
Internal Use Only

TR-IT-0143

Towards a Long Sentences
Preprocessor

for the ATR English Grammar

Hassan EL NAHAS

December 22, 1995

Abstract

In general, natural-language parsers are extremely inaccurate on
very long sentences. In this report, a new approach will be outlined
to the problem of insuring accurate parses of long sentences by broad-
coverage grammar/parsers, or at least by the A.TR English Grammar
parser. In addition to an explanation of the overall strategy being
pursued, this report will include an overview on prelinlinary experi-

mental results within a crucial area of this approach: reliably identi-
fying grossly-categorized sentence types as a :first, preprocessing step
in the parsing of long sentences.

@ATR Interpreting T I e ecommumcat10ns Research Laboratories

005

ー

Contents

1

2

Introduction 3

,I

!
The Grammar
2.1 A View Of The ATR English Grammar
2.2・what Is A Correct Analysis? • •
2.3 Long Sentences Grammar
2 .4 One Example

3

4

....................
...........................

Experimental Method
3.1 Generating The Training Data
3•) . -~ ・writing Quest10ns ... ,

Results

9
J
3
4
5
6

Appendices

A

B

Viewing Decision Trees

Question Language

7

8

9

1

3

3

3

1

1

1

1

,

9

,

 9]

1 Introduction

In this report1 I will try to explain why it was so important to have a pre-
processor of long sentences for the ATR English project. I will give first an
overview of the ATR main grammar1 then I will describe this preprocessor

and the grammar that it involves in Section 2. I will describe the steps taken
to provide the Long Sentences Grammar with the necessary training data
and questions to build the decision trees in Section 3. Experimental results
and conclusions obtained using this grammar follow in Section 4.

ヽ
2 The Grammar

For many decades, resarchers have been dreaming of a parser for everycla.y
English sentences. You input any sentence from today's newspaper, from
your computer manual, from the latest business letter you have received.
The ouput is this sentence correctly analysed.・I will explain later what I
mean exactly by an analysis of a sentence, when I will describe the grammar.
¥i¥Te can understand easily that with such an analysis, it would be easier to
do automatic translation from one language to another. And thern are many
other applications of parsing.

＼

』

(
＼

2.1 A View Of The ATR English Grammar

The statistical grammar used at ATR is a feature-based context-free phrase
structure grammar employing traditional syntactic categories. It consists of
the following items:

• Features -The values of these features represent the syntactic and
semantic interpretations of a sentence. They give information about
the usage of words and phrases in the sentence.

• Feature bundles -These are collections of feature-variables and their
values.

• Rules -A rule consists of a parent feature bundle, and a sequence of
one or more child feature bundles. In a parsed tree, each node of the

tree corresponds to one rule, and the leaves of this tree represent the
tags. Therefore, each leaf corresponds to one word.

（

3

［
．

To illustrate the rules, here is one example:

;
＼

）

1

2

a

I

I

T

ー
T
ー

••
•

ー

2
1
3

f
f

f

（

＼

¥

)

1
2
1

c

f

f

:

l

¥

．

ー

2

3

f
f

f

（

＼

¥

）

l

3

b

I

I

l

l

．．

．

ー

2

3

f
f

f

(

¥

↓

¥i¥「heref11 f2, and f3 are features; a, b, and care feature values; and¥、「11
V21 and V3 are variables over the feature values. This rule can easily be

extended to a certain number of rules with no variables. In each of the three

feature bundles specified in this rule1 only three features figure1 that means

that all the others take default values. •9

From now on, I will refer to the number of words in a sentence by n a.ncl

to the number of rules in the grammar by G.

For more details of the grammar see [3].

2.2 What Is A Correct Analysis?

A correct analysis of a sentence consists of the two following steps:

• Tagging: assigning to each word in the sentence the correct tag.

• Parsing: defining the constituents of the sentence in order to build the
parsed tree.

To understand what is exactly a parsed tree, here is an example朽

1The parse shown is this example is in fact false, but shows how difficult the problem
of ambiguity in parsing is.

4

9ヽ

9

.

~,

Our problem here is not t~gging, since it does not take a long time to tag
a sentence compare to parse rt. The algorithm of parsing is very expensive
a.ncl it is aproximately the same in any parser, its compexity is: 0(G叫が）．
In addition to that, generally parsers do poorly on long sentences.

The idea. was then to preprocess the tagged sentence with a small gram~
mar in order to find the high level structure of this sentence. Then, it is
possible to parse each splitted part of the sentence inclependantly with the
ma.in grammar. After a.11, we can get the whole parse by reattaching these
parts together.

(
¥

2.3 Long Sentences Grammar

Long sentences splitting grammar like ATR grammar consists of the following
items:

• 34 features, compare to 67 in the main grammar.

• 31 rules, compare to 107-5 in the man grammar.

• 262.5 tags, compare to 2625 in the ma.in grammar.

¥i¥「echose an initial definition of 2-5 words of length to chara.cterize the n〇ti゚n
long sentence. This grammar is expected to reduce considerably the a.mount

(＼

ごり
r’し

！

of calculus needed to train the model and parse the sentences, since the mun-

ber of rules has been considerably reduced. Besides, among the 34 features

that remain, only 6 a.re relevants to long sentences splitting; the others have

been kept to define all the tags.

¥i¥That is important to know about the rules in the long sentences splitting

grammar is that it must include one particular rule which is the rule no split.

This rule states that a sentence can not be splittecl and that it must be parsed

entirely. The no split rule works like the other rule and there is no need to

consider it except when generating it for the training data. In total, there is

only 20 non-terminal rules.

2.4 One Example

Here is a parse using long sentences grammar:

[start [ibbar_sd_period [ibbar [wordstring1 For_IIFOR [wordstring1

all_DB [wordstring1 the_AT [wordstring1 furor_NN1INTER-ACT

[wordstring ,_, wordstring] wordstring1] wordstring1] wordstring1]

wordstring1] ibbar] [sd [wordstring1 there_EX [wordstring1 is_VBZ

[wordstring1 nothing_PN1 [wordstring1 particularly_RRDEGREE

[wordstring1 complex_JJCOMP-B [wordstring1 about_IIABOUT [wordstring1

the_AT [wordstring1 concept_NN1MEANING [wordstring1 of_IIOF

[wordstring1 stock-index_JJDOCUMENT [wordstring1 arbitrage_NN1COMP-B

[wordstring1 ,_, [wordstring1 the_AT [wordstring1 most_RGT

[wordstring1 controversial_JJPROBLEM [wordstring1 type_NN1CLASS

[wordstring1 of_IIOF [wordstring1 computer-assisted_JJVVNHELP

[wordstring1 program_NN1SYSTEM [wordstring trading_NVVGINTER-ACT

wordstring] wordstring1] wordstring1] wordstring1] wordstring1]

wordstring1] wordstring1] wordstring1] wordstring1] wordstring1]

wordstring1] wordstring1] wordstring1] wordstring1] wordstring1]

wordstring1] wordstring1] wordstring1] wordstring1] wordstring1]

sd] . _. ibbar _sd_period] start]

And here the parse of the sa.me sentence using the main grammar:

[start [sprpd1 [sprime2 [ibbar1 [i1e [pi For_IIFOR [nbar4 [d10 all_DB

the_AT d10] [n1a furor_NN1INTER-ACT n1a] nbar4] pi] i1e] , ー， ibbar1]

6

[sd3 there_EX [vbar1 [v2 is_VBZ [nbarq25a [nbarq21 [nbar6 nothing_PN1

nbar6] [j5a [r1 particularly_RRDEGREE r1] complex_JJCOMP-B j5a]

nbarq2i] [iie [pi about_IIABDUT [nbarqiO [nbarq4 [nbar4 [di the_AT di]

[nia concept_NNiMEANING nia] nbar4] [i1e [pi of_IIDF [nbari [n4 [n2a

stock-index』 JDOCUMENTn2a] [nia arbitrage_NNiCOMP-B nia] n4] nbari]

pi] i ie] nbarq4] , _, [nbarq4 [nbar28 [di the_AT di] [j 6 [ri most_RGT

ri] controversial_J JPROBLEM j 6] [nia type_NNiCLASS nia] nbar28] [iie

[pi of _IIOF [nbar12 [j i computer-assisted_J JVVNHELP j i] [n4 [nia

program_NN1SYSTEM nia] [n11 trading_NVVGINTER-ACT nii] n4] nbari2] pi]

iie] nbarq4] nbarqiO] pi] iie] nbarq25a] v2] vbari] sd3] sprime2]

. _. sprpdi] start]

This was the correct parse for the 26 words following sentence:

For all the furor, there is nothing particularly complex about the

concept of stock-index arbitrage, the most controversial type

of computer-assisted program trading.

vVhat follows each word by an underscore is the tag assigned to this word.

And it is clear that tags are the same in both cases. vVe can see that this

long sentences splitting grammar parse gives only the following high level

structure of the sentence:

ib bar_scLperiocl→ ibbar scl period

All constituents labels like wordstring or wordstr'ingl are temporary and will

be changed when the splittecl parts will be parsed using the main gramma.r.

／
，
ー
＼
｀

¥II

9(\~]

3

Experimental Method
(
＼

As described in Section 2, the long sentences splitting grammar is similar

formally to the usual grammar. Accordingly the model is trained like before

and the same code can be used. The grammar has been written using the

grammarian's workbench tool汽whichprovides the project with an effective

environment for editing and testing rules on example sentences. One is only

required to check that all the feature bundles have been specified and that

吋histool was developped by David M, Magerman.

T̀
¥

7

,＇し

'
j

nothing has been forgotten丸

The main tool to attribute孔 tagto each word, and to compute the prob-

ability of each parse found is the statistical binary decision tree. These

decision trees ask binary questions about the sentence, then in accordance to

the answers, we get through the trees and at the leaf, we read a probability

distribution. I will not describe decision trees more than that because it is

not the topic of this report here; for more information see [l].

To build a decision tree we do the supervised training, so we need:

1. A large number of conectly parsed sentences to provide the system

with the statistics.

2. Relevant questions written by a grammarian. ¥¥e can imagine here any

kind of questions that might be relevant to the fact that we have to

split the sentence or not.

3.1 Generating The Training Data

The training data represent all the data necessary to provide the system

with statistics. Such statistics are used to build the decision trees. It is very
important to represent all of the rules in the three types of data files: train,

helclout, and test. The proportions that have been used are respectively 80%,

10% and 10%. The way to generate this data from the usual data is easy but

takes a long time. The number of sentences that train the model must be

more than 1500 sentences. The results I have with 1000 sentences only were

ba、cl.This number is purely experimental. This number may depend on the

number of rules in the grammar. The more the rules are, the more sentences

may be needed to train the model.

Since it takes a long time to parse sentences by hand, it was advisable to

translate the sentences already parsed with the main grammar format to the

long sentences splitting grammar format. In the following are the steps taken

3I have noticed, while running experiments, that some feature bundles were missed; in
this case the system cannot recognize the parse of the sentence, and therefore neglects the
sentence from the training data.

I

8

to generate the sentences according to a. cert孔innumber of rules including

the rule no split. The input is a. large corpus of sentences parsed correctly

according to the main grarnrna.r丸

• Filter this corpus so that only sentences with more than 25 words re-
1nam.

• For each rule of the long sentences splitting grammar, modify, keep or
delete the constituent labels of the sentence that correspond to this

rule so that they correspond to our grammar.

• Make all the sentences that remain, no split sentences尻

• Append 80% of each rule file to the training data, 10% to the smoothing
data6 and 10% to the test sentences. （

9
ー

4
9

3 • 2 Writing Questions

Once the training data are ready, questions must be correctly written in the

machine language. The questions are usually written by a grammarian. For

the purpose of writing any possible questions, a question language has been

provided to the project which contains a large number of primitives. Ques-

tions are written as combination of these primitives as shown in the examples

below. It is interesting to add more and more primitives to the question lan-
guage.

There are two different kinds of questions:

• Binary questions: return yes or no answer.

• Bit questions: have several possible answers; each a.nsvver is represented
by a bit string. Usually a file is associated to such a question containing

the bit string assigned to each possible answer.

4What I mean by main grammar is the grammar that will parse the splitted parts of a
long sentence.

5The percentage of no spW sentences must be less than 30%; if this percentage exceed
30% the grammar will perform poorly. In our first experiments this percentage was about
25%, which also can be lowered by adding new relevant rules to the grammar.

6The smoothing data are used to make the decision trees less representative of the
specific training data.

（＼

，

＇

i,~

A binary question returns a yes or no answer, while a. bit question returns

an answer represented by a bit string. Usually a file is associated to each

bit question and contains the bit string assigned to all possible answers of

the question. The number of questions does not mean anything:・what is

important is the fa.ct that these questions are relevant. To check that the

questions have worked correctly, it is useful to view the decision tree through

a tree editor, as described in Appendix A. Viewing the decision tree gives a

Jot of information about the efficiency of the questions 7.

Some examples:

• my question Bit(IsEven(SentLength()))

• commaJirst Bit(MemberCWorclSet(','),ConsvVorcl(PickNocle(0,0),0)))

• numcomma Bits("num.bits" ,Num¥i¥Torcl(','))

"num.bits" is: 言
0
1
2
1
3

All the functions that figure in the examples are primitives. I have written

the first question myself; it returns yes, if and only the length of the sentences

is an even number. It is evident that this question is not relevant, but it is

reassuring write such a question and see that decision tree will simply ignore

it.

The second question returns yes if and only if the first word in the active

node is a comma.

The third question is a bit question; it returns the number of commas in the

sentence. For three and more it will return the same bit string.

The way to improve the system is to write more and more questions,

a task undertaken by the ATR grammarians. For more details about the

question language see Appendix B.

71 have noticed that some questions were not expected to be important compared to
another, and vice versa. Such remarks could be very crucial to improve the system.

10

4

Results

The cha.ra.cteristics of the first experiments were the following:

• 2115 long sentences were used.

• The average length of these sentences wa.s 3,1,3 words.

• The percentage of the rule no split was a.bout 25%.

• 49 questions were written; they return in total 212 bits.

I suppose that the percentage of no split sentences is still big, but it can

be reduced by adding more relevant rules to the actual version of long sen•
tences splitting grammar. ¥i¥!e believe that most long sentences in English

can be splitted.

Here a.re the results:

Sta.tis tics Percentage

Correct in top 0 00.00

Correct in top 1 26.06

Correct in top 5 76.36

Correct in top 10 80.61

Correct in top 15 83.03

pc>忙/10 03.03

pc> Pb /100 09.09

・where p0 and 7} refer respectively to the probabilities of the correct parse

and the best pa.rse. The aim is tha.t they refer to the same parse,

The results appeared to be bad, but when I looked through the parses found

I noticed that the most probable parse was always the no split parse. That
meant that the rnle no split was too powerful. Actually, it is easy to see that
splitting a sentence is more difficult than assigning it one of the splitting

rules described in the grammar. The idea is to build a split/no split model

before trying to split the sentence.

I can say that these results are promising for the following reasons:

（
＼

囀
ー
、
”
,
“

（＼

ャ

ur'l

11

1;

I

• ¥'!Ve have succeeded in identifying a very small set of parses containing

the correct parse, a good percentage of the time, choosing from a very

large group of parses.

• The parses that have a. probability better than the correct might be

filtered later when processed with the main grammar.

The conclusion then is to add a new grammar before the long sentences

splitting grammar, whose task is to predict if a sentence is to be split or not.

vVith such a. grammar, the rule no split can be removed without problems

from long sentences splitting grammar and can a.void affecting the grammar.

Consequently, the long sentences split~ing gra.mma.r is able to deal exclusively
with splittable sentences. The no spb.t parse will not be in the parses found.

The 2nd statistics show the correct results.

A summary of what precedes can be shown in the following figure:

Split ? Split !

l

y

n

Sentence > 25?
n

The grammar which must be added is represented in the box Split ?. I

don't expect that this grammar will be difficult to write and most questions

asked will be taken from the actual long sentences splitting grammar. In
addition to that, the actual version of~ong sentences splitting gramma.r and
the set questions are preliminary vers10ns only; now that they are written

it is easy for the grammarian to improve them. Of course, the main part

of the project remains in the box" Parse I" which represents what the main

grammar does.

12

Appendices

A Viewing Decision Trees

The idea of viewing decision trees is not new, since parsed trees are always
seen by a tree editor. A tree editor uses an explicit representation of node
and subtree contonrs、 Theeditor that we use is the 00-Browser graphical

interface [4), This program demonstrates a dynamic tree-drawing.

The decision trees are generally very big. The depth of the tagger tree
for example can be more than 15. The number of leaves in this case is about•
215, so it is easy to understand that it is quite unfeasible to get through the
tree manually. (

，
＼

i
d～
ー

1
』

To view a decision tree, the format of the tree must be changed so that it
can be read by the 00-Browser. Some functions have been added by Stephan
Eubank and I for that purpose.

B Question Language

Questions must be written for building decision trees. It is then useful to

provide the project with some primitives that can be used in a certain com-

bination to write the questions. This is what actually does the question
language described in [2].

The question language functions are divided into :five different categories,

based on the data type they return: node functions, bit-array functions, list

functions, boolean functions, and value functions. Ea.ch question language
function extracts some information from the current parse state. The parse

state consists of a. sequence of parse nodes spanning the entire sentence with
a.n indication of which parse node is active.

Actually, a large number of functions a.re already written,, but it would be

nice to add some more functions. The wa.y to a.dd a function is not difficult.

vVhen writing a new function, we must distinguish between the question

（

13 ，

ー̀``̀
’

．

that return always the same answer whenever asked to one sentence and the

question that returns some information about the current active node.

I

I
, ＼

口

し）

14

References

[1] David M. Magerman. 1994. Na.tural Language Parsing as Statistical Pat-
tern Recognition. Ph. D. Dissertation. Standford University. Standford,

Ca., USA.

[2] David M. Magerman. 1995. A Question Language fm the ATR Statistical
Parser. Manuscript, ATR ITL. Kyoto, Japan.

[3] David M. Magerman. 1995. A Statistical Grammar Development Envi-

ronment. Manuscript, ATR ITL. Kyoto, Japan.

[,!] IEEE Software. July 1990, pp.21-28.

15

()

し）

	001
	002
	003

