions have to be taken into account in order to avoid stoping at the beginning 
of the spliting. 

Results The comparison of the tests 39 to 43, with the tests 44 to 48 shows that 
it increases the recognition rate. The decrease of△ probably happens because the 
classes are homogene and so the spliting creates classes with aproximativly the same 
number of members (because it minimises the total distance). So, as shown with 
the distortion threshold, it's better to stop the spliting when the distribution of the 
members in the classes is homogene. 

2.2.6 Addition 

The algorithm used for spliting the classes doesn't guaranty that an optimal reparti-
tion of the members will be reached. First because we don't exactly know what the 
meaning of optimal is, and secondly because the method may not lead to a global 
minimum of distortion. I tried to find a way to control the spliting by being able to 
go back. But keeping the history of the classes would require a lot of memory, and 
would only give the ability to go back on the same way. So I tried some different 
ways of adding classes, in different situations. My goal was to reach a distribution of 
the memberships that would minimise the distortion, and in many cases, I reached 
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it. But must of the distributions, even with a smaller distortion, achieved worse 
recognition results. So the basic conclusion of this part is that the distortion may 
not be the only parameter to take into account ... 

Addition only First, .I tried to do only additions, what is to say, I took the opposit 
foot to the spliting. 
The initial distribution is set to one class per speaker. Then, the classes are added 
down to the maximum number of classes. The addition method is to add the two 
classes which centers are the closest. 
The result is bad as can be seen with the test 31. 

Add when worse This method deals with adding the two closest classes each time 
the split has produced a increase in the distortion. For that purpose, the distortion 
used is the alternative presented in the 2.2.1 Calculation way (the global distortion is 
the average of the class distortions). The distance between two classes is computed 
as the average distance between all the couples of members of the two classes: 

1 
D(i,j) = -— I: I: 的(mi巧）

ninj 
叫 :eCi叫 eCj

... where Ci is the class i and mi is a member is this class. 

The test is 22, and can be compared with 19: a little bit worse. 

Regular additions Here, additions are done the same way as for last example, but 
with the regularity of one per two splits. The result is even worse (test忍3).This 
shows that it's better to use the addition procedure only when the spliting method 
is not able to cluster efficiently (the efficiency being rather difficult to define as it 
depends on what is reliable in the distribution of speakers). 

Addition with threshold The addition procedure for this and the following ex-
amples begins by choosing a class, and then by erasing it. The class chosen is the 
one which minimises the average distance of its members to the closest centers (but 
the center of the class itself). 

J = arg門in{~m~c, [c;; =翌ぷ~ ~(m;;, c)]} 

... where nj is the number of members of the class j, Cj is the class j and m;j is a 
member of this class, 0j is the pool of the centers exepted the center of the class j. 

The addition is done by puting each member miJ in the class CiJ・
In this first example, additions are proceded not more than two spliting loops after 
each other, to avoid an infinit loop between the additions and splits, and only if the 
variation of the distortion is small: 

(mean -p_mean)/p_mean + (fifth -p_fijth)/p_fifth < 0.5 
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... where mean is the mean component of the present distortion, and p_mean is 
the mean of the distortion calculated during the previous loop. 

For most of the states, the additions will occure at the end of the spliting algorithm, 
when the number of classes is getting close to the maximum. So it usely adds classes 
that have been splited before, and does not help getting a better distribution. The 
result is bad, as can be seen in test 24. 

Jump In order to avoid the problem of adding classes that have been splited just 
before, the number of successive additions (one each spliting loop) is set to three (it 
was two in the last example) but when the added classes are the last splited ones, 
the addition is counted twice (as if it had been two succesive additions: 1 + jump; 
with jump= l). So, when the algorithm tends to split and add the same classes, 
the additions are stoped. This gives a slightly better result (test 25). 

Smoothing The problem of doing only additions is that it does not allow really to 
go back in the spliting, and try to find the'best'distribution. It only manipulates 
the classes, and usely, it erases a class without reshu田ingthe whole distribution. 
In this part, a'smoothing'method is used to両xthe classes on their edges. Some 
speakers are set in the class from which center they are the closest (but the center 
of the class they belong to) relatively to the distance to the center of their class. 
Three kinds of smoothing are used: 

1. Smoothing 1 is changing the belonging only of the speaker who両 nimisesthe 
relative distance to another center. 

I{ 
. rJ(mij, C砂ー的(mij,Cj) 

= arg 芯翌~{ rJ(mij, Cj) } 

2. Smoothing 2 is doing the same but for the best member of each class. 

3. Smoothing 3 is doing it for all the speakers (but the centers of the classes). 

After each smoothing, the centers are recalculated, and then the belongings. 
Here, the maximum number of succesive additions is set to 2, and jump = 2. 
Smoothing 1 is achieved every three loops, smoothing 2 every four loops, and 
smoothing 3 every addition. The recognition rate is better than the previous tests 
of additions (test 26 and 28). 

Deletion The smoothing 3 has a bad side effect: the creation of single member 
classes; when all the members of the class are changed to the closest classes, but no 
speaker is affected to this class. The problem is that this center won't move during 
the recenter procedure since no member belongs to its class, and then, with the 
checking of the memberships, all the former members of this class will come back to 
it, annulating the effect of the smoothing. So that this center can follow the rest of 
the class and be affected to another class, all the single member classes are deleted 
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after each smoothing 3. The speaker is put in the class from which center it is the 
closest. This method gives a recognition rate better than previous test (see test 2り・
This algorithm has a strong effect on the distribution of the class number of members, 
since it cuts all the lowest classes, and usely such classes are numerous. Usely, after 
a short but strong increase, the△ parameter introduced in 2.2.5 decreases. An 
attempt to modifiy the distribution according to the variation of△ is the test 30: 
each time the variation of△ is under -40%, the single member classes are deleted. 
The result is a little bit worse than for the test 17. 

2.2. 7 Double distance 

Principe All the previous tests have been achieved using the Bhattacharyya dis-
tance as explained in 2.1.1. This distance is synthetising all the informations of 34 
dimensions in one distance. But, the clustering is trying to build classes of speakers 
who have about the same speaking caracteristics. The information inside the 34 
dimensions could be roughly used by doing a clustering according to all the dimen-
sions, using a 34 dimensional distance. All the information would be available for 
the clustering, but the clustering algorithm would become rather complexe, all the 
more as it would require some knowledge about where the meaningful information 
lS. 

I splited the distance into a double dimension distance, in order to have a double 
way of spliting. The double distance is simply computed as Bhattacharyya distance 
on the first 17 dimensions, and on the others. The distance is composed by two 
halfs of the same kind: 

• 1 : log power of wave form. 

• 16 : capstrum coefficient. 

• 1 : delta log power. 

• 16 : delta-capstrum. 

Tests First, each component of the distance was tested separatly: test 56 for the 
first and 51 for the second. Of course, the recognition results are worse than with 
the complete distance, but just a little bit worse for the first part (non delta). So I 
t~ied to use a rate between the two components (0.5 being an equal use of the two 
distances, which is equivalent to the normal distance) and set the rate to 1-rate 
every split loop. Tests for rates of 0.3 (58) 0.4 (60) and 0.45 (61) show a best result 
for 0.4, only 0.5% worse than with the full distance. The conclusion of this is that 
only a small part of what is used in the distance is really data, and the rest may 
unfortunately be noise. 

2.2.8 New Composition 

As can be seen with the comparison of 1.3.3 and 2.1.3, the implementation used a 
more simple calculation way, which is equivalent. 
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Basic implementation The implementation of 1.3.3 has been tried for the tests 97 
which can be compared with the test 70 and gave about the same result. The tests 
117, 114 and 112, as compared with 127 and 123, show a result about the same. 
This shows that the implementation doesn't influence the result. 

Quadratic weights The test 121 used for the variance: 

sf=区ぷふ+I: 品(μik:__μD2 
ke:C1 ke:C1 

The recognition rate is really bad, the problem being that the weights are not 
normalised anymore. So I used: 

2 2 

図=L nik 2ふ+L nik 2 (μik -μ 伊
ke:C1 Lje:Cz nij ke:C1区je:Cznij 

... where the nik are defined in 1.3.3. 

As can be seen through the tests 1忍5,134, 131 and 1忍8,the result is as good as the 
old version. 

Simplification As the best result is achieved with a simple composition, I tried 
even much more simple, in the test 129: 

sf= L喫ふ
kc:C1 

and the result is just a little bit worse. 

Variance of the sum As shown in 4.1.3, the variance of the sum can be used as 
variance of the gaussian. I tried this, with an error of implementation: 

C C C 
W也勺V=LW『Si・十LL ―― ―μ叩＋ μふ+μiSieー綺(μ;—µ炉

,~, ,~, ;~, j#i・冨( 2(S, 十S;) ) 

The test 122 shows a very bad recognition rate. As previously shown, quadratic 
weights can be used, tested in 126 but this doesn't improve much the recognition 
rate. One of the problem may be that the second part summing on both i and j has 
a quadratic number of members as compared to the old version or the first part. So 
I tried: 

＞
 

t n『
i=l巧7=1叶

S; 

C C 

+ln L L n; 巧

i=l j=l j=f.i区f=l区畠叫l

1 . . 
冨
A(i,j) 
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... where 

A(i,j) = (-μ 心＋り喜］勺：e-号 (μ;-μJ)2)
but the result is not much better (test 130) because the logarithm as a bad effect 
every time the sum is nul, which happens much often (untrained states). To avoid 
this, as we know the number of members, we can simply scale the second part by 
dividing it by the number of members: 

V = t只2Si 
i==l Lj==l巧
l C C 
十一~~

ninj 

C i==l j==l浮i冗f==l四恥nい1
関(i,j) I 

... where 

A(i,j) = -μ 叩＋ μふ+μiSi 岳
e 
一元(μ;-J-Lj)

亭 (Si十均）

The implementation error being corrected. The result is much better, but still a 
little bit worse than the old implementation (test 133). 
Other implementations have been tried with some small variations: 

C 2 
V = I: 

n-

・ロC 2 Si i=l j=l n-

1 C C 
十一 I:I: ni巧

C i=l j=l芹i四f=l四畠叫I
A(i,j) 

... in the test 135 which doesn't give a better result. 

C 2 

V = L n-Ci 2 Si 
i=l I:j=l巧
1 C C 十万LL ninj 
i=l j=l年こに四恥nknt

A(i,j)2 

... in the test 138 which gives a recognition rate a little better. 

C 

V L n『＝戸―2si
i=l j=l巧

1 C C 十万口こ I:f=1~;t nknl A(i,j)' 
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... in the tests 145, 150 and 152 which show a result quite equivalent to the 
original implementation. 

＞
 

Si 2.
J
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冗

c•>

＋
 

I C C 

ーとこ
ninj 

C i=l j=l炉 Lf=l区畠n切 l
A(i, j)2 

... in the test 141 which shows a recognition rate a little worse than the original 
implementation. 

2.2.9 Distortion as a product 

Reason The distortion was used as a sum of the distances between the members in 
the class. The distance used is the Bhattacharyya distance (cf 1.3.3). This distance 
is a kind of distance between the means increased by the variances. This can be 
understood by the fact that the average distance between two random guaussian 
variables will be the distance between the means of the distributions. But, the 
greater the variances are, the more likely the random variables may occure to be 
further from each other. 
The random variable being the probability of the utterance to be one of this speaker 
(for this state) the distance is also the distance between the speakers. The distance 
between two speakers can be seen as the inverse of the probability of the utterance 
to be one of the first speaker, knowing that it's an utterance of the second speaker 
(for instance, it can be the probability of the value of the random yariable of the 
second speaker to occure as a value of the random variable of the first speaker): 

P(叩灼）＝
1 

{) (臨灼）

Implementation For the selection of the class to be splited, only one component 
is used, since the degree wouldn't bring anything: 

II {)(応心）
ke:C1 

... where k is an element of the class l and c1 is the center of the class l. 

For the general distortion, 
p 

p I ITい（応；瓜）
k==l 

... where ck is the center of the class to which k belongs. 
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Result The results of the tests 109, 115, 113 and 110 can be compared with the 
results of the tests 111, 117, 114 and 112. The recognition rate is about the same. 

3 Adaptation 

3.1 General algorithm 

The adaptation aims to adapt the network to the current speaker, by adapting the 
distribution and also by making the recognition faster. 

3.1.1 Adaptation 

The mixtures of the network are trained and adapted to the speaker. The Forward-
Backward algorithm is used, with the training data of the current speaker. The 
counts of the training data per mixture are established and saved. This counts 
correspond to the sum of the probabilities of each mixture of each state during each 
recognition (training) phase: 

c(i,j) = LP((s = i, m = j)cXu/ !VI, S) 
びeS

... where s is a cell (state) m is a mixture, er is a sample and S is the set of 
training data, X is a sequence (path) for er, and Mis the model. 

3.1.2 Deletion 

The parts of the HMnet corresponding to the silence phonemes and the rest of the 
HMnet are splited. The following algorithms apply to the non-silence part. 

3.1.3 Trained weights 

．． 
Normahsat10n The weights of each output are normalised if the total count is not 
too small (untrained mixture)竺thesum of the counts of the mixtures are compared 
with a threshold (user defined'minimum counter') and if it's over the threshold, each 
mixture's weight is set to the count divided by the sum. Then the weight is updated 
by the maximum between this fraction and a minimum weight: 

Wij = max (c(i,{)・．．
I:jc(i,J) 

,m加 weight)

... where c(i,j) is the count of the jih mixture of the四output,Wij is its weight, 
and m証 weightis the minimum weight, defined by the user. 

So, the probability that the mixture j of the state i appears in an utterance of the 
current speaker, knowing that the state i appears in the utterance, is: 

P((s=i,m=j)/s=i) 
= c(i,j) 

芦~1c(i, k) 
= Wij 

＇ 
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and if it happens to be very small (under the threshold) the probability is set to 
a very small value c for computation reasons. This small value doesn't change the 
normalisation according to the normal precision used in the calculation. 

Zero Only the outputs which have a count over the threshold are taken into acount. 
The other are considered untrained, and their weight is set to zero. 

• While the number of mixtures is over the maximum number, the lowest weighted 
mixture is set to O (it's weight). The weights of the other mixtures of the output 
are recalculated (normalisation). 

• While the number of mixtures is over the minimum number and the count of 
the output is over the minimum counter, the least weighted mixture is chosen. 
If the weight of this mixture is greater than a ratio (user defined) divided by 
the number of remaining mixtures of the output, the loop is broken, otherwise, 
the mixture is set to zero. 

3.1.4 Untrained weights 

Setting First the outputs are checked to恥 dwhich are trained (count greater than 
the minimum count) and which are not. Then all the correlations are increased by 
1. 

The calculation of the untrained mixtures'weights begins by choosing an untrained 
output that has more than one mixture: i. 

Wij = II ke:Strained 
~lcAk Wk/* (ijk/ 

~lcAk (ijkl 

... where Wij is the weight of the Ph mixture of the ith output, Strained is the set of 
trained output, ふ isthe set of mixture of the kth output, and (is the correlation 

matrice. 

If we set 
(ijk/ 
= P((s = i,m = j)/(s = k,m = l),s = i) 

区le:Ak〈ijkl

then 

匹＝知2,t,(五P((k,l)/s= k)P((S = i, 示=j)/(k, l), S = i)) 
... where s and m are the assumed state and mixture. 

This new weights are normalised by: 

匹← max (=:~ij, min_weight) 

Then, the counters of the trained states are put to 0, and the counters of the 
untrained states are put to the minimum count. 
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Zero The same zero procedure as in 3.1.3 is used. As the counters have been 
inverted during the setting (see above) the procedure acts on the'untrained'states 
this time. 

3.1.5 Prune 

While there are more mixtures than the minimum number: 

• The least weighted mixture is chosen and if its weight is over the threshold 
(user defined) the loop is broken. 

• Otherwise, the chosen mixture is deleted by reordering the mixtures without 
it. 

The maximum number of mixtures is calculated. 
So: 

叫 CsT T 

P(X,S/入）= ~ ・・・ ~ IT I(c(st, し)-Cst)N(μstlti S叫
l1=1 IT=l t=l 

... where I is the fonction defined by: 

I(x) = lifx>O 
- 0 otherwise 

and Cst is the threshold depending on the number of deleted mixtures. 

3.2 Present work 

3.2.1 Product 

The weight reestimation, as explained in 3.1.4 takes the weighted (by the correla-
tions) sum of the weights as new weight. I also tried to use the weighted product: 

匹= II TI1cAk如*(ijk/ 

kcStrained (江cAk(ijkl) card(Ak) 

This has been implemented in test 141 and gives exactely the same result as with 
the sum (test 13乳

3.2.2 Composition 

If only a small amount of data is used during the adaptation, and it is likely to 
occure if we use a recognition system on a brand new speaker, the mixtures with 
small weights may not be the less important, and pruning them is maybe not the 
best solution. For accoustic environment reasons and also physic condition of the 
speaker reasons, a set of close mixtures may not be used, althrough they would 
match the speaker's utterances in other conditions. In order to keep these mixtures 

27 



without reducing the network's performances, I tried to compose the less weighted 
components instead of pruning them. 
The composition can generate a mistaking in the path during the recognition since 
it keeps mixtures which may not correspond to the speaker for one state, but may 
interfer with mixtures of the speaker for other states. 

． 
Implementat10n Th "t'・th e compos1 10n 1s e same as the one explamed in 2.1.3 and 
only between two mixtures: the two less weighted mixtures. The composed mixture 
is kept and has a weight equal to the sum of the weights of the two mixtures. 

result As can by seen with the test 154 as compared to the test 14 6 the result is 
not worse. Unfortunately, this test is on data of the same kind as the training data, 
and the HMnet has already been much trained, so the effect of the composition can 
not really be seen here. 

3.2.3 Exponent 

As seen in 3.1.4 

向=J},""'(ミP((k,1)/s = k)P((S = i, fo= j)/(k, 1), S = i)) 
so 

Wij = rr 1 P(s = k,m = l)P(s = i,m =j,s = k,m = l) 
I: 

keStrained P(s = k) leAk P(s = k, m = l, s = i) 

if we assume that (k,l) is independant from (i,j), which means that the supposed 
mixture is independant from the real one (but not of the sample), 

Wij 

＝ 

II 
P(s = i, m = j) 
P(s = k)P(s = i 

I: P(s = k, m = l) 
ki:Strained) lcAk 

II P(s = i血=j/s = i) 
kc Strained 

P(s = i, m = j /s = iyard(Strained) 

This has been implemented in the test 155 and achieves about the same result as 
without the degree. 

ー
．
 

4

4

 

Annexe 

4.1.1 

Composition 

Goal 

For each cluster, we have many mixtures, corresponding to the different speakers 
which are close to each other, and we'd like to compose theses mixtures in order to get 
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a unique mixture. What's more, this composition is a weighted composition, since 
we'd like to make the more reliable mixtures more important in the composition. 
As had been seen in 2.2.3: 

P{X,S/入）＝（丘 a年,,.)~t 已t(五仇(k,)c人（叩）
t=l l,=lk,=l lr=lkr=l l=l)  

（五a.,_,.,)t・ ・尺五t---t仇(k,)ck,如（叩）
t=l 11=1 IT=l t=l k1=l kT=l 

The如（叩） are gaussian distributions: 趾（叫
So ¥/tc{l, ... T} 

p 

~=~81i(kt)Ckふ（叩）
kt=l 
p 

~81t(kt)c砂（匹；ふ）（叩）
kt=l 

4.1.2 Two gaussians 

We want to approximate this sum of gaussian probabilities, by a gaussian probability 
since it allows to do the same tests and further treatments to the network. 
The mean of the sum is: 

M = E悩＋応］
附 +μ2

The variance is: 

V = E[偲＋灼ーぃ—四）汀
E[(~1 -μ 丁＋（灼一 μ2げ+2(~1 — µ1)他ー四）］

ふ十ふ十 1rS:S2E [ e―玉[(S叶S炉—2x(尋＋疇）+μ 岱+µ~S1)] _ 2μ 研2

s 
2 

1十ふー 2μ叩+{-砂B
7r 

... where 
＇ 

A
 
―μ芦―μ詞＋

µi碍十 µ~S『 +2µ叫2Sふ
ふ+S2 

S1S2 
- (μ1 -四）2
S1 + S2 
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... and ... 

so 

B = E[1 1 eー亨戸亨芽）']
亭 Sふ

J+oo eー五（三X号齊）2
冨S心—oo

ご図工図；疇）］
1 E [N(μ ふ＋疇

μ1品十 μ2S1

S1 + S2 

... using y = ,/. 可丁図x.

V=ふ＋ふー2μ山+μ心+μ母f-e―麟(μ1-四）2
ふ+s2 1r 

4.1.3 Multiple gaussian 

The previous equation can be easly extended to a P gaussian weighted sum: 

p 

M = E[Lwぶ(μ訊）］
i=l 
p 

LWiμi 

i=l 

and, 

V = E [£: 巳(~(µ⑮)ー叫）2
i=l 

E[鯰w;嗅(μ;ぶ）ー］い(Wμ;;名）一μ;)]
p p 

亨 S;心 tデ j(-μ; 灼+μふ+μぶ c―綺(μ;—研
i=l i=l j=l jji 亭（ふ＋＄））

4.1.4 Quadratic error 

The problem in this method is that the sum of gaussian distributions is usely not a 
gaussian distribution. But if we want to use a gaussian distibution, we can try to 
find the closest one, by minimising the quadratic error. So, we try to approximate 

p 

区wぶ(μ五＄）
i=l 
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by 

叫；S) 

R = E [(H(μ; S)―言訊(μ忍））']
using the fact that四にwi= 1 (the weights are normalised) we get 

R = E [ふ叫(μ;S) -~(µiぶ）））2] 
i=l 

- E [鯰出w;(H(μ;S) -H(μ,; ふ））(H(μ; S) -H(μ;; S;)) l 
ー鯰w,w;E[N(μ; S)2 -N(μ; S)(叫；S,) + N(μ;; 的）） + N(μ,; S,)N(μ;; 的）］
p p 

—I: I:wiwi(f(μ; S) -9i(μ; S) -9i(μ; S) + Cst) 
i=l j=l 

where: 

f(μ; S) 
1 
這 SE[―-e1 甘¥"(x-μ,)2―亭f l 
μ 

2亭 s

and 

9i(μ; S) = 応 +μiSe―号(μ;―μ)2 
冨 (S叶 S)

The optimal (μ; S) can be found by: 

(I) =0 
using a gradiant method to compute it (as an aproximation). 

4.2 Tests 

4.2.1 Nomenclatura 

All the tests have been done on a 400 states HMnet (RES_TEST400, res400, r4). 

• mix1 mi : Maximum number of mixtures for each state. 

• dr : Distortion rate (rate between the fifth and the mean components). 
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• er: Change rate (rate between the change rate at the beginning and the one 
calculated during the spliting). 

• de : Degree used for the fifth component. 

• thx.xxx : Threshold for the distortion. 

• th : Stop the spliting for variance of the distribution of membership purpose. 

• xxxx: Total number of mixtures. 

• p: Pruned. 

• myais1 m : Test on the current speaker for the adaptation. 

• bis1 b : Test that has already been done on another machine, or at another 
time, in other comditions… 

• #) 1 @: The tests are computed on different computers (atrh15, 25, 30, and 
the others on 23). 

• pr: Use of the product for the weight estimation. 

• wox.xxx : The Zero procedure is not used in the weight settings (trained and 
untrained). The number is the pruning coeficient. 

• wox.xxx : The Zero procedure is used in the weight settings (trained and 
untrained). The number is the pruning coeficient. 

• co : Instead of being pruned, the less weighted mixtures are composed. 

• ce : Use of the coeficient for the estimation of the weights of the untrained 
states. 

4.2.2 List of the tests 

0 RES_T EST400.05.myais 
I RES_T EST400.05.p.myais 
2 RES_T EST400.IO.myais 
3 RES_T EST400.10.p.myais 

63.582224% 
64.979386% 
64.567107% 
67.109483% 

4 res400.05 67.333465% 
5 res400.l0 67.414074% 
6 res400.15 66.845015% 
7 res400.05.p 64.121468% 

8 res400.05.0l.05 65.333888% ， res400.05.05.05 65.859971 % 
10 res400.05.09.05 66.330405% 
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... where the three numbers correspond to mi_dにer.

11 r4_mi10盆 0.0 66.070690% 
12 res400_mixlO_drO.LcrO.O_de5 66.098607% 
13 res400_mix10盆 0.5立 O.O_de5 66.123568% 
14 res400_mixlO_dr0.9_crO.O_de5 66.447962% 

(cr0.0) 
15 res400_mixlO_dr0.9_cr0.9_de5 66.152899% 
16 r4_milO_dr0.9_crO.O_de7 66.384485% 
17 r4_mi10_dr0.9_cr0.0_de8_3517 67.002979% 
18 r4_milO_dr0.9_crO.O_de9_35l 7 66.793946% 
19 r4..:m紐10_dr0.9_cr0.0_de10_3517 66.668463% 
20 r4_milO_dr0.9_crO.O_del5_3517 66.559235% 
21 r4_mix10盃 0.9_cr0.0_de20_3517 66.578662% 

22 r4_milO_dr0.9_crO.O_delO_add 66.578284% 
23 r4_milO_dr0.9_crO.O_delO_addO 65.829154% 
24 r4_mi10傘 0.2立 O.Lde8_addL0.5 65.103728% 
25 r4_milO_dr0.9_crO.O_de8_add2_3 65.543243% 
26 r4_milO_dr0.9_crO.O_de9_add2_s 66.356848% 
27 r4_milO_dr0.9_crQ.O_de9_add2_sd 66.646918% 
28 r4_mix 10 _dr l. O_de8_add2_s 66.367650% 
29 r4_milO_dr0.9_crO.O_de10ふdw 66.250198% 
30 r4_milO_dr0.9_de8_sm 66.588930% 

31 s 1_r4_mi10 _drO. 9_cr O. O_del 0 63.097083% 
32 r4_mil0如 0.9_cr0.9_del0年 V 65.804846% 

33 叫叫lQ_drO.O_crO.9_de8 66.393957% 
34 叫ーmi10_dr0.9_th0.3 65.912357% 
35 r4_mi10如 0.9_th0.4 66.879780% 
36 r4_milO_dr0.9_th0.5_sm.add.s3 66.092006% 

New version of setting centers and belongings. 

37 r4_milO_dr0.9_de8_04.10.95 66.373653% 
38 r4_mi1Ldr0.9_de8_th0.3-354 7 66.163365% 
39 r4_mil2_dr0.9_de8_th0.2525_3517 66.088352% 
40 r4_mil3_dr0.9_de8_th0.23602_3517 65.580444% 
41 r4_mil4_dr0.9_de8_th0.228_3517 65.817028% 
42 r4_mil5_dr0.9_de8_th0.2235_3517 65.929358% ． 
43 r4叫 16_dr0.9_de8_th0.22035_3517 65.931970% I 

↓ 
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thO.O means that it is not used. 

44 r4..rnil O _drO .9 _de8_t hO .Q_t h_3389 66.723766% 
45 r4_mi1Ldr0.9_de8_th0.354 7 _th_3517 56.646464%* 
46 r4_mil2_dr0.9_de8_th0.283Lth_3517 66.604741% 
47 r4_mil3_dr0.9_de8_th0.2587 _th_3517 66.274240% 
48 r4_mil4_dr0.9_de8_th0.24406_th_3517 66.262743%* 
87 r4_mil5_dr0.9_de8_th0.2360Lth_3536 65.758869% 

49 r4_mi5_dr0.9_de8_th0.0_th_l872 65.911284%* 
50 r4_mi6_dr0.9_de8_th0. I 625_th_l872 65.767119%* 
51 r4_mi7 _drQ.9_de8_thO.I4545_th_l872 65.651652%* 

debug 

52 r4.:mi8_dr0.9_de8_th0.l39_th_l872 65.331449%# 
53 r4-1ni9_dr0.9_de8_th0.136_th_l872 65.258028%* 
54 r4_miIO_dr0.9_de8_thO.I3533_th_I872 66.067122%# 

thO.O is used in the following tests. 
dd is the distance rate between the two components of the distance. 

55 r4_mill_dr0.9_de8_thadd3_3678 65.083226% 
56 r4_milO_dr0.9_de8_ddO.O_th 65.941939% 
57 r4_milO_dr0.9_de8_ddI.O_th_35I 7 61.801889%* 
58 r4_milO_dr0.9_de8_dd0.3_th_35l 7 66.437180% 
59 r4JnilO_dr0.9_de8_dd0.3_thc_3134 65.710306%* 
60 r4_milO_dr0.9_de8_dd0.4_th_3299 66.510795% 
61 r4_mill_dr0.9_de8_dd0.45_th_3560 66.467058% 
62 r4_mi1Ldr0.9_de8_dd0.45_thd_5839 65.710306%* 

Tests 64, 68 and 71 used a bad list for adaptation. 

63 r4..:mil O_dr0.9_del l _th0.0_th_3399 66.925151 % 
64 r4_mil O_dr0.9_del 1 _th_3399_p_3312 66.046115%* 
65 r4JnilO_dr0.8_de12_thO.O_th_3399 66.673827%* 
66 r4_mil O_dr0.5_del 1 _th0.0_th_3390 66.602610%* 
67 ,4_mil Ldr l .Q_del3_th_3682 66.758899%* 
68 r4_mi1Ldrl.O_del3_th_3682_p_3314 66.182076%* 
86 r4_milO_drl.O_de5_th_3400 66.240831 % 
69 r4_mil Q_dr l .Q_de9_th_3404 66.909524%* 
90 r4_mil Q_dr l .O_del Q_th_3399_0 66.792979% 
70 r4_mil Q_dr l .Q_del Q_th_3399 66. 792979%* 
71 r4_milO_drl.O_delO_th_3399_p_33l2 66.132605%* 
72 ,4_milO_drl.O_delO_th_3399_p-2042 63.204754% 
73 r4_mil Q_dr l .O_del l _th_3597 66.925151 %# 
-96 r4_milO_drl.O_de20_th_3407 66.607942% 
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74 r4_mi9_drl.O_de9_th_3283 66.357236%# 
75 r4_mi9_drl.O_de10_th_3115 66.201761 %* 

The tests 83, 93, 88, 78 and 80 were not completed because of a bug in the recognition 
procedure. 

76 r4_mi8_drO.O_delO_th_2819 65.630345%* 
83 r4_mi8_drO.O_delO_th_28l9_p_l83Lmya 68.328333%* 
91 r4_mi8_dr0.3_delO_th_2823 65.800309%* 
93 r4_mi8傘 0.3_delO_th_2823_p_l843_mya 67.653674%* 

85 r4__mi8_d,O. 5_del Q_th_2824 65.428486%* 
88 r4_mi8_dr0.5_delO_th_2824_p_l802_mya 67.241377%* 

94 r4_mi8_dr0.7 _delO_th_2825 65.400269%* 
77 r4_mi8_drl.O_delO_th_2824 65.613686%* 
78 r4_mi8_drl.O_delO_th_2824_p_l 772_mya 66.454965%* 

95 r4_milO_drO.O_delO_th_3586 66.688156%# 
79 r41nilO_drO.O_delO_th_3388 65.624267% 
80 r4_mi 10 _drO. 0 _delO _th_3388_p.2088_my 68.515742% 

81 r4_milO_drO.O_delO_ths_3393 66.783781 % 
82 r4_mil Q_dr l .O_delO_ths0_3396 66.571711% 
84 r4_mi8_dr0.5_delO_ths0--2823 65.509596%* 
89 r4_mi8_dr l .Q_del Q_thv_2826 65.987464%* 
92 r4_mi8_drl.O_del0_v_2877 65.894361 %* 
97 r4_milO_drl.O_delO_thn_3399 66.822004%# 

New test version. A bug occured in the program. 

98 r4_milO_drl.O_delO_thnp_35l 7 64.949392%# 
99 r4_milO_dr1.0_delO_thnv_3517 64.949392%# 
100 r4_milO_drO.O_delO_thnv_3517 64.949392% 
101 r4_milO_drl.O_delO_thnp_35l 7 _bis 64.949392%# 
102 r4_milO_dr0.5_delO_thn_35l 7 64.949392%# 
103 r4_mi8_drl.O_delO_thnv-2877 64.383387%# 
104 r4_mi8_dr l .Q_de10Jhnp_2877 64.383387%# 
105 mi8_dr0.3_del O_th_2823_mi5_1644_m_b 66.34 7 468%* 
106 r4_milO_dr0.5_delO_thn_3517 _bis 64.949392% 

“
ー
・
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debug, new test procedure, new tables. 

107 r4_milO_drl.O_delO_thnv_34 73 
116 r4_milO_dr0.5_delO_thnv_3282 
108 r4_milO_drO.O_delO_thnv_3298 
118 r4_milO_drl.O_delO_nv_3506 
109 r4.:mi lQ_dr 1.0_del Q_thnp_3294 
115 r4_milO_dr0.8_delO_thnp_3528 
113 r4_milO_dr0.5_delO_thnp_352l 
110 r4_milO_drO.O_delO_thnp_3304 
119 r4_milO_drl.O_delO_np_3506 
111 r4_milO_drl.O_delO_thn_35l4 
117 r4_milO_dr0.8_delO_thn_3502 
114 r4_mil O_drO .5_del Q_thn_3306 
112 r4_milO_drO.O_delO_thn_3273 
132 r4_milO_drl.O_delO_n_3506 
120 r4_milO_drl.Q_delO_th_3514 
124 r4_milO_drl.O_delO_th_3514_bis 
127 r4_milO_dr0.5_delO_th_3500 
123 r4_milO_drO.O_delO_th_3495 
121 r4_milO_drl.O_delO_thnL3312 
122 r4_milO_drl.O_delO_thn0_3312 
125 r4.:milO_drl.O_delO_thn2_3312 
134 r4.:milO_dr0.5_delO_thn2_3500 
128 r4.:milO_drO.O_delO_thn2_3273 
131 r4_milO_drl.O_delO_n2_3700 
126 r4.:milO_drl.O_delO_thn3_3312 
129 r4.:milO_drl.O_delO_thn4_3514 
130 r4.:milO~drl.O_delO_thn5_33l2 
133 r4_mi lQ_dr l .O_del O_thn6_33l 2 
135 r4.:milO_drl.O_delO_thn7 _3312 
138 r4_milO_drl.O_delO_thn8_3312 
150 r4.:milO_drO.O_delO_thn9_3273 
152 r4_milO_dr0.5_delO_thn9_3306 
145 r4.:milO_drl.O_delO_thn9_35l4 
14 7 r4_mil Q_dr l .O_del Q_thnl 0_3312 

64.006835%* 
64.067224%* 
64.610183% 
64.391512% 
64.953024%# 
63. 758108%* 
63.677615%* 
64.691566% 
65-;・019750%# 
64.881671 %* 
64.810552%* 
63.276830% 
63.969881 % 
64.642974% 
64.881671 %* 
64.881671 %* 
65.010248%* 
64.344641 %* 
37.705567% 
20.182004%# 
64.636428% 
64.876940%* 
64.323654 %# 
64.580324%* 
21.108129%# 
63.697929%* 
22.591623% 
62.483481 %# 
62.156524%# 
62.387838%◎ 
63.554518%# 
63.485627%# 
64.089156%* 
63.226641 %# 

136 r4_mi8_drl.O_de10_3002 64.057879%* 
143 r4_mi8_drl.O_de10_3002_p-2333_m 64.975077%* 
157 r4_wi0.0Lce_3002_pl2_1948_m 65.043044%* 
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All the following test use _milO_drl.O_delO_n_. 

137 r4_milO_drl.O_delO_n_3506_p-2578_m 

140 r4_wo0.0_3506_pQ_3416_m 
141 r4_pr _3506_pLxxxx_m 
142 r4_wo0.0001_3506_p2_2866_m 

143 r4_wo0.00L3506_p3-2622_m 
144 r4_wo0.0L3506_p4-2073_m 
156 r4_wi0.0Lco_3506_pll-216Lm 
151 r4_wo0.05_3506_p7 _l408_m 
153 r4_wi0.08_3506_p8_1153_m 
146 r4_wo0.L3506_p5_1019_m 
154 r4_wふ0.Lco_3506_p9 _l 266_m 
155 r4_wi0.Lce_3506_p10_1019_m 
149 r4_wo0.5_3506_p6-410..:rn 

References 

66.719526% 

66.696876% 
66.719526% 
66.696876% 
66.719526% 
66.855460% 
66.674221% 
67.059356% 
66.968733% 
67.217940% 

66.946083% 
67.217940% 
65.382874% 
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