
Internal Use Only (非公開）

002

TR-IT-0133

Signal processing for concatenative
synthesis

Christian LELONG

1995.9

ABSTRACT
For efficient control of pitch and duration in a synthesis system em-

ployinbg waveform concatenation, direct modificatino of pitch-period-
sized samples of the speech signal is performed. This report describes

the six-months work spent under an INT internship developing and
extending the PSOLA module of the ITL dept 2 ChATR synthesiser.
A version of the report was presented as part of the graduation re-

quirement for Stage Ingenieur.

◎ ATR Interpretip.g Telecommunications
Research Laboratoriess.

◎ ATR音声翻訳通信研究所

.•

9

9
.

ー・

ぷ「{
STAGE INGENIEUR

OPTION TRAITEMENT & APPLICATIONS DE L'IMAGE

INSTITUT NATIONAL DES TELECOMMUNICATIONS

Interpreting Telecommunications
Research Laboratories, A TR, J apon

Fevrier -Juillet 1995

Christian LELONG

RAPPORT CONFIDENTIEL

DIRECTEUR DE STAGE: NICK CAMPBELL

CONSEILLER D'ETUDES : BERNARDETTE DORIZZI

RESUME

Le cadre general de ce travail est celui de la synthese de la parole par ordinateur. Dans ce
contexte, la prosodie occupe une place importante : un bon ajustement de la duree, du ton
et de la puissance de la voix de synthese contribueront en grande partie a rendre celle-ci
plus "naturelle". La demarche habituelle est la suivante. Dans un premier temps, le texte
d'entree est analyse, afin d'obtenir une transcription phonetique. Une deuxieme etape
consiste a creer une structure rythmique en accord avec la syntaxe. Le dernier maillon
genere le signal de synthらsea partir de toutes ces informations. Le but de ce projet se
situe dans cette demiらreet~pe et consiste, d'une part, a mettre en place puis evaluer divers
algorithmes de modification des paramらtresprosodiques, en particulier la methode
PSOLA (Pitch Synchronous Overlap and Add), d'autre part a detecter et pallier par des
techniques du traitement du signal, dans la mesure du possible, aux eventuelles
imperfections responsables du timbre artificiel de la voix de synthらse.Le tout devait
ensuite etre integre au sein du systeme de synthもseCHA TR developpe a ATR.

ABSTRACT

!he ?eneral framework of this report is speech synthesis. Prosod~plays an important role
m this context : an efficient control of duration, pitch and power m the synthesized voice
will contribute greatly to make it sound more "natural". The usual approach is as
follows. In the first stage, input text is analysed in order to obtain a phonetic transcription.
The second step consists of deducting a certain rythmic structure stemming from the
syntax. In the final stage, we make use of all the previous information and create the
synthesized signal. This project has to do with this last step, and is intended to implement
and evaluate different algorithms for prosodic modifications, in particular the PSOLA
method (Pitch Synchronous Overlap and Add), as well as to detect and palliate when
possible, using signal processing techniques, all the eventual clicks responsible for the
artificial sound in the synthesized voice. The whole module had then to be integrated into
CHA TR, a speech synthesis system developped at A TR.

Contents

General Introduction 5

1. Overview

I. I ATR research laboratories

I .2 The PEGASUS group . .

7

7

9

1.3 CHATR, a speech synthesis system 11

1.4 Project outline

2. Introduction to Speech Processing

2.1 Production .

2.2 The speakers

2.2.1 the kinds of speech

2.2.2 the tools employed

2.2.3 the pitch marks

2.2.3 the databases .

2.3 Speech synthesis

2.3.1 articulatory synthesis

2.3.2 formant synthesis ..

2.3.3 concatenative synthesis .

11

13

13

16

16

17

18

18

19

19

19

20

，

3. The CHATR System

3.1 Presentation

3.2 Unit selection

3.3 The RUC module

3.4 The PSOLA method

4. The XPSOLA unit

4.1 Objectives .

4.2 Overview of the unit

4.2.1 .architecture

21

21

21

23

23

26

26

27

27

4.2.2 data representation 27

4.3 The signal model . 29

4.3.1 noise & h
．

armomcs 29

4.3.2 hybrid model . 30

4.3.3 bands model . .

4.3.4 noise processing

4.4P
..

rosod1c mod1f1cat10ns

4.4.1 pitch . . . ．．．．．．．．．．．

....

.....

4.4.2 duration .

4.5 Mapping .

4.5.1 overview

4.5.2 algorithms

4.6 Unit concatenation

4.6.1 goals ..

..........

4.6.2 temporal methods ．．．

4.6.3 spectral methods

4.7 Other options

4.7.1 power modification

4.7.2 final modifications

5. Implementation

5.1 Software constraints

5.2 Testing

5.3 Evaluation .

5.4 User's guide

6. Conclusion

6.1 Summary

32

33

34

34

35

37

37

37

38

38

38

39

40

41

42

43

43

44

46

46

49

49

6.2 Fields for improvement

6.3 Discussion

Acknowledgements

Appendix 1 : XPS OLA unit -code

Appendix 2 : working in Japan

Appendix 3 : CHA TR voices

References

49

50

52

General Introduction

General introduction

Machines seeming to understand and/or produce speech have always caused amazement.
In Ancient Greece, smart acoustical devices, chanelling the voice of a hidden speaker,
allowed priests to surprise the faithful, as they made oracles and statues address the
crowd. In the XVID century, the first attempts at artificially reproducing human speech
consisted in small, mechanical machines employing pumps and valves, and capable of
producing more or less natural sounding phonemes, and even streams of words [1].
However, it was not until the 1940s that speech processing has made significant progress
and was viewed with interest both by industry and the scientific community.

This vast field, where many other disciplines converge (Linguistics, Phonetics,
Signal Processing, Computer Science, etc), is divided into two main areas:

• speech recognition, consisting of transforming an acoustic signal into a list of
graphemic symbols.

• speech synthesis, where speech waveforms result from a symbolic
representation of information, and constitutes the framework of this specific
project.

As in many other fields closely related to the human brain and body (vision,
artificial intelligence…)， speech is the output of a long, complex procedure, that can't be
easily accessed for close study. Hidden Markov models, neural nets and sets of rules
have not so far accounted for all the phenomena involved. Practical applications have been
scarce, current know-how being sometimes unable to elaborate sufficiently reliable
models. Potential applications, however, are numerous, and often seem to come out of a
science fiction book : real-time translation between languages, better interfaces, aids for
the handicapped and for children, voice recognition as a security measure, etc.

In speech synthesis, the prime consideration is the quality of the synthesized
speech. A metallic-sounding voice is often difficult to understand, and always tiring after a
few minutes. Also, unnatural intonation and duration patterns might modify the meaning,

5

General Introduction

result in a weird-sounding sentence, and pリzzlethe listener. Other criteria such as speed,
hardware requirements (mainly in processmg power and memory available) and type of
speaker are also important. Needless to say, producing synthesized speech
undistinguishable from real speech has turned out to be an elusive and difficult task, hence
the different possible approaches. Part of the problem lies in the fact that prosody, ie
power, duration and intonation, depend on both the speaker and the meaning of the
spoken utterance, and its prediction is a non-trivial task, The vocal tract acts as a complex
filter whose transfer function changes from speaker to speaker, and from phoneme to
phoneme : efforts at modelling it accurately have so far given mixed results.

One possible approach in speech synthesis is concatenative synthesis. Here, the
artificial speech is built by putting together tokens of real, recorded speech selected from a
large database. These tokens (units), however, cannot be used as such. They must undergo
a series of signal processing modifications, ensuring that their prosody matches the
predicted value, and contributing as a whole to render the output voice as natural as
possible.

Such is the main goal of this project : to implement and evaluate different
methods of performing prosodic modifications, unit concatenation, and overall
improvement of the synthesized speech q叫 ity.

Special attention will be paid to PSOLA (Pitch Synchronous Overlap and Add), a
particularly promising method [3], but other techniques will be discussed as well.

A general overview of the project is presented in Chapter I. A brief presentation of
ATR, and the laboratory where this work took place is also included. Readers who are not
familiar with this field will find in Chapter 2 an introduction to speech processing, with a
particular emphasis on concatenative synthesis. The speech synthesis system constantly
used, CHATR, is presented in Chapter 3. Being a large, complex system, we will focus on
its global architecture, and then on the modules most relevant to our work. We end by
presenting in detail the PSOLA method.

Readers already familiar with this context will start at Chapter 4, where the
different implemented algorithms, regrouped in a unit labeled XPSOIA, are discussed in
detail. Where needed, algorithms, graphs and plots will be reproduced, and a brief
assesment will follow each individual method. Therefore, this chapter might be seen as a
reference guide.

The following chapter is rather like a user's guide. It shows how the new unit was
implemented in CHATR, how the different options can be used, and which tests were
performed. And finally, Chapter 6 gives a global evaluation of the project, and points to
possible directions for future work.

6

Chapter 1. Overview

Chapter 1

Overview

1.1 ATR research laboratories

Advanced Telecommunications Research Institute International, which was
established in 1986, in Osaka, with support from various sections of industry, academia
and government, is intended to serve as a major center of telecommunications R&D. In
1989, it moved to its current location in Kansai Science City. Currently, around 300
researchers, 20% of them foreigners, work in ATR laboratories.

ATR is organized into five separate companies, each specializing in a particular
field of telecommunications research. The five companies share the same buidings, but
each one has its own computer network, laboratories and management. Given their
different fields of research, cooperation between them is limited.

• Communication Systems research laboratories focus on human-oriented
intelligent communication systems. The acquisition, recognition, comprehension
and display of 3-D images in order to create a virtual environment are one of the
main axis of research. Other areas include system security and automatic
generation of communications software.

• Human Information Processing research laboratories are developing
human/machine communication technologie~. Stress is put on the way the
human brain receives and processes information, particularly in the areas of
speech recognition and visual information such as recognition of facial
expressions, and motor signals. A wide range of disciplines is involved, from
neural nets to psychology.

• Interpreting Telecommunications research laboratories aim at cross-
language global communications. The three areas of research are speech

7

Chapter 1. Overview

ORGANIZATION

ATR International

Chairman of
the Board

N. IIANAMURA

Advisor lo
lhe Board

n

n

e

e

d

d

．

．

e
s
^
e
s

iivreIDtivre

u
p
り
’
u
p

＾

c

t

R

s

e
o
e
e

n

u

c

e

l

l

e

c

x

C

y

1

x

i

i

E

V

T

E

V

d

i
Y

s

r

e

-

―

p

s

r
 ゚

t

c

e

r

．

D

~

゜
d

r

a
 ゚

B

T.KAWAKAMI

墨

K. IIAUARA

Advisor to
the Board
II. YAMAGLICJII

Strategic Corporate

Planning HQ しLiaisonDiv.
Corporate Strategy Planning Div.

Finance & しGeneralAdministration & Labor Management Div.
Adminislralion HQ

Accounts and Finance Div.

Research & Development HQ

Research Planning Div.
ー・・・--·············-・・・・・ー・・・・・・・・囀~．．．．．．．．．．．．．．．

Communicalions It-ATR Communication Systems Research Labs.
Sciences Research Div. : , Chairman of the Board Planning Section

: K. IIAOAHA Communications Software Dept.
: President t Artificial Intelligence Dept.
: N. TEl</¥SIIIM/¥ (E~. ゃr.1986),
, -・... ---. -・・・・・・・・ー・ー・ー・・・ー・・ー・・・・・・・--・・ー・ー・・'

Auditor Information Processing一J>-ATR Interpreting Telecommunications Research Labs.
Sciences Research Div.' : Chairman of the Board

: K.IIAUAl<A

: President
: Y.YAMAZAKI I . I . (Esl. 屯 .1993):
・・・・・・・・・・・・・・・--・・・-・-・・--・・・-・-・・-・-・・-・-・----ー・・...-.. -.

Optical & Radio •, ATR Optical and Radio Communications Research Labs.
Sciences Research Div.'・ : Chairman al !he Board Planning Section

: K. 11,.DAk,. Radio Communications Dept.

げご唸＿＿一----一__J塁塁髯霊塁塁色翌'.I;竪．竺！密
(Managing th● fruit• of their re .. a『ch)

ATR Interpreting Telephorr; Research Labs.
President K. IIAUARA

, ATR Auditory and Visual Perception Research Labs.

: President K. IIAUAKA
．．．．．．ー・・・・・・・・・・・・—····-·····················-·············'

CAPITAL RESEARCH BUDGET

A TR International : ¥22.03 billion

(Invested by 141 Companies)
Total of 4 Research Div. : About¥9 billion Near

(Including all expenses)

RESEARCH RES UL TS EMPLOYEES (Including Executives)

600500

200

Publications

86fY 87FY 88 FY 89 FY 90 FY 91 FY 92 FY 93FY
・1,ansl● ued horn compan,es

Fig 1. outline of A TR

8

Chapter 1. Overview

recognition, language translation and speech synthesis (currently for Japanese,
Korean, English), each discipline interacting with the other two. The ultimate
goal is a system playing the role of a human translator : listening, translating,
speaking.

• Optical and Radio Communications research laboratories are concerned with
the new technologies involved in future telecommunications networks. The
main disciplines involved are optics, electromagnetism and quantum physics.
Research is particularly aimed at mobile and optical intersatellite
communications, array antennas, and the optical and electronic devices
involved.

• Media Integration & Communications research laboratories were created
recently, and will eventually replace the CSR laboratory, their goals being
somehow similar.

Strong support from the Japanese government and industry, plus an active
program of exchange between universities and research institutions in Japan and abroad,
have made of ATR an important player in the telecommunications research field. An
example of this is the list of events that have been held over the past months :

-1995 International Workshop on Computational Modeling of Prosody for
Spontaneous Speech Processing, April 12-14 1995.

-the Science & Technology seminars, spreading over several weeks in April and
May 1995, featuring invited lecturers from: University of Toronto, Universite
de Geneve, Institut National Polyte_chnique de Grenoble, Tokyo University,
M打， BeckmanInstitute, etc.

1.2 The PEGASUS group

This work group was established in Department 2 of Interpreting Telecommunications
laboratories, ITL. Amongst the 4 departments of ITL, it is mostly concerned with speech
synthesis, and houses a team of 15 researchers approximately.

PEGASUS stands for Prosody Extraction and Generation And Signal processing
and Unit Selection, representing the two overlapl?ing research areas of Department 2 (cf
Figure 2). Each sub-group holds informal meetmgs every two weeks, in which every
member is expected to present the state of his or her personal research, and to make
constructive comments on colleagues'work. I was assigned to the SUS sub-group. As
most members were Japanese, the meetings were usually held in Japanese, with occasional
shifts to English. The typical duration was one hour and a half. Each meeting was
presided by Norio Higuchi, the Department Head.

The specific tasks currently under way are :

-optimisation of unit selection from speech databases (Alan Black & Nick
Campbell) : a database with greater variability allows closer modelling of
naturalness and differences in speaking styles.

，

Chapter I. Overview

-sub-phonemic optimal path search (Yoshiharu Itoh, Makoto Hashimoto &
Norio Higuchi) : paying attention to the spectral distortion at concatenation
points increases the quality of synthesized speech.

-automatic detection of phrase boundaries (Toshio Hirai, Norio Higuchi &
Yoshinori Sagisaka): using information concerning the fundamental frequency,
the goal is to find the limits (i.e., subjet, verb, etc) in a spoken utterance.

-spectral mapping for voice conversion (Mako to Hashimoto & N orio Higuchi) :
using speaker selection and vector field smoothing, the aim is to reduce the
spectral distance between the transformed speech and the target speaker.

-cepstral analysis I synthesis (Lee Yang-Hee & Toshinori Satoh) : improving
the algorithms involved in cepstrum estimation and manipulation.

-evaluating objective cost function for unit selection (Andrew Hunt): using
MEL-cepstrum, power information, etc, finding the best points for unit
concatenation in terms of sound quality.

-building a Korean database (Lee Yang-Hee): labelling of phonemic units,
creating pitch mark sets, documenting durations, voicing, etc.

互
• Automatic conversion of parameters
between ToBI and Fujisaki's model
・Application of Fujisaki's model to English
speech synthesis
・Improvement of reading determination
program for Japanese provided by KOO
・Discrimination of declarative and
interrogative sentence using prosody

．炉Predictionand detection of p「ominence
ヘ

゜
Norio Hiquchi
Nick Campbell
Alan・W. Black
Mary E. Beckman

互
(Sub-phonemic optimal path search can
be used for the following two topics.)

• Improvement of synthetic speech quality
• Speed-up of ATR v -Talk
・Construction of Multilingual speech
database (Japanese, English and Korean)
・Target-speaker simulating system

Toshia Hirai
Shiqeru Fujio
Andrew J. Hunt

Masahiro Nishimura

Makoto Hashimoto
Yoshiharu ltoh
Lee Yanq-Hee
Christian Lelonq

Toshinori Satoh
Yoshinori Michijiri

/

,

＼

PEG group SUS group

丁woCompact and Dense (CD) discussion groups

Figure 2 . the PEGASUS group

I found the working environment rather relaxed. Working hours are flexible : the
office is open 24 hours a d~y, seven days a week, and everyone is free to choose his or her
schedule. The only constraints are the 11 a.m. -2 p.m. period, which must be spent at the

1 0

Chapter 1. Overview

ofice (break for lunch included), and the total number of working hours per month (a
minimum average of 7h40 per day is required). Also, researchers have some control over
the course and direction of their work. Rather than imposing strict deadlines for
completion of a given project, the supervisors are open to comments, and follow closely
the evolution of each particular task. Finally, exchanges between researchers are
encouraged, with good reason. All this, coupled with excellent facilities and a number of
leisure activities organized by the laboratory, make for a pleasant environment.

1.3 CHA TR, a speech synthesis system

ITL's Department 2 has developed a generic speech synthesis system, called CHATR [6].
Its main authors are Nick Campbell, Alan W. Black and Paul Taylor, but it has received
contributions from many different people, adding and updating modules around the core
system. Its purpose is to serve as a research tool in speech synthesis, and not as a product
that might be commercialized in the future. Therefore, CHATR has been designed as a
way of testing, improving or creating new algorithms and models. It is also part of the
global project under way at ITL, the automatic translator.

The main characteristics of the system are :

-multiling叫： So far, Japanese and English are supported, and in the coming
months Korean will be added.

-multi-speaker: within a given language, it is possible to select amongst a set of
different speakers, each one recorded into a database, the voice used for
synthesis.

-the main parameters and algorithms can be set and selected at run-time.

-unlike most Text-To-Speech systems, it accepts different kinds of input, from
plain text to other, more complex kinds of representation.

A more detailed description of CHATR can be found in chapter 3.

1.4 Project outline

My internship, part of an informal accord between ATR and the INT, took place from
February 1 to July 31, 1995, under the supervision of Nick Campbell, Supervisor at
Department 2, ITL.

A previous researcher had contributed a signal processing module based on the
PSOLA algorithm. As its performance was not deemed satisfactory, I was requested to
implement a new version of the same algorithm, using the previous module, called
RUC,(cf§3.3), as a source of inspiration, while avoiding any of its mistakes. Also, I was
given total freedom concerning any personal, suplementary algorithms I might develop.
As I would constantly be in contact with the persons concerned, namely Dr. Campbell, Dr.
Black, and any other potential user, my task was expected to be quite interactive.

Thus the first stage of my internship consisted of getting familiar with the field, the
environment, and the tools provided. I spent around four weeks reading books, papers and

1 1

Chapter 1. Overview

thesis related to speech processing, learning the fundamentals of CHA TR, and becoming
familiar with the software I was going to use : xwaves+ and MATLAB.

Soon after I began writing the new module, I decided to ignore the previous work
and start from scratch. I found much to criticize on the programs I was handed, and the
additional length of time involved in starting anew~aid off in terms of performance,
robustness and ease of use. This made me realize the importance of writing clear, well-
commented code.

Being an outsider to the field of speech processing proved to be both a handicap
and an advantage. On one hand I did not posess most of the basic knowledge needed for
this kind of task, so I committed many mist咄es,particularly in the first three months, that
I could have avoided otherwise ; that resulted in a loss of time, but also in valuable
experience acquired. But on the other hand, this helped me come up with new ideas, some
of which were wrong and without solid theoric basis, but others proved to be workable
and valid.

The second stage, implementing a working version of the RUC module took a full
three months, from March to May. At this point, only the basic functions were
operational. The month of June was spent incorporating the rest of the options, as well as
new suggestions, and running tests on all the databases in order to proove the robustness
of the module. Finally, during the last four weeks, major changes were made to the system
in order to accommodate a new type of pitch marks, obtained by a more reliable method.
This last stage somehow delayed the final tests and the definitive implementation into
version 0.7 of CHATR. This last stage was conducted in collaboration with Alan Black.

weeks 4

21 23 26

intro-
duction

work on
the first
version

debugging) updating
final

/,~

Fig 3. project outline

During my internship at ATR, I was also required to make two informal
presentations, open to members of Departments 1 and 2 of ITL. The first one took place a
few weeks before finishing the first running version. I presented the algorithms I was
implementing, but without examples to support them. Most people present were members
of PEGASUS, and people likely to use the CHATR system. The final talk, in mid-July,
was an occasion for showing the definitive version, backed with tapes of synthesized
speech thus produced. Each presentation lasted for an hour, followed by a brief period for
feedback and discussion. Also, prior to leaving, I was requested to deliver a "Technical
Report" concerning my work at ATR, addressed to future users and programmers of the
system.

1 2

Chapter 2.Introduction to speech processing

Chapter 2

Introduction to speech processing

2.1 Production

Sound production by the vocal tract is the result of a complex mechanism, not yet fully
understood. It is possible, however, to slightly simplify the way it works. In doing so, we
will introduce a number of terms that will be useful for the rest of this report.

Speech is the result of voluntary motions of the vocal apparatus. It is a behavior
which must be learned, and which is constantly controlled by the acoustic feedback of the
hearing mechanism and the kinesthetic feedback of the musculature involved. For
example, partially or totally deaf persons experience difficulties in producing adequate
speech ; the same happens when a patient has parts of his mouth desensitized by his
dentist. The vocal ap_paratus involved in speech production is shown in Fig. 4. It is
composed of three mam parts, each playing a different role : the respiratory apparatus, the
larynx and the vocal tract.

The respiratory apparatus produces the air flow needed for producing most
sounds found in speech. Its behavior presents two stages : inhalation and expiration.
Inhalation is accomplished by enlarging the chest cavity, making use of the thoracic and
abdominal musculature. As a result, air pressure in the lungs goes down, creating an
inflow of air, entering by the nose or mouth, down the pharynx and the trachea. On the
other side, expiration consists of contracting the chest cavity and expelling the air from the
lungs, by the mouth and/or the nose. This air flow can be used for phonation. Therefore,
the respiratory apparatus acts as the energy source for most sounds. However, certain
sounds can be produced without producing any airflow (clicks, etc).

The first perturbation of the air flow coming from the lungs takes place in the
larynx, situated at the end of the trachea (cf Fig. 4). It features nine cartilages, but only

l 3

Chapter 2./ntroduction to speech processing

four of them play a role in speech production (cf Fig.5). The vocal cords are attached to
the arytenoid cartilages, which control the configuration and tension. When the vocal
cords vibrate, the sound produced is called voiced, and unvoiced otherwise. The triangular
opening at the base of the vocal cords is called the glottis, and it regulates the air flow like
a valve (cf Fig 6).

り

Fig 4. diagram of the vocal apparatus

Finally, the vocal tract consits of a set of articulators modifying the air flow: the
velum, tongue, lips, pharynx and jaw, mainly. They can either partially or totally interrupt
the air flow at a given point of the vocal tract, creating the kind of turbulence found in
fricatives, for example. They can also act as a filter moduling the semi-periodic signal
emitted by the larynx during voiced speech.

1 4

Chapter 2.lntroduction to speech processing

ノヽ

Fig 5. cut-away view of the human larynx
VC -vocal cords; A,C -arytenoid cartilages;

TC -thyroid cartilages

•)

<) d)

Fig 6. the glottis in different positions of a) breathing;
b) deep inhalation; c) phonation; d) whispered voice

1 5

Chapter 2./ntroduction to speech processing

2.2 The speakers

2.2.1 the kinds of speech

Speech varies be1ween languages, dialects and individuals. Every "dialect", e.g .. American
English, has its own set of phonemes (cf Table 1), and a certain rhythmical structure.
Therefore, the study of prosody depends on the language studied. And once a language
has been selected, each speaker has a unique voice and intonation pattern.

_phoneme example phoneme example phoneme example

1 bead a w bout t tea
I bid ai bide k key

E bed :,i boyd V veal

re bad r ride 6 then

D body 1 light z zeal

a father w w1de 3 garage

A bud J yacht f feel
:> baud m might

゜
thin

゜
boat n night s seal

u book lJ song F shore

u boot b bite h head

d about d dog j yeep
cl'" bird g get c chore

ei bait p pet

Table 1. American English phonemes

However, every individual speaker can present considerable variability in the
speech he produces, depending on a number of factors : whether he is angry, tired or
excited, whether he is hesitating or not, etc. As far as this project is concerned, we shall
consider only the two following categories of speech :

Read speech is produced by a speaker reading a given text. Unless the speaker
has been specially trained as a story-teller, anchorman or actor, the prosody of read speech
has little variability, and the intonation is rather monotonous. Databases of read speech
can be obtained from sets of words (minimum intonation variability) or sentences (more
V紅 iability).

Spontaneous speech is produced during normal conversations. As opposed to
read speech, the prosody can vary greatly : hesitations, bursts of fast speech, various
emotions contribute to a wide range of examples for every class of phoneme. Databases
are generally obtained from interviews, where the subject is asked a set of questions (i.e.
"tell me about your stay in Japan'').

1 6

I
 j

Chapter 2./ntroduction to speech processing

2.2.2 the tools employed

Two software packages were principally used to develop the new signal processing
module, XPSOIA. Before any serious programming could begin, a good command of
these was needed. MATLAB was only used briefly, while xwaves+ was of great help at
all times.

MATLAB is a programming environment consisting of a core unit for general,
math-oriented use, and a number of modules, called "toolboxes". Each toolbox covers a
specific field, such as neural nets, image processing, etc. The motivation behind this is
twofold. On one side, the programmer has at his disposal a very large number of library
functions. On the other, the whole system is designed to be very fast at run time. As a
result, an algorithm that takes 15 seconds of CPU time when coded in C language might
be executed in less than one second when MATLAB is used. The main data type is the
matrix, and getting acquainted with the new syntax takes only a few hours. I used
MATLAB with the Signal Processing Toolbox [JO] in order to obtain a bank of lowpass
filters (cf§.4.3.3).

@四B¥'t"SMult/dlmens!-Onal Signal Display. l't"rslon S.O

OIJ(CT oい鴫●：'"、 よ竺旦） (ONTINU[) 翼W ●●o MANUAL)

IMrUTtll●: rou1CLLC/hyl.w•1

Ovtrl●y●●●●:

OUtrUl111,:

員： 3. <727" (r: O. ZO)

~POU8ElLElhy3. wav.1.fsが,c(S.F.: SOO.O) {lelt:m11rk formants mld:modlfy Intensity rlght:menu}

Fig 7. speech waveform and spectrogram display with xwaves+

xwaves+ is a large package designed for speech processing. More precisely, it
allows to display, analyse, edit and play on loudspeakers the speech audio files (cf Fig 7).
It was very important to actually see and listen to the natural and synthesized speech

I 7

Chapter 2./ntroduction to speech processing

waveforms in order to _g_et a certain intuition or feeling about the kind of problems
encountered : discontinmt1es, distortion, jumps in power and pitch, all are to be avoided if
posible, but some matter more to the quality of the output than others.

Therefore, xwaves+ served at first as a tutorial, in order to learn about speech
signals, and the as a tool for verifying the output of my module, the quality and flaws of
the synthesized speech.

2.2.3 the pitch marks

It is important to provide the speech signal with a measure of time and periodicity. This
measure is provided by pitch marks.

For every opening/closing cycle of the cords, the corresponding pitch mark
matches the highest peak in the waveform during the corresponding time interval, usually
from 5 to 15 milliseconds. Thus, the distance between marks becomes an indicative of the
current fundamental frequency. During unvoiced speech, however, the vocal cords do not
vibrate, and two options are possible. Either "fake" pitch marks are created for unvoiced
speech at a fixed rate (10 milliseconds), or pitch marks are restricted to voiced speech.

Pitchmarks are particularly important to the PSOLA method (cf§3.4), and their
accuracy will affect the quality of the synthesized speech produced. They can be
automatically obtained using signal processing techniques, but correction by an
experimented human labeller is highly desirable. Since we deal with digital data, precision
is limited by the sampling rate used, usually 12 or 16 kHz, which is more than enough.
Another, more direct method is to detect the vibrations of the vocal cords using a
larynxometer. The latter method seems to be more reliable, but again human labelling,
although very time-consuming, is the ideal solution.

So far, the two types of pitch marks sets available at ITL are, 1) marks by signal
processing, extended to unvoiced speech, and 2) marks by vocal cords tracking, restricted
to voiced speech. No handtuning was performed.

2.2.4 the databases

A number of speech databases are available for use with CHATR. Each database concerns
a particular speaker, and comprises a set of features. The raw data is the speech waveform,
obtained from a selected speaker reading a text or list of words in a special noise-proof
room, using high quality audio equipment, and sampling at 12 or 16 kHz. Afterwards, the
raw data is processed in order to produce additional information needed by the system;
The final database should, for concatenative synthesis, contain the following :

• speech waveform, the raw digital data

• pitch marks, the measure of periodicity

• labels, as every word is divided into a set of phonemes

• vector quantization coefficients, coordonates in the acoustic space for every
individual phoneme, comprising pitch, power, cepstral coefficients, etc

1 8

Chapter 2.lntroduction to speech processing

As might be expected, building a speech database is a long and dif国 ulttask. Also,
the quality of the database will be reflected in the final synthesized speech. A noisy
recording, for example, will distort all the processing, inaccurate labels will cause abrupt
transitions, and so on. A list of the diferent databases available for CHATR is given in
Appendix 3, along with some additional details.

2.3 Speech -'Synthesis

2.3.1 articulatory synthesis

As stated before, speech is the outcome of a complex mechanism. Therefore, a good
knowledge of such mechanism should allow the recreation of human speech. Such is the
principle of articulatory speech : to model faithfully the mechanical motions of the
articulators, and the resulting distributions of volume velocity and pressure in the lungs,
larynx, and vocal and nasal tracts. This modelling turns out to be very difficult, for various
reasons. While the dimensions of the human vocal apparatus can easily be measured,
tracking their movement during speech production is another matter. Also, phenomena of
a random nature, like the turbulence encountered_in the production of most consonants,
are very complex. As a result, articulatory synthesis requires several orders of magnitude
more computation than other types of synthesis, and has so far only produced less than
satisfactory results.

2.3.2 formant synthesis

Formant sy叫 1esistakes a humbler approach. The goal is to approximate the speech
waveform using・a set of rules formulated in the acoustic domam, simpler than that of
articulatory synthesis. The principle is shown in Fig 8. A first step consists in
approximating the different sources of sound energy separately ; the resulting output is
characterized in the frequency domain by S(f). Estimating the transfer function of the
vocal tract, T(f), is the second step. Finally, we take into account the directional sound
propagation from the head, represented by R(f).

SOUND SOURCE

VOICING

ASPIRATION

FRICATION

VELOCITY

S(り

P(「） -s(rn(rr F(tJ

VOCAL TRACT

TRANSFER

FUNCTION

T(り

RADIATION

CHARACTERISTIC

R(I)

Fig 8.formant synthesis

PRESSURE

P{Q

Such a system requires several dozen parameters at every stage that must be tuned
accurately. As opposed to concatenative synthesis, it does not require a large database of
real speech. But, since it builds its output from scratch, it is easy for the listener to detect

1 9

Chapter 2.Introduction to speech processing

the machine behind. Formant synthesis is possible with CHATR, but this will not be
discussed here it, as it lies outside the subject of this report.

2.3.3 concatenative synthesis

This is the main type of synthesis performed by CHATR, and the one that concerns us
most. The idea is to select, extract and reassemble bits of real speech in order to make new
words and sentences. It is done as follows :

1. select database, enter input text

2. translate text into a list of phonemes

3. predict pitch, duration and power for every phoneme

4. search the database for the best approximations of the target prosody

5. modify the selected units, in order to match the target prosody

6. concatenate the modified units

Many variants exist, depending on the type of database and unit (diphones, non-
uniform units). The raw data might be the MEL-cepstrum coefficients (cf§3.2) of the
original speech, and the database might be labeled as phonemes or diphones. Each class
has its advantages and drawbacks. In any case, signal processing corresponds to steps 5
& 6. In the following chapter, we analyse more closely an example of a concatenative
speech synthesis system, available in CHATR, before addressing the core of this project.

20

Chapter 3. The CHATR system

Chapter 3

The CHA TR system

3.1 Presentation

This is only a very condensed presentation of CHATR, a generic speech synthesis system
developed at Dept 2 of ITL. For a much more detailed presentation, the reader should
consult the CHATR version 0. 7 manual, written by Dr. Black.

CHATR was designed in a way that easily allows a large number of different
modules to interact in a defined way. Multiple modules performing equivalent tasks, such
as duration prediction and waveform synthesis, are included within the same environment,
allowing close direct comparison. CHATR's main use in ATR will be within a speech
translation system —speech recognition in language A, automatic translation, 戸pee~h
production in language B—currently under development. The basic system is wntten m
C, while input and output are through a very simple Lisp system.

Many researchers at Dept 2 of ITL have participated in the constant elaboration
and upgrading of CHATR, mainly Drs Black, Campbell and Taylor. The purpose of this
project was to contribute a new module to the system, thus enlarging the choice of
algorithms, and hopefully to improve its performance.

3.2 Unit selection

The speech databases vary in length (cf Appendix 3), but each one has a great number of
examples for every class of phoneme, from a few dozen for seldom used phonemes, to
over a thousand for certain vowels. Therefore, selecting the right example requires some

2 1

Chapter 3. The CHATR system

thought, all the more since the quality of the output voice depends greatly on it : badly
selected units make for bad synthesis, good units sound almost like real human speech.

Actually, two selecting functions are implemented, but that number should
increase. The simpler one starts at the beginning of the utterance, and looks for the longest
matching unit stream. This is repeated until the end of the utterance. In doing so, we
obtain a low number of breaks (but not the optimal low), where clicks and jumps in the
output speech can occur. The second function, however, is less naive, and more time
consuming. It involves a cost function C(s), whose different weights can be set by the user
at run-time, and which is shown below.

ex am ple utterance

゜゜゜
target units

Ccl
↓ Ct2 Cc2 ↓ Ct3 Cc3

• etc…
｀

selected units

Fig 9. costfunctionfor unit selection

The total cost function is the sum of two terms, the continuity cost and the target
cost, Cc(u) and Ct(u) respectively. The first term measures the smoothness of the
resulting utterance, and includes a mel-cepstrum mesure of the consecutive units. A low
value for Cc(u) means that clicks and jumps in the synthesized utterance are few. The
second term reflects how far from the target prosody is the selected stream of units.

Thus, at every stage the n matching streams of units with the lowest cost are
selected, and this is repeated until the end of the utterance. The reason for selecting more
than one possible stream at a time is the following. First, the choice of a stream is
conditioned by the previous one, because of the continuity term in the cost function.
Therefore, different initial streams result in different utterances, and the best (in terms of
cost) initial stream does not always lead to the best overall utterance. This requires much
processing, and as a result about 60% of the CPU time spent on synthesis is devoted to
unit selection, when the second function is selected. This should be reduced as much as
possible. Also, the weights involved in the cost function require a long and difficult
training, and could use some optimisation, as it affects radically the quality of the output
voice. Recent work by Dr. Hunt of Dept 2 is heading in that direction.

Unit selection provides the signal processing module with its main input. So far,
each module has been designed separately, but in my view unit selection should take into
account the processing performed afterwards (cf§6.2).

22

Chapter 3. The CHATR system

3.3 The RUC module

In this section, we present the original signal processing module used in non-uniform unit
concatenation, called RUC (for Random Unit Concatenation). It was written in May 1994
by Helene Valbret, then an invited researcher at ITL and a PhD student at the ENST.

The RUC, module is based on the PSOLA algorithm presented hereafter, and is
roughly schemat1zed in Fig 10. As an input, it receives the units selected as explained in
the previous chapter, as well as the target pitch and duration estimated by the
corresponding linguistic modules for the current utterance (target power should be
available in the very near future).

selected uni.ts

target pi.tch

target duration

PSOLA

Fig 10. the RUC module

synthesi.s speech

So, signal processing is the last step in the process, after all the phonetic and
linguistic analysis, has taken place. It plays an important part, sinc~physical manipulation
of the waveform can perform the modifications dictated by prev10us modules, but also
additional processing is possible in order to improve the naturalness of the result.
However, RUC had a number of flaws, which had to be corrected:

1. processing in RUC was limited to prosody modification and concatenation,
using a single, fixed algorithm. Other possibilities were not explored.

2. the synthesized speech produced by RUC was not satisfactory, to the point
that the system gave better results when the only signal proc,essing performed
was plain (DUMB) concatenation. This could not be caused by the algorithm,
but by the implementation, which had to be faulty.

3. the code itself was "badly" written; comments were scarce, the structure was
unnecessarily complex. As a result, direct changes by other researchers after Dr
Valbret had left were much too time-consuming, and almost impossible.

3.4 The PSOLA method

PSOLA stands for Pitch Synchronous OverLap and Add, and designates an algorithm
for performing prosodic modifications in concatenative synthesis. The principle is
presented in Fig. 11, and more details can be found in [3]. Short-Term (ST) signals are
the foundation of this method. They are obtained by windowing the speech signal for
every pitch mark, using an assymetrical Hanning window. The use of Hanning windows

23

Chapter 3. The CHA~R system

introduces some distortion in the frequency domain, but it ensures the continuity of the
signal at the border of the ST signal.

Analyele window

Input nlgn.,.I

Analy● la ST-•lgnal •

—----------~ ―ヽ・ジ・1

▼

。lri•p-Add
一ヽ゜n a

 ＇ 一
T

s

8
 -

／

y

-

／

s

-

／

／／ク一一一一

An•IY•I 一 window

lnpulーran-1

, ,,,,,

＾＾ー•v-•- s-r--•an•I•

Synth--1 一 ST--lgn•I 一

。l«-•-゜d

／ー・ヽ
‘

Fig 11. the PSOLA. algorithm
upper panel) duration modification ;

lower panel) pitch modification

24

Chapter 3. The CHATR system

As shown above, duration modifications are obtained by eliminating or duplicating
ST signals. For example, an increase in duration of 20% will require the duplication of
one ST signal for every four copied. The spacing between the ST signals in the final wave
is the same as in the original one. The result can be considered as equivalent to a real
wave of the same length.

Pitch modifications are not as simple. The method consists in modifying the time
delay between the ST signals in the final wave, thus mimicking a change in the
fundamental frequency : setting the ST signals further apart will amount to lowering the
pitch, while seting them closer will amount to a raise in pitch. It is important to note,
however, that the resulting wave is not equivalent to a real wave of the desired pitch, but
only an attempt to imitate it. When pitch varies for a given phoneme in real pitch, both the
fundamental frequency and the formants change, and such changes are visible in a
spectrogram. The PSOLA algorithm can only try to make the listener believe that he or
she is hearing a different pitch.

Since its presentation 5 years ago [3], PSOLA has been adopted by most
laboratories and companies working on concatenative synthesis, and has given good
results. This explains the main goal of this project : to implement the PS OLA algorithm in
ITL's synthesizer.

25

Chapter 4. The XPSOLA unit

Chapter 4

The XPSOLA unit

4.1 Objectives

" The XPSOI.A module has four main goals. Receiving as input the selected units and the
target prosody, we want to build the best possible output, in terms of quality of the
synthesized voice. This requires that we :

1. perform the prosodic modifications necessary to match the target pitch and
duration for every unit. To do so, the PSOLA algorithm will be implemented,
but other methods are acceptable.

2. concatenate the units, in a way that minimizes clicks and other noticeable
noises that damage the voice quality.

3. use any other kind of procesing to that same effect : to improve the
naturalness o the synthesized speech.

4. implement signal processing methods that might be useful in the future,
whether for prosodic modifications and concatenation or for some other area.

Tasks 1) and 2) are common to the previous RUC module, while tasks 3) and 4)
are new contributions to the system. The only constraint is the implementation of the
PSOLA algorithm ; concerning the rest, I was free to experiment.

The new module, however, was expected to yield better results than RUC. If that
was the case, XPSOLA would take its place as CHATR's signal processing module.

26

Chapter 4. The XPSOLA unit

4.2 Overview of the unit

4~2.1 architecture

All the functions, data types, data and declarations concerning XPSOIA were regrouped in
, files, in the rue directory. CHATR being a large system with a large number of function
and variable names, all the new functions written for XPSO且 includedthe xps_ prefix,
making confusions with functions from other modules unlikely. The global architecture is
as follows:

xfilters.c's only purpose is to store for the time being the bank of low-pass
FIR filters used in the bands model. This is temporary (cf§4.3.3).

xharmo.c contains the harmonic coefficients (cf§4.3.2) for one speaker's
whole database. This is temporary.

xio.c is mostly concerned with input, output and initialisation : reading the
waveforms and pitch period files from the database, initializing and freeing the
main variables, assembling and returning the final wave.

xmath.c has the routines necessary for FFT-based processing, cepstral
analysis, windowing, power estimation and voicing detection

xmisc.c is a set of miscellaneous low-level functions used frequently in the
other files.

xmod.c contains the functions relative to the bands and hybrid models for
splitting the signal into a harmonic and a stochastic component.

xpros.c is the main file. All the signal processing functions are found here, as
well as the mapping and target pitch marks functions.

ruc.c previously written by Helene Valbret and modified to accomodate the
new XPSOLA unit, has the top-level functions commanding the whole
processing.

xruc.h has the declarations of functions visible to other files.

xtop.h has the data types, and most of the constants and macros.

4.2.2 data representation

As a large system, CHATR manipulates a large number of data types. Most of them deal
with linguistic representations, and are not well adapted to signal manipulation. The
original signal processing unit has its own set of data types, but they were not considered
for many reasons. First of all, information was not easily accessible, nor clearly pr~sented.
Furthermore, the original system is not very flexible, and cannot accomodate eas!ly new
algorithms. And finally, since the new XPSOLA unit was bound to replace the original
one, and would be relatively independent from the rest of the system, changing the data

27

Chapter 4. The XPSOLA unit

representation would imply no additional work. Therefore, a new set of data types was
created for the XPSO且 unit.

The new representation was designed to be clear, concise and flexible. Two top-
level data types hold all the information. The first one, Scheme, records all the options
selected by the user at run-time, and feeds them to the signal processing functions when
needed. The second type, Synthesis, holds all the data concerning the sampled speech
waveform. Both types are structures, and additional fields can be added as the need arises.
Figures 12 & 13 give a more detailed description.

pitch
匹 fication
pararreters

ヽ ，
SCHEME

rrar:ping &

concatenation
algorithms

ヽ ヽ

duration
四 fication
pararreters

other options
(signal :rrodel, ．．
VOlC四...)

Fig 12. Scheme data type

reference
pitch marks

target
pitch marks

ヽ
＼

ks ar

o
f
m

bernee

m
r
e

nufe e

r
 ーク
sampling ← SYNTHESエs-ゃ

number of
target marks

rate

numb≪ ✓ I I \~numbec of

number
of units

/
’

mapping

Fig 13. Synthesis data type

. E~ery time the module is called, one variable of each type is created. Since Scheme
contains information vital to the rest of the module, it is initialised before any kind of
processing begins, and remains unchanged through the execution. Synthesis, on the
contrary, is at the core of the processing, and its contents are modified constantly. Most of

28

Chapter 4. The XPSOLA unit

its fields are pointers, and memory allocation must be carefully monitored. Both types are
declared as structures.

4.3 The signal model

4.3.1 noise & harmonics

Speech is usually classified into voiced and unvoiced speech. Voiced speech corresponds
mainly to the vowels, nasals and liquids, that is, phonemes when the vocal cords are set in
motion, vibrating at a certain rate, and giving a pseudo-periodic character to the acoustic
waveform. Unvoiced speech, on the contrary, is usually related to the remaining phonemes
: fricatives, affricatives, stops, and pauses. Note, however, the existence of "hybrid"
phonemes, such as the voiced stops (lb/, lg/, Id!), or the voiced fricatives (Iv/, /zl, Id/).

But, as the latter example shows, this classification is not entirely satisfactory.
Voiced speech is not a 100% periodical, but has also an "unvoiced" component. This
"unvoiced" or noisy component, no matter how small in amplitude when compared to the
periodic component, contributes greatly to the quality of the sound, as later evidence will
show (cf 4.3.2). In fact, purely periodical sounds have a very distinctive ring, more related
to machines than to living beings. However the same does not always aJ?ply to unvoiced
speech : the voiceless fricatives Isl and /fl present spectrograms lackmg any trace of
harmonics, with a fair amount of energy in the higher frequencies (Is/), and resembling
white noise (/fl, particularly) [5].

Therefore, the best way to describe the signal would be to separate the speech
signal into a noisy and a harmonic component, both present simultaneously, rather than
one at a time when the voiced/unvoiced model is used. The possible advantages in terms
of direct applications shall be discussed afterwards.

Modelisation of the noisy component in speech has been a non-trivial task [9]. Its
origins, however, have been traced, leading to the following classification. Other kinds of
noise might result from similar conditions, or from pathological cases, and do not concern
us.

• relaxed vocal cords, obstruction in the vocal tract : a stream of air is forced
through a narrowing somewhere along the vocal tract (e.g., between the teeth
and lips for the voiceless labiodental /ff), creating turbulence at the point of
constriction.

• vocal cords relaxed and set together, arytenoid cartilages open : this creates a
small opening at the glottis, creating friction noise. This is the case of whispered
speech, in particular.

• vocal cords vibrating, obstruction in the vocal tract: the noise is caused by the
constriction in the vocal tract but, as opposed to the first category, is also
modulated by the vocal cords : voiced fricatives, voiced stops, /r/.

• vocal cords vibrating, set apart : the vocal chords no longer interrupts the air
stream, but cause audible air leaks, resulting in a breathy voice.

But this does not tell us how to extract the noisy component from speech, nor does
it tell us what exactly we mean by noise. As there are a number of possible methods of
performing the separation noise/harmonics, each one implying a certain definition of

29

Chapter 4. The XPSOLA unit

noise, Nick Campbell suggested I try two methods, presented in the coming sections : the
hybrid model, and the bands model. The motivation behind it is two-fold. On one side, the
PSOLA method implies some periodicity in the signal ; applying it to both the periodic
and aperiodic components of speech might seem inappropriate. The answer lies in
splitting the signal in two, using PSOLA on the harmonic part and a better suited type of
processing on the noisy part.

On the other side, it might be useful for future applications to implement and test
algorithms that perform such a splitting. I am for my part convinced that the noisy
component plays a very important role in the naturalness of human speech, which is the
main, elusive goal in speech synthesis.

4.3.2 hybrid model

Recently, the CNET laboratories have come up with a "hybrid model" permitting greater
prosodic modifications with PSOLA systems [4]. It consists of decomposing the signal
into a harmonic plus a noise component. The harmonic component is represented in every
pitch period by a sum of sinusoids with frequencies that are calculated as multiples of the
pitch frequency. The maximum frequency of these harmonics is fixed at a constant level,
in the range from 3 to 4 kHz. The noise component is represented by a parameter LPC
model, the LPC analysis being performed on the residue which results of the substraction
of the harmonic component from the original signal.

The method implemented in XPSOLA differs from the original method for two
reasons. First of all, the objectives are not the same. Also, the proposed method has a
heavier calculation cost, and some minimal distortion is introduced. The Ak and Bk
coefficients are deducted from the scalar product between the signal, windowed over the
current pitch period, and a bank of sine and cosine waves with the above cited frequencies.
Thus this harmonic component corresponds to (I),

K;

ぷ(n)= 1:A~cos(k. 似）+B戸sin(k似） (])
k=O

where, Ki sets the upper frequency limit, constant for a given speaker, and higher
for female speakers than for male speakers. The fundamental frequency is calculated as in
(2) where pitch i is the ith pitch period. The noise component, in this case, is simply equal
to the residual, so that both components add up to the original wave.

瓜＝
2. 冗

Cpitchi + pitcH+1)
(2)

This algorithm was succesfully implemented. As Fig. 14 shows, most energy is
contained in the harmonic component. However, the noise component is more intelligible :
consonants are perfectly restituted, and even vowels , though dim, are not distorted.

30

Chapter 4. The XPSOLA unit

Tim<: I.I I和 4

,-----------
I
I
I
I

l~- 平—--

D:J..S四 L;0 ro:x刃 R:J匹 (F: 0ユ）

Tome: J.S6JJJ""'D: l..115父 I..:J..1)775 た 7.Oll2.l (P: O.lJ)

ー

ー

ー

ー

ー

l

因噂

―

ー

一

9
-
9ー一9

-
f

罰四

―冒
一

得’町!-1

i

]

．

T""': 106-!l!)"" D:3.5tll0 L:).53Til R: 7.0ll2l(F: 0.2.!)

- - ------ -'—- --- --- - -

・・
1

9

H

ー
—

r.s~ 山-且---------------'-----------------
Fig 14. hybrid model decomposition on the classic utterance "Amongst her friends、
she was considered beautiful", 1) original, harmonic component, noise component,

2) original wave, 3) harmonic component, 4) noise component.

3 1

Chapter 4. The XPSOLA unit

I believe this constitutes a very interesting result. The separation of noise produced
by turbulence, obstruction, etc, from the semi-periodic signal in voiced speech is very
good, and the time complexity of the whole method is not too high. A question mark still
hangs on the way to fix the upper frequency limit for the harmonics. Rather than using a
common fixed ceiling, each speaker could have his own ceiling, which could even vary
from phoneme to phoneme.

4.3.3 bands model

This method was conceived by Dr. Campbell, and put to work in the course of the project.
It stems in part from the following observation : the power spectrograms of natural speech
have a certain structure, presenting for example darker stripes corresponding to the
formants of voiced phonemes. These stripes, corresponding to frequencies multiple of the
fundamental frequency, should account for a rather periodic portion of the signal. We
wish then to detect, for every bandwidth, whether the portion of signal can be considered
as voiced or noisy, and to regroup them accordingly.

Filtering was performed using low-pass FIR filters. Here a trade-off between
bandwidth on one side, and speed as well as number of samples needed on the other side,
had to be reached. Lower degree filters have a larger transition width (width necessary to
ramp from passband to stopband), and that can limit the number of bands used. The final
compromise consisted in a set of 200-degree lowpass filters, calculated with MATLAB
using the following commands :

b = k * sinc(k * (-100:100));
b = b. * hamming(201)';

Multiplication by a Hamming window greatly reduces the ringing, and makes for
"cleaner" filtered signals. The bandpass filters were simply obtained by substracting two
lowpass filters with different cutoff frequencies kl and k2. Here, k represents the
normalised cutoff frequency, 0 < k < I, and the values used correspond , with a sampling
rate of 16 Hz, to the following bandwidths :

0-400 Hz 400-800 Hz 800-1200 Hz

1200 -1600 Hz 1600 -2000 Hz 2000 -2400 Hz

2400 -2800 Hz 2800 -3200 Hz 3200 -3800 Hz

3800 -4400 Hz 4400 -5200 Hz 5200 -6400 Hz

6400 -8000 Hz

Therefore, 13 filtered signals were obtained from the original signal. The last filter,
though, was not used ; in order to minimize distortion, the corresponding signal was
obtained by substracting all the other filtered signals from the original. The next step,
voicing detection for every band, involved the following formula and algorithm:

Voicing= Ni * nns * ph * (Cl * ac + C2 * cep + CJ * zc), where

Ni = normalisation coefficient, per band
rms = mesure of power (root mean square)

32

Chapter 4. The XPSOLA unit

ph = phoneme information (highest for vowels, lowest for unvoiced consonants)
ac = measure of autocorrelation, based on FFT
cep = measure of periodicity using cepstrum coefficients
zc = number of zero-crossings per time-unit
Cl, C2, C3 = normalizing coefficients

for every pitch period

for i in NurnBan_ds

filter signal S with ith bandpass filter-> Si

calculate voicing degree Voicing= ...

if Voicinq > 0.5

harmonic component+= Si

else

unvoiced component+= Si

This method, however, was soon abandoned in favour of the harmonic model. The
following problems, although not critical, demanded special attention, and the investment
in time was not judged desirable. The three main reasons for doing so were 1) voicing
detection for signals corresponding to different bands of the frequency domain was not an
easy task, and would have required some time for finely tuning the coefficients, 2) the
filters required 200 previous samples, which are not available at the beginning of units,
and 3) the final pair of voiced and unvoiced signals will most likely present discontinuities
at every pitch mark, since every filtered signal Si is liable to change from voiced to
unvoiced and vice-versa at every pitch period.

4.3.4 noise processing

Whereas the logical approach for the harmonic or voiced component is PSOLA, for the
reasons stated above, the noise component demands a different kind of processing.

The notion of pitch implies a certain semi-periodic process with a fundamental
frequency. This is not compatible with a noisy signal. In fact, it can be easily verifyied that
very noisy phonemes such as Isl and lfl are perceived as pitch-less sounds, e.g. there is no
such thing as a high pitch Isl. Therefore, we only have to be concerned with duration, and
the kind of processing required is simplified.

When no splitting is performed on the signal, the following algorithm is used on
unvoiced sections in each unit (voicing is defined in§4.7.2). Here, m is the original
length of the portion, and n is the target length :

if m > n

cut (m -n) from the middle section

else

3 3

Chapter 4. The XPSOLA unit

repeat

duplicate the middle 20 % section

until length= n

As can be seen, this comes down to simply cutting or pasting. Processing is
performed in the middle of the unvoiced section, because it can be asumed that the current
phoneme is in a rather stationnary mode during this interval, whereas the borders are often
transition periods between different sounds. If that is the case, distortion will be minimal if
we cut or duplicate bits of speech that are much alike. This assumption, however, is not
always true, and some precautions have to be talcen in order to avoid unwanted clicks (cf§
4. 7.2). In general, though, results were satisfactory, and the joins could not be detected
when listening to the resulting waveform.

When the signal has been split into two components, things are a little more
complicated. We want to modify the noise component in order to match the target length,
but synchronisation of some sort with the voiced component must also be ensured.
Indeed, both components are correlated, since they are produced simultaneously, and
treating them as completly independent signals could be risky.

Two different approaches were taken, both based on pitch marks. Marks can be
relied on as a measure of time, and if the shift between the two components is kept
approximately at a friction of one pitch period, we can expect to have sufficient
synchronisation. The first method reproduces the algorithm previously shown, in the pitch
period level. Samples in the middle of each period are cut or duplicated as required by the
target pitch marks. The second method performs a linear intrapolation on every period.

Unfortunately, prosodic modifications using a split signal were not fully tested, as
most time was devoted to other, more important parts of the module. I think, however, that
it should give good results.

4.4 Prosodic modification

4.4.1 pitch

Two pitch modification algorithms were implemented. Both are attempts at fooling the
listener, giving the impression that the pitch has changed ; close inspection shows that
such is not the case. Pitch variation for a voiced phoneme is caused by changes in the
fundamental frequency. The transfer function mi?ht or might not vary in the process,
depending on the speaker, but it always does so m a non~linear way. We will see the
modifications performed by the algorithms do not correspond to that.

The first method is PSOLA, presented in§3.4. If we consider the frequency
domain, the windowing and time-shifting performed by PSOLA modify the original
spectrogram in a way that differs greatly from the natural pitch variation. Explicit details
and mathematical theory about this point is found in [3]. The other algorithm implemented
for pitch modification consists in a linear intrapolation, performed on every pitch period.
If we call Wo and Withe output and input waves,

34

Chapter 4. The XPSOLA unit

0)。[j]== a.O)』j.k+l]+(l-a)叫 j]
(3)

a= j. k -E(j. k)

k = scaling factor

Again, this second method can be in囮 pretedin the frequency domain as another
linear interpolatiop, which does not correspong to the real, non-linear event. Tests showed
that PSOLA was clearly superior, as intrapolation sometimes produced very artificial-
sounding speech, but not completly satisfactory. Seemingly, pitch modification is not an
easy task.

~~
[!] POUBELLE/s心 Sd.wsv(S.F.:12000.0) {lcft:up/down mo心 mld:blowup lime righl:menu) 旦

T1"': l.01&17S<C ., 0.()(匹 L: 3.'471< 員： l.'471< (F:-)

~POUBELLE/s800St.wav (S.F.:72000.0) {lt:h:upldown mavr: mld:blow up time rlght:,nenu} 町
l

""'((): 0.00000 .. , o: 0.00000 L:'・""',:'・"'" (r:-------)

州馴鬱←‘

可"',..,,.,''"お

Fig 15. PSOLA pitch modification
upper panel: original; lower panel: modified

4.4.2 duration

Duration modification is performed by cutting or duplicating whole pitch periods. The
problem to solve here are the discontinuities that can occur at the joins. Because the signal
is modified in a way that parts of the wave that were originaly many milliseconds apart are
suddenly put together, both the slope and the sample value of the wave at such points are
most likely to be different, and any such discontinuity will undoubtly be noticed by the
listener. In order to deal with that, three algorithms were implemented. Besides PSOLA,
one method consists in removing the discontinuities by performing a weighted average, as
shown below.

3 5

Chapter 4. The XPSOLA unit

for i = -15 to -1

Wo[j) = (-j/15) .Wi[j] + ((lS+j)/15) .M

for i = 0 to 4

Wo[j) = (j/4) .Wi [j) + ((4-j) /4) .M

-1 4

こ叫iJ Iw[iJ
where M=―15 + 0

30 10

Here, Wo and Wi are respectively the output and input signals, centered at the pitch
mark where the current join takes place. The weighting is assymetrical, in the sense that
the five samples to the right of the pitch mark weight as much as the 15 samples to the
left. This is because the signal is typical_ly weakest just before the mark, that is, left of the
mark. Averaging the signal introduces distortion, which we want to minimize. This kind of
distortion is also present, to a lesser extent, in PSOLA : adding windowed ST signals
means that the output will somehow be averaged and flattened. That can be prevented only
if the pitch marks are reliable enough.

The final method is called select cut point. has the following advantage over the
two previous methods : no averaging is done to ensure the continuity, and the original
signal shape is preserved. If, rather than joining bits of the signal at exclusively pitch
marks, a better pair of join points can be found, additional processing will not be
necessary. Join points should fulfill the following conditions, 1) slope and sample value
should be as close as possible, and 2) the lapse of time between them should be equal to

、'・thelapse of time between the corresponding pitch marks, i.e. equal to the pitch period.
Thus the algorithm for select cut point :

for i = 0 tom

D[j] = sq(W[pi-j] -W[pi+l -j])

Cost[j] = D[j-1) + D[j] + D[j+l]

find 7 , o::;j ::;m、minimizingCost[j]

where sq() is the square function, Pi the ith pitch mark, j the shift, in number of
samples to left of the p~tc_h i:11ark, and m the maximum shift tolerated, fixed at one pitch
period. The shift that m1mm1zes the cost points to the place where the join is to be made.
As could be expected, PSOLA and select cut point give the best results. The resulting
duration modifications introduce almost no distortion.

Summing up, duration modification produces less distortion than pitch
modification. All the algorithms described had a complexity cost of the same order of
magnitude (O(n)), though PSOLA requires slightly more CPU time than the rest.
Therefore, output quality is the only criteria, and the best choices are PSOLA for pitch,
and either PSOLA or select cut point for duration.

36

鼻

Chapter 4. The XPSOLA unit

4.5 Mapping

4.5.1 overview

Mapping acts as the heart of the module. It is responsible of analysing the target prosody
and the selected units, and deciding precisely for every unit which processing is required
in order to reach the desired output. Mapping can also be described as the intelligent
interface between the prosody generation from the linguistics modules and the signal
processing routines.

Target duration is generated for every phoneme in the utterance, corresponding to
a sub-unit in the stream. It is stored in its corresponding field in the structure. Pitch, on
the other side, has a different format. It is produced as an array of integers, each value a
fundamental frequency estimation in Hertz, at fixed intervals (usually an estimation every
5 milliseconds). In unvoiced sections, the prosody generating modules create fake values,
in order to make.the whole fO contour continuous. A function, xps_Periods(t, …), puts all
this information into an easier to use format : it returns the pitch period length, in
milliseconds, estimated at instant tin the utterance. At this point, we might be tempted to
use this information directly, but there are reasons to be cautious:

unreliable pitch marks: we rely completly on them for measuring the
fundamental frequency of the selected units. And while errors in the pitch mark
datab邸 esare uncommon, they do exist. A single flawed mark is enough to
deteriorate the speech signal if we are not careful.

unvoiced zones : near the voiced/unvoiced transitions, the fO estimation can be
slightly unaccurate.

micro-prosody : selected units have their own natural intonation ; forcing them
to a different one might sometimes produce unwanted effects.

synchronisation : the fundamental frequency estimation is not exactly
synchronized with the actual utterance.

4.5.2 algorithms

The kind of output we expect from the mapping is :

unvoiced signal

voiced signal

target length / original length (float)
for every sub-unit

copying decision: cut, copy, or duplicate
target fO / original fO (float)
for every pitch period

Unvoiced signals are easy to process, since we need not bother with pitch. For
voiced ones, for the reasons cited in the previous section, some precautions are needed.

37

Chapter 4. The XPSOLA unit

There are 3 different approachs at mapping prosodic modifications for voiced signals. The
algorithm is :

for everv oitch period i

P'i = 1 / fOi
or

I N I
P'i = Pi . ―こ一N j fOj

or
N

P'i = (1 / fOi + Pi . 認翫） I 2

where P'i and Pi design, respectively, the target and original pitch period length.
The first approach, exact matching, is dangerous, and can sometimes give bad results for
the reasons cited above. The second approach, using the average pitch period value,
pre:;erves the original intonation of the unit, shifting the pitch by the same value for every
period, m1& ignores most of the information passed by the fO generator. The third method,
a mix of the previous two, is perhaps the best. ・

Duration modification for voiced sections is as follows. Pitch modification has to
be considered here, because raising the pitch of a signal will make it shorter, and vice
versa. The variable used is :

dmodif =
target_ length * target_ pitch

(5)
original_ length * original_ pitch

Finally, the algorithm for cutting/duplicating is shown below. As can be seen, I
avoid cutting and duplicating near the borders of a unit, because I think transitions
between phonemes are too important and fragile to be modified. Also, at most one every
two periods can be duplicated/copied. This is an additional precaution against excessive
prosodic modifications. That way, duration can at most be doubled or halved, which I
think should be enough. If more was required, that might mean the unit was not properly
selected.

9

¥

（＇

aux= 0

for every pitch period i

aux = aux - (1 - dmodif i)

if abs(~ux) < 1
or previous period was cut/dupplicated

period must be copied

if aux_> 1

period must be dupplicated

3 8

Chapter 4. The XPSOLA unit

aux= aux -1

if aux< -1

period must be cut

aux= aux+ 1

4.6 Unit concatenation

4.6.1 goals

Each selected unit is extracted from a certain word in a certain utterance with a certain
~yntax. This means that every unit stems from different vocal trat configurations and
mtonation patterns ; concatenation is bound to create discontinuities. Consecutive units,
with similar power, and whose waveforms are continuous at the join, can still sound wrong
because no human being could have pronounced them, as the airflow, tongue and lips
position, etc, can not change that fast.

This is a difficult problem, that can best be addressed by unit selection, carefully
choosing the unit boundaries, so that the shape of the waveform on both sides of every
join is similar. Signal processing can, however, improve the result when concatenating the
final units.

The following sections present briefly a set of concatenation methods. The next
chapter, though, presents all the other ways of improving the quality of the synthesized
speech.

4.6.2 temporal methods

Here the problem is very similar to duration modification : we want a continuous
waveform, without jumps in the signal or the slope. Two comments are necessary, though.
First, concatenation is done at pitch marks. Otherwise, we would interrupt the periodicity
of the signal during voiced speech, introducing a phase shift. Second, in most cases a
whole pitch period of signal will be dropped for every pair of concatenated units. Keeping
the whole units and making good joins are not compatible.

The three methods implemented are DUMB, select cut point and PSOLA. The
first approach consists in concatenating without any kind of processing. The other two are
inspired from the prosodic modification algorithms. select cut point finds a good point for
concatenation, while PSOLA builds a middle period by adding the right and left sides,
respectively, of the ST signals of the left side and right side (with respect to the join point)
units. In both cases, a whole pitch period is lost.

Listening tests show that select cut point gives the best results. Adapting PSOLA
to concatenation is not very succesful because, contrary to the duration modification
context, the ST signals are not similar to the point that overlapping and adding does not
result in averaging and flattening of the signal.

39

J :

J

I

I
I

I

I

I

Chapter 4. The XPSOLA unit

rn-"-: ザや.cd.JloI; 2SSS_ _ _ _ _ ___ __ _ - ---- ---- --------------- -~-- - - - -・-- - - - - ::::::-_'.i-
ー.- - I

I

J

I 註益．が 叩1,;.Q,!• -,;・.;,1 ・--. 一・-・・--- ・・-・-・・・・-・---・・-・ 一臼・・・・--・---・. . -・-・-・----・- -・-・ • • • • • -- ・------・- .

Fig 16. select cut point concatenation

4.6.3 spectral methods

The idea behind the following algorithms is to build a transition signal between the units
to be concatenated, in order to smoothen the transition between phonemes. No~hing really
convincing w~lS obtained, because the algorithms used are quite simple and naive, and the
task requires more advanced processing and knowledge, such as a reliable distance
measure for waveforms. The first algorithm is based on the following formula :

iF回 (F回 (signal_I)~F回(signal_2)) (6)

This is a crude attempt at averaging two pitch periods in the frequency domain,
using Fourier transforms. Power and length were averaged between the two periods. The
second algorithm attempted the same thing, in the temporal domain. Both failed.

4. 7 Other options

40

Chapter 4. The XPSOLA unit

4.7.1 power modifications

By power we mean the energy of the speech signal, which can be measured~y a root
mean square of the waveform. It plays an important role in prosody, i.e. power 1s part of
stress, and affects the meaning of the sentence. There is so far no power estimation
module in CHATR, although that should change. Nevertheless, power modification turned
out to be an easy process, that improved considerably the quality of speech.

Power can vary greatly between different occurences of the same phoneme. It
varies also during any given utterance. But, with the exception of plusives, power usually
rises and falls in a continuous way. Power discontinuities are very rare, and in the speech
synthesis context, unwanted. Again, plusives are not concerned.

As selected units are concatenated, the envelope of the resulting signal is likely to
show several discontinuities. The same wi~l happen with power. Therefore, an algorithm
allowing to erase those discontinuities was implemented.

for every unit i

rmsl = last half of previous sub-unit
rms2 = first half of first sub-unit
rms3 = current unit
rms4 = average value for the unit's phonemes
rmsS = last half of last sub-unit
rms6 = first half of following sub-unit

calculate the 3 scaling coefficients

build scaling window

signal= signal* window

The scaling window is a set of coefficients, one per sample : a 1.3 value makes for
a power increase of 30%, and so on. This window has 3 zones, with smooth, sygmoid-like
transitions in between. The middle zone covers all but the borders of the unit, and the
corresponding coefficients are meant to drive the power of the unit, halfway between its
current value and the average value defined in the database for the unit's phonemes. This
tends to produce a kind of speech with little power variation. As a result, it might be
slightly monotonous, but synthesized speech will be more predictable and stable.

The two other zones correspond to the first half of the first phoneme, and the last
half of the last phoneme of the unit. Here we want to ensure a certain power continuity
with neighbouring units. Scaling is done in a way that reduces power gaps by half. For
more details, consult functions xps_INDEX, xps_WIN_POW and xps_POWER_PRO in
the program.

It is also possible to feed the XPSOLA module with target power values.
Completion of the power estimation module with make testing possible.

4 1

Chaprer 4. The XPSOLA unit

mぶ

~POUBELLE/s幽3.w11v (S.F.:72000.0) {left:upldown move mld:b!ow up time right:menuJ

Ti氏 (r): 0.00000sec o: 0.10960 L: oj37026 R: 0.<7s76 (f: 9.13)

巨

3

SPS s・..,,,,'●t, 2601
叫'l'kl紐11/,11~紺 糾I饂 t

~POUBELLE/s的03p.wov (S.F.:72000.0) {left:up/down move mld.'b/ow up lime rlght:menu)

T1"": 0,<36S2SCC O, 0.10950 L: Oj370蕊 R: 0. 47976 (f: •. 13)

囲

Fig 17. power modification

4.7.2 final modifications
9

¥

f

To close the chapter, let us briefly mention two last aspects of the processiりgperformed
on the synthesized speech.Jc凶ingand short units. Fading consists in repeatmg the last 3
pitch periods of the utterance's last unit, with diminishing power. This simple algorithm is
designed to avoid sentences that end abruptly, because the last selected unit is not silent,
but loud, and sudden cuts should be avoided. Concerning short units, my opinion is that,
under a certain threshold (5 milliseconds), il is best to drop them from the final wave.
Given the kind of processing performed so far, very short units can not be properly
treated, and introduce very noticeable clicks.

Other, less important options, not mentioned in this chapter, are briefly explained
in Chapter 5.

42

Chapter 5. Implementation

Chapter 5

Implementation

5.1 Software constraints

As any large software system designed by several people, CHA TR features some
common rules that programmers must respect. Although CHATR is flexible, it is
impossible to be flexible enough for all users. Therefore, as any person contributing a
new module to the system, I had to abide by the following dos and do-nots :

• never call exit or print f : there are many modules in CHA TR, too many
things to print, and too many conditions were it is impossible to continue
execution. Rather than exiting the program, or filling the screen with messages,
specially made functions like list_error and P _Message should be used.

• never use absolute path names or machine dependent functions : CHA TR
is designed to be used on many different machines and platforms, so the system
must remain portable.

• do not add unnecessary functions to the name space : since the number of
functions in the systems runs in the thousands, each module should keep its
functions static, or else use a given prefix to avoid confusions and visibility
problems. The prefix adopted for XPSOLA is xps_.

• always use CHATR functions to access CHATR structures : internal
aspects of CHA TR can change and improve. It is much easier to fix one general
function than hundreds of random little functions that do similar tasks all
wrongly.

The previous rules being observed, the XPSOLA module was linked to the rest of
the system. Also, I was encouraged to add many comments in the code I produced, for

43

Chapter 5. fmplenzentation

obvious reasons. A new entry in chatr_vars. c, a kind of on-line help for CHATR
users, was added, describing the basic options and the correct syntax.

In line with every other module in CHATR, XPSOLA was debugged using
software that spots hard-to-find memory errors [12]. Given the very large amount of data
the system is bound to manipulate, no memory corruption can be tolerated. Otherwise, it
would be bound to crash. Purify allows to avoid errors like overwriting, writing on
unallocated memory, reading uninitialized memory and forgeting to free the memory used
when leaving the;:,ystem. All this is done at run-time, through a very convenient graphic
interface.

Type of Error

Function Call Chain

Exact Location

Allocation Call Chain

l nl ohed•• out
I! r 函葦

1 error, 12 looked bate●)

一芦品溢心沿.~i.. 溢iti~~=
Thi• 1■ occurr↓ n< while 1n:

_doernt Clibc.so.l.9l
printf Clibc.co.1.9)

瓢 ;:,in (hello_只 orld.c; 14)

~ain()

char•~>1•tr• ~•lloc(strlen(helloWorldl>;

ヽ trncp,i(~,i三 tr, helloWorld, 121;
printf 《 "X•、n", ~,i•tr):

/
，
'
’
’
¥

•tort [crto. o
Ro•dl n1 1 bute frの Ox3b0dc in the he•p.
Address Ox3b0dc U 1 byte p● <t end of ・ "'•lice• d block•t Ox3b0d0 of 12 b
Thi• block woe olloc•ted Fr=:

"'•lloc Crtllb. ol
Ill "'"'" [hello_.,,orld.c:lll

眉
stort CcrtO. ol

Current File descriptor• 1n use: 5
M=or1;1 le•kcd; 12 bi;tc• (lOOXl; potentiolli; looked: 0 b1;1tes (OX)
Pro•r- exited with statu● code 1.

工:r:.:=:::.:..-::::云~:.:二-~:
ー,~ーi

Fig 18. Purify window

／

\~ ．．
 ,’

5.2 Testing

Testing of the module went as follows. The first step consisted in testing that the system
will not crash with any given utterance or database, and that no memory errors are detected
by Purify. The second step is about listening and displaying the output waveforms,
looking for and correcting possible mistakes. The whole testing process was performed
twice on the module, once for the original type of pitch marks, where it was completed
satisfactorily, and once for new version accommodating both the original and the new
types. This second testing process was not fully completed (cf§6.2).

This, however, was not enough to detect errors easily. Nor could one tell which
flaws in the output signal were due to bugs, to the selected units, or to the algorithms.
Therefore, a special testing procedure was developed inside XPSOLA. When used to test
the processing, it gave a clear view of what exactly was being performed on the signal.
When the signal model was our concern, it simply displays the noisy and harmonic
components; this was shown in Chap 4.3.3. The algorithms for these two routines are :

44

Chapter 5. Implementation

for i in ro, 71

display original unit OUi

fill 1000 blank samples

apply prosodic modifs、concatenation->processing Pr
j

for i in 「0r 71

display processed unit PUi

fill 1000 blank samples

replace original units with sawteeth

apply same processing Pr to new sawteeth units

for i in 「0t 71

display processed unit SWTi

Figures 12 shows the results from the test processing routine, using xwaves+.
Some comments are necessary to explain the unusual waveform. On the right end, the
processed sawteeth are displayed. The first sawtooth is the longest, and corresponds to a
silence, as can be seen on the other two waveforms. Pauses can be made longer by filling
them with Os, thus the "hole" in the middle of the sawtooth. The fourth unit corresponds
to an unvoiced consonant, so shortening the unit can be achieved by simply dropping the
middle samples, thus the discontinuity. These last two modifications might seem radical,
but the listener will not notice any disturbance. The second, third and eighth sawteeth
correspond to voiced phonemes : the distortion is caused by the windowing involved in
the extraction of short term sig叫 s.A closer inspection will reveal their sine-like shape.

Time: 3.76833如 D: 3.51550 L: 3.53775 R: 7.05325 (F: 0.28)

i
十

ー

＇

旧

ー

L
ー

ー

ー

I
I
I
I

---------------------------!-—

Fig. 19 test processing

45

Chapter 5. Implementation

Since in most cases every database (recorded speech or pitch marks) was built
separately, sometimes by diferent persons using different conventions and tools, the
system must cope with this variability : formulas for power may differ, some marks in the
database may be defective (i.e. pitch marks going "backwards"), etc. Also, some units
might be unexpectedly long, or unexpectedly short. In the first stage of testing, we hope to
encounter all those extreme cases, and deal with them effectively.

The "modus operandi" was to run CHATR with Purify over a whole database,
using the command test_nameofspeaker. This consisted in, for every utterance in
the selected database, synthesizing it after removal from the set of possible units. The
listening stage was performed mostly for the English databases, because my poor level in
Japanese might have influenced my judgment. Displaying the waveform using xwaves+
made possible to spot eventual bugs, and helped to trace them back to the code.

5.3 Evaluation

The quality of a synthesized waveform is relative to the listener. Each individual might
perceive the naturalness of the artificial speech in a different wave, save for the most
obvious mistakes. Therefore, the best way of evaluating an algorithm in a speech synthesis
system is to present a representative number of examples to a sufficiently large group of
"naive" subjects, who grade each utterance.

This kind of test was not conducted while evaluating the module's performance,
though, since it requires time and people, and often the difference between algorithms was
big enough to allow to distinguish a clear winner. Therefore, evaluation consisted simply
in listening, together with Dr, Black, to a few utterances, spot the problems, and choose the

、''bestalgorithms. The algorithms that proved to be superior are :

pitch modification : PSOLA better than intrapolation

power modification : smooth better than none

pitch marks : PM_ VOICED_ONLY over PM_ALL_MARKED

In other areas, the situation is less clear. These would require more attention. In
general, all the algorithms had an equivalent cost, so speed is not an issue when deciding
which algorithm should be preferred. The choice for default options was then made by
picking the clear winners when possible, and picking the most standard or reliable
algorithm if not. These default options are presented in the next section.

ヽ

5.4 User's guide

In this section, the practical aspects of the XPS OLA unit will be presented. As shown in
Chapter 4, there are a number of parameters, each having a default value, that might be set
by the user at run-time. Therefore, no modifications to the code are required when
switching from one algorithm to another.

46

Chapter 5. Imp! ementatwn

Usually, CHATR is called using a script, containing a number of instructions and
parameters, each addressing a particular area in the processing. For prosodic
modifications, concatenation, and signal processing as a whole, the corresponding variable
is called Concat_Method. Currently, possible values are:

XPSOLA remember?

PS OLA previous version, implemented by Helene V albret

NUUCEP Nuutalk cepstrum resynthesis

PS_Simple PSOLA with cepstrum cutting

DUMB

DUMB+

NULL

simple concatenation, no prosody modifications

concatenation at zero crossings, no prosody modifications

empty wave

When XPSOLA is selected, an additional variable named xpsola_params,
containing all the desired options, migth be set. Options that are not set by the user, or that
are set to unacceptable or out-of-range values, will be assigned to their default values.
Input is case-independent. Information thus stored into xpsola_params is then
passed on to the global variable scheme, used in the XPSOLA unit (see Appendix 1). The
list of options is :

P _thres default value : 0.1
pitch modifications under (P _thres * 100) % will be ignored,
i.e. not accomplished, during the processing.
possible values : greater or equal to 0

D_thres default value: 0.1
duration modifications under (P _thres * 100) % will be ignored,
i.e. not accomplished, during the processing.
possible values : greater or equal to 0

P _method default value : PSOLA
this selects the pitch modification algorithm used.
possible values : intrapol, psola

D_method default value: PSOLA
this selects the duration modification algorithm used.
possible values : dumb, select, psola

P _ceil default value : 0.33
pitch modifications are limited to +/-(P _ceil * 100)%.
possible values : greater or equal to 0

D_ceil default value: 0.66
duration modifications are limited to +/-(D_ceil * 100)%.
possible values : greater or equal to 0

concat default value : SELECT
this selects the concatenation algorithm used.

47

Chapter 5. Implementation

possible values : dumb, select, psola, cepstral, extrapol, extrapol2

power

contour

model

test

stops

tiny

．．
vo1cmg

def叫 tvalue : SMOOTH
this selects the power modification algorithm used.
possible values : none, target, smooth

default value : AVERAGED
this selects the mapping algorithm used.
possible values : averaged, target, mixed

default value : NONE
this selects the model used for noise/hannonics decomposition,
and eventually the algorithm for noise processing.
possible values : none, hybrids, bands, hybrid+, bands+

default value : NONE
this selects the testing routines.
possible values : none, model, processing

default value : NONE
this selects the kind of modifications performed on stops.
possible values : none, pitch

default value : DROP
this selects whether units under 2 periods long are used or not.
possible values : drop, keep

default value : PHONEME
voicing decision for PM_ALL_MARKED pitch marks.
possible values ; phoneme, database

The defaults were chosen in a rather conservative way : the simplest, most reliable,
but not necesarily best, algorithms are used. However, they can easily be changed, by
modifying the function xps_set_xpsola_params in the ruc.c file (see Appendix 1). A
possible change could be changing power from NONE to SMOOTH, and contour from
AVERAGED to MIXED. An example of a script setting these variables could be :

(speaker _sally)

(Parameter Concat_Method XPSOI.A)

(set xpsola_params'((model HYBRID+)
(test model)
(tiny KEEP)))

;;selecting the sally database

; ; case independent

48

Chapter 6. Conclusion

Chapter 6

Conclusion

6.1 Summary

This report presented a new module to be implemented in version 7 of CHATR, the
speech synthesis system developed at Department 2 of ITL. It is based on the PS OLA
algorithm for prosody modification, but it offers many other possibilities as well. It
provided CHA TR with its first signal processing unit, needed to fully exploit the prosody
generation capabilities of the system, and to improve the overall quality of the output
synthesized speech. It also allowed to test new techniques concerning pitch mark
generation and signal splitting into voiced and unvoiced components.

For future users it presented the potential of the system, as well as the way to
exploit it. Future programmers found the different algorithms presented in detail.As with
the rest of the CHATR system, the XPSOLA module is bound to evolve with time, and
comments as well as contributions are expected.

6.2 Fields for improvement

As with any system, this module can be improved in several ways. As the new XPSOLA
module is fairly young, future users are invited to make the changes they deem necessary.
Possible fields for improvement fall into one of the following categories.

1. First of all, the final stage of debugging should be finished. The way to do this
is to run CHATR using purify, and to try all the examples for one or more databases, with

49

Chapter 6. Conclusion

different options. This was completed succesfully with the previous version of the module,
before adding the modifications needed for treaiting the new pitch m紅 kstype (cf 2.2.3).

2. The module was conceived in order to offer different options, and speed was not
a priority. Even though signal processing only takes about 15% of the CPU time needed
for synthesizing an utterance, it is still important to reduce as much as possible the
processing time if CHATR is to work as an almost real-time system. Moreover, the
percentage of time spent on unit selection is bound to fall in the future. So optimisation of
some kind is necessary.

3. The optimal set of options, that is, PSOLA pitch and duration modification,
power smoothening, and "select cut point" concatenation, can be deemed satisfactory :
the sound quality is fair, and no clicks or major distortion introduced. These algorithms
are straightforward and reliable. The mapping, however, is more complex, and can
certainly be improved.

4. Also, some sort of distance measure between waveforms would be welcome. It
could be used in particular for concatenation and for unit selection, helping to determine
the best points for joining consecutive units, or even for creating "fake" frames to
smoothen the join.

5. Finally, a comment on unit selection for stops. The burst is a very sensitive
segment, and can easily be corrupted, with very noticeable effects. Therefore, it migth be
wise, not only to avoid prosody modifications on stops, but also to make sure that the
burst is well in the middle of the selected unit, and not shared between two consecutive
ones.

6.3 Discussion

A number of comments can be made on the previous sections.

1. Each individual has a particular voice, recognized easily by humans, but not by
automatic machines. Difference in voice quality between speakers has long interested
researchers, and can be traced back to three causes [2]. First of all, the overall dimension
of the vocal tract, and the relative pro~ortions between the supra-glottal cavities (laryngeal,
oral, nasal, ...) present important vanations from one speaker to the other. As a result,
formant frequencies differ from speaker to speaker. The second factor is linked to the
glottal excitation, ie the vocal cords (an opera singer is said to have "good" vocal chords).
Finally, the third factor is linked to the person's speaking habits, dictated by his dialect,
and social environment, making for a particular prosody.

The latter is linked with linguistics, and does not concern us here. However, when
using the hybrid model for splitting the signal into a harmonic and a noisy components,
we have direct access to the harmonics of the speech signal, and thus of the different
formants. It would then be possible to map the formants of one speaker to those of a
target speaker. Such mapping might be performed using neural nets, for example, trained
for that particular pair of speakers, over the whole database. It might be the case that each
phoneme type will require a specifically trained net, or a a single net will be able to trace
all the phonemes, effectively representing the overall differences between the vocal tracts.

Two questions remain open. On one side, the noisy component carries a
considerable amount of information, and will probably require some sort of processing
too. The nature of such processing has yet to be determined. On the other side, we don't

so

Chapter 6. Conclusion

know to what extent the difference in glottal excitation has been addressed, nor how it
really affects the voice quality.

I think this idea is worth trying. XPSOLA offers a good starting point, and is
flexible enough to accommodate many different test routines and waveform
manipulations. If succesful, this method would allow modification of the voice of one
speaker without modifying its prosody, ie its particular accent (Scottish, English,
Australian, upper class, …）．

2. Unit selection should take into account the signal processing that follows : for
any given utterance, the units selected for DUMB concatenation (no modifications
whatsoever on the units) may not be the best ones for PSOLA processing, power
modification and "select cut point" concatenation. Although this requires a new series of
testing, some fair guesses can be made.

Since duration is relatively easy to modify, and the results are rather good, duration
should play only a minor role during unit selection. Power too can be modified so as to
eliminate power bursts. Pitch, however, is more difficult to change. Another kind of
problem is the shortest units, usually two or three pitch periods long, that are less than
ideal for signal processing. Therefore, while training new weights for unit selection, it
would be useful to have in mind that :

• Wd, weight linked to duration, shoukd be low

• Wr, weight linked to rms (power), should also be low

• Wp, weight linked to pitch, should be high

• very short units (ie, < 5 milliseconds) should be penalised

5 I

Acknowledgments

Acknowledgements

I wish to thank all those who helped me in many ways to carry out this project :

-Nick Campbell, who agreed to be my Directeur de Stage. His experience and
knowledge were extremely valuable.

-Alan W. Black, who greatly contributed to this project. He took the time to
introduce me to many diferent aspects of CHATR in particular, and of speech processing
in general.

-Lee Yang-Hee, for the many presentations of his research on cepstral analysis.

-Andrew Hunt, for his sound advice in speech processing and computer science.

-Masahiro Nishimura, the department's systems engineer, who always solved any
of our problems with either hardware or software.

-Kevin Lenzo, who explained certain aspects of speech-related digital signal
processing, in particular the fft-related functions.

-Yoko Shibata and Chieko Kohshima, thanks to whom my adaptation to a new
environment turned out to be a very enjoyable experience.

-Norio Higuchi and all the other members of the PEGASUS group.

Finally, I wish to thank Ms. Dorizzi, who agreed to supervize this internship and to be part
of the jury, as well as Shuko Lei and Satoshi Ikeda, Japanese teachers at the INT, who are
responsible for my discovering this wonderful country.

52

C.,7

'--'

．
Aug 3 1995 14:58 XIO.C

1•------------------••=•••==•===••---- ロ-••============••••===========*/

j• AT R Interpreting Telecommunicat.1ons Labs */

/'*/
／＊ピに................ーロー---------···-----···-•-•===••=•=•====•====••·-·1

/' CIIATR Speech Synthesis System */
;• Chris t1an l,clong• /
j• ---•;

/* */
/* Input -Output Library */
;• */
／ ＊＊／

/• Feb 1995 */
/* Copyright. (C) 1994, 1995 */
;• ATR Interpreting Telecommunications Research Laboratories */
;• All rights reserved. * /
/*=•=====•==•===•••==•==============•---口=•••====-•============•••-==*/

•include "xruc.h"

•define FO_FR紐 5

extern int SPAN;

Small_pm•make_small_pm(int npm);
void free_small_pm(Small_pm•pm);

Page 1

/** Classify a Phoneme **/
/* Read a phoneme type : * /
/* This simply returns a value according to a classification table、*/
/* telling the phoneme type of sub-unit'su'. */
／＊＊／

int xps_PHONEM(struct Sub_Unit *su)

int aux, output, vowel, cons;

vowel= SC(su->target、Segment)->vowel;
cons = SC(su->target, Segment)->c_type;

switch (cons)

case STOP : output. ー (vowel·•l) 7 1 : 7;
break;

case FRIC : output - (vowel=•l) ? 1 : 5;
break;

case AFFRIC : outputー (vowel--1) ? 1 : 4;
break;

case NASAL : output ー (vowel•=l)? 1 : 3;
break;

case LIQUID : output. ー (vowel•ー1) ? 1 : 2;
break;

case CLOSURE: output - (vowel•=l) ? 1 : 6;
break;

default : output = (vowel・-1) 7 1 : 8;
break;

return output;

XIO.C

/* silence */

．
Aug 3 1995 14:58 XIO.C Page 2

/** *• * ** ***** ** ****• ** **** ****** ***** ******•••• ***** *• •• • Initialization• * /
/* Set the main variable : * /
/* This creates a Synthesis variable suited for the input utterance, • /
/* and frees sufficient memory for all of its fields. It also reads * /
/* some useful information from the utterance. No more memory allo-• /
/* cation is needed afterwards、exceptfor the waves and marks. */
／＊＊／

Synthesis•xps_INIT_ALL(Utterance utt)

int units-0, npm, i-0;
struct Unit•punit;
P_Marks pmark;
Synthesis *S;
Stream u;

S -xalloc(l, Synthesis);
S->srate• udb_current->wave_sample_rate;

for (u -UNITSTRE碑 (Utt); ul-SNIL; u -SC_next(U))

units++;

S->nunits -units;
S->wl -xalloc(units, short*);
S->w2 -xalloc(units, short*);
S->ref -xalloc(units, Marks*);
S->tar -xalloc(units, Marks•);
S->map -xalloc(units, Map*);
S->nrfpm -xalloc(units, int);
S->ntgpm -xalloc(uni ts, int);
S->nsamp -xalloc(units, int);
S->nsubu -xalloc(units, int);

return S;

/* count number of uni ts• /

/** Reference Pitch Marks **/
/* Read the reference marks : • /
/* This reads pitch marks from'punit'if they are preloaded, or from*/
/* the pitch mark files if they aren't (much slower), for a unit of a•;
;• given'rank'in'S'.'npm'has the number of marks for the unit. • /
/* Not all the fields are initialized. • /
／＊＊＊／

Marks•xps • .Get_Pitchmarks(struct Unit•punit, int•npm, int srate)

int start、end, i, k, scale, new, auxnpm;
unsigned char trash;
FILE *fid;

Aug 3 1995 14:58
．

XIO.C Page 3 Aug 3 1995 14:58
．

XIO.C Page 4

Small_pm•spm;
Marks•pm;
char line [500) ;
float shiftl. shift2, begin, aux;

if ((punit->whole_pm !~ NULL))
（

spm -punit->whole_pm;
）
else
｛

し、7

＾

―

/* pitch marks preloaded I * /

/* read appropriate files*/

if ((fid -fopen(punit・>pitch_mark_file, "r")) --NULL)
I

P_Error("Failed to get pitchmarks from もs",punit・>pitch_mark_file);
list_error(On_Error_Tag);

spm -make_small_pm(num_lines(fid)+l); /*allocation*/
spm->npm -- 1; /* +l in case we need to add one at zero*/
fscanf (fid, "¥f ¥c", spm->pos, &trash);
if (spm->pos[O) --0)

for (i-1・, i<spm->npm; i++) /* reading */
fscanf(fid, "¥f もc", spm->pos+i, spm->voice+i);

else
[/* make sure it begins at O */

spm->pos[l) -spm->pos[OJ;
spm->pos[O) -0:
spm->voice[O] -0; /* most common case */
for (i-1; i<spm->npm; i++) /* reading */

fscanf(fid、"¥f tc"、spm->pos+l+i, spm->voice+i);
spm->npm +- l;

）
fclose(fid);

i -0; /* all in milisec */
while {{i<spm->npm-l)&&{spm->pos[i] < punit->start)) i++;
start - [end -i);
while {{i<spm->npm)&&(spm->pos[i] <・punit->start + punit->length)) i++;
end - i -1;

/*'inner'marks*/
if {end -start < 1)
[/* not enough marks found */

pm• xalloc(2+punit.->num_sub_units, Marks);
pm[O] .nsamp• O;
pm[l] .nsamp - punit->length•srate/1000;
pm[OJ .voice• {pm[l] .voice• O);
if (puni t->whole_pm•• NULL)

free_small_pm(spm); /* 2 fake marks created */
•npm• 2;
return pm;

shiftl - spm->pos [start! -punit->start;
auxnpm -end -start+ l;
pm -xalloc(auxnpm+punit->num_sub_units+2, Marks);

for (i-1, aux•spm->pos[startJ 、 k-0 ; i-k<auxnpm; i++)

I
new - (int) (spm->pos[start+iJ-auX) * srate / 1000;
if (i•• l l

I
pm[iJ.nsamp -new;
pm[iJ.voice -O;

/*positive*/

/*precaution*/

if ((i>l)&&(new>pm[i-1-k] .nsamp))
［

pm[i-k].nsamp -new;
pm[i-k] .voice• O;

J
if ((i>l}&&(new <• pm{i-1-k] .nsamp)) /* k aa number of bad marks */
［

auxnpm• auxnprn -1;
k++;

pm[O].nsamp - (int) (shiftl * srate / 1000);
pm[O].voice -O;
•npm -auxnpm;

if ((punit->whole_pm• 匹 NULL))
free_small_pm (spm);

return pm;

/* check for corrupted marks•;

/* useful. . . * /

/** Reference Pitch Marks **/
/* Read the reference marks : • /
/* This calls function xps_Get_Pi tchmarks, and then finishes the job, • /
/* for a unit of'rank'in'S'. /¥11 the fields are initialised. • /
/**••···············1

void xps_READ_REFERENCE(Synthesis *S, int rank, Stream u, Scheme sch)

int nsubu, i、j, k, size, start, type, npm, rk, rk2;
int boundary, shift, aux, rate, temporary;
struct Unit•punit;
struct Sub_Unit•psubu;
Marks•pmark, •pm;

punit -SC(u, Unit);
pmark -xps_Get_Pitchmarks(punit, &npm, S->srate);
nsubu -punit->num_sub_units;
rate -S->srate / 1000;

temporary -pmark[OJ.nsamp; /* used in READ_WAVE'/
pmark[O] .nsamp -O;

if (udb_current->pm_type--PM_VOICED_ONLY) /* these need some pre-proc. */
｛

for (i-0; i<npm; i++)

｛
pmark[i].boundary -O;
pmark(i] .voice• (npm > 2) ? 1 : O;

）
for (i-0; i<nsubu+l; i++)
［

/* most often true */

/* additional marks?•;

aux -xps_Find_Boundary(punit, i、pmark, npm);
if (aux < 0)
（

/* one needed*/

boundary• (i--nsubu)? punit・>length: punit・>sub_units(i] .start;
boundary• boundary* rate;
aux• ・aux・1; ;• rank of new mark */
xps_Push_Marks(pmark+aux, npm -aux);
pmark[aux].nsamp• boundary;
pmark[aux].voice -O;

xio.c 2

/、

Aug 3 1995 14:58
．

XIO.C Page 5 Aug 3 1995 14:58
.

XIO.C Page 6

pmark(aux].boundary - l;
npm++;

｝
else

pmark[aux] .boundary~l;

S->nrfpm[rank] -npm;
S->ntgpm[rank]• npm;
S->ref[rank] 口 pmark;
S->tar[rank] -xalloc(2*npm, Marks);
S->map[rank]• xalloc(npm, Map);
S->nsubu[rank]• nsubu;

for (i•(k•O); i<npm; i++)
（

S->ref(rank) (i] .nsarnp -prnark(i) .nsamp; /* precaution */
s->ref(rank)(i].rank• i;
S->ref[rank) (i) .forbid• O;
s->ref (rank) Ii) . boundary - (udb_current->pm_type•=PM_VOICED_ONLY) ?

pmark(i).boundary: O;
s->ref(rank) (i] .voice= pmark(i) .voice;
S->ref(rank] (i] .prev• (i•·0) ? NULL : S->ref[rank)+i-1;
if (i >- S->nrfpm[rank]-1)

S->ref[rank] (S->nrfpm(rank]-1] .next - NULL;
else

S->ref[rank) (i) .next• S->ref(rank)+i+l;

(.,7

::.;、 S->nsamp[rank]~S->ref[rank] [S->nrfpm[rank]-1] .nsamp + l;

S->ref[rank] [OJ .boundary - l;
S->ref[rank] [S->nrfpm[rank]-1] .boundary• 1,
psubu• punit->sub_units;
type • xps_PHONEM(psubu);
for (k-0; k<S->nrfpm[rank]; k++)

S->ref[rank] [kl .phoneme - type;

if (nsubu > 1)
（

/* just in case I */

/* initialize */

rk2 - 1; /* two routines for two types• /
rk = (aux• O); /* of pitch marks, different */
size = punit->sub_units[O] .length• rate;
while (S->ref[rank] [rk2] .boundary =• 0) rk2++;
while (S->ref[rank] [rk] .nsamp+20 <= size) rk++;
for (i•l; i<nsubu; i++) /* locate boundaries */
[/* & read phoneme types• /

psubu = punit->sub_units + i;
size= HAX(O,psubu->length)• rate;
start -HAX(O,psubu->start)• rate;
type -xps_PIIONEH(psubu);

if (udb_current->pm_type-~PM_VOICEO_ONLY)

for (j-rk2; ((j<S->nrfpm[rank])&&(aux<=i)); j++)

I
S->ref[rank] (j] .phoneme - type;
aux +- S->ref[rank} [j} .boundary;

）

else

I
for (j-rk; ((j<S->nrfpm[rank)) &&

/* in samples*/

((S->ref[rank][j].nsamp+20) <-(start+ size))); j++)

S->ref[rank)[j].phoneme -type;

S->ref[rank][rk].boundary +- 1; /* new border*/
if ((j-1 <-rk) 11 (j--S->nrfpm[rank]))

S->nsubu[rank) --1; /* too small a sub-unit */

rk• MAX(rk, j-lJ;
aux--;
rk2 - j-1;

if (udb_current->pm_type-•PM_ALL_MARKED) /* voicing 7 */
for (i-0; i<npm; i++)

S->ref[rank] [i].voice - (sch.voicing --OJ 7 /* based on phoneme*/
1-NOISY(S->ref[rank] [i] .phoneme) : pmark[i] .voice; /* or on db */

aux -S->nsamp[rank] ;

for (i-0, size-0; i<nsubu; i++)
size+-MAX(O, punit->sub_units[i] .targ_length);

size -MAX(aux, size* rate);
S->wl[rank] -xalloc(2*size, short);
S->w2[rank] -xalloc(2*size, short); /* extra room provided*/

S->wl [rank] [OJ - shift; /* to account for lost samples•;

S->ref[rank] [OJ .nsamp -temporary;

／＊＊ Mapping /
/* Create the mapping : • /
/* This creates an fO estimation for the whole utterance、and then• /
/* deducts the prosodic modifications to be performed on every unit, */
/* by filling the'map'field in'S'. Three possible different ways. */
1••·····················•·**••············•*********************••········••1

void xps_MAPPING(Synthesis *S, Scheme sch, Utterance utt)

/* see beginning*/

inti, j, k, 1, total, start, end, nsubu, rnpm, rlength, back, shift, *FO;
int size, maxsize, tarsize, npm, length, last, min, max;
int start2, end2, limit, je, js, flag, vlength;
float dmodif, pmodif, •periods, rep, scale, fOref, fOtar, aux;
float pmodifl, pmodif2, dmodifl, dmodif2, voiced;
Marks•current, •next;
struct Unit•punit, •temp;
struct Sub_Unit•psubu;
Stream u;

tar size - (flag - (startー (end- (back• OJ))) ;
FO -make_FO(utt, &total, FO_FRAM, FALSE); /* target fO */
maxsize - total• FO_FRAM; /* target msec length */
periods -xalloc(lOOO, float); ;• 1000 periods max */

for (u-UNITSTREAM(utt); ul-SNIL; u-sc_next(u))
［

XIO.C 3

Aug 3 1995 14:58
.

XIO.C Page 7 Aug 3 1995 14:58 xio.c Page 8

punit = SC(u, Unit);
for (j=O; j<punit->num_sub_units; j++)

tarsize += MAX(O, punit->sub_units[j] .targ_length);

scale = ((float) maxsize)/tarsize; /* make sure that sizes fit */

(.,7

ご)

for {u-UNITSTRE:AM(utt),i•{back-{start-0)); u!•SNIL; u•SC_next(U))
［

punit - SC{u, Unit);
current - S->ref(i];
js・O;

for {j・O; j<punit->num_sub_units; j++)
［

je• js;
dmodif2• 0;
while {current[++je] .boundary・・O);
nsubu·{j•-0) ? S->ref[il [OJ .boundary -1 : 0,
nsubu +• current[je] .boundary;

/* prosody input*/

length• {int) {scale*M/¥X(O, punit->sub_units[j] .targ_length));
rlength -M/¥X{O, punit->sub_units[j].length);
end -MIN(start + (int){scale•length+0.5), total• FO_f'R/¥M);
xps_PE:RIODS { f'O, total. start、end, &npm, periods);
rnpm• j e -j s + 1;

/* we try to account for unvoiced speech*/
if (udb_current->pm_type -- PM_VOICE:D_ONLY)

［
vlength - (k - O);
while ({k<rnpm-l)&&(current[js+kJ .voice•- 0)) k++;
start2 ー{current[js+k I . nsamp-current [js J . nsamp)•S->srate/1000;
start2・start2 + start;
rnpm --k;
k - 0;
while ({k<rnpm-l)&&(current[je-k] .voice —云 0)) k++;
end2 - {current[je] .nsamp-current[je-k] .nsamp)*S->srate/1000;
end2 -end -end2;
rnpm -M/¥X(2, rnpm-k);
xps_PE:RIODS{f'O, total, start2, end2, &npm, periods);
npm -MAX{2, npm);

pmodifl - ((float)rlength*npm)/(length•rnpm);
dmodifl - ((float) npm) / rnpm;

/* 1st method•;

if ((rnpm < 3) 11 (npm < 3)) /* no use having pitch modifs */
｛

pmodifl - l;
dmodifl - length/ (float)rlength;

for (k=js; k<je; k++)
［

max= MIN(k+l, S・>nrfpm[i]・l);
min -MAX(O, k・l);

/* rd and target fO values*/
if (xps_Is_Alone(current + k, SPAN))

［
fOref = S・>ref[i][max] .nsamp・S・>ref[il[min] .nsamp;
fOref = (max-min) * S・>sratc / fOref;
1•back+ lOOO•scale*length*(S ・ >ref[i] [kl .nsamp・

S・>rc,f[IJ[js] .nsamp)/(S・>srate*rlength);
1 -MIN(total・l, 1/FO—.FRAM);

fOtar - (FO[l) + FO[MIN(l+l, total-1)]) / 2;

pmodif2 - fOtar / fOref; /* 2nd method*/
dmodif2 - pmodif2• length / rlength;

I
else
［
pmodif2 - 1;
dmodif2 - length/ rlength;

｝

/* no pitch mod if if unvoiced• /

switch (sch.contour)

（
case 1 : pmodif -pmodifl;

dmodif -dmodifl;
break;

case 2 : pmodif - pmodif2;
dmodif -dmodif2;
break;

default : pmodif - (pmodifl + pmodif2) / 2;
dmodifー (dmodifl + dmodif2) / 2;
break;

pmodif-MAX(l-sch.P_ceil,MIN(l+sch.P_ceil,pmodif)); /* limit*/
dmodif•MAX(l-sch.D_ceil,MIN(l+sch.D_ceil,dmodif)); /* limit */

if (S・>ref(i] [kl .phoneme a• 7)

（
pmodif - (sch. stops -- 1) ? pmodif : 1;
dmodif• l;
S・>ref[i] [kl .forbid D l;

else js~je;

for (i~O; i<S->nunits; i++J
（

if (S->nrfprn[i) >1)

/* special for stops * /

back +~ (0.5 + lOOO•length•scale•(S->ref[i] [je] .nsamp -
S->ref[i] [js] .nsamp)) / (S->srate• rlength);

S->map[i](k].rank -k;
S->map[i] (kl .P_modif -pmodif;
S->map[i] [k] .D—.modif -dmodif;
S->map[i] [kl .R_modif -0;

if ((current[je] .next --NULL J 11 (je >-S・>nrfpm[i]・1))
｛

j s -0; /* next unit• /
S·>map[i][S·>nrfpm[i]·l].rank• S・>nrfpm[i]・l;
S・>map [i] [S・>nrfpm [i]・1] . P _mod if - S・>map [i] [S・>nrfpm [i]・2] . P _mod if;
S・>map[i] [S・>nrfpm[i]・1] .D_modif - S・>map[i] [S・>nrfpm[i]・2] .D_modif;
S・>map[i] [S・>nrfpm[i]・l] .R_modif - O;
i++;

/* next sub-unit*/

/* final lap : field'repeat'*/

XIO.C 4

／、 ・・＼ /--,

Aug 3 1995 14:58 xio.c Page 9 Aug 3 1995 14:58
．

XIO.C Page 10

1f (sch.contour=• 1)
rep = (S->map[i) [0] .D_modif > 1) ? 0.5 : -0.5,

else if (sch.contour== 3)
rep - (S->map[i] [OJ .D_modif > 1) ? 0.25 : -0.25;

else rep• O;

for (j~O, flag-0; j<S->nrfpm{il; j++)

（
limit・((jく2) II (j>(S->nrfpm[i]-3))11(S->ref[i][j].forbid・・l));
aux - (Abs(l-S->map[i] [j] .D_modif) > sch.D—_thres) ?

S->map[i] [j] .D_modif : l;
rep +- (aux -1);
S->map[i] [j] .D_modif -aux;
S->map[i] [j] .P_modif• (Abs(l-S->map[i] [j] .P_modif) > sch.P_thres) ?

S->map[i] [j] .P_modif : l;

if (flag--1)
｛

flag - 0;
S->map[i) [j] .repeat - 0;

J
/* never two consecutive dupl/elim */

else if (rep>l) /* duplication */
（

rep -- l;
S->map[i] [j] .repeat• (limit•·1) ? 0 : l;
flag• l;

｝

else if (rcp<-1)

［

/* elimination */

C.,,7

--1

rep+• l;
S ->map [i I [j] . repeat・

({limit•- l)ll{S->ref[i][j].boundary !• 0))? 0: -1;
flag - l;

l
else S->map[i] [j] .repeat• O;

J
 J

xfree(FO);
xfree(periods);

/'"*'***"***************************'************ Create Target Periods **/
;• Make target periods : • /
;• Given the set of fO estimates every FO_FRAM mseconds, and the start */
;• and end of the current interval (a sub-unit)、this calculates and */
;• returns a set of values for the'n'target pitch periods. */ 1••·.. I
void xps_PERIODS(int•fO,int total.int start,int end,int•n 、 float•periods)

int fOstart, fOend, npm•O, nfO•O, i;
float previous-a, current;

fOstart -start / FO_FRAM;
fOend -MIN (end / FO_FRAM + 1, total);

for (i-fOstart; i<fOend; i++)

/* limits on the fO list * /

if (fO[i]<-0) fO[i] - 100; /* 100 Hz */

current - (1000/(float)fO[i] + nfO•previous) / (nfO+l); ;• in msec•;

if (((nfO+l)*FO_FRAM) > current)

（
periods[npm] -current; ;• new mark•;

if (npm<499) npm++;
nfO - O;
current= O;
previous -O;

else
（

previous -current;
nfO++;

/* one more is needed*/

if (npm =-0)•n - O;
else

•n• (((nfO+l)*FO_FRAM) > 2•current) 7 npm+2 : npm+l;

if (wavec-NULL)
（

P_Error('Read_Wave : unable to read waveform•);
list_error(On_Error_Tag);

/*precaution*/

/* reset * /

/*** Read Wave File **/
/* Read the waveform : • /
/* This reads into the waveform files, for a unit of a given'rank'*/
/* in'S'. The field'nsamp'in'S'is initialised. */
／＊＊＊／

void xps_READ_WAVE(Synthesis *S, int rank, Stream u)
（

P_Wave wave, output;
inti, aux、shift, size;
char•encoding;
struct Unit•unit;

if (S・>nrfpm(rank] > 1)
（
encoding -udb_current->wave_encoding;
unit-SC(u,Unit);

output -make_wave();

if ((unit・>filetype I-NULL)&&(strcmp(unit->filetype,"raw")=-0))
wave-get_raw_sub_wave

(unit.->wave_file, S・>srat.e, encoding, unit.・>st.art., unit.・>lengt.h);

else wave•get_sub_wave
(unit->wave_file, unit->filetype, unit->start, unit->length);

if ((S·>sratel•wave·>samp_rate) 11 (output·>byte_orderl•wave·>byte_order))
（

.
XIO.C 5

Aug 3 1995 14:58 xio.c Page ii Aug 3 1995 14:58
．

XIO.C Page 12

P_Error("Read_Wave : units of incompatible types"):
P_Error('srates : もd %d ", output->samp_rate,wave->samp_rate):
P_Error('word sizes : %d もd ", output->word_size, wave->word_size);
P_Error("byte orders : %d %d", output->byte_order,wave->byte_order);
list_error(On_Error_Tag):

aux• S->nsamp[rank] ;

for (i=O, size=O; i<unit->num_sub_units; i++)
size+-MAX(O, unit->sub_units[i] .targ_length);

size -MAX(aux, size• S->srate / 1000);

bzcro (S->wl [rank] +aux, (2*s i ze-aux)• s i zcof (short));
size• MIN(S->ref[rank] [OJ .nsamp, wave->num_samp-aux);
if (size<O)
［

S->nsamp[rank] += size;
aux• S->nsamp[rank];
S->ref[rank] [S->nrfpm[rank]-1] .nsamp += size;
s1ze -O;

J
xps_strcopy(S->wl[rank]、wave->wave+size, aux, 1);

S->ref[rank] [OJ .nsamp• O;

free_pwave(wave);

J

(,,7

しこ｝

psu 臼 pu->sub_units;
nsubu -S->nsubu[i];

switch (sch.power)
［

case 1 : break;

case 2 : for (jmQ; j<nsubu; j++)
（

rfpow• pu・>sub_units[j].power; /* log(rms), maybe?*/
tgpow -pu・>sub_units[j].targ_power;
scale[j] - (tgpow --0)? 0 : tgpow・rfpow;
scale[j] -sqrt(exp(scale[j]));

）

k -・l;
start -S・>ref[i];

while ((start!• NULL)&&(start・>next !• NULL))
［

k +-start・>boundary;
end -start + l;
while (end・>boundary --0) end -end・>next;

while (start・>rank < end・>rank)
｛
S・>map[i] [start・>rank] .R_modif -scale[k];
for (j-start・>nsamp; j<start・>next・>nsamp; j ++)

S・>wl[i] [j] -S・>wl[i] [j] * scale[k]; /* scaling'/

start -start->next;
｝

/*• **• *••• • * **• ** *******• ***** ** *•• * * *• **** * ** ******• **• Power Processing ** /
/* Power Smoothening : * /
/* This is performed before any other processing on the waves. We try */
/* here to erase power discontinuties between uni ts by measuring & * /
/* modifying their rms. This happens before prosodic processing. * /
/* Depending on the scheme, different approaches can be taken. */
/***/

void xps_POWER_PRO(Synthesis *S, Utterance utt, Scheme sch)

inti, j, k, nunits, nsubu, nsub, size, index, previ, cur, next, toto,Start;
float rfpow, tgpow, aux, scale1[3], •window;
float•scale, a, b[4J, prev口 l;
double loglO, daux;
Marks•start, •end, •first, •pml 、 •pm2;

struct Unit *pu;
struct Sub_Unit•psu;
Stream u;

u = UNITSTREAM(utt);
nunits -S->nunits;
window• xalloc(S•S->srate, float);
scale -xalloc(BUF_SIZ, float);

for (l・O; l<nunlts; lい）

I
pu -SC (ll'unit) :

/* 5 seconds max*/

break;

;• nothing is done•;

/* scaling factor * /

if ((start --NULL) 11 (start->prev --NULL))
｛

P_Error("POWER_PRO : wrong number of sub-uni ts ");
break;

default : if { {nun its > l)&&(S->nrfpm[i] > 1))
（

/*
** we want to raise the loudness level halfway to the mean value.
** the nc,eded scaling factor is stored in a[].
** near the border, we want to get closer to the next/previous
** sub-unit's loudness level. b[J has the scaling for that,
** power in stops is not modified with normal marks.

*/

daux -exp{xps_LOG_POW(S, i));
aux• exp(xps_MEAN―.POWER(utt, S, i));
aー(float)((daux+aux)/ {2• daux));
b[O] - (b[3]• 0);

if (udb_current->pm_type•• PM_ALL_MARKED) [
if ((i I• O)&&(S->nrfpm[i-1) > l))

/*left*/

/**********•••**•••••*******************•••• normal marks•;

xio.c 6

／ ／＼

Aug 3 1995 14:58 xio.c Page 13 Aug 3 1995 14:58 xio.c Page 14

previ - 1-l;
first -S->ref[previ];
index = xps_INDEX(first, 1);
start = first + index;
index -S->nrfpm[previ] -index -1;
b[O] = xps_RMS(S->wl[previ], start, index);

first• S->ref[i);
index = xps_INDEX (first、-1),
b[l] -xps_RHS(S->wl[i], first, index);

index - xps_INDEX(first、l);
start - first + index;
index• S->nrfpm[i] -index -1;
b[2]• xps_RMS(S->wl[il, start, index);

if ((i<nunits-l)&&(S->nrfpm[i+l] > 1))
（

next• i+l;
first - S->ref [next];
index - xps_INDEX(first, -1);
b[3]・xps_RMS(S->wl[nextl, first, index);

））

/***********••••••••••••••••••••••********* larynx marks */

C、

Q

else [
if ((i !- O)&o(S->nrfpm[i-1] > 1))
［

Start 口 xps_INDEX_bis(S->ref[i-1], 1);
index~ s→ nsamp[i-1] -Start;
b[OJ~xps_RMS_bis(S • •wl[i-1], Start, index);

first• S->ref[i];
Start• xps_INDEX_bis(first, -1);
b[l)• xps_RMS_bis(S->wl[i), 0, Start);

Start• xps_INDEX_bis(first, l);
index・S->nsamp[i) -Start;
b[2)• xps_RMS_bis(S->wl[i), Start, index);

if ((i<nunits-l)&&(S->nrfpm[i+l) > l))
（

next・i+ l;
Start• xps_INDEX_bis(S->ref[i+l], -1);
b[3]・xps_RMS_bis(S->wl[next), 0, Start);

））

;••··* •••••••• ** * •• * ••• ** ••••••••••••••• *. ·••;

/* scaling factors*/

scale[OJ - ((i•- 0) 11 {b[OJ<-0) 11 {b[l]<-0)) ?

1 : prev/{2*prev・l);
scale[l]• sqrt{a);
scale I 2 J ー ((i••(nunits·l)) 11 {b[2]<•0) 11 {b[3]<・0)) ?

1 : (1 +sqrt(b[3)/b[2]))/2;

scale[Ol -MAX{0.66, MIN(l.5, scale[O])); /*precaution*/
scale[l) -M/¥X{0.8, MIN(l.3, scale[l)));
scale[2) -MAX(0.66, MIN{l.5, scale[2]));

if (udb_current・>pm_type --PM_ALL血 RKED)
［

first - S・>ref[i];
pml -S・>ref[i]+xps_INDEX(first, ・l);
pm2• S・>ref[i] + xps_INDEX(first, l);

｝
else
［
first - S・>ref[i];
pml・xalloc(2, Marks); /*modification*/
pm2・pml + 1; /* boundaries */
pml・>nsamp -xps_INDEX_bis(first, ・l);
pm2・>nsamp -xps_INDEX_bis(first, 1);
pml·>prev• first;
pm2・>next・first+ S・>nrfpm[i]・l;

｝

xps_WIN_POW{&scale(O], pml, pm2, window);/* scaling window*/
size -S->nsamp(i];

if {Udb_current->pm_type --PM_ALL_MARKED) [
for {j-pml->rank; j<-pm2->rank; j++)
｛

toto -S->ref[i] [j) .nsamp -pml->nsamp;
S->map(i) (j) .R_modif -window(toto];

））

for {j-0; j<size; j++)
S->wl[i] (j] -S->wl(i] (j)•window(j];

prev -scale(2);
）

break;

u -sc_next(u);

xfree(window};

／＊＊ Output Speech Wave***/
/* Final waveform : •;
/* After the prosodic nodifications have been performed in'S', this•;
/'builds the output wave by concatenating the units and building a•;
/* Wave * variable. •
／

／
** * * *** *** *****•• *** * *••• * ** ***** * ***** * * * ******* ********* * * *'**• *• * **••**•I

P_Wave xps_FINAL_WAVE(Synthesis *S, Scheme sch)

int i, j, size•O, end, additional, uni ts, marks;
int index, new_index, shift, total;
short•curr, •p;
P_Wave waveform;
Marks•tgpm;

xio.c
7

Aug 3 1995 14:58 xio.c Page 15 Aug 3 1995 14:58 xio.c Page 16

float k, step;

units• S->nunits;
for (i•O; i<units; i++)

size+-S->nsamp[i];

waveform~make_wave{); /* building output wave•;
waveform->wave - xalloc{size+2•S->nsamp[units-l], short);/* spare room•;
waveform->num_samp• size;
waveform->samp_rate = S->srate;

curr~waveform->wave;
index -O;

G

O

if (units -- 1)

for (i=O; i<S->nsamp[OJ; i++) waveform->wave[il = S->wl[O] [i];

else
for (i=O; iく(units-1); i++) / * unit concatenation*/
｛

new_index 口 xps_CONCAT(S, i, waveform, index, sch.concat);
index - new_index-1; /* the "-1" removes some UMRs */

/* gomen ne? */

marks -S->ntgpm[units-lJ; /* final fading */

if ((marks !- O)&&(S->tar[units-11 [marks-lJ .phoneme != B))
（

additional -MIN (3, marks);
tgpm - S->tar[units-11;
J = S->tar[units-lJ[marks-additionalJ.nsamp;
shift 口 (tgpm+marks -1) ->nsamp - (tgpm + marks -additional) ->nsamp;
shift = MIN (shift、S->nsamp[units-1)/3);
step = o. s / shift;
k - 1; /* fading lasts to the end * /

p -waveform->wave + index -shift;

for (i-0; i<shift; i++)
（

p[i] = (short)(p[i]• k);
k = k-step;

p• waveform->wave + index;

for (iaQ; i<shift; i++)

I
p[i}• (short)(p[i-shift}• k / (k + 0.5));
k -MAX(O、k-step);

J else shift・O;

waveform->num_samp += shift;

for (i云 new_index+ shift; i<new_indcx + 2•shift; i++)

waveform→ wave[i] コ O;

waveform→ •num_samp +- shift;

for (1£0; i<S->nunits; i++J /* memory freeing */
［

xfree(S->wl[i]);
xfree (S->w2 [i J);
xfree(S->ref[i] J;
xfree(S->tar[i]);
xfree(S->map[i]);

xfree(S・>wl);
xfree(S・>w2);
xfree(S・>ref);
xfree (S・>tar);
xfree(S→ map);
xfree(S・>nsamp);
xfree(S・>nrfpm);
xfree(S・>ntgpm);
xfree(S・>nsubu);

return (waveform);

/*** Thingie Number 1 */

void free_small_pm(Small_pm *pm)

［

if (pm I~NULL)
［

xfree(pm->voice);
xfree(pm->pos);
xfree(pm);

/*** Thingie Number 2 */

Small_pm•make_small_pm(int npm)
｛

Small_pm•pm;

pm - xalloc (1, Small_pm) ;
pm・>voice -xalloc(npm, unsigned char);
pm・>pos -xalloc(npm, float);
pm・>npm -npm;

return pm;

xio.c 8

/、~

Aug 3 1995 14:57 xmath.c Page 1 Aug 3 1995 14:57 xmath.c Page 2

/*========-=-•===-•==•-------------==•-----==•=--•=•-•-•==-----------•;
/* AT R Interpreting Telecommunicat1ons Labs */

/* */
1···-••=•····=··----- 臼--=-ロ--口•=••·····

/* CHATR Speech Synthesis System• /

/* Christian Lelong */
/* ---* I
／ ＊＊／

／＊ Ma thema t1cal Library• /
/* Fourier Transforms、CepstrumAnalysis, etc */

/* */
/* */
/* Feb 1995 */
/* Copyrigth (C) 1994, 1995 */
/* ATR Interpreting Telecommunications Research Laboratories */
/* All rights reserved. * /
/*=••·--·-··••=••·---·---·--------•=·•-=-•-·-··-=····-···--··------·-*/
● include <stdio.h>
#include <string. h>
'include <math. h>
廿include "xruc. h"

G

l

•define Cl 1
•define C2 1
•define CJ 1
#define C_MIN 2
れdefineC_MAX 18
•define ICEP_NUM 3
•define CEP_ORD 32

float icep_coef [ICEP _NUM] ;

/'Spectral Analysis'/

static void xps_fourl(float•data, int nn, int isign);

;• • • • • • • **• • **• **** ***• ** *• • • ***• ** **• **• • * ** *** * * ** ** * ****** ** Power of 2• • /
;• returns the smallest power of 2 greater or equal than input'a'. * /
／＊＊／

int xps_ispower2(int a)

int b-1, c;

C• a;

wh ll e ((a • a >> l) ! • 0) b • b くく l;
if (c>b) b -b くく l;

return b;

/*• • • • • • • • • • • **• • • ** **• • • **• • • • • • • • **• • • • • **• • • • • * **• * * *• Sygmoid Function * * /
/* Sigmoid aproxima tion : * /
/* f(x)-0 for x<O, -1 for x>l, degree-4 polynomial used for [0,1] */
／＊＊／

if (x<O) y-0;
else if cx<O. s) y-B•x•x•x•x;

else if (x<l) y-1-8*(1-x)*(l-x)*(l-x)*(l-x);
else y-1;

return y;

/**************************************Hanning/ Hamming/ Hybrid Window**/
/* assymetric windows : • /
/*'dim'samples long, maximum value'scale'at sample'middle', and */
/* Hanning/Hamming mode is selected by'type'-l / 2. */
/*'type'3 returns a rectangular window featuring smoothened edges */
/* {X~2-like), and'middle'is the length of the flat part. */
/**/

float•xps_Window(int dim, int scale, int middle, int type)

int l_half, r_half, edge, i, tcmpr;
flea t•win, left_pi、rigth_pi, a, b;

win -xalloc(dim, float);

switch (type)

case 3 : edgeー(dim-middle)/2; /* hybrid window*/
for (i-0; i<dim; i++) (

e-middle));

iddle);

if (i<edge/2)
else if (i<edge)
else if (iく(edge+middle))
else if (i<(l.S•edge+middle))

else

J
break;

win[i]-scale•(i/edge)•(i/edge);
win[i]-scale•(l·i/edge)*(l·i/edge);
win[i]-scale;
win[i]-scale*(l・(i・edge・middle))*(l・(i・edg

win [i] 臼scale*(i-2•edge·middle)*(i·2*edge·m

default : if (type--1) [a-0.5; b-0.5;] /* hanning or hamming */
else [a-0.54; b-0.46;];

!_half -middle;
r_half -dim +1 -middle;
left_pi - 8.0• atan(l.0) / (2 * l_half);
rigth_pi -8.0 * atan(l.0)/ (2• r_half);

for (i-0; i < middle; i++)
win [i] ー (a+ b•cos(left_pi• (float)(i -middle)))• scale ;

for (i-(dim-1); i >-middle; i--)
win[i] ー (a+b•cos(rigth_pi• (float)(i -middle)))• scale;

win[middle-1] -scale;
break;

float xps_Sygmoid (float x) return (win);

floaty,

xmath.c

Aug 3 1995 14:57 xmath.c Page 3 Aug 3 1995 14:57 xmath.c Page 4

/*'* *'• **• ***• • **'**'• **'** *** ** * *** ** * * ***• ** ** ** Complex Type Conversion• • /
/* convert complex numbers to polar representation : */
/''list'of'length'・ cartes1an input complex numbers */
1••••••••• .. ••••••••• .. •••• .. •••••••••••••••• .. •• .. •• .. •• .. •• I

Polar *xps_Cart2Pol (Complex *list, int. length)

inti;
Polar•out;

out - (Polar *)xalloc(2*length, float);
for (i-0; ((i<length)&&(list!~NULL)); i++)
（

out[i} .scale -sqrt (list->real * list->real + list->imag•list->imag);
if (list->real --0) out[i}.phase - atan(l.O)• 2• sign (list->imag);
else out[i] .phase -a tan (list->imag / list->real);
list++;

return (ouし）；

G

2

/ ** * * ** * ** ** **• ** * * * ** ** ** ** ** ** ** * ** ** ** * ** ** ** ** ** ** ** * ** * ** Get the RMS ** /
/* Read a period's power : * /
/* This gets the normalized rms value for'n'pitch periods from the */
/* input waveform beginning at'first'; processing starts at'pm'. */
／＊＊／

float xps_RMS(short•wave, Marks•pm, int n)

double rms-0, aux;
Marks•end;
int i-0;

if (n --0) return (・l); /*warning*/

end• pm;
while ((end・>next !• NULL)&&(i++<n)) end= end・>next;

if ((pm•·NULL)! I (pm·>next•• NULL))
［

P_Error("¥n RMS : invalid pitch marks ¥n");
list_error(On_Error_Tag);

｝

else
｛

for (i-pm・>nミamp; i<end・>nsamp; i++)
｛

aux - (double)wave[i] ;
rms +-aux* aux;

｝
rms ~sqrt(rms / (end->nsamp・pm・>nsamp + 1));

/*** Get the RMS **/
/* Read a period's power : • /
/* This gets the normalized rms value for'size'samples from the */
/* input waveform beginning at'start'. For larynx pitch marks. •;
/**• • • *• • ** ** ** * * * * * * *• • * * * ** ** *• • * * *• • • * *• • • * * * ** * * * * *• * *• * * *• • • • * * * * **•****I

float xps_RMS_bis (short•wave 、 int start, int size)

double rms-0, aux;
inti;

if (size < 0)
｛

start• start+ size;
size - -size;

for (i口 start; i<size; i++)
｛

aux - (double)wave[i] ;
rms +•aux• aux;

l
rms•sgrt(rms / (size+ 1));

return ((float)rms);

/** **** ** **** ******** ******•• *****• ******* *******• ***** * **• *• * * Read Power ** /
/* Read a sub・uni t's power : • /
/* This returns ln(E[s"2]), the average of the log of the square, for */
/* the nth unit in'S'. */
／＊＊／

float xps_LOG_POW(Synthesis *S, int o)

int L size;
Marks•start 、 •end;

float logpow, aux;

start -• S・>ref [n];
end -start + S->nrfpm[n]・1;

if (((start --NULL) 11 (start->next --NULL))&&(n<S・>nunits))
I

P_Error("¥n LOG_POW: rank of unit exceeds number of units");
return O;

logpow -O;
size -end->nsamp -start->nsamp;

for (i-start->nsamp+lOO; i<•end->nsamp-100; i++)/* to avoid interference*/
(/* from neighbouring units */

aux -S->wl[n] [i]• S->wl[n] [i] + 1.0;
logpow 十• (double)aux;

return ((float)rms);

logpow -MAX(1, logpow / (size-200));
log pow - O. 5 * log (log pow) ;

xmath.c 2

／ --、ヽ /',

Aug 3 1995 14:57 xmath.c Page 5 Aug 3 1995 14:57 xmath.c Page 6

return log pow;

／＊會＊＊＊＊＊＊＊＊＊● *●'*****'***'******************'*********'****** Power Window **/

;• Tailor-made Window : */
;• This returns a window allowing smooth power modifications in a given */
;• unit.'s'has the three layers of the window: the target value in */
/* between, close to the mean, and the target values at the edges close */
/* to the neighbouring sub-units's levels. Marks'pml'&'pm2'are the */
/'left-side and rigth-side marks of the current sub-unit. */
／＊會＊● *會＊＊會＊＊＊＊＊／

void xps_WIN_POW(float *S, Marks *pml, Marks *pm2, float *w)

int sizl, siz2, siz3, siz4, totsiz, i;
Marks *beg, •end;

if ((pml--NULL) 11 (pm2--NULL))
（

P_Error("¥n WIN_POW : unsuitable marks ");
list_error(On_Error_Tag);

G

3

beg -pml,
while (beg->prev !0 NULL) beg 0 beg->prev;
end -pm2;
while (end->next !- NULL) end -end->next;

sizl -pml->nsamp -beg->nsamp; ;• window borders•;
siz3 -end->nsamp -pm2->nsamp;
totsiz -end->nsamp -beg->nsamp + l; ;• window size•;

／＊

If the sub-unit is less than four pitch periods long, we go for
.. a smooth modification in power, in order to meet the expected value
.. at the c,dge. If the sub-unit is longer, we raise it closer to the
•• mean power level of ils class, and tune it at the edge, as before.
•• If Lhe cunenL unlt., howuvu1・la mot!,, of rn1ly one shu1・L (<• pel'lot!H)
•• sub-unit, the p゚，，，ermodification ls a weigthed sum of the powc,r
• • level at its edges
會／

if ((sizl+siz3) >- totsiz)
for (i-〇； i<totsiz; i++)

w[i] - (s[2]*i + s[O]*(totsiz-i)) / totsiz;
else /* long sub-unit */

（
for (i-(sizl); iく(totsiz-siz3); i++)

w[i] -s[l]; /* middle section */

siz2• sizl/2;
sizl• sizl -siz2;
siz4・siz3/2;
siz3~siz3 -siz4;

for (i•O; i<sizl; i++)
w[i) - s[O]+(s[l)-s[O))*(l-cos((PI*i)/(2.0•sizl)))/2;

for (i•slzl; i<sizl • siz2; itt)

w[i] - s[O]+(s[l]·s[O])*(l·sin((PI*(i·sizl))/(2.0•siz2)))/2;

for (i-(totsiz・siz3・siz4); iく(totsiz・siz4); i++)
w[i] -s[l]+(s[2]・s[l])*(l・cos((PI*(i・totsiz+siz3+siz4))/(2.0*siz3)))/2;

for (iー(totsiz・siz4); i<totsiz; i++)
w[i] -s[l]+(s[2]・s[l])*(l・sin((PI*(i・totsiz+siz4))/(2.0*siz4)))/2:

/*** FFT auxiliar function **/
/* Numerical Recipes : • /
/*'data'-> input/output of size'nn','isign'- 1/-1 for fft/ifft */
/**/

static void xps_fourl(float *data, int nn, int isign)

int. n,mmax,m,j,istep,i;
double wt.emp,wr,wpr,wpi、wi,theta;
flea t tempr, tempi;

n-nn くく 1;
j日 1;

for (i=l;i<n;i+=2)

［
if(j>i)

[
swap(data [j J, data [i), ternpr);
swap(data[j+l] ,data[i+l), ternpr);

）

m=n >> 1;
while (m >= 2 && j > m)

［
j --111;

rn >>- l;
）

j ,_ m;

mmax•2;
while (n > mmax)

［
istep•2•mmax;
theta-6. 28318530717959/(isign•mmax);
wtemp-sin(0.5•theta);
wpr - -2.0•wtemp•wtemp;
wpi-sin (theta);
wr-1.0;
wi-0.0;
for (m-l;m<mmax;m+-2)

［

for (i•m;i<-n;i+-istep)
［

j•i+mmax;
tempr口wr•data [j) -wi•data [j+l];
tempi-wr•data [j+l J +wi•data [j J;
data [j)-data [i) -tempr;
data [j + 1 J -data [i + 1 J -tempi;
data [i) +-tempr;
data[i+l] +- tempi;

xmath.c 3

Aug 3 1995 14:57 xmath.c Page 7 Aug 3 1995 14:57 xmath.c Page 8

｝
wr• (wtemp·wr)•wpr-wi•wpi +wr;
wi•wi•wpr+wtemp*wpi+wi;

）
mmax•istep; /*** Auto Correlation Function **/

/* Numerical Recipes : * /

/* 'V'-> input/ouput vectors of size'm'
/***:~

/ , , .. , , FFT main function **/

/* Numerical Recipes : */
/*'data'=> input/output of size'n','isign'= 1/-1 for fft/ifft */
／＊＊＊／

void xps_realft(float•data, int n, int isign)

int i,il,i2,i3、i4,n2p3;
float cl-O.S,c2,hlr,hli,h2r,h2i;
double wr, wi, wpr, wpi, wtemp, theta;

G
 cl

theta-3.141592653589793/(double) n;
if (isign•= 1)

｛

c2 - -0.5;
xps_fourl (data, n, 1);

）
else

｛

c2・0.5;
theta• -theta;

）
wtemp=sin(O.S*theta);
wpr• -2.0*wtemp•wtemp;
wpi•sin (theta);
wr•l.O+wpr;
wi・wpi;
n2p3•2•n+3;
for (i•2;i<=n/2;i++)

｛
i4=1+(i3・n2p3-(i2=1+ (il•i+i-1)));
hl r•cl• (data [i l I +data [i3 I) ;
hli•cl*(data[i2J-data[i4});
h2r• -c2*(data[i2}+data{i4});
h2i•c2• (data [il} -data [i3 I);
data[il}•hlr+wr•h2r-wi•h2i;
data[i2}=hli+wr*h2i+wi•h2r;
data[i3}•hlr-wr•h2r+wi•h2i;
data[i4} = -hli+wr•h2i+wi•h2r;
wr• (wtemp•wr) *wpr-wi•wpi +wr;
wi•wi•wpr+wtemp•wpi+wi;

）
if (isign•·1)

｛

data[ll• (hlr・data[l})+data[2];
data[2] - hlr-data[2];

I
else

｛

void xps_acf(float *V,int m)

float•c, •eptr, tmp ;
int n, size;

size• xps_ispower2(m);
n•size>>l;
FFT(V, size) ;
tmp• V[l] ;
V[l)• 0 ;

for (C•&(V[O]), eptr•C+size ; C<eptr ; C++) [
*C - (sq(*C) + sq(*(++C))) / n;
*C•O;

｝

V{l]• sq(tmp) / n;

iFFT(v, size) ;

for (n•O; n<size; n++) V[n] -V[n] / size;

/** Cepstrum **/
/* usual cepstrum: input'data'of size'length'*/
/**/

void xps_Cepstrum (short•data, float•cep, int length)

int size, i;

size-xps_ispower2(length);
bzero(& (cep[O]), size•sizeof (float));
xps_strcopy(&(cep[O].), &(data[O]), length, 2);
,,T(cep,size); /* power spectrum */

for (i-0; iく(size/2); i++) (

cep(i] -sqrt(cep(2*i)*cep(2*i) + cep[2*i+l)*cep(2*i+l));
if (cep[i] I- 0) cep[i] - log(cep[i]);
cep[size-i] -cep[i];

data [1]~cl* ((hlPda ta [1]) +data [2]);
data [2] eel* (hlr-data [2]);
xps_fourl (data, n, -1);

iFFT(cep, size);

for (i臼 0; i<CEP_ORD; i++)
cep[i]-cep[i] *2/size;

/*""" ***** ****" **** ** **• •" ***** *• *'******* *'*• * *** Improved Cepstrum ** /

xmath.c 4

,,

Aug 3 1995 14:57 xmath.c Page 9 Aug 3 1995 14:57 xmath.c Page 10

/* Improved cepstrum : */
/* Better aproximation of the spectral enveloppe. May need some tuning. */
/* You migth want to check cepanaf.c in NUUTALK or ask Lee-Sensei or */
/• Satoh-San for details, eventual corrections & improvements. */
I・・・・・・・・會●● ＊＊／

void xps_Jcepstrum (short *data, float *icep, int length)

int size, i, J;
float *aux, *ps, •win;

for (i~O; i<ICEP_NUM; i++)
icep_coef(i]• 1.5;

size• xps_ispower2(length);
aux・xalloc(MAX(CEP_ORD, size), float);
bzero(aux, CEP_ORD*sizeof(float));
ps こ xalloc(size, float);
bzero (ps, si ze•sizeof (flea t));
xps_strcopy (ps, data, length, 2);
FFT(ps,size);

/* improved cep. coefs */

/*spectrum*/

for (i・O; iく(size/2); i++)

ps[i]• sqrt(ps[2•i]•ps[2•i] + ps[2•i+l]*ps[2*i+l]);
if (ps [i J I• 0)

ps [i]・log (ps [i]) ;
ps[size・i-1] -ps[i]; /* power spectrum•;

こ?
c;-, xps_strcopy(icep,ps,size,4);

i FFT (i cep, size) ;
for (i=〇； i<size/2; i++)

icep[i]=icep{2*i] / size;
for (i• 〇； i<size/2; i++)

icep{size-i] = icep{i]、

1f (ICEP_NU~ や 0)

I
w1n•xps_Window(CEP_ORD, l,CEP_ORD/2, 2);
for (j•O; j<ICEP_NUM; j++)
｛

bzero(aux, size•sizeof(float));
for (i=O; i<CEP—.ORD; i++)
I

aux{i]• win{i]• icep{i];
aux[size-i-1]• aux{i];

FFT(aux,size)、
for (i•O; i<size/2; i++)

aux[i]·aux[2•i];
for (i•O; i<size/2; i++)

aux[size-i-1]・aux[i];

for (i•O; i<size; i++)
aux[i]• ps[i] -aux[i];

iFFT(aux,size);
for (i-0; i<size/2; i++)

aux[i]• aux[2•i]/size;

/* cepstrum */

/*windowing*/

/* fft */

/* substract power spectrum*/

/* ifft */

for (i-0; i<size/2; i ++)
aux[size-i-1] -aux[i);

for (i-0; i<CEP_ORD; i++)
aux[i]-aux[i) * icep_coef[i];

for (i-0; i<CEP_ORD; i++)
icep[i] +-aux[i];

for (i=O; i<CEP_ORD; i++)
icep[i) = icep[i)• win[i);

xfree(win);

xfree(aux);
xfree(ps);

/** ** ** *** **** * * ********* ***** *** ** * **** ** **** * * ****** ** Voicing Detection• * /
/* Fuzzy voicing detection : • /
/* From input'data'、anestimation of the degree of voicedness based */
/* on rms, autocorrelation, cepstrum and unit-type information.'k'is */
/* the scaling factor for therms (1 for the whole spectrum, >l if */
/* only a given bandwidth is fed. */
/** *** * ** *** * **** **** ****** ********* ** * *** * ****** * *** **** ** *** ***************I

float xps_Is_Voiced(short•data, int size, int unit, float k)

int i, num_zc, phoneme;
float ac, rms, cep, voice, zc, •aux;

k -MAX(l、k);
ac~(rrns-(cep-0));
aux~xalloc(2*size 、 float);

bzero(aux, 2•size•sizeof(float));
xps_strcopy(aux, data, size, 2);
xps_acf(aux, size);

/* coefficients• /

/* add to cepstrum */

/* vowel, nasal or liquid*/

phoneme ー ({unit•-l)ll{unit--2)11{unit--3))? 5: l;

for (i-0; i<size; i++)
ac +• sq(aux[i]);
rms +-sq(data[i]);

J
ac -sqrt(ac)/size;
rms• sqrt(rms)/(float)size;

bzero(aux, 2•size•sizeof(float));
xps_strcopy(aux,data,size,2);
xps_Icepstrum(data,aux ,size);

for (i-C_MIN; i <C_M/¥X; i ++)
cep +-sq(data [i]);

cep - cep/(float)size;

/* measure of periodicity*/
/* measure of power*/

/* measure of periodicity * /

xmath.c 5

Aug 3 1995 14:57 xmath.c Page 11 Aug 3 1995 14:57 xmath.c Page 12

num_zc = xps_Zero_Cross(data, size, &i, &i); /* measure of noise•;
zc - (float)num_zc / size;

voice·0.00000001• k• rms•phoneme• (Cl•ac + C2*cep + C3/zc),
voice• xps_Sygmoid(voice);

return (voice);

aux2 -aux2->next;

aux2• pm2;
auxl -auxl->prev;

;• * * * * * * * *…*********'******'************************ Cut Point Selection **/
/* Pick the best-suited frames for unit concatenation : */
/* Among frames of left unit in'wl'and frames of rigth unit in'w2'*/
/* pick the pair that minimizes・cepstral distance ;'pml'and'pm2'•;
/* have the corresponding pitchmarks、pointingto the border marks ; * /
/*'nl'and'n2'have the number of periods available. Cuts near the * /
/'edges are prefered. At most 10 periods per unit are considered. */
/**/

Joint xps_Cut_Point(short *wl, short•w2, Marks•prnl, Marks•prn2)

int i, j, k, nl-0, n2-0, sizel[lO], size2[10];
int fral, fra2, diff, imax, imin, jmax, jmin, lostsamp-0;
Marks•auxl吋pml, •aux2-pm2;
float *icepl, •icep2, cur_dif, cepdist[lO] [10];
Joint cut_p;

C) C')

icepl -xalloc(BUF_SIZ, float);
icep2• xalloc(BUF_SIZ、float);

diff u 10000 * CEP_ORD;

while ((auxl・>prev 1- NULL)&&(nl<lO))
[auxl -auxl・>prev;

sizel[nl] -auxl・>next・>nsamp -auxl・>nsamp;
nl++;

while ((aux2->next Jn NULL)&&(n2<10))
{ aux2 ~ aux2->next;

size2[n2] -aux2->nsamp -aux2->prev->nsamp;
n2++;

;• dumb default value•;

/* left unit */

/* rigth unit*/

auxl・pml->prev;
aux2 匹 pm2;

for (i•O; i<nl; i++) /'estimate cepstral•;
{ /* distances per frame•;

xps_Icepstrum(wl+auxl->nsamp, icepl, sizel [i J l;
for (j・O; j<n2; j++)

I
cur_dif・O;
xps_Icepstrum(w2+aux2->nsamp, icep2, si ze2 [j J) ;

for (k・O; k<CEP _ORD; ktt)

cur_dif +• sq(icepl[k]-icep2[k});

cepdist[i} [j] 日 sqrt(cur_dif) /CEP _ORD;

for (i=O; i<nl; i++)

for (j-0; j<n2; j++)
｛

imin• MAX(O, (i-1));
imax• MIN((nl-1)、(i+l));
jmin -MAX(O、(j-1));
jmax• MIN((n2-l)、(j+l));

/* we punish joints that are too distant•;
/* from the border of the original units•;

cur_dif - 2•cepdist[i] [j)+cepdist[imin] [jmin]+cepdist[imax] [jmax];
cur_dif - cur_dif• (2 - cos((i+jJ•J.1416/20));

if (cur_dif<diff)
(fral-i;

fra2-j;
diff•cur_dif;

for (i-0; i<fral; i++)

lostsamp +-sizel[i];

for (j-0; j<fra2; j++);

lostsamp +-size2[j];

/* find minimal average•;
/* cepstral distance•;

/* estimating lost duration */

lostsamp - lostsamp / udb_current->wave_sample_rate;

cut_p.nfral・fral; /* two closest frames, and consequent duration•;
cut_p.nfra2• fra2;
cut_p.dur• lostsamp;
cut_p. distance• diff;

xfree(icepl);
xfree{icep2);

return (cut_p) ;

xmath.c
6

/ヽ、

Aug 3 1995 14:57 xmisc.c Page 1 Aug 3 1995 14:57
．

xm1sc.c Page 2

1··--·············•·=•=••••=••··--··············--········•=--••·····•1
1• A T R Interpreting Telecommun1cations Labs *I

I* *I
I* 一...一....ロ...I

I* CHATR Speech Synthesis System *I
I* Christi an Lelong *I
／＊ ---•1
I* *I
1• Miscellaneous Functions Library•I
I* *I
I *・*I
I* Feb 1995 *I
I* copyright (Cl 1994, 1995 *I
I* ATR Interpreting Telecommunications Research Laboratories *I
I• All rights reserved. * I

I*-• 口=-•····---·---·口-------・--・・・・・・・・・・・・・・・・・・-・・・・ロ··········----•1

•include "xrnc.h"

•define FIL_BEG 0.025
•define FIL_END 0.5

rxlnrn lnt SP/¥N;

6

7

void xps_push(short *buffer, int n、intm、intoffset);
void xps_f lush (short•buffer 、 int size, int offset);
void xps_strcopy(void•out, void•in, int length, int mode);
void xps_Push_Marks(Marks•pm, int npm);
int xps_Is_Alone(Marks *pm, int span);
int xps_Find_Boundary(struct Unit•punit, int i, Marks•pmarks, int npm);
void xps_f'il ter_Samples (int k, short•data, int start, int length, short•out);
void xps_Band_RMS(int filter, short *data, int 1, int mode, float•rms);
int xps_Zero_Cross(short•data, int length, int•start, int•end);
int xps_Test_Voicing(struct Unit•pu, Marks•pm, int npm, int time, int permax);
float xps_MEAN_POWER(Utterance utt, Synthesis•s, int n);
int xps_INDEX(Marks•pm, int type);
int xps_INDEX_bis(Marks *pm, int type);

; ********••**•••**••••••••••••••••••**•••**•** Flushing a Buffer**/
;• buffer flushing : •;
/* this will shift to the left (Firt In First Out, or FIFO) all the */
;•'size'samples of the'buffer'by'offset'values. the buffer will•;
;• be fed with zeros on its rig th side. • /

;••···.. ・・・・・・・・・・.. ・・・・・・・・・・・・・.. /

if (((buffer+size-l)~~NULL) 11 (offset>size))
［

P_Error ("¥n flush : sizes are not consistent ¥n");
list_error(On_Error_Tag);

for (i~O; iく(size-offset-1); i++)
buffer [i] ~buffer [i+offset];

for (i•(size-offset); i<size; i++)
buffer[il• 〇；

/** Pushing a Buffer **/
/* buffer pushing : • /
/* this will shift to the rig th all the samples, from the'n'th to the• /
/*'m'th sample, by'offset'values. No values are lost, provided that */
/*'buffer'has enough spare room. */
/**/

void xps_push(short *buffer, int n, int m, int offset)

int i;

if (((buffer+m+offset)••NULL) 11 (n>m))
｛

P_Error ("¥n push: sizes are not consistent ¥n");
list_error(On_Error_Tag);

for (i-m; i>n; i--)
buffer[i+offset]-buffer[i];

／＊＊● • * "• Vector Duplication "/

/* Copying for shorts and floats : •;
/* copies first'length'elements of string'in'to string'out', and */
/* does the necessary type conversions :'mode'-1 / 2 / 3 / 4 for */
/* short to short/ short to float/ float to short/ float to float */
/* also,'mode'5 for Complex type ; if'length'-O, all */
/* elements in'in'are copied. */
/** * ***• ** *** ** ********** **• *** ******* **** * ****** * ******** * * * *** * * * **********I

void xps_strcopy(void *out、void*in, int length, int mode)

int i~O, j-length;
short•a, *b;

if (j-•0) j-BUF_SIZ;

switch (mode) (

case 2 : while ((i++<j) && (in! 匹 NULL))
（

void xps_flush(short•buffer, int size, int offset) I I *((float *)out) a (float) *((short *)in);
out+-sizeof(float);
in +a sizeof(short);

int i: I I l
break;

case 3

case 1

while ((i++<j) && (inl•NULL))
（

*((short *)out) ー (short)• ((float•)in);
out+-sizeof(short);
in+-sizeof(float);

｝
break;

a - (short*) out;
b• (short *)in;
while ((i++<j) && (inl-NULL))

•a++ • *b++;
break;

xmisc.c

Aug 3 1995 14:57
.

xm1sc.c Page 3 Aug 3 1995 14:57
.

xm1sc.c Page 4

case 4 : while ((i++<j) && (in!~NULL))
I

(float•) out - (float•)in;
out+-sizeof(float);
in+-sizeof(float);

I
break;

case 5 while ((i++<j) && (in!=NULL))
｛

(Complex*) out= (Complex *)in;
out += 2•sizeof (float);
in+= 2•sizeof(float);

｝

break;

／＊＊＊＊＊＊● ** Push Pit.ch Harks */
/* Shi ft. Harks : * /
/* This shif t.s'npm'pit.ch marks one space t.o t.he right. • /
/* * * * * *• *• *** * *• * * * * * * * *•• * * * * * ** * * ** ** * * * * * ***• • * * *** ** * *** ** * *** **********•I

void xps_Push—.Marks(Marks•pm, int npm)

int i;

6

3

for (i=npm; i>O; i・・)

I
pm[i] .nsamp• pm[i・1].nsamp;
pm(i] .voice -pm[i・ll .voice; /* other fields uninitialized */
pm(i] .boundary• pm[i。1]. boundary;

／＊＊＊＊＊＊● **••••••••••**•**•*******• •••**•••****************** Isolated Marks• /
;• Voiced isola tcd marks : * /
/'This applies to voicccl_only pit.ch marks. Pitch modifications arc•;
;• done only on .sct.s of at. l<'a.sL 5 voicPd con.sccutivc pitch marks. This•;
;• checks for Lhc cxlsLence ul Lllis scL.'span'is Lhc maximum numll«r•;
／ • of mi11seconds between two consecutive marks. */ ／＊貪../

1nt xps_Is_Alone(Marks•pm 、 int span)

int i-0, rate;
Marks•aux;

rate• udb_current.・>wave_sample_rate / 1000;
aux• pm・>next:
while {(aux!-NULL)&と(aux・>nsamp・pm・>nsamp<rate• span)&(i<S))
｛

i++;
pm• aux;
aux• pm→ next;

/*** Find Sub-Unit Boundary*/
/* Find boundary mark : * /
/* This is for PM_VOICED_ONLY marks. For every sub-unit boundary in a */
/* unit, we want to know if its neighbourhood is unvoiced. If so, we */
/* have to create a'fake'mark. Voiced means there's a mark less than*/
/* SPAN msec away from the boundary. * /
/**/

int xps_Find_Boundary(struct Unit•punit, inti, Marks•pmarks, int npm)

if (i < 5) return O;
else return 1; /* not alone*/

int j, nsubu, boundary, span, rate, closest, aux;
Marks pm;

nsubu = punit->num_sub_units;
i -MAX(O, MIN(nsubu, i));
if (i --nsubu) boundary -punit->length;
else boundary -punit->sub_units[i).start;
rate• udb_current->wave_sample_rate / 1000;
boundary 口 boundary• rate;
span = SPAN• rate / 2;

/* all in samples*/

j -O; /* marks on both sides */
while ((j<npm-1) && (pmarks[j] .nsamp < boundary))
j++;

aux~ MAX(j-1, 0);
if (abs(pmarks[j].nsamp-boundary) > abs(pmarks[aux].nsamp-boundary))

closest K aux;
else closest -j; /* the closest mark• /

if (abs(pmarks[closest] .nsamp-boundary) < span) return closest;
else
if (pmarks[closest].nsamp >・boundary) return ー(closest+!);
else return -(closest+2);

/** *'*'** *'• *'• **•• **• **** **• • ***• ** **• • ***• • • • • **• • •'***• • • *'• • Fil tcrlng• • /
/'filt.cring the waveform : •;
;•'length'samples from signal in'data'are filtered by'filter'•;
/* starting from sample number'start'、'out'isat least BUF_SIZ long•; 1••··1
void xps_Filter_Samples (int k, short•data, int start, int length, short•out)

int i, j, 1, stop, size;
float aux;

for (iEstart; i<length; i++)
｛

aux-0;
stop -MIN(FIL_ORD, start);

if (stop --FIL_ORD)
for (j-0; j<stop; j++)

aux+-Filter_Bank[j] [k] * *(data+ (i -j));
else
（

xmisc.c 2

Aug 3 1995 14:57
．

xm1sc.c Page 5 Aug 3 1995 14:57 xmisc.c Page 6

size= length -start;
for (j=O; j<FIL_ORD; j++)

I
1 = i -j;
while (1 < 0) l ,- size;
aux += F'il ter—_Ela n k I j I I k I• data I l I ;

out[i-start]-(short)aux,

p2 =data+ length -l;
cross = *p2--;
i = length -1;
while ((cross • *p2ーー） > 0) i--; /* detect the first zero crossing */
if (Abs(*p2) > Abs(*(p2 +l))) *end=i+l;
else•end~i;

bzero((out+ length-start), (GUF _SI Z -length+s tart)* si zeof (short));

total ~ l;
i =•start;
cross - *pl;

/* count all the zero crossings*/

1••···············•·**••···································••Band-Pass RMS••;
;• set/ get rms in a given band-width : */
;• given a band-pass'filter', get/set ('mode'1 / 0) from the fil-•;
;• tered signal'data'of'l'samples the normalised value of the'rms'•;
／．．．．．＊＊＊＊＊＊＊＊會＊＊會＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊● ● ······························•·;

void xps_Band_RHS(int filter, short *data, int L int mode, float•rms)

int i;
float power, scale;
short aux[BUF_SIZ];

G
:
J

power-0;
xps_strcopy(aux, data, 1, l);
xps_Filter_Samples(filter, data、1, 1, aux);
for (i-0; i<l; i++) power+-sg(aux[i]);
power/- l;
switch (mode)

［
case'O': scale - sqrt((•rms) / power);

for (i-0; i<l; i++)
*(data++) - scale• aux[i];

break;

default : •rms·power,
break;

int xps_Test_Voicing(struct Unit•pu, Marks•pm, int npm, int time, int permax)

）：
int distance, i, left, rigth;
Marks *current;

/"''"*•••••••*'••**•••••*'*'****'•*'*'•*•••••** .. Get the Zero-crossings••;
;• for input'data'of'length'samples, finds the first and last zero・ •;
;• crossings, and returns their total number. */
／＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊・．．．．．．．．．．．．．．＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊會＊＊＊貪＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊／

int xps_Zero_Cross(short *data, int length, int•start, int•end)

short *pl, •p2;
int i, cross, total,

pl -data;
cross -•pl++;
i - O;
while ((i<lcnglh)&&((cross• •pl+t) > 0))

i++; ;• detect the 1st zero crossing•;

if (i --length-1) return 100;

if (Abs(*pl) > Abs(*(pl -1)))•start-1-1;
else•start-1;

while (i I• •end) [

while ((i<length)&&{{cross * *pl++) > 0)) i++;

if (i —日 length-1) goto END; /* only one zero crossing*/

cross 口 *pl;
total++;

total++;

END: return total;

/**'***"""*'*'*** Look for Marks•;
/* Voicing test : * /
/* When larynx-derived pitch marks are used, voicing at a given time is*/
/'defined by the presence of pitchmarks, no more than'permax'samples*/
/* apart. If they exist, this returns'l'or'-1', and'O'otherwise. •;
／＊＊／

1f ((time> pu->length) 11 (time < 0))

if ((pm・・NULL) 11 (npm -- 0))

if (distance > permax) return O;
else if (left>rigth) return l;

else return -1;

/* count the last one*/

return O;

return O;

/* none found*/

;• bad arguments•;

;• unvoiced unit• /

i - 0;
while ((i < npm)&&(time > (pm+i)->nsamp)) i++; /* 2 closest marks•;
left・abs((pm+i-1)->nsamp -time);
rigth - abs((pm+i)->nsamp -time);
distance• (i•·0) 7 abs(pm->nsamp -time) : MIN(left, rigth);

/* rigth is closer*/
/* left is closer•;

/** ** ** * * *** ** ** **• ** **'** ** **** *** **'******* * ** ** *** ** ** ** ** * Mean Power ** /

xm1sc.c 3

Aug 3 1995 14:57
．

xm1sc.c Page 7 Aug 3 1995 14:57
．

xm1sc.c Page 8

/* Average Sub-Unit power : */
/* This returns, for a given unit, an estimate of its average power, */
;• defined by : log (s'2), averaged over every sub-unit. Usual values */
;• range from 5 to 9, depending on the phoneme type, and the speaker. • /
/'• * * * ** *• *• **** ** * ** **•• • * *• *• • • • *• * *• • *• * * * * ** *•• * *** *• • ***• • *** ****•*****I

float xps_MEAN_POWER(Utterance utt、Synthesis*S, int n)

inti, j, k, total;
Stream u;
struct Unit•pu;
struct Sub_Unit•psu;
float power;

power• (tota 1• 0) ;
u• UNITSTREAM(utt);

for (i-〇； i<n; i++) u ヰ SC_next(u);

pu・SC(u、Unit);
psu -pu->sub_units;

while (total < S->nsubu(n])
｛

for (i~ 〇； i<udb_current->num_nus_phones; i++)

if (streq(psu->name, udb_current->nus_phones[i].name))

-J
j - i; /* sub-unit belongs to ith class*/

、一`_. power+• udb_current->nus_phones[j] .pow_mean;
total++;
psu++;

power~power/ S->nsubu[n];

return (power);

/**"*******'*** Index in a Unit*/
/* Index for power processing : • /
/* This simply returns the index of the pitch for a given unit, where the*/
／倉 powermodification is supposed to begin (rigth end, type --1) or end */
;• (left end, type == -1). This mark is chosen at the middle of the last/ */
/'first sub-unit, unless the sub-unit is a stop (we don't want to modify*/
/* stops), in which case it returns the limit of the unit. •/
／＊＊．．．．．．＊＊＊＊＊＊＊＊貪** * * * *• * **• • *• • *• *• • • • **• • • • * ** * ** * *• • • • *• * * * * * *• *• ***•••***I

if (type --1)
｛

while (current->next 1- NULL) current -current->next;
size -current->rank;
totsize -current->nsamp;
current -current -1;
while (current->boundary--0) current-current->prev;/* start of subunit*/

if (current->phoneme 1- 7) /* a stop ? */
return ((int)((totsize + current->nsamp)/2)); /* middle of sub-unit*/
else return totsize;

J
else
［

current -current->next;
while (current->boundary --0) current -current->next;
size -current->nsamp;

int xps_INDEX(Marks *pm, int type)

/* could be better ... */

while (current->next I• NULL) current -current->next;
if (current->prev->phoneme・・7) return current->rank; ;• no modifs•;
size -current->rank;
if (size <2) return current->rank; ;• too short a unit•;
current -current -2;
while (current->boundary••O) current•current->prev;/• start of subunit•;

return ((int) ((s1ze+current->rank+O. 5)/2)); ;• middle of sub-unit */
J

else
｛

if (current->phoneme•- 7) return current->rank; ;• update if nec. •;
current• current->next;
while (current->boundary・・0) current -current->next;
size• current->rank;
if ((size<2) 11 (current->prev->phoneme --STOP)) return O;

return (s i ze/2) ;

/*** Index in a Unit•;
;• Index for power processing : */
/* This simply returns the index of the sample for a given unit where the•;
/* power modification is supposed to begin (rigth end, type•- 1) or end */
/* (left end, type -- -1). Used for larynx pitch marks. •;
／＊＊＊／

int xps_INDEX_bis(Marks *pm, int type)

int size, totsize;
Marks•current;

current• pm;

if (pm->phoneme I・7)
return (size/2);
else return 1;

/* a stop?*/
/* middle of sub-unit*/

int size;
Marks•current;

current -pm;

1f (type -- 1)
［

xm1sc.c 4

/' / .

/'

ゞ
!,..-,

Aug 3 1995 14:58 xmod.c

1•·••==============•===========••=•=•==•==•==============•••=========*/
/* A T R Interpreting Telecommunications Labs• /
;• */
1•========•=•••=•··••=•======•=••==•=======·====•===••=======••••=•=••1
/'CHATR Speech Synthesis System * /
;• Christian Lelong• /
;• - - - - - - - .. - - . → - - ・*/

/*•;
/* Speech Signal Models * /
／＊＊／

/'Fe b 1995 */
/'Copyrigth (CJ 1994, 1995 */
/ ' A T R Interpreting Telecommunications Research Laboratories */
/* All rights reserved. * /
1·••=•=•=•-··••=•=•==-=••-•= 云••==•==••=•==•••=口•===••••===•=•===•=•==*/

Hnclude <stdio.h>
•include <string.h>
Oi ncl ude <ma th. h>

>include "alloc.h"
● include "xruc.h"

•define SM 10000
•define Sm 400

Page 1

•define FIL_STP 0.0015625
•define WMAX 50
#define THRES 4

/* 50 harmonics max*/

/* Cut_Wo is never used, but tells the * /
/* cutting frequencies of the loaded filters */

int Cut_Wo[] - [O, 0.025, 0.05, 0.075、0.1. 0.125, 0.15,
0.175, 0.2, 0.2375, 0.2875, 0.35, 0.425, 0.5];

const int BANK[] - {0,16,32,48,64,80,96,112,128,152,184、224,272,320];

const int FMAX[] - [2000, 3000, 4000, 5000, 6000];

static int f_curr ~ 2;

st.a tic float•cosinus [¥>IMAX};
static float•sinus[WHAXJ;
static float•Ak;
stat.ic float. •Bk;
static short•harmo;

void xps_Stochastic(Synthesis•s, int rank, short•stoch);
void xps_Harmonic(Synthesis•s, int rank, short•harmonic, Scheme sch);
void xps_H_psola(short•output, Marks•pm, int wnum, int shift);
float•xps_Wcigth(Marks•pm, int npm);
void xps_'しBands(Synthesis•s, int rank);
void xps_NOISE_PRO(Synthesis•s, int rank, int type);
void xps—_Hybrid(Synthesis•s, Scheme sch);
void xps_Bands(Synthesis *S);

/'*'*****************'************'*'** Calculate the Stochastic Component**/
;• Extraction of the stochastic component : */
/* for input waveform'signal', whose'npm'pitch mark set is'pm', it */
;• returns the corresponding stochastic component. for more details, */
;• check Boeffard & Yiolaro's paper on the hybrid model (CNET 1994). */

xmod.c

Aug 3 1995 14:58 xmod.c Page 2

／ ＊＊／

/* NEVER TESTED - NEVER USED * /

/* */
／＊＊／

void xps_Stochastic(Synthesis *S, int rank, short•stoch)

int Snum, Wnum, i, j, k、length, npm、shift;
float power, h_power, period;
Marks•mark, •pm;
short•signal;
double w;

npm -S->nrfpm[rank];
pm -S->ref[rank];
signal -S->wl[rank];

power -xps_RMS(signal, pm, npm-1);

Snum -npm -2;

for (i-0, mark -pm->next; i<Snum; i++)
［

length -mark->next->nsamp -mark->prev->nsamp;
period - length/ (l.O•S->srate);
w -2*PI/length;
Wnum - (int) FMAX[f_curr]• period;
Wnum -MIN(Wnum, WMAX);

for (j-1; j<Wnum; j++)
for (k-0; k<length; k++)

［

/* original signal*/

/* average unit power*/

;• ASsymetric window•;
;• in msec•;

;• in samples•;
;• number of harmonics•;

cosinus[j] [kl - (float) cos(w*j*k);
sinus[j] [kl - (float) sin(w*j*k);

/* f i 11 the 2 matrices * /

J

shift -mark->prev->nsamp;
for (j-1; j<Wnum; j++)

［

J

Ak[j] - (Bk[j] - 0};
for (k-0; k<length; k++)

［
Ak[j] +- signal[shift+k]• cosinus[j] [kl; /'scalar product */
Bk[j] +- signal[shift+k]• sinus[j] [kl;

J
Ak [j] -Ak [j J * 2 / length; /* normalisation• /
Bk[j] -Bk[j] * 2 / length;

xps_ll_psola(stoch, mark、Wnum, O); /* short-term windowed harmonic signal•;

mark++;

/* adjusting limit frequency•j
h_power - xps_RMS {stoch, pm, npm-1);

if {(h_power/power) > 0.9) f_curr -MAX{O, f_curr-1);

if ((h_power/power) < 0.2) f_curr -MIN{THRES, f_curr+l);

Aug 3 1995 14:58 xmod.c Page 3 Aug 3 1995 14:58 xmod.c Page 4

/'*• *'** * * *** * ** *'** ** * * **** ** * * **** ** * * * Calculate the Harmonic Component ** /
;• Extraction of the Harmonic component: */
/* for input waveform'signal', whose'npm'pitch mark set is'pm', it * /
/* returns the corresponding harmonic component. for more details, * /
/* check Boeffard & Violaro's paper on the hybrid model (CNETク 1994). */
;• when required, psola is performed here (makes things faster). */
／＊＊／

void xps_Harmonic(Synthesis•s, int rank, short•harmonic, Scheme sch)

int Snum, Wnum、i、j, k, L length, npm, shift, shift2;
float period, •weigth, auxl, aux2;
Marks•mark 、 •pm;

short•signal;
double w;

I'
'* This is very operation-intensive, and quite slow. So far I haven't
.. thougth of ways to improve it、butI think it would be worthwhile.
•;

npm -S->nrfpm[rank];
pm -S->ref[rank];

ベ
i,.:;,

weigth• xps_Weigth(pm, npm);
length -pm[npm-1] .nsamp;
signal• S->wl(rank];

Snum -npm -2;

for (i-0, l•O, mark・pm->next; i<Snum; i++)
（

length -mark->next->nsamp -mark->prev->nsamp;
period• length/ (float)S->srate;
w -2*PI/length;
Wnum - (int) FMAX[f_currJ• period;
Wnum -MIN(Wnum, WMAX);

cosinus[il [kl ~ (float) cos(w•j•k);
sinus[j][k] a (float) sin(w•j•k);

shift -mark->prev->nsamp;
for (j~l; j<l1num; j++)
｛

xmod.c

/* corrective weigthing */

/* assymetric window*/
/* in sec */

/* in samples*/
/* number of harmonics*/

/'
•• We haven't designed yet a way of seting the maximum number of harmonics,
** Wnum, so that it adaptas to different speakers, speech styles and even
** phonemes. Should be worth it. For the time being, an intermediate value.

*/

;• an average of 15 and N harmonics, where'/
Wnum - (15 + Wnum) / 2; /* N is Lhe number it takes to go up to */

/* FMAX(f_curr], currently 4000 llz */

for (j-1; j<Wnum; j++)
for (k-0; k<length; k++)
｛

/* fill the 2 matrices */

else

Ak [j) - (Bk [j) -0 J ;
for (k-0; k<length; k++J
｛

Ak[j] +-cosinus[j] [kl * (float)signal[shift+k);
Bk[j) +-sinus[j) [k] * (floatJsignal[shift+k];

.，．,

h

h

t
t

g
g

n
n

e
e

1

1

I
I

~
~
~

・J
j

~
~
~
~

k

k

A

B

＊

＊

2

2

―――

・
~
~
~

.
J
.
J

［
［

l

k

k

A

B

if ((sch.P_method --2) && (sch.D_method --3)
&&(sch.test 1- 2))

shift2 m mark・>prev->nsamp -S・>tar[rank] [l++].nsamp;
if (S・>map[rank] [i+l] .repeat -m 0)

xps_H_psola(harmo, mark, Wnum, -shift2); /* copy */
if (S・>map[rank] [i+l] .repeat•- 1)

［
xps—_H_psola(harmo, mark, Wnum, -shift2); /* duplicate */
shift2 -mark・>prev・>nsamp -S・>tar[rank][l++J.nsamp;
xps_H_psola(harmo, mark, Wnum, -shift2J;

J
if (S・>map[rank] [i+l] .repeat m• ・l) l・・; /* eliminate */

xps_H_psola(harmo, mark、Wnum, 0);

mark -mark->next;

for (k•O; k<(pm+npm-1)->nsamp; k++)
［

S->w2[rank] [kl~S->wl[rankl [kl -harmo[kl;
S→ wl[rank] [kl• harmo[k];

xfree(weigth);

/* normalisation• /

/* PSOLA rigth away*/

/********'*************************** Overlap and Add for the Hybrid Model **/
/* Build st-signals : • /
/* Builds harmonic signal from the coordonates in the sine/cosine base,'/
/* stored in Ak and Bk, by windowing, overlapping & adding, using assy-'/
/'metrical windows. The signal is centered at m a r k ' p m ' . ' /

1••··1
void xps—_H_psola(short•output, Marks•pm 、 int wnum、intshift)

int length, middle, i, j;
float•win, aux;

length -pm->next->nsamp -pm->prev->nsamp;
middle -pm->nsamp -pm->prev->nsamp;
win -xps_Window(length, 1, middle, l);

2

/
、•一＿

、＼

Aug 3 1995 14:58 xmod.c Page 5 Aug 3 1995 14:58 xmod.c Page 6

if (pm->prev->prev~~NULL)
for (iべ〇； i<middle; i++)

win[i) - l;

/* left limit• /

if (pm->ncxt->next臼- NULL)
for (i-middle; i<length; i++)

win[i} - l;

for (i•O; i<length; i++)

［

/* rigth limit */

for (j•l, aux ~ O; j<wnum; j++)
aux+• Ak[j]• cosinus[j] [i] + Bk[j]• sinus[j] [i];

out.put.[pm->prev->nsamp+shi ft.+i] +• (short.) (win [i]會aux),

xfree(win);

/** Band Voicing Detection **/
/* Voicing detection : • /
/* for a given signal'w'with a'pm'pitch mark set of'npm'marks, */
/* tests for every bandwidth and for every pitch period the degree of */
/* voicing ; if positive, the filtered signal is added to'harm', */
/* otherwise it is added to'stoch'. In order to avoid too many */
/* voiced/unvoiced transitions, which could be annoying, changes occur*/
/* over two pitch periods.
/* * * * * * ** * *. * * * * ** * ** * * * ** ** * * .. * * ** * * ** * * * ** * * * * * * * * * * * ** * * * * * * * * * * ** * * * * * *: ~

void xps_V_Bands(Synthesis•s, int rank)
;••••••••••••••******'**********'* Weigthing for Hybrid Harmonic Component**/
;• Calculate correcting weigthing : */
;• this will correct the amplitude distortions introduced in the */
/'estimation of the harmonic component for the hybrid model, due to */
/'the fact that windows used are symetrical, and therefore they do */
/'not add up to one. This returns the inverse, sample by sample, of */
;• the sum of the windows used. */
;• • • • • • • • • * * *• *• • * * * * **• * * * * *• * * * *• * * * *• • *** *• • * *• • * * * * *** * * * * * ***• ** * * ******I

7

3

float•xps_Weigth(Marks•pm, int npm)

int i, j, length, middle, size;
float•output, •win;
Marks りnark;

size = (pm+npm-1)->nsamp + l;
output a xalloc(size, float);

for (いO; i<size; i++)
output(i]・O;

for (i•l, mark• pm->next; iく(nprn-1); i++)
｛

length -mark・>next→ nsamp -mark->prev・>nsamp;
middle -mark->nsamp -mark->prev・>nsamp;
win• xps_Window(length, 1、middle, 1);

if (mark・>prev->prev・・NULl,)
for (j曰 O; j<rniddle; j++)

win I j I -1;

1((mark->next->next・・NULL)
for { j•middle; j <length; j ++)

win[j]• l;

for (j• 〇； j<length; j++)
output[mark->prev->nsamp + ii +• win(j];

mark++;

xfree(win);

/'left limit•;

/* rigth limit */

for (i~ 〇； i<size; i++)
output[i) -MAX(0.9, MIN(l.l, 1 / output[i)));

return (output);

inti、j, 1, b[BANDSJ, start, size, beg, end, phon;
int k[J• [20, 20, 20, 20, 20, 20, 20, 20, 13, 10, B, 7, 7];
short•buffer, *h, •s;
float voice;

／＊

••bis used to avoid too frequent v/uv transitions ; k allows to
** correct the gap in energy between bands, for voicing detection
＊／

for (i・O; i<BANDS; i++) b(i)• O;
start - 0;

buffer - xalloc(BUF_SIZ, short);
h -xalloc(BUF_SIZ, short);
s -xalloc(BUF_SIZ, short);

for (i・O; iく(S->nrfpm[rank)-1); i++) (

size• S->ref[rank] [i+l) .nsamp -S->ref[rank] [i] .nsamp + l;
bzero(h, BUF_SIZ•sizeof(short)); /* h armonic component*/
bzero(s, BUF_SIZ*sizeof(short)); /* stochastic component*/

for (ヤ0; j<BANDS; j++) [

beg -S・>ref[rank][i].nsamp;
end -S・>ref[rank] [i+l] .nsamp;
phon -S・>ref[rank][i].phoneme;

if (j < BANDS・!)
xps—_Filter_Samples(j, S・>wl[rank]. beg, end, buffer);

else
for (l•O; l<size; l++) /* so it adds up */

buffer[!] -S・>wl[rank] [beg+l] -s[l] -h[l];
voice -xps_Is_Voiced(buffer, size, phon, k[j]);

/* classification */
if (voice>0.5)

if (b[j] -- -1) [b[j] --0;
for (1-0; l<size; l++) s[l] +-buffer[!]; J

else (b[j] -- 1;
for (1-0; l<size; l++) h[l] +-buffer[ll; J

xmod.c 3

Aug 3 1995 14:58 xmod.c Page 7 Aug 3 1995 14:58 xmod.c Page 8

else

if {b[jJ -- 1) [b(j] --O;
for (1•0; l<size; l++) h[l] += buffer[lJ; J

else { b[jl == -1;
for (l=O; l<size; l++) s[l] += buffer(lJ; J

for {1-0; l<size; l++) [

S->wl[rank] [start+l] = h[l];
S->w2[rank] [start+l] = s[l];

start+-size-1;

7
L
i

/* copy t.he t.wo final signals*/

/* .. • •" , • **'* Noise Processing */

/'Prosodic modifications for unvoiced component : • /
/* This applies to the noisy component of the speech signal, whatever */
/* t.he algorithm used to obtain it.'type'selects the processing. */ ／・・・・・・・・../

void xps_NOISE_PRO(Synthesis *S, int rank, int type)

inti、j, k, diff, rlength, tlcngth, chunk, total;
float scale;
short•signal;
Marks•rpm, •tpm;
Map•m;

m ← S->map(rank];
rpm .. S->rcf[rank];
tpm 口 S->tar(rank];
signal -S->w2{rank];
type• (type >3) ? 1 : O;

bzero(harmo, S->nsamp{rank]•sizeof(short)); ;• we use harmo for the noise*/

for (i•O; i<S->nrfpm{rankJ; i++)

I
rlength• rpm・>next・>nsamp・rpm・>nsamp;
tlength• tpm・>next->nsamp -tpm->nsamp;

if (type• 1)
［

switch (m->repeat) [

case O :
LAB: diff u rlength・tlength;

if (diff >~0)
（

/* method 1 : cut & paste*/

/*cutting*/

xps_strcopy(harmo+tpm->nsamp, signal+rpm->nsamp、tlength/2, 1);
xps_strcopy(harmo+tpm->nsamp+tlength/2, signal+rpm->nsamp+rlength+

tlength/2 -tlength, tlength-tlength/2, 1);
｝

else /* duplicating• /
［

chunk• rlength / 4;
xps_strcopy(harmo+tpm->nsamp, signal+rpm->nsamp,)*chunk, lJ;
total• tpm->nsamp+3*chunk;
while (diff く 2•chunk)

｛
xps—_strcopy(harmo+total 、 signal+rpm->nsamp+chunk, 2*chunk, l);
diff +• 2• chunk;
total+• 2 * chunk;

xps_strcopy{harrno+total, signal+rpm->next->nsamp+diff-chunk-
rlength+4•chunk, chunk-diff+rlength-4•chunk, l);

｝
break;

case 1 :
diff -rlength -tlength;
if (diff >-0)

I
xps_strcopy(harmo+tpm->nsamp, signal+rpm->nsamp, tlength/2、1);
xps_strcopy(harmo+tpm->nsamp+tlength/2, signal+rpm->nsamp+rlength+

tlength/2 -tlength, tlength-tlength/2, l);
｝

else /* duplicating */
［

chunk -rlength / 4;
xps_strcopy(harmo+tpm->nsamp, signal+rpm->nsamp,)*chunk, l);
total• tpm->nsamp+J•chunk;
while (diff く 2•chunk)

［
xps_strcopy(harmo+total, signal+rpm->nsamp+chunk, 2•chunk, l);
diff +-2 * chunk;
total +• 2 * chunk;

xps_strcopy(harmo+total, signal+rpm->next->nsamp+diff-chunk・
rlength+4•chunk, chunk-diff+rlength-4•chunk, 1);

tpm~tpm->next;
tlength• tpm->next->nsamp -tpm->nsamp;
goto LAB;
break;

default:
break;
）

｝
else
［

switch (m->repeat) {
case O :

scale• tlength / (float)rlength;
for (j•O; j<tlength; j++)
（

/* cutting * /

/* method 2 : interpolation*/

k -MAX(O、MIN(rlength-1, (int) (j*scale)));
xps_strcopy(harmo+tpm->nsamp+j, signal+rpm->nsamp+k, 1, 1);

J
break;

case 1:
scale~tlength / (float)rlength;

xmod.c 4

／ ---‘

Aug 3 1995 14:58 xmod.c Page 9 Aug 3 1995 14:58 xmod.c Page 10

for (j•O; j<tlength; j++)

I
k = MAX(O 、 MIN(rlength-1 、 (int)(j•scale)));

xps_strcopy (harmo+tpm->nsamp+j, signal +rpm->nsamp+k, 1, 1);
｝

tpm = tpm->next;
tlength• tpm->next->nsamp -tpm->nsamp;
scale• tlength / (float)rlengtJ1;
for (j•O; j<tlength; j++)

I
k = MAX(O、MIN(rlength-1, (int)(j*scale)));
xps_strcopy (harmo+tpm->nsamp+j, signal +rpm->nsamp+k, 1, 1);

J
break;

default :
break;

｝

rpm -rpm->next、
if (m->repeat !- -1) tpm - tpm->next;
m++;

npmax - (S・>nrfpm[i)>npmax) ? S・>nrfpm[i] : npmax;
for (j~O; j<S・>nrfpm[i]・l; j++)

permax~MAX(permax, S・>ref[i) [j+l] .nsamp -S・>ref[i] [j J .nsamp);

harmo -xalloc(sizmax, short);
Ak -xalloc(permax, float);
Bk -xalloc(permax, float);

for (i=O; i<I叩 AX; i++)

I
cosinus [i] - xalloc(2•permax, float);
sinus[i]• xalloc(2*permax, float);
for (j-0; jく(2*permax); j++)

I
cosinus[i] [j] - 0.0;
sinus[i] (j] - 0.0;

for (i-0; i<S->nunits; i++) (

if (S->ntgpm(i] > 1) (

size 臼 S->nsamp(i];
/* last sample * /

xps_strcopy(harrno + S・>nsarnp[rank]-1,
signal + S->ref[rank] [S->nrfprn[rnnk]・l] .nsarnp、1, l);

for (i•O; i<S->nsamp[rank); i++)

""J
c.-,

S->wl[rank] [i] +- harmo[i];

xfree(harmo);

/ .. Hybrid Model Algorithm **/
/* Hybrid model based synthesis algorithm : */
;• Based on Boeffard & Violaro's'hybrid model'for separating harmonics•;
/• and the stochastic components in the speech signal ; this is done for */
;• all the units. When PSOLA is selected, all prosodic modifications are */
;• done at the same time (it's faster that w ay).'/
／．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．＊．．．．．．．．．．．．．．．．＊＊● /

/* maximum window size*/

void xps_Hybrid(Synthesis•s, Scheme sch)

;• re-unite the signals•;

inti, j, size, slzmax-0, npmax-0, pcrmax-0;
short•aux;
float step;

/*
•• This actually differs from the original method, which I don't fully
.. understand. So, this is experimental and open to suggestions. We
•• calculate for every short-term signal, its corresponding fourier
•• coefficients : up to a given frequency, they give us the harmonic
•• component. The rest is stochastic.
＊／

for (i•O; i<S・>nunits; i++)

（
sizmax = ((S->nrfpm[i)>l)&&(S->ref[i) [S->nrfpm[i]-1) .nsamp > sizmax))

? S->ref[i) [S->nrfpm[i)-1) .nsamp : sizmax;

／＊
** In the original method, this is used to calculate the stochastic
** component:

for (i•O; i<WMAX; i++)

［
xfree (cosinus [i J);
xfree(sinus[i]);

xps_Stochastic(S, i, aux);

/* set to zero*/
/* all coeffs• /

** Here the harmonic component is calculated. The stochastic signal is
** merely the difference between the original and harmonic signals. IIERE
** is where we get away from Boeffard & Violaro.
＊／

bzero(harmo 、 sizmax•sizeof(short));

xps_Harmonic(S, i, harmo, sch);

else
［

S->wl[i] - NULL;
S->nrfpm[i] -O;
S->w2[i] 臼 NULL;

/'(vasし） memory freeing'/

xfree(Ak);
xfree(Bk);

xmod.c 5

Aug 3 1995 14:58 xmod.c Page 11

/*** Multi Bands Hodel Algorithm**/
/* Multi bands model based synthesis algorithm : */
/* Rather than labeling each whole-spectrum frame as either voiced or */
/* unvoiced, this method consists in testing the voicing degree for */
/* each of a given set of bandwidths, therefore creating a (rather) */
/* h armonic signal and a more stochastic one. */

1••···················***/

void xps_Bands(Synthesis *S)

int i, j, size 、 •map, sizmax~O;
short•aux;
float step;

for (i•O; i<S->nunits; i++)

sizmax -MAX(sizmax、S->nsamp[i]);

aux -xalloc(sizmax, short);

7
6

for (i~O; i<S->nunits; i++)
（

if (S->ntgpm[il > l)
（
size~S->nsamp[i];
xps_strcopy(aux, S->wl[i], size, l);
xps_V_Bands (S, i);

）

else
（

S->wl[i] - NULL;
S->w2(i] -NULL;

harmo• aux;

xmod.c
6

Aug 3 1995 14:58 xpros.c Page 1 Aug 3 1995 14:58 xpros.c Page 2

1•======•==•=•=••=•=•==••··----------·•===•=• ロ皿―·••===••=•=====•=====*/
／＊ AT R Interpreting Telecommunicat1ons Labs */
／＊＊／

1·-··••==••······- 口.................. ー-----------•-=•-·--------------•;
/'CHATR Speech Synthesis System */
/'Christian Lelong */
/* ---• I
/'*/
;• Prosodic Modification Related Functions• /

/'*/
/'Feb 1995 */
/* Copyrigth (CJ 1994, 1995 */
/* ATR Interpreting Telecommunications Research Laboratories */
;• All rights reserved. */
1••==••·--•== 一-----•==匹••=•========···--==•===••=•••==•==•==•=====-•=*/

#include <stdio.h>
•include <string.h>
Oi ncl ude <ma th. h>

'include "alloc. h"
•include "xruc.h"

7

マ～

int vowe12[] -
int liquid2[] -
int nasal2[J -
int affricative2[]•
int fricative2[] -
int closure2[] -
int stop2[)・
int silence2[)•

•9.,

.,.,.,.,.,

`̀ ~llll̀ j‘,

'.J

1

1

1

1

1

1

1

1

9

9

9

9

9

,

＇，

1

1

1

1

1

1

1

1

‘・
1

1

1

1

1

1

1

1

9

9

9

9

9

,

＇,

2

1

1

1

1

1

1

1

9

9

9

9

9

9

,

1

1

1

1

1

1

1

1

9

,

＇
,
‘
'
,
'

3

2

3

1

1

1

1

1

9

9

9

9

9

9

,

'

3

0

2

1

1

1

1

1

9
,
'
,
'
,
'
,

3

1

3

1

2

1

1

1

{

｛

｛

｛

｛

｛

｛

｛

int•RULE1[8]• { &vowel2[0J, &liquid2[0], &nasal2[0], &affricative2[0],
&frlcative2[0], &closure2[0], &stop2[0], &silence2[0]];

short•xps_ST_Signal(short•data, Marks•pm, int width).
void xps_MAKE_TARGET(Synthesis•S, Scheme sch);
void xps_MAKE_UNIT(Synthesis•S, int rank、Schemesch) ;
void xps_MAKE_SUB_UNIT(short•wave, Marks•ref, Marks•tar, Map•m, Scheme sch, short

•buffer);
vuitl xps_PMl_inLrapol (shor し •wave, Marks•ref, Map•p 、 short•buffer);
void xps_PM2_psola(short•in, Marks•ref, Marks•tar, int shift, short•out);
void xps_PMJ_fft(short•wave, Marks•ref 、 Map•map, short•buffer);
void xps_DMl_dumb(short•wave, Marks•ref, int type, short•buffer);
lnt xps_DM2_select(short•wave, Marks•ref'. int type, short•buffer);
void xps_DMJ_psola(short•wave, Marks•ref, int type, short•buffer);
void xps_all_PSOLA(short•wave, Marks•ref.Marks•tar, Map•map 、 short•buffer);

void xps_NP(short• wave, Marks•ref. Marks•tar, int type, short•buffer);
int xps_CONCAT(Synthesis•s, int rank, P_Wavc pw、intindex, int method);

I● ● ● ● ● ● ＊＊＊＊・*********"***••*'*****'********'* Short Term Signal **/

/'Short term signal : * /
;• This returns the windowed short term signal corresponding to pitch*/
/* mark'pm'; the window is 2*'width'frames long. */
;• • • • *• • * ,,.,. • • • • • • ... •••• • • • • • • *• ... *.,'**'***"*'**''**'****•'*'*"'****"I

short•xps_ST_Signal(short•data 、 Marks•pm, int width)

int start, end, left、rigth, size, offset, i, wsize, wleft, wrigth;
float•win;
short•output;

if (pm->prevー-NULL) start - O;
else if ((pm->prev->prev --NULL) I I (width--1)) start - 1;

else if ((pm->prev->prev->prev --NULL) II (width•·2)) start• 2;
else start - 3;

/* boundaries of ST signal*/

if (pm->next --NULL) end - 0;
else if ((pm->next->next --NULL) 11 (width--1)) end - l;

else if ((pm->next->next->next --NULL) 11 (width --2)) end - 2;
else end - 3;

if (start --0) wleft -O;
else if (width> start) wleft -width* (pm->nsamp -pm->prev->nsamp);

else if (width -- 1) wleft - pm->nsamp -pm->prev->nsamp;
else if (width -- 2) wleft -pm->nsamp -pm->prev->prev->nsamp;

else wleft -pm->nsamp -pm->prev->prev->prev->nsamp;

/* window halves*/

if (end•·0) wrigth -0;
else if (width> end) wrigth•width• (pm->nsamp -pm->next->nsamp);

else if (width•·1) wrigth• pm->next->nsamp -pm->nsamp;
else if (width -- 2) wrigth• pm->next->next->nsamp -pm->nsamp;

else wrigth• pm->next->next->next->nsamp -pm->nsamp;

wsize -wrigth + wleft + l;

if (start•·0) left -pm->nsamp;
if (start・・1) left・pm->prev->nsamp;
if (start・・2) left・pm->prev->prev->nsamp;
if (start•·3) left -pm->prev->prev->prev->nsamp;

if (end•• 0) rig th• pm->nsamp;
if (end•·1) rigth• pm->next->nsamp;
if (end 口• 2) rigth• pm->next->next->nsamp;
if (end 臼ー 3) rigth - pm->next->next->next->nsamp;

size• rigth -left + l;

output•xalloc(size, short);
bzcro(output, sizc•sizeof(short));

win-xps_Window(wsize, width, wleft+l, 1);

offset• pm->nsamp-left;

for (i• -offset; i<(rigth -pm->nsamp); i++)

xfree(win);

return output;

/* window size*/

/* ST signal size*/

;• hanning window•;

output[i+offsctJ-(short) (win[i+wleftl• data[pm->nsamp + iJ);

/** Make The Target Marks **/
/* Make target pitch marks : * /

xpros.c

Aug 3 1995 14:58 xpros.c Page 3 Aug 3 1995 14:58 xpros.c Page 4

/* This creates for each unit the appropriate set of target pitch */
/* marks and updates consequently the field'nsamp'in'S'. Target */
/* pitch marks take into account reference marks and mapping, but• /
/* also the scheme'sch'employed. • /
／＊＊＊／

void xps_MAKE_TARGET(Synthesis•s, Scheme sch)

inti, unit, duration, number, rank、npm, total, offset, flag;
int diff, curdif, shift, beg, end, j, newduration, nsilpm, k, forgot;
Marks *auxrf, •auxtg;
Map•auxmap;

for {unit=O; unit<S->nunits; unit++)

I
rank• O;
offset -O;
total = o;
flag= O;
npm = S->nrfpm[unit];

7
c
o

for (i・O; iく(npm-1); i++)
（

auxrf = (S・>ref[unitJ+i);
auxtg• (S・>tar(unit]+rank);
auxmap = (S・>map[unitJ+i);

if (auxrf->phoneme•= 8)
（

）
else
（

if (flag --1)
(auxtg -1)->boundary -O;

flag -O;

/* each unit*/

/* each pitch period*/

/* special silence routine */

jー (flag・l);
while (((i+j+l)<S->nrfpm(unit])&&((auxrf+jJ->phoneme == 8)

&&((auxrf+j)->boundary == 0))
j++;

duration• auxrf(j) .nsamp -auxrf[Q] .nsamp;
newduration ー (int) duration• auxmap[i) .D_modif;

auxtg(O] .nsamp• offset.; /* silences flt into one•;
offset +• ncwduration; ;• l>lg pitch period•;
auxtg(O) .rank·rank+•;
auxt.g[O).phoneme = 8;
auxt.g[O).boundary• l;
auxt.g[O).forbid• O;
auxtg(O) .voice・O;
auxtg(OJ .prev = (rank=•l) ? NULL : auxtg-1;
auxt.g(O) .next. • auxtg+l;

rank ++;
total +- l;
i +• j;

if (i+l -- npm) auxtg[l] .next -NULL;
Plse i・・; /'beginning of next su'/

/* that's the way it is . . . * /

duration ー (1/auxmap·>P_modif)• ((auxrf+l)・>nsamp -auxrf・>nsamp);

switch (auxrnap→ repeat)

case・1 : break; /* elimination */

case 1 : auxtg->nsamp -offset; /*duplication*/
offset +-duration;
(auxtg+l)->nsamp -offset;
offset+-duration;
auxtg·>rank• rank++;
(auxtg+l) ->rank -rank++:
auxtg・>phoneme -auxrf->phoneme;
(auxtg+l)->phoneme -O;
auxtg・>voice -auxrf・>voice;
(auxtg+l)->voice• auxtg->voice;
auxtg->boundary -auxrf->boundary;
(auxtg+l)->boundary -auxrf->phoneme;
auxtg・>forbid -auxrf->forbid;
(auxtg+l)->forbid• auxrf->forbid;
auxtg->prevー (auxtg・>rank--0) ? NULL : (auxtg・l);
(auxtg+l)->prev -auxtg;
auxtg->next -auxtg+l;
(auxtg+l)·>next• auxtg+2;

total +• 2;
break;

default : auxtg·>nsamp• offset; /* copy */
offset +• duration;
auxtg・>rank -rank++;
auxtg->phoneme -auxrf->phoneme;
auxtg->voice -auxrf・>voice;
if ((il•O)&&((auxmap·l)·>repeat~--1))
(forgotー(auxrf・l)->boundary;
auxtg->boundary•MAX(auxrf->boundary 、 forgot); J

elst:> auxtg->boundary -auxrf・>boundary;
auxtg・>forbid -auxrf・>forbid;
auxtg->prev• (auxtg->rank --O)?NULL:(auxtg・l);
auxtg->next• auxtg+l;

total++;
break;

if (nprn>l)
（

auxtg -auxtg + 1;
auxtg·>nsarnp• offset;
auxtg->rank -rank;
auxtg·>phonerne• (auxtg・l)・>phonerne;
auxtg·>voice• (auxtg-1)->voice;
auxtg・>boundary - l;
auxtg->forbid - (auxtg・l)・>forbid;
auxtg・>prev -auxtg-1;
auxtg・>next -NULL;

total++;

/* last mark*/

S·>ntgpm[unit]• total; /* number of marks & samples */
S・>nsamp[unit] -S・>tar[unit] [total-I] .nsamp + 1;

if ((S・>nsarnp[unit] < S・>srate / lOO)&&(sch.tiny --0))
（

S→ nsamp(unit)• O; /* drop units under 10 msec•;

xpros.c 2

, , /―¥

Aug 3 1995 14:58 xpros.c Page 5 Aug 3 1995 14:58 xpros.c Page 6

S->ntgpm[unit] = O;
S->nrfpm[unit] = O;

xps_strcopy(S->wl [rank], buffer, offset、1);

xfrcc(buffcr);

;•• .. ••••••**••••**********•••••• .. •••••••••************ Build a New Frame••;
;• Build the target signal : */
/* Depending on the scheme'sch'employed, this builds the rankth */
;• target unit、from the reference unit, target and reference marks, */
;• and mapping, all of which are stored in S. A little messy, maybe. */
／＊＊／

void xps_MAKE_UNIT(Synthesis•s, int rank、Schemesch)

/* new wave ready*/

int i, j, nsub, rend, tend, size, offset, memsiz, auxsiz, flag, nref, ntar;
Marks•ref, •tar;
Map•m;
short• buffer;

7

9

if (S->ntgpm[rank] > 1) [

auxsiz -S->ref[rank] [S->nrfpm[rank]-1] .nsamp -S->ref [rank] [O] .nsamp;
memsiz• HAX(S->nsamp[rank], auxsiz) + S->srate/50;
buffer -xalloc(memsiz, short); /* overlap due to psola is possible */
bzero(buffer, memsiz•sizeof(short));
nsub• S->nsubu[rank];
ref• S->ref[rank];
tar -S->tar[rank];
m -S->map[rank];
nref - S->nrfpm[rank];
ntar• S->ntgpm[rank];
rend = (tend = 1) ;
offset 口 O;
flag - ref[O] .voice;

for (i•O; i<nsub; i++)

［
while ((rend<nref) && (ref [rend] . voice == flag) &&

(ref[rend] .boundary•·0)) ++rend;
while ((tend<ntar)&&(tar[tend] .voice-= flag)&&

(tar [tend] . boundary -- 0)) ++tend;

1£(ref->phoneme•·8) /* a pause */
xps_NP(S->wl[rank], ref, tar, O, buffer+offset);

else if (flag -- O) /* unvoiced phoneme• /
xps_NP(S->wl[rank], ref, tar、L buffer+offset);

else if ((sch.P_method•- 2)&&(sch.D_method -- 3)) /* all psola */
xps_all_PSOLA(S->wl [rank], ref, tar, m, buffor+offscし）；

else /* default• /
xps_MAKE_SUB_UNIT(S->wl[rank],ref,tar,m,sch,buffer);

offset +- tar(MIN(ntar-1、tend)].nsamp-tar->nsamp;
if (rend < nref)

flag• ref(rend] .voice;

ref - ref + rend; /* updating marks */
m• m + rend;
tar• tar + tend;
rend ー (tend• 0) ;

/*** Build Target Sub-Unit*/
/* Build a target sub-unit : * /
/* This routine is used for voiced phonemes, in case either the duration*/
/* or pitch modification algorithms chosen are not PSOLA. This routine */
/* is longer and messier than the others. * /
/** ** * * * ** ** * * ** * * * * **• * * * * *• * ** * * ** **• • *• * *• • *• * * * * * * * * * * * *• • *• • * * *• *• • * *• ••*I

void xps_MAKE_SUB_UNIT(short•wave, Marks•ref, Marks•tar, Map•m, Scheme sch, short
•buffer)

＇（
inti, j, nrpm, ntpm, type、offset, shift, flag, size, totsiz;
short•auxl;
Marks *rpm2;

nrpm - (ntpm - l);
while ((ref [nrpm]. next I- NULL) && (ref [nrpm]. voice -臼 l)&&

(ref[nrpm] .boundary --OJ) nrpm++;
while ((tar[ntpm] .next I- NULL)&&(tar[ntpm] .voice =- l)&&

(tar[ntpm] .boundary --0)) ntpm++;
nrpm++; /* we stop at boundaries, or*/
ntpm++; /* one past voicing change * /
offset -O;

totsiz - tar[ntpm-1] .nsamp -tar[O] .nsamp + l;
auxl -xalloc(2*totsiz, short);

switch (sch.D_method)
（

case l: for (i-0: iく(nrpm-1); i++J
（

type• m[i] .repeat:
xps_DMl_dumb(wave, ref+i, type、auxl+offset):
offset+• (type+ 1) * (ref[i+l] .nsamp -ref[i) .nsamp):

）
break:

case 2 : for (i-0: iく(nrpm-1); i++) /* use DM2•;
［
type -m [i] . repeat:
xps_DM2_select(wave, ref+i, type, auxl+offset):
offset+ー (type+ 1) * (ref[i+l] .nsamp -ref[i) .nsamp):

）
break;

default : for (i-0; iく(nrpm-1); i++)
｛

/* duration modification• /

/* use DMl */

/* use DMJ'/

type• m[i].repeat;
xps_DM3_psola(wave, ref+i, type, auxl+offsetJ;
offset +• (type + 1)• (ref[i+l] .nsamp -ref[i] .nsamp);

）
break;

xpros.c 3

Aug 3 1995 14:58 xpros.c Page 7 Aug 3 1995 14:58 xpros.c Page 8

offset• ref->nsamp;

rpm2• xalloc(ntpm, Marks);
rpm2[0] .nsamp• offset;
rpm2 [0] . prev = NULL;
rpm2[0] .next= rpm2 + 1;
rpm2[0] .rank = O;
rpm2[0] .boundary= 0;
for (i=O, j=l; i<nrpm-1; i++)

｛
type = m[i] .repeat;

switch (type)
｛

;• auxiliary set•;

/* never mind*/

8

0

case 0: size・ref[i+l] .nsamp -ref[i] .nsamp; /* copy */
(rpm2+j)->prev• rpm2 +j -1;
(rpm2+j)->next. • (i•·ntpm-1) ? NULL : rpm2 +j +l;
(rpm2+j)->rank• j;
(rpm2+j)->boundary• (i<nrpm-2)&&(m[i+l] .repeat••-1) 7

i+2:i+l; / • never mind• /
(rpm2+j)->nsamp• rpm2[j-1].nsamp + size;
j++;
break;

case 1: size• ref[i+l] .nsamp -ref[i] .nsamp; /*duplicate*/
(rpm2+j)->prev• rpm2 +j -1;
(rpm2+j)->next• rpm2 +j +l;
(rpm2+j)->rank• j;
(rpm2+j)->boundary・i + l; /* never mind*/
(rpm2+j)->nsampー (rpm2+j-l)->nsamp+ size;
j++;
(rpm2+j)->prev• rpm2 +j -1;
(rpm2+j) ・ >next• rpm2 +j +l;
(rpm2+j)->rank• j;
(rpm2+j)->boundary• i + l; /* never mind*/
(rpm2+j)->nsampー (rpm2+j-1)->nsamp+ size;
j++;
break;

xfree(rpm2);
xfree(auxl);

/** 1st Pitch Modification Method */
/* Pitch modification by piece-wise linear intrapolation : */
/* This deducts a new waveform from the original. by intrapolation, • /
/* assuming that the signal is linear between two consecutive samples. */
/* Since this asumption is wrong, this introduces a little distortion. */
/* ** ** * * * * *• ** * * * * ** ** * * * ** * * ** * * * * * ** * ** * *• ** ** * * ** * *• * ** * * * * * * * * * * * * ***•***I

void xps_PMl_intrapol(short•wave, Marks•ref, Map•p, short•buffer)

int i, index, newsiz, size;
float alpha, Jc;

k -p->P _modif;
size -ref->next->nsamp -ref->nsamp;
newsiz - (int) (size/ k);

if(k!-1)

I
if ((wave --NULL) 11 ((wave+size-1)•- NULL) 11 (newsiz > !JUF_SIZ))

I
P_Error("¥n PMl_intrapol : wrong waveform size もd", size);
list_error(On_Error_Tag);

if (buffer+MAX(size, newsiz) --NULL)
［

P_Error("¥n PMl_intrapol : too short a buffer %d", newsiz);
list_error(On_Error_Tag);

default : break; /* elimination * /

offset~ O;

switch (sch.P_method)
｛

case 1: for (j-0; jく(ntpm-1); j++)
［

case 2: bzero(buffer, totsiz•sizeof(short));
shift~tar[j] .nsamp;
for (i~O, j~O, flag~O; jく(ntpm-1); j++)
（

/* pitch modification */

/* use PMl• /

i = rpm2 [j] . boundary; /• momentary use• /
shift a tar[j] .nsamp;
xps_PMl_i ntrapol (auxl +off set. rpm2+j, m+ i、buffer+shift);
offset += ref[i+l] .nsamp・ref[i] .nsamp;

J
break;

/* use PM2 */

i -rpm2 [j J • boundary; /* momentary use * /
xps_PM2_psola(auxl, rpm2+j, tar+j, shift, buffer);
shift~ tar[j}.nsamp;

）
break;

for (i•O; i<newsiz; i++) /* intrapolation */
（

indexー (int) i * k;
alpha - i• k -index;
buffer[i] - (short)(alpha• wave[MIN(index+l, (size-1))]

+ (1-a 1 pha)• wave [index J) ;

J
else

xps_strcopy(buffer, wave, size, l);

/** 2nd Pitch Modification Method */
/* Moulines'pitch modification : * /
/* This-deducts a new waveform from the original using short term sig- */
/* nals set accordingly to the target pitch mark set; check his Phd */
/* thesis for details. */
/* * ****** * ** * ** * ** ** *** ** **** ****** * * ************** * ** * * * ** *** * ** *** * ********I

void xps_PH2_psola(short•in, Harks•ref 、 Harks•tar, int shift, short•out)

xpros.c 4

/---,、

Aug 3 1995 14:58 xpros.c Page 9 Aug 3 1995 14:58 xpros.c Page 10

int i, size, start, left, rigth;
short•st;

start• (tar->prev·• NULL) 7 0 : tar->prev->nsamp;
left• (ref->prev•• NULL) ? ref->nsamp : ref->prev->nsamp;
rigth• (ref->next・・NULL) ? ref->nsamp : ref->next->nsamp;
size• rigth -left+ l;
st• xps_ST_Signal(in、ref, 1);

for (i•O; i<size; i++)

out[start -shift+ i] +0 st[i];

xfree(st);

/ Dumb Duration Modification Method "*/

;• Psola-less duration modification : */
;• This performs a simple smoothing of the discontinuities that are */
;- likely to appear in either elimination or suppression, using a */
;• psola-less method. This is performed after the modification. */
;••••••••• .. ••• •••••••••••••••••••••• .. ••• .. •••••••• /

void xps_DMl_durnb(short•wave, Marks•ref 、 int type, short *buffer)

8

1

int i, spanl-15、span2-5, size;
float x, mean-0;

if (type・~ 1)

I
size• ref->next->nsamp -ref->nsamp;

for (i~ref->nsamp; i<ref->next->nsamp; i++)

I
buffer[i-ref->nsamp] -wave Ii J;
buffer[i・ref→ nsamp+size)・wave[i);

for (i•-spanl; i<•span2; i++)

［

/* duplication• /

/*copying*/

X • (i<O) ? I * smooth a verag mg * /
xps_Sygmoid ((float) (i +span!)/ (2•spanl)) ・

xps_Sygmoid((float)(i+span2)/(2*span2));

buffer(size+i] ~ (i<O) ?
(short)((l-x)• wave[ref->next->nsamp+i] + x•wave[ref->nsampti]):
(shortJ(x* wave[ref->nsamp+i] + (1-x)'wave[ref->next->nsamp+i]);

if (type•·-1 J
［

size• ref→ ,nsamp -ref→ •prev->nsamp;

for (l-rcf->prcv->nsamp; l<rcf->nsamp; i++)

buffer[i-ref→ prev->nsamp] -wave[i];

/* elimination * /

/'copying•;

for (i-ref->next->nsamp; i<ref->next->next->nsamp; i++)

buffer[i-ref->next->nsamp+size] -wave[i];

for (i• -spanl; i<span2; i++)

mean +• (i<O) ? * (wave+ref->nsamp+i) : 3* * (wave+ref->nsamp+i);

mean• mean / (6*span2); /* weigthed average */

for (i• -spanl; i<span2; i++)
｛

X ー (i<O) ?
xps_Sygmoid((float) (spanl+i)/(2*spanl)) :
xps_Sygmoid((float) (i+span2)/(2*span2));

buffer[size+i]• (i<O) ?
(short) ((l-x)* wave[ref->nsamp+i] + x• wave[ref->next->nsamp+i]) :
(short)(x• wave[ref->next->nsamp+i] + (1-x)*wave[ref->nsamp+i]);

if (type -- 0)
（

size -ref->next->nsamp -ref->nsamp;

for (iaO; i<size; i++)

buffer[i]• wave[ref->nsamp + i];

;• plain copying•;

/***'*'*******'******''******'*'*** 2nd Dumb Duration Modification Method•••;
/'Psola-less duration modification : •;
/* This tries to minimize the discontinuities created : junctions are•;
/* made simply by selecting a suitable (regarding slope, sample value)•;
;• pair of points near the concerned pitch marks. It returns the rel-•;
/* ative position of the cut point. Done before the modification. •; 1••·············••**••··•1
int xps_DM2_select(short•wave, Marks•ref, int type, short•buffer)

int i, j, k, size, toto;
float diff, slope, d, s;

jー(k-0);
s-(d-5000);
toto - (type -- -1)? MIN(50, ref->nsamp-ref->prev->nsamp) :

MIN(50, ref->next->nsamp-ref->nsamp);

if (type I - 0)
［

while ((j<toto) II (d•-5000)) [

diff -Abs(*(wave+ref・>nsamp・j)・ •(wave+(ref·>next)·>nsamp·j)) +l;

xpros.c 5

Aug 3 1995 14:58 xpros.c Page 11 Aug 3 1995 14:58 xpros.c Page 12

slope -Abs(*(wave+ref->nsamp-j-1) -*(wave+ref->nsamp-j+l) -
*(wave+(ref->next)->nsamp-j-1) + *(wave+(ref->next)->nsamp-j+l)) +l;

1f (((2*diff+slope)*(l+j/toto)*(l+j/toto)) <
((2•d+s) * (l+k/toto)• (l+k/toto)))

;• a better pair of points is found * /

k~j;
d=diff;
s-slope;

j++; /* left: of pitch mark only*/

if (type== 1)
［

size= ref->next->nsamp -k -ref->nsamp;

for (i=ref->nsamp; iく(ref->next->nsamp-k); i++)

buffer[i-ref->nsamp] = wave[i);

for (i•(ref->nsamp -k); i<ref->next->nsamp; i++)

buffer[i-ref->nsamp+k+size] = wave[i];

8

2

if (type 臼- -1)

｛

size• ref->nsamp -k -ref->prev->nsamp;

for (i•ref->prev->nsamp; iく(rcf->nsamp-k); i++)

1 f (type --0)
I

size• ref->next->nsamp -ref->nsamp;

for (i•O; i<size; i++)

buffer [i]• wave [ref ->nsamp + i l ;

k・O;

return(k);

/*duplication*/

;• elimination•;

buffer[i-ref->prev->nsamp) ~ wave[i);

for (iー(ref->next->nsamp-k); i<ref->next->next->nsamp; i++)

buffer[i-ref->next->nsamp+k+size) ~ wave[i);

/* plain copying*/

;•• .. •**••••**••**•••••••••**•••••••• Standard Duration Modification Method */
;• Psola-based duration modification : */
;• This employs short term signals, which are eliminated or duplicated*/
;• as required. Again, Moulines'thesis has all the details. */

/* * * * * ** * * ** * * * * * * * * ** *** * * * * * * * ** * * * * * * ** * * ** * * * * **• * * * *• * * * * ** * * * * * ******•*I

void xps_DM3_psola (short•wave, Marks•ref, int type, short•buffer)

inti, sizel, size2, size3, size4;
short *stl, *st2;

if (type --1)
［

sizel -ref->nsamp -ref->prev->nsamp;
size2 -ref->next->nsamp -ref->nsamp;
_ stl -xps_ST_Signal (wave、ref, 1);

for (i-0; i<-size2; i++)

buffer[i] -*(stl + sizel + i);

for (i-size2; i>MAX(O,size2-sizel); i--)

buffer[i] +-*(stl + i +sizel -size2);

for (i=size2; iく(ref->next->next->nsamp-size2); i++)/* 2nd period*/

buffer[i]•*(wave+ ref->nsamp + i);

xfree (stl);

if (type -- -1)
｛

sizel -ref・>nsamp -ref・>prev->nsamp;
size2 -ref->next->nsamp -ref->nsamp;
size3 -ref->next->next・>nsamp -ref・>next・>nsamp;
size4 -ref・>prev・>nsamp -ref・>prev・>prev・>nsamp;
stl -xps_ST_Signal(wave, ref・>next, l);
st2 -xps_ST_Signal(wave, ref・>prev, 1);

for (i-0; i<-sizel; i++)

buffer[i] -*(st2 + size4 + i);

for (i-sizel; i>-MAX{O,sizel・size2); i・・)

buffer[i] +-*(stl + i + size2 -sizel);

for (i-sizel; i<ー(sizel+ size3); i++)

buffer[i] -*(wave+ ref->prev->nsamp + i + size2);

xfree(stl);
xfree(st2);

if (type~- O)

｛

/* duplication */

/* 1st frame*/

/* 2nd frame*/

/*elimination*/

/* 1st frame*/

/* 2nd frame• /

/* 2nd period*/

/*copying•;

size2ー (ref->next I臼 NULL) ? (ref->next->nsamp・ref->nsamp) : O;

for (i=O; i<size2; i++)

buffer[i] = wave[ref->nsamp + i];

xpros.c 6

/'",,、 /―

Aug 3 1995 14:58 xpros.c Page 13 Aug 3 1995 14:58 xpros.c Page 14

／＊＊＊＊＊● ● ● ＊＊● ● ● ● •• • •'*•• • • •• • • • • • • • • •'*• • • • •• •'*'***••• • •••• **'*•• All PSOLA• /
/'Pure PSOLA : */
;• This applies the psola algorithm to a given sub-unit ; results should */
/'be the same using PM2 and DM3, but this is about twice as fast, and */
/'therefore is used whenever possible. */ r····················•··•·····················•••·········•••••·····••••••••;
void xps_all_PSOL/¥(short. •wave, Marks•ref.Marks•t.ar, Map•map 、 short. •buffer)

1nt middle, i, j, k, npm, rnpm, left, rigth, size, offset;
int index, begin, thingie;
short•st;

rnpm = (npm = 1);
while ((ref{rnpm) .next != NULL)&&(ref{rnpm) .voice == l)&&

(rcf[rnpm] .boundary•·0)) rnpm++;
while ((tar{npm] .next !• NULI.)&&(Lar{npm) .voice~・l)&&

(Lar[n!'ml .llo1111d,,ry・・ll)) 11pm1+;
rnpm++; /'we slop at boundaries、or'I
npm++; /'one past voicing change'/

offset• tar[Ol ,nsamp;
size• tar[npm-1].nsamp -offset+ l;
bzcro(buffer, size•sizcof(shor し））；

8

3

for (i=O, j-0, index-0, begin~O; i<rnpm; i++)

［
left= (ref[i] .prev == NULL) ? 0 : ref[i] .nsamp -ref[i] .prev->nsamp;
rigth~(ref[i] .next== NULL) ? 0 : ref[i] .next->nsamp -ref[i] .nsamp;
st• xps_ST_Signal(wave, ref+i, 1);

if (ref[i].rank・・O) xps_strcopy(buffer,st+left,rigth+l,l); /*edges*/
else if (i•- rnpm-1)

［
thingie• (tar[npm-1] .nsamp -tar[npm-2] .nsamp) -

(ref[rnpm-1] .nsamp -ref[rnpm-2] .nsamp);
for (k•O; k<left+l; k++) buffer[begin+thingie+k] +• st[k];

｝

else if (map[i] .repeat == 0)
（

;• copy• /

if (i-•0)
［

begin= (tar-1)->nsamp -tar[OJ.nsamp; j = -1;
for (k-0; k<rigth+l; k++) buffer[kJ +- st.[left+kJ;

l
else if (begin >= 0)

（
t.hingie = (tar[j+l] .nsamp -t.ar[j] .nsamp) -

(ref[i] .nsamp -ref[i-1] .nsamp);
for (k=MAX(O, ー(begin+thingie)); k<left+rigth+l; k++)

buffer[begin+thingie+k] +- st[k);

）

else for (k=O; k<rigth+l; k++) buffer[kJ += st[left+kJ;
begin+= (tar+ ++j)->nsamp - (tar+j-1)->nsamp;

｝
else if (rnap[i] .repeat-~ 1)

I
i r (i--o >

/* duplicate */

xfree(st),

/* ***** ****** ** *** *** * * *** * ** ** **** * *** * ********* * * * * ***** Noisy Processing• /
/* Prosodic modifications for unvoiced phonemes : */
/* This applies to the "noisy" phonemes as defined by the macro-function*/
/* NOISY. It makes prosodic modifications by cutting/duplicating samples•;
/* in the middle of the sub-unit. Special treatment for pauses (type 0). */
/* * * ** * * * **** * * * **** *** ********* *** ****** ** **** ** * ** **** ** ** * * * *** ** ** *******I

void xps_NP(short• wave, Marks•ref 、 Marks•tar 、 int type, short *buffer)

int middle, i, npm, rnpm, sizel, size2, size3, aux, aux2, shift;

rnpm ~ (npm - 1) ;
while ((ref(rnpm] .next 1- NULL)&&(ref(rnpm] .voice -- 0)&&

(ref(rnpm] .boundary -- 0)) rnpm++;
while ((tar[npm] .next !- NULL)&&(tar[npm] .voice -- O)&&

(tar [npm] . boundary -- 0)) npm++;
rnpm++; /* we stop at boundaries, or */
npm++; /* one past voicing change * /

if (type -= O)

［

for (k~O; k<rigth+l; k++)
buffer[k] +-st[left+k];

thingie - (tar[l] .nsamp -tar[OJ .nsamp) -
(ref [0 J . nsamp - (ref -1) ->nsamp) ;

for (k-MAX(O, -thingie); k<left+rigth+l; k++)
buffer[thingie+k] +-st[k];

begin - tar[l] .nsamp -tar[O] .nsamp;
j - 1;

else
［

thingieー (tar[j+ll.nsamp -tar[jl .nsamp) -
(ref[il .nsamp -ref[i・1).nsamp);

for (k=M/¥X(0, -(begin+thingie)); k<left+rigth+l; k++)
buffer[begin+thingie+kJ += st[kl;

begin += (tar + ++j)・>nsamp・(tar+j・l)・>nsamp;
thingie = (tar[j+ll .nsamp・tar[j J .nsamp) -

(ref[il .nsamp・ref[i-1] .nsamp);
for (k=O; k<left+rigth+l; k++)

buffer{begin+thingie+kl += st{kl;
begin+= (tar+ ++j)・>nsamp・(tar+j・l)・>nsamp;

l
｝

olse If (l--0) ;• eliminate•;
{ begin - (tar・l)・>nsamp・tar[OJ.nsmnp; j -・ 1;l;

/'silence, stuffed with O•;
middle - (rnpm+l)/2;
sizelー (rnpm-- 2) ? (ref [1 J . nsamp -ref [0 I . nsamp) / 2 :

ref [middle] . nsamp -ref [0 J . nsamp;
size2 - (rnpm -- 2)? (ref[l].nsamp -ref[O].nsamp +l) / 2 :

ref[rnpm-1] .nsamp -ref(middle] .nsamp;
size3 - (npm -- 2) ? tar[l] .nsamp -tar[O] .nsamp :

tar(npm-1) .nsamp -tar(OJ .nsamp;

xpros.c 7

Aug 3 1995 14:58 xpros.c Page 15 Aug 3 1995 14:58 xpros.c Page 16

xps_strcopy(buffer, wave+ref[O] .nsamp, MAX(sizel, size2)+1, l);
aux -size3-size2-sizel;
if (aux>= 0) (

bzero(buffer+sizel, MIN(l,aux*sizeof(short)));
shift - {rnpm =- 2) ? ref[O] .nsamp + sizel : ref[middle] .nsamp;
xps_strcopy(buffer+sizel+aux, wave+shift, size2+1, 1);

} else
xps_strcopy(buffer+size3/2, wave+ref[rnpm-1] .nsamp -

(size3-size3/2)、size3 -size3/2+1, 1);

l
else /* for consonants、wecut the middle*/
[/* samples when reducing the * /

sizel -ref[rnpm-1] .nsamp -ref[O].nsamp; /* sub-unit, and repeat til */
size2 = tar[npm-1].nsamp -tar[O].nsamp; /* necessary the middle 20を＊／

size3 = size2 -sizel; /* samples when expanding it*/
aux -size2/2;
if (size3 く (0.2•sizel)) / * one run is enough*/
［

xps_strcopy(buffer, wave+ref[O] .nsamp, aux、1);
xps_strcopy(buffer+aux, wave+ref[O] .nsamp+sizel-(size2 -aux),

(size2 -aux +l), l);

e

l
s

1

(

e

/* more than one run is needed*/

8

4

aux2 = sizel / 5;
xps_strcopy(buffer, wave+ref[O) .nsamp, 3*aux2, 1);
shift• 2•aux2;
while (size3>0)
（

aux= MIN(aux2, size3);
xps_strcopy(buffer+shift, wave+ref(O] .nsamp+2*aux2, aux, l);
size3 --aux;
shift+• aux;

I
xps_strcopy(buffer+shift, wave+ref(rnpm-1] .nsamp-2*aux2-

(sizel-S*aux2), 2*aux2+(sizel-S*aux2)+1, l);

/*• • • • • • • ***** ** *• • • • • • **• ** *****• **• • ****••• • • ***** ** * * Unit Concatenation * * /
/* Concatenate consecu t1 ve uni ts : * /
;• This will, according to the'method'used, concatenates the unit of */
;• a given rank with the following, from'S'and into'pw'. If needed、*/
/* field'nsamp'(number of samples) in'S'will be updated. Methods */
/* available are : dumb, point selection, psola, cepstral distance and */
/* frame extrapolation (not ready yet). */
／＊＊＊／

int xps_CONCAT(Synthesis•s 、 int rank, P_Wave pw, int index, int method)

short•stl, •st2, •current, •lw, •rw 、 buffer[4*BUF_SIZ], *p;
inti,j,k、1, sizel, slze2, sizeJ, new, max、min, prev;
int x, auxl, aux2, spanl, span2, ispl, isp2, ispJ, shiftl, shift2;
Marks•left, •rigth;
Joint joint;
flo,1t scalcl, scalc2, power, alpha, avtirage, rmsl, rms2, rmsJ;
float•fftl, •fft2, •f(tJ 、 "distance, mini、aux;

p -pw->wave + index;

if (rank --0)
［

for (i-0; i<S->nsarnp[O]; i++)

p[i] -S->wl(OJ (i];

new -S->nsamp[O];
index -new;
p• p + index;

if (S->ntgpm[rank+l] < 2) return index;

if (rank く(S->nunits -1))
（

new= index;
prev -rank;
while ((prev>O)&&(S->nsamp[prev] --0)) prev--;

switch (method)
（

case 1 : for (i・O; i<S->nsamp[rank+l]; i++)
［

p[i]• S->wl[rank+l] [i];

pw->num_samp +-O;
new - index+ S->nsamp[rank+l];
return new;
break;

p(i] -S->wl[rank+l] [i];

pw->num_samp +-0;
new -index+ S->nsamp[rank+l];
return new;

）
else
（

/* first unit*/

/'DUHB'/

/'plain copying•;

case 2 : left - (S->ntgpm(prev] !- 0) ?
S->tar(prev]+S->ntgpm(prev]-1 : NULL;

if (left -口 NULL)
（

for (i•O; i<S->nsamp[rank+l]; i++)

/* plain copying*/

rigth -S->tar[rank+l];
lw -S->wl [prev];
rw -S->wl [rank+l];
spanl -S・>nsamp[prev]-1;
shiftl -left・>nsamp・left・>prev・>nsamp;
shift2 -rigth->next・>nsamp・rigth・>nsamp;
shiftl -MIN(shiftl / 2、S・>srate/ 200); /'5 msec•;
shift2 -MIN(shift2 / 2, S・>srate/ 200);
distance -xalloc(shiftl、float*);
for (i-0; i<shiftl; i++)

distance[i] -xalloc(shift2, float);

for (i-0; i<shiftl; i++)
for (j-0; j<shift2; jH)

dist11nce[i] [j] -(lw[spanl-i]-rw[j])'(lw[spanl・i)・rw[j));

xpros.c 8

9 ―¥ (-----

Aug 3 1995 14:58 xpros.c Page 17 Aug 3 1995 14:58 xpros.c Page 18

mini - 100000000;
auxl - (aux2 - 0);
for (i•l; i<shiftl-1; i++)

for (j-1; j<shift2-l; j++)

（

for (i-0; i<sizel; i++)

buffer[i] -stl[auxl+i]; /* 1st frame */

for (i-sizeJ-1; i>-MAX(O, (size3-size2)); i--)
aux D distance[i] [j] + distance[i+l] [j-1] +

distance[i-1] [j+l];
if (aux < mini)

｛
auxl・i;
aux2• j;
mini -aux;

p -p -i;

for (i=aux2; i<S->~ 甲こk+l]; i++)

I
p(i-aux2)• S->wl[rank+l) (i];

pw->num_samp -~(auxl + aux2);
new +s S->nsamp[rank+l) - (auxl + aux2);
return new;
｝
break;

8

5

;•copying•;

case 3 : left= (S・>ntgpm[prev] !• 0) ? ;• PSOLA•;
S->tar[prev] + S・>ntgpm[prev]・2 : NULL;

if (left•• NULL)
［

for (i=O; i<S->nsamp[rank+l]; i++)
（

p[i)• S->wl[rank+l) [i];

for (i=O; i<S->nsamp[rank+l]; i++)

p[i] = S->wl[rank+l][i];

;• plain copying*/

J
else
if (left->voice•S->tar[rank+l) [OJ .voice --0) ;• unvoiced•;
［

j• DUMa•j

;• plain copying•;

pw・>num_samp +• O;
new - index+ S・>nsamp[rank+l];
return new;

J
else
｛
rigth• S・>tar[rank+ll + l;
sizel・left→ •next·>nsamp·left·>nsamp;
size2• rigth・>nsamp・rigth・>prev・>nsamp;
size) ー (sizel + size2) / 2;
auxl• left・>nsamp・left->prev・>nsamp +l;
lw• S・>wl[prev];
rw• S・>wl [rank+l!;
stl• xps_ST_Signal(lw, left, l);
st2 -xps_ST_Signal(rw, rigth、1);
bzero(&buffer[O], BUF_SIZ*sizeof(short));

p[size3] = 10000;

buffer[i】+-st2[i+size2-size3];

p -p -sizel;

for (i-0; i<size3; i++)

I
p[i) -buffer[il;

/* 2nd frame * /

/*copying*/
/* the intersection * /

for (i-size3; i<S・>nsamp[rank+l]; i++)

p[i] -S・>wl[rank+l] [i]; /* copying */
/* the rest of the unit*/

new+-size3 -size2 -sizel + S・>nsamp[rank+l];

pw・>num_samp +• size3 -size2 -sizel;

xfree(stl);
xfree (st2);

return new;
）

break;

case 4 : /* cepstral distances * /

pw->num_samp +• O; joint -xps_Cut_Point(S->wl [prev], S->wl [rank+l],
new - index + S->nsamp(rank+l]; I I S→ tar [prev] +S->ntgpm [prev] -1, S->tar [rank+l]);
return new;

left -S->tar[prev]+S->ntgpm[prev)-joint.nfral-2;
rigth -S->tar[rank+l]+joint.nfra2;
shiftl -S->tar[prevJ [S->ntgpm[prev]-1] .nsamp -

left->next->nsamp;
shift2 -rigth->nsamp;
stl -xps_ST_Signal(S->wl[prev], left、1);
st2 臼 xps_ST_Signal(S->wl[rank+l]、rigth、1);

sizel -left->nsamp -left->prev->nsamp;
i - left->next->nsamp -left->nsamp;
j -rigth->next->nsamp -rigth->nsamp;
kー (i+j)/2;

bzero(&buffer[OJ, sizeof(short)*BUF_SIZ);

for (1-0; l<MIN(i,k); l++)
buffer[l] -stl[slzel+l);

for (l-k; l>MAX(O, k-j); 1-ー）

buffer[l] +• st2[1);

/* psola * /

iー (S->tar[prevJ+S->ntgpm[prevJ-1)->nsamp -left->nsamp;
j - rigth->nsamp - (S->tar(rank+l))->nsamp;

p -p -shiftl;

xpros.c

，

Aug 3 1995 14:58 xpros.c Page 19 Aug 3 1995 14:58 xpros.c Page 20

for (l•O; l<k; l++)
p[l]• buffer[l];

p. p + k;

for (l•shift2; l<S・>ntgpm[rank+l]; l++)
p[l·shift2]• S・>wl[rank+l] [l];

pw·>num—.samp·• shiftl + shift2・k;

new +• S・>nsarnp[rank+l] -shiftl・shift2 +k;

xfree(stl);
xfree(st2);

return new;
break;

case 5 : left -S->tar[prev}+S->ntgpm[prev}-2; /*extrapolation*/
rigth - S->tar[rank+l};
sizel = left->next->nsamp -left->nsamp;
size2 -rigth->next->nsamp -rigth->nsamp;
size3 - csizel+size2)/2;
rmsl - (rms2 - (rms3 -0));
bzero(&buffer[OJ, 3•BUf'_SIZ•sizeof(short));

for (i-0: i<sizel; i++)

［

8

6

for [iヨ O: i<size2; i++)
［

for (i•O; i<size3; i++)
（

rms3 -sqrt(rms3/size3);
powerー (rmsl+ rms2)/(2.D*rms3);

for (i•O; i<size3; i++)

p[i] - (short) (buffer[i] * power);

for (i•O; i<S->nsamp(rank+l]; i++)
（

p(i+size3) ~ S->wl(rank+l] (i];

;• junction frame•;

;• next unit•;

/* left period•;

buffer(BUF_SIZ+i] - S->wl(prev) (left->nsamp+i);
rmsl +• buffer[BUF—.SIZ+i] *buffer (BUF _SIZ+i);

J
rmsl• sqrt(rmsl/sizel); /* rms */

/* rigth period*/

buffer[2*BUF_SIZ+i) = S・>wl[rank+l) [i];
rms2 += buffer[2*BUF_SIZ+i]*buffer[2•BUF_SIZ+i];

J
rms2 = sqrt(rms2/size2);

scalel - (1.0•sizel)/{l.O*size3);
scale2 - (l.O•size2)/(l.O*size3);

/* rms */

/• temporal averaging•;

buffer(i] c
xps_Sygmoid((float)i/size3)• buffer(BUF_SIZ+(int)(i•scalel)] + □ rSygmoid((float) i/size3))• buffer I 2*DUF _SIZ+(int) (i•scale2) J;

rms3 +c buffer[i]• buffer[i];
l

/* re-scaling */

/* rigth unit*/

case 6 :

spanl - 15;
span2 - 5;
average -O;

for (i--spanl; i<-span2; i++)
average+- (i<O) ? p[i] : 3•p[i];

average -average/ (2*spanl);

for (i~-spanl; i<-span2; i++)
［

x - (i<O) ? xps_Sygmoid((float) (i+spanl)/(2*spanl)) :
xps—_Sygmoid((float) (i+span2)/(2*span2));

p[i] - (i<O)? (short)(x*average + (1-x)*p[i]) :
(short) ((1-x)*p[i] + x•average);

p -p + size3;

average -O;
for (i--spanl; i<-span2; i++)

average+- (i<O) ? p[i] : 3*p[i];
average -average/ (2*spanl);

for [i•-spanl; i<•span2; i++)

［

x ー (i<O) 7 xps_Sygmoid({float)(i+spanl)/{2*spanl)) :
xps_Sygmoid((float) { i+span2)/{ 2*span2) J;

*(p-S->nsamp[rank+l]+i)• {i<O) 7
(short)(x*average + (1-x)*p[i]) :
(short) { (1-x)*p[i] + x*average);

new+-size3 + S->nsamp[rank+l};

pw->num_samp +-size3;

return new;
break;

left - S->tar[prev]+S->ntgpm[prev]-2; /* extrapolation */
rigth -S->tar[rank+l];
sizel - left->next->nsamp -left->nsamp;
size2 - rigth->next->nsamp -rigth->nsamp;
size3ー(sizel+size2)/2;
rmsl - (rms2 - (rms3 - 0));
bzero(&buffer[O], 3*BUF_SIZ•sizeof(short));

for (i•O; i<sizel; i++)

I

for (i-0; i<size2; i++)

［

/* smooth averaging*/

/* smooth averaging*/

/* left period*/

buffer[BUF_SIZ+i] -S->wl [prev] [left->nsamp+i];
rmsl +-buffer[BUF_SIZ+i)•buffer[BUF—_SIZ+i];

｝
rmsl - sqrt(rmsl/sizel); /* rms */

/* rigth period*/

buffer[2*BUF_SIZ+i) - S->wl[rank+l) [i);
rms2 +• buffer[2*BUF—_SIZ+i) *buffer [2*BUF _SIZ+i);

）

rms2 = sqrt(rms2/size2); /* rms */

xpros.c 10

/
. 一～、 ,、

＇

Aug 3 1995 14:58 xpros.c Page 21 Aug 3 1995 14:58 xpros.c Page 22

scalel• (1.0•sizel)/(1.0•size3);
scale2 = (1.0•size2)/(l.O•size3);

ispl• xps_ispower2(sizel);
isp2• xps_ispower2(size2);
isp3• xps_ispower2(size3);

fftl = xalloc(ispl. float); ;• frequency•;
fft2 - xalloc(isp2, float); ;• domain•;
fft3• xalloc(isp3, float);
bzero(fftl, sizeof(float)•ispl);
bzero(fft2, sizeof(float)•isp2);
bzero(fft3, sizeof(float)•isp3);
xps_strcopy(fftl, &buffer[BUf'_SIZ), sizel. 2);
xps_strcopy(fft2, &buffer[2•BUF_SIZ), size2、2);

FFT(fftl, ispl);
FFT(fft2, isp2);

for (いO: i<size3; i++) /'f-domain averaging•;

fftJ[i) -
(fftl((int)(i•scalel)) + fft2[(int)(i•scale2)]) / 2;

iFFT(fftJ, ispJ);
for (いO; i<sizeJ; i++)
（

fftJ[i) = fft3[iJ / isp3;
rmsJ += fftJ[i]• fftJ[i);

8

7

rms3• sqrt(rms3/size3);
power R (rmsl + rms2)/(2.0•rms3);

for (i=O; i<size3; i++J

p[i]~fft3[i] * power;

for (i~O; i<S・>nsamp[rank+l]; i++)
［

p[i+size3)• S・>wl[rank+l) {ii;

spanl• 15:
span2 - 5;
average= O;

for (i=-spanl; i<•span2; i++)
average +• (i<O) ? p(i) : 3*p(i];

average• average/ (2*spanl):

for (i=-spanl; i← span2; i ++)
｛

;• re-scaling•;

/* rig th unit• /

/* smooth averaging*/

x = (i<O) ? xps_Sygmoid((float)(i+spanl)/(2*spanl)) :
xps_Sygmoid ((float) (i +span2)/(2*span2));

p[i] - (i<O) ? (short) (x•average + (l・x)*p[i]) :
(short)((l・x)*p[i] + x•average);

average= O;
for (i=-spanl; i<-span2; i++)

average+ー<i <0 > ? p [i J : 3 * p [i J ;
average = average / (2*spanl);

for (i=-spanl; i<=span2; i++)

I
/* smooth averaging*/

x・(i<O) ? xps_Sygmoid((floatJ (i+spanl)/(2*spanl)) :
xps_Sygmoid((float) (i +span2)/(2•span2));

*(p-S->nsamp[rank+l]+i)• (i<O) ?

(short)(x•average + (1-x)*p[i]J :
(short) ((1-x)*p[i] + x•average);

new+-size3 + S->nsamp[rank+l];

pw->num_samp +• size3;

xfree(fftl);
xfree(fft2);
xfree(fft3);

return new;
break;

p -p + size);

xpros.c 11

Aug 3 1995 14:53 xtop.h Page 1 Aug 3 1995 14:53 xtop.h Page 2

;•-------------一…ー----------/' A T R Interpreting Telecommun1cat1ons Labs */

/* */
/*=•••===•=••·-------=--------------=----------=------•==•=••===••··•*/
/* CHATR Speech Synthesis System */
/* Christian Le long• /
/* -.... ---------. --.. -. --.... --. ---. -•.• ------------.. ---. -. -........ * I
/* */
/* PSOLA Related Definitions */

/* */
/* Feb 1995 */
／＊ Copyngth (C) 1994, 1995 * /
/* ATR Interpreting Telecommunications Research Laboratories */
/* All rights reserved. * /
1•---------------------=-----------------------•-=•••-==••··••==•==•=*/

8

3

#include <stdio.h>
#include <string.h>
● include <math,h>
算include "list.h"
#include "table.h"
•include "alloc.h"
#include "wave. h"
りinclude "udb.h"
#include "pmark,h"
#include "intonation.h"
#include "interface.h"
#include "phoneme. h"
#include "ph_unit.h"
#include "interface. h"

れdefinesq(x) ((x}*(x}}
りdefineMIN(a,b} ((a} > (b} ? (b} : (a})
•define MAX(a,b) ((a} > (b} ? (a} : (bl}
•define f'f'T(data, m) (xps_realft (data-1, m>>L l}}
日defineif'f'T(data, m} (xps_realft (data-1, m>>L・1)}
#define fft(data, m} (xps_fourl(data-1, m, 1)}
•define ifft(data, m} (xps—.fourl(data-1, m, ・1)}
● define PI 3 .141592653589793
#define Abs(a) ((a)>O? (a) : (・a))
りdefineswap(a,b,tempr) (tempr)-(a}; (a)=(b}; (b)=(tempr)
!define sign(a} ((a} > 0? (1) : (・l))

れdefineS碑 ーMAX 4096
•define MS_ASYN 10
算defineMAX_LEN 3
#define MIN_LEN (udb_current・>wave_sample_rate / 5)
#define sur_srz (udb_current.・>wave_sample_rate / 5)

enum Unit_Type [vowelロ 1, liquid, nasal, affricative, fricative, closure, stop、silen
ce) ;

typedef struct complex
（

float real;
float imag;

J Complex;

typedef struct polar
（

float scale;
float phas釦

} Polar;

typedef struct joint

int nfral;
int nfra2;
int dur;
int targ_dur;
float distance;

J Joint;

typedef struct scheme
（

float D_thres;
float P _ thres;
int D_method;
int P_method;
float P _ceil;
float D_ceil;
int concat;
int power;
int contour;
int model;
int PERMAX;
int test;
int stops;
int tiny;
int voicing;

) Scheme;

typedef struct map
（

int rank;
int repeat;
float D_modif;
flea t P _mod if;
float R_modif;

) Map;

/* small_pm definition moved to udb.h */

typedef struct mark
［

int nsamp;
int rank;
int phoneme;
int boundary;
int forbid;
float voice;
struct mark *prev;
struct mark•next;

) Marks;

typedef struct synthesis
（

short **wl;
short **w2;
Marks **ref;
Marks••tar;;
Map••map;
int *nsamp;
int•nrfpm;
int *ntgpm;
int•nsubu;
int nunits;
int srate;

J Synthesis;

/* rank of left frame• /
/* rank of rigth frame*/

/* actual duration• /
/* target duration• /

/* cepstral distance*/

/* threshold for duration modifications */
/* threshold for pitch modifications */

/* duration modification method• /
/* pitch modification method * /

/* ceiling for pitch modifications */
/* ceiling for duration modifications• /

/* concatenation processing*/
/* power processing*/

/* pitch contour*/
/* signal modelling */

/* for larynx pitch marks*/
/* to see what's happening*/

/* prosody for stops */
/* ignore very short units*/

/* voicing criteria*/

/* same as reference mark*/
/* elimination / duplication'/

/* duration modification•;
/'pitch modification */

/* rms modification'/

/* number of the sample it points to*/
/* number of current pitch mark*/

/* type of phoneme*/
/* signals beginning of new sub-unit*/

/* for reference marks only*/
/* O -> unvoiced, 1→ voiced*/

/* previous mark*/
/* next mark*/

/* speech signal, per unit*/
/* stochastic component, per unit */

/* corresponding pitch marks*/
/* target pitch marks*/
/* mapping、perunit*/

/* number of samples, per unit*/
/* number of marks, per unit*/

/* number of target marks、perunit*/
/* number of sub-units, per unit*/

/* total number of uni ts• /
/* sampling rate• /

xtop.h

/
...、

＼
＇ー、

/'

Aug 3 1995 14:58 ruc.c Page 1 Aug 3 1995 14:58 ruc.c Page 2

8

9

1•---=--•=•-==••1
/* AT R Interpreting Telecommunicat1ons Labs */ ／＊＊／
I*•••=••=••=•==••-•==•=•===•=••===口 ===•=•=•===•==============*I

/ ' C H I¥TR Speech Synthesis System *I
/' Helene Valbret & Christian Lelong *I
/'---• I
/ '*I
/'Building complete wave from units */
I '*/
I'*I
/ 'May 1994 -February 1995 */

/ '*I
/'Copyright (C) 1993,1994,1995 *I
/'ATR Interpreting Telecommunications Research Laboratories*/
/* All rights reserved. * /
1•=•==-------•-•=••==••-===•=== 己---•-====•=========•=====••·=•1

/・*/
I'Based on the Concat_Method choses a way to concatenate *I
I'units. Currently supports : *I

I '*I
/• -PSOLA / Cepstrum (nuutalk) / Dumb concatenation */
/ '*I
/* -a range of options for power, pitch and duration *I
I* modifications, for concatenation and also for the */
/'speech model used is available via the function *I
/'psola_ini t_pilrams(). [)c,filult is : l'SOl,I¥ pitch &'/
/* duration, no power modification, simple model, *I
/* select-point concatenation. */
/ '*/
/'Note : PSOLA is programmed twice, and results differ. *I
/* Of course there has to be a Unit stream for these to do *I
/'anything• I
1・

／＊＝一---:~
Oinclude <time.h>
#include <stdio. h>
• include <string. h>
•include <math.h>

● include "xruc.h"

if (streq (ch_param. con ca t_method, "PSOLA"))
return psola_concat_module(utt):

else if (streq(ch_param.concat_method, "NUUCEP"))
return nuucep_concat_module(utt);

else if (streq(ch_param.concat_method, "DUMB"))
return uni t_dumb_concat_module(utt};

else if (streq(ch_param.concat_method, "DUMB+"})
return unit_dumbp_concat_module(utt):

else if (streq(ch_param.concat_method、"XPSOLA"))
return xpsola_concat_module(utt);

else if (streq(ch_param.concat_method, "NULL"))
return NULL; /* sometimes useful for testing*/

else
（

P_E:rror("Unset or unknown concat method, using PSOLA by default");
return psola_concat_module(utt}:

, include "alloc. h"
•include "list.h"
• include "table. h"
•include "chatr.h"
•include "interface.h"
• include "general. h"
• include "plしunit.h"
•include "phoneme.h"
=include "wave. h"
•include "cep.h"
•include "grammar.h"
•include "pmark.h"
•include "udb.h"
•include "play.h"
はinclude "ruc.h"
•include "futils.h"

•include " .. /udb/nus.h"

FILE: * fid;
extern int SPAN;
static Scheme sch;

static struct Wave•unit_dumbp_concat_module(Utterance utt);
static void get_pm_points(P_Marks pm, int•st_pm, int *ls_pm);
static void get_zcrossing(P_Wave w, int *fst, int *1st);
static void xpsola_ini t_params (void);

struct Wave•unit_concat_module(Utterance utt)
｛

/* Builds a wave forms from the unit stream information in a method * /
/* as defined by Concat_Method Parameter */
/* Unit stream must be set up for this to work (and others things•;
/* too depending on the type of con catenation * /

if (utt_stream("Unit" 、 utt)•• SNIL)
（

P_Error("Unit concat module called on utterance without unit stream");
list_error(On_E:rror_Tag);

void utt_unit_concat_module(Utterance utt)
（

/* Utt module function to do con catenation• /
struct Stream_cell•w_cell• new_stream_cell ("Wave");
free_pwave(SC(w_cell,Wave)); /* free the wave part */

utt_stretch(utt);

SC(w_cell,Wave)~unit_concat_module(utt);

utt_set_stream("Wave" ,w_cell, utt);

return;

/* temporal, should be fixed */

•define FILENAME "rif.dat" ;• filters file•;

struct Wave *psola_concat_module(Utterance utt)
［

/* Build a whole wave form by simple concatenating the units */
struct Wave•waveform;
Ref_Wave•ref_wave;
Ref_Marks•ref_pm;

ruc.c

Aug 3 1995 14:58 ruc.c Page 3 Aug 3 1995 14:58 ruc.c Page 4

P_Marks targ_pm;
Util_Ph !utll_ph;
Stream u;
int nb_unit• O;
inti;
int common_sr;
int scheme• Simple;

common_sr• udb_current・>wave_sample_rate;

for (nb_unit• O, u• UNITSTREAM(utt); u !• SNIL; u 臼 sc_next(u))
nb_unit++;

/'***/
/** Reading Reference Wave and Pitch-Marking**/ 1••···•1 ref_pm = Get_Ref_Pitch(utt, common_sr, nb_unit); I* modifies bounaries *I
ref_wave• Get_Ref_Wav(utt, common_sr、nb_unit);

／＊＊／

/** Creating Target Pitch Marks according to input prosody **/
／＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊● ***'*********************************/
targ_pm - Creat_Target_pm(utt, MS—.ASYNC 、 common_sr) ;

／＊● ● ＊● ● ● ● ＊● ● ＊＊＊● ● ＊＊● *************/

/'* Reading Useful information **/
／＊會＊● 會＊會＊＊＊● ● ＊＊＊＊＊＊＊＊＊＊＊＊／

util_ph• Extract_Util_Ph(utt, ref_pm, nb_unit, common_sr);

CD
---__ ,

I"• .. 會＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊／

/" Power _Modification "/
/" Use of Square Powe, ヽ● ＊／

/" ... ● ● ● ＊＊＊＊＊貪＊＊＊＊＊＊＊＊● •;

P0wer_Modif(ref_wave, utt, PWR_SQR);

/ /

/" TD・PSOLA Synthesis .. /
;, /
waveform -PMS(ref_wave, ref_pm, targ_pm鼻 util_ph、scheme);

／＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊／

/ .. Memory Freeing .. /
／＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊／

for (i -O; i < ref_pm->nb_unit; i++)
free_pm (ref_pm→ unit_pm[i]);

xfree (ref_pm->uni t_pm);
xfree(ref_pm->info_pm);

free_pm(ref_pm->utt_pm);
xfree(ref_pm);

for (i -O; i < ref_wave→ nb_unit; i++)
free_pwave(ref_wave->unit[i]J;

xfree(ref_wave->unit);
xfree(ref_wave);

f ree_pm (targ_pm J ;

xfree (util_ph→ •sub);
xfree(util_ph);

return waveform;

struct Wave•unit_dumb_concat_module(Utterance utt)

/* nuild a whole wave form by simply concatenating the units */
/* No PSOLA, just put them together */
int i,j,k;
Stream ucell;
Ref_Wave•ref_wave;
int num_units• O;
struct Wave•wholewave;
short•waveform;
int common sr• 0;

common_sr -udb_current->wave_sample_rate;
for (ucell=UNITSTREAM(utt); ucell I - SNIL; ucell = SC_next(ucell))

num_units ++;

ref_wave -Get_Ref_Wav(utt, common_sr, nurn_units);

Power_Modif(ref_wave,utt,PWR_SQR);

wholewave -make_wave();
waveform -xalloc(ref_wave->num_samp,short);

for (j-0,i-O; i< nurn_units; i++)
（

for (k-0; k<ref_wave->unit{i)->num_samp; k++)
waveforrn[j++) -ref_wave->unit[i)->wave{k);

free_pwave(ref_wave->unit[i));
）
xfree(ref_wave->uni t);
xfree(ref_wave);

wholewave->coding -CH_LIN16; /* signed linear*/
wholewave→ •nurn_samp -ref_wave->num_samp;
wholewave->samp_rate -ref_wave->samp_rate;
wholewave->wave• waveform;

return wholewave;

static struct Wave•unit_dumbp_concat_module(Utterance utt)
｛

/* Build a whole wave form by simply concatenating the units*/
/* Put the raw waves together at pitch mark boundaries */
int i,j、k;
Stream u;
Ref_Wave•ref_wave;
int num_uni ts・, common_sr;
int stp, edp;
struct Wave•wholewave;
Ref_Marks•ref_pm -NULL;
short•waveform;

common_sr -udb_current->wave_sample_rate;
for (num_units-0,uーUNITSTREAM(utt); u I- SNIL; u-sc_next(u))

num_units ++;
printf (•Number of uni ts dヽ¥n"、num_units);

/** we read the pitch marks to cut in a nice place**/
/** Note this•modifies• the start and end point to pitch marks**/
if (list_str_eval("concat_dumb_pm", NULL))

ref_pm -Get_Ref_Pitch(utt, common_sr、num_units) ;
ref_wave - Get_Ref—_wav(utt 、 common_sr, num—.units);
Power_Modif(ref_wave,utt,PWR_SQR);

wholewave -make_wave();
waveform -xalloc(ref_wave->num_samp, short);

ruc.c 2

,・・、
＇‘

≫

Aug 3 1995 14:58 ruc.c Page 5 Aug 3 1995 14:58 ruc.c Page 6

for (j=O, i-0; i< num_units; i++)
［

stp• O;
edp・ref_wave->unit[i]->num_samp;
if {list_str_eval("concat_dumb_zcs"、NULI、)）

get_zcrossing { rcf_wave->uni t [i J , &s tp, &edp);
for { k・stp; k<edp; k++)

waveform[j++]• ref_wave->unit[i]・>wave[k];
free_pwave{ref_wave->unit[i]);

）
wholewave->num_samp ~ j;

wholewave->coding -CII_LIN16; ;• signed linear•;
wholewave->samp_rate -ref_wave->samp_rate;
wholewave->wave -waveform;

xfree (ref_wave->uni t);
xfree(ref_wave);

if (ref_pm ! • NULL)
［

for (i• O; i < ref_pm→ nb_unit; i++)
free_pm(ref_pm・>unit_pm[i]);

xfree(ref_pm・>unit_pm);
xf ree (ref_pm・>info_pm);
free_pm(ref_pm→ utt_pm);
xfree(ref_pm);

return wholewave;

9
i
'

static void get_zcrossing(P_Wave w,int•fst, int•1st)
I /* f'ind first and last zero crossing•;

inti;

for (i=l; 1 < w->num_samp; i ++)
if (w->wave[OJ < 0)
｛

if (w->wave[i] > OJ
break;

｝
else if (w->wave[i] < 0)

break;
if (i < 64)

•fst = i;
else

•fst -O;
for (i-w->num_samp-2; i>O ; i--)

if cw->wave(w->num_samp-1] < 0)
［

if cw->wave[iJ > 0)
break;

J
else if (w->wave[i) < 0)

break;
if ((w->num_samp -i) > 64)

•1st -w->num_samp;
else

•1st= i;

if ((•1st· •£st) < 100)
I

P_Warning("Unit is too short to move edges on");
return;

static void get_pm_points (P _Marks pm、int*st_pm, int•ls_pm)
[/* Set first and last pitch mark as boundary for sub unit*/

if (pm->num_marks < 2)
［

P_Warning("Unit has less than 2 pitch marks, not moving boundaries");
return;

l
else if (pm->num_marks < 5)

P_Warning("Unit has less than 5 pitch marks, but moving boundaries");

*st_pm -pm->mk[O].pos_samp;
*ls_pm -pm->mk[pm->num_marks-1].pos_samp;

void unit_only_module(Utterance utt)
（

/* Build a wave simply by concatenating the units in the unit stream*/
/* (No other streams are loaded */

struct Stream_cell•w_cell -new_stream_cell ("Wave");

SC(w_cell、Wave) -unit_dumb_concat_module(utt);

utt_set_stream("Wave"、w_cell,utt);

return;

/* c==*/

/***Initialize*/
/* Initialize all XPSOLA parameters : *;
/* This will readfrom variable "xpsola_params" the options that will be*/
/* used during the following processing. If the variable has not been */
/* set, default values are asigned. */
／＊＊／

static void xpsola_init_params(void)

List psola_params, t;
float threshold;
char•str;
int method;

psola_params -list_str_eval ("xpsola_params", NULL);

threshold -param_get_float(psola_params, "P_thres", 0.1);
sch.P_thres -MAX(0.01, threshold); /* default 1%•;

threshold -param_get_float(psola_params, "D_thres", O .1 J;
sch.D_thres -MAX(0.01, threshold); /* default 1%•;

threshold -param_get_float(psola_params, "P _ceil", 0. 33);
sch.P_ceil -MAX(0.01、threshold); /* default 33% */

threshold -param_get_float(psola_params, "D_ceil", o. 66 J;
sch.D_ceil -M/¥X(0.01, threshold); /* default 66も＊／

ruc.c 3

Aug 3 1995 14:58 ruc.c Page 7 Aug 3 1995 14:58 ruc.c Page 8

9

2

str = param_get_str(psola_params,"P_method", "PSOLA");
if (ci_streq(str, "intrapol")) sch.P_method• l;
else sch.P_method・2; ;• psola by default*/

str = param_get_str(psola_params, "D_method", "PSOLA");
if (ci_streq(str, "smooth")) sch.D_method• l;
else if (ci_streq(str, "select")) sch.D_method = 2;
else sch. D_method・3; /* psola by default•;

str = param_get_str(psola_params,'"con cat", "SELECT");
if (ci_streq(str, "dumb")) sch.concat = l;
else if (ci_streq(str, "select")) sch.concat = 2;
else if (ci_streq(str, "psola")) sch.concat• 3;
else if (ci_streq(str, "cepstral")) sch.concat = 4;
else if (ci_streq(str, "extrapol")) sch.concat• S;
else if (ci_streq(str, "extrapol2")) sch.concat• 6;
else sch. con cat・2; ;• select by default• /

str = param_get_str(psola_params,"power", "NONE");
if (ci_streq(str, "smooth")) sch.power = 3;
else if (ci_streq(str, "target")) sch.power= 2;
else sch.power = l; /* none by default */

str・param_get_str(psola_params, "contour", "AVERAGED");
if (ci_streq(str、"mixed")) sch.contour= 3;
else if (ci_streq(str, "target")) sch.contour• 2;
else sch.contour・l; /'averaged by default•;

str・param_get_str(psola_params, "model", "NONE");
if (ci_streq(str, "hybrid")) sch.model• 2;
else if (ci_streq(str、"bands")) sch.model• 3;
else if (ci_streq(str, "hybrid+")) sch.model• 4;
else if (ci_streq(str, "bands+" J) sch.model• S;
else sch.model・l; /* none by default */

method• param_get_num(psola_params, "PERMAX", 12) 1

sch.PERMAX. MAX(O、MIN(30, method)); ;• 12 millisec by default•;

str・param_get_str (psola_params, "test", "NONE");
if (ci_streq(str, "processing")) sch.test - l;
else if (ci_streq(str, "model")) sch.test -2;
else sch.test・O; /* none by default */

str・param_get_str(psola_params、"stops". "NONE");
if (ci_streq(str, "pitch")) sch.stops -1;
else sch.stops = O; ;• none by default•;

str・param_get_str(psola_params, "tiny", "DROP");
if (ci_streq(str, "keep")) sch.tiny= l;
else sch.tiny・O; /* drop'em by default */

str = param_get_str(psola_params, "voicing", "PHONEME");
if (ci_streq(str, "DATABASE")) sch.voicing• 1;
else sch.voicing• O; /* phoneme based, by default•;

threshold• param_get_float(psola_params, "SPAN", 18. o);
threshold• MAX(l, threshold);

SPANー (int) threshold; /* default 18 msec */

return;

／＊喩＊＊＊. Prosodic Modifications */
/'Main function for prosodic modifications : */

/* This returns, according to the options set in "xpsola_params", the */
/* synthesized wave, given the input utterance. */
/* * * * * * * * ** * * * * * * * * * * ** * ** * * * * * ** ** ** * * * * * ** * * * * * * * * * ***I

s truct Wave *xpsola_conca t_module (Utterance u tt)

Synthesis *S;
Stream u;
int i. size, offset, j, max;
P_Wave pw, testwave;

xpsola_init_params();

s -xps_INIT_ALL(utt);

for (u-UNITSTREAM(utt), i~O; ul~NULL; i++)
（

/* set the options*/

/*initialization*/

xps~READ_REFERENCE(S 、 i, u, sch); /* reading reference pitch */
xps_READ_WAVE(S, i, u); /* marks and waveforms*/
u ~ SC_next(u);

／＊＊＊／

if ((sch.test --2)&&(sch.model 1- 1)) [/* SEE IIOW THE MODEL WORKS */

max• MIN(8、S->nunits); /* only for so many units*/

for (i=O; i<max; i++)

size+= 4*S->nsamp[i];

testwave = make_wave();
testwave->wave = xalloc(size、short);
testwave->num_samp = size;
testwave->samp_rate = S->srate;
bzero(testwave->wave, size•sizeof(short));

for (い0, offset= O; i<max; i++) [/* original signal*/

if (S->nrfpm[i] > 1)
size -S->ref[i] [S->nrfpm[i]-11 .nsamp;

else size -O;
xps_strcopy(testwave->wave+offset、S->wl[il, size, l);
offset+-size; J

offset +-2000;

if ((sch.model --2) 11 (sch.model --4))

xps_Hybrid(S, sch);

if ((sch.model --3) 11 (sch.model --5))

xps_Bands (S) ;

for (i-0; i<max; i++) {

if (S->nrfpm[i] > 1)
size~S->ref[i][S->nrfpm[i]-1].nsamp;

else size~O;

/* allocation• /

/* hybrid model*/

/* bands model*/

/* voiced component*/

ruc.c
4

•

Aug 3 1995 14:58 ruc.c Page 9 Aug 3 1995 14:58 ruc.c Page 10

xps—_strcopy(testwave->wave+offset, S->wl[i}, size、1);
offset +• size; J

offset+• 2000;

for (i-0; i<max; i++) [

if (S->nrfpm[i} > 1)
size・S->ref[i)[S->nrfpm[!J-1).nsamp; / * unvoiced component*/

else size• O;
xps_strcopy(testwave->wave+offset, S->w2[i}、size, 1);

・offset +• size; }

return (testwave);

/'*• • • • *• • *• *• *• * * * * *• * * * *• * * * ** *• * * *• * * * *• * * * ** * *• *• * * * * * * * ** ** * * * ***********I

xps_POWER_PRO(S、utt, sch);

xps_MAPPING(S, sch, utt);

xps_MAKE_TARGE:T(S, sch);

/** * * ... *. * **● ＊＊／

9

3

if (sch.test•·l) [

max・MIN(B, S->nunits);

for (i• 〇； i<max; i++)

size +- 4•S->nsamp(i);

for (i=O; i<max; i++) {

/* power smoothening*/

/* target prosody */

/* SEE HOW THE PROCESSING WORKS*/

/* only for so many units*/

testwave• make_wave();
testwave->wave• xalloc(size, short);
testwave->num_samp -size;
testwave·>samp_rate• S・>srate;
bzero(testwave・>wave, size•si zeof (short));

for (i•O, offset• O; i<max; i++) (

if (S->nrfpm{i) > 1)
size・S->ref{i){S->nrfpm{i)-1).nsamp;

else size• O;
xps_strcopy(testwave->wave+offset, S->wl{i), size, 1);
offset +- size; }

offset+• 1000;

size• S->nsamp(i];
xps_MAKE_UNIT(S, i, sch);
xps_strcopy(testwave->wave+offset, S->wl(i]、size, 1);
offset +• size;]

offset+- 2000;

for (i•O· , 1 <max; i ++) I
if (S->nrfpm(i] > l)

for (j•O; j<S->ref[i] [S->nrfpm(i]-1] .nsamp; j++)

;• allocation•;

;• original units*/

/* processed units*/

/* test units */

S->wl[i) [j] - 500+2*j;
size - S->nsamp[i); /* sawtooth */
xps_MAKE_UNIT(S, i, sch);
xps_strcopy(testwave->wave+offset、S->wl[i], size-1、l);
offset +-size-1; J

return (testwave);
）
／＊＊／

if ((sch.model -- 2) 11 (sch.model --4))

xps_Hybrid(S, sch);

if ((sch.model --3) 11 (sch.model -- 5))

xps_Bands (S);

if (((sch.model I= 2)&&(sch.model 1-4)) 11
(sch.P_thres I-2) 11 (sch.D_thres 1- 2))

for (i=O; i<S->nunits; i++)

xps_MAKE_UNIT(S, i, sch);

if (sch.model I-1)

for (i-0: i<S->nunits; i++)

xps_NOISE_PRO(S, i、sch.model);

pw -xps_FINAL_WAVE(S, sch);

xfree(S);

return (pw);

/* hybrid model*/

/* bands model*/

/* processing is done HERE*/

/* special processing*/

/* the wave is created HERE */

ruc.c 5

Aug 3 1995 14:53 xruc.h Page 1 Aug 3 1995 14:53 xruc.h Page 2

1•================•-=======•--=•== 一==•••=====••===•===•-==•==========•1

／＊ A T R Interpreting Telecommunications Labs•;
;• •;
/*-•H•••-•
／＊ CHATR Speech Synthesis System•;
;• Christian Lelong */
/* ---• I
／＊＊／

;• Unit Concatenation & Prosodic Modifications•;
／ ＊＊／

;• Feb 1995 */
/* Copyrigth (C) 1994, 1995 */
;• ATR Interpreting Telecommunications Research Laboratories•;
;• All rights reserved. • /
1•·---------------·-------------------====•--=-==•-------------------•1
#ifndef _XRUC_H_
ldefine _XRUC—_H_
#include <stdio. h>
けinclude<stdlib.h>
#include <math. h>
#include "xtop.h"

#define NOISY(a) (((a) !• 1) && ((a) !•2) && ((a) !=3))
#define FIL_NUM 13
#define f"IL_ORD 201
•define !JANOS 13

int SPAN;

extern canst float Filter_Bank[FIL_ORD] [FIL_NUM];

/***• •• • **************• • • • • **** *** *** * *• **• *** * * * ** * *• *••• * * * xmod. c */

void xps_NOISE_PRO(Synthesis•s, int rank, int type);
void xps_llybrid(Synthesis *S, Scheme sch);
void xps_Bands(Synthesis *S);

/ •••••••• xio.c */

int xps_PHONEM(struct Sub_Unit•su);
Synthesis•xps_INIT_ALL(Utterance utt);
void xps_READ_REFERENCE(Synthesis *S, int rank, Stream u, Scheme sch):
void xps_READ_REFERENCE_bis(Synthesis *S, int rank, Stream u, int PERMAX);
void xps_MAPPING(Synthesis *S, Scheme sch、Utteranceutt);
void xps_PERIODS(int•£0, int total,int start,int end,int *n,float•periods):
void xps_READ_WAYE(Synthesis *S, int rank, Stream u);
void xps_POWER_PRO(Synthesis•s, Utterance utt, Scheme sch):
P_Wave xps_FINAL_WAYE(Synthesis *S, Scheme sch);

Hendif

／．．．．．．．．．．．．．．．．．．．．．．．．．．＊＊＊．．．．．＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ xm1sc.c */

つ`,..:,.. void xps_Push_Marks(Marks•pm 、 int npm);
int xps_Is_Alone(Marks•pm, int span);
int xps_Find_Boundary(struct Unit•punit, int i, Marks•pmarks, int npm);
void xps_Filter_Samples(int k, short•data, int start, int length, short•out);
int xps_Test_Voicing(struct Unit•pu 、 Marks *pm, int npm, int time, int permax);
int xps_INDEX(Marks•pm, int type);
int xps_INDEX_bis (Marks•pm, int type);
float xps_MEAN_POWER(Utterance utt, Synthesis•S, int n);

/ .. • • • • • • • • •• • • • • • • • • • • •• • ***• • **• • •• • *** ***• ****** ** ********* xmath. c• /

int xps_ispower2(int a);
float xps_Sygmoid(float x);
float•xps_Window(int dim, int scale, int middle, int type);
float xps_RMS(short•wave, Marks•pm, int n);
float xps_RMS_bis(short•wave, int start, int size);
float xps_LOG_POW(Synthesis•s, int n);
void xps_WIN_POW(float•s, Marks *pml, Marks•pm2, float•w);
void xps_acf(float *V,int m);
void xps_Cepstrum (short•data, float•cep, int length);
void xps_Icepstrum (short•data, float•icep, int length);
float xps_Is_Voiced(short•data, int size、intunit, float k);
Joint xps_Cut_Point(short•wl, short•w2, Marks•pml, Marks *pm2);

;• ** ** * * * * * * * * * * * * * * * ** **** *** * * * ** * ** * *** * ** * * * *** * * ** * * **** xpros. c * /

void xps_MAKE_TARGET(Synthesis *S, Scheme sch);
void xps_MAKE_UNIT(Synthesis•s, int rank、Schemesch);
void xps_NP(short• wave, Marks•ref, Marks•tar, int type 、 short•buffer);

int xps_CONCAT(Synthesis•S, int rank, P_Wave pw, int index, int method);

xruc.h

／
--

...

｀
J
.

Appendix

Appendix 1

XPSOLA unit -code

Following are the different files composing the XPSOLA module.

xio.c : input, output and initialisation

xmath.c : mathematical routines

xmisc.c : miscellaneous low-level functions

xmod.c : bands and hybrid models

xpros.c : main signal processing functions

ruc.c : top-level functions commanding the whole processing.

xruc.h : declarations of functions visible to other files.

xtop.h : data types, and most of the constants and macros.

r
J
 ，

Appendix

..

ヽ

Appendix 2

working in Japan

Considering all the books and articles that have been devoted to the issue, there must be
something about it. As Japan has become richer and its technolo~y better over the past
years, its appeal to foreign managers, engineers and scientists has mcreased. Settling and
working in Japan, however, is not like doing the same in a Western country.

Japan is an island with a rich and ancient culture that stayed isolated from the rest
of Asia and the world until recently. True, it owes much to China, and Korea to a lesser
extent, and Portuguese missionaries began to settle in the XVI century. But open contact
with Western civilisation is only a century old, and big cultural differences exist, visible
almost everywhere, and capable of disorienting foreigners for a long time. Social etiquette,
sense of humour and much more differ enormously, which is a good thing : much of
Japan's charm lies there. But to a gaijin, who moreover comes with a not too flattering
image of the country, this can lead to a bad start.

I beleive ATR is somehow speial in Japan, more international and open-minded
than most places. During my stay, certain facts became evident, the first one concerning
language. As most Japanese speak very poor English, learning Japanese is not only a
polite or enjoyable thing to do, but almost a necessity. Otherwise, one is limited to dealing
mostly with fellow foreigners, and this certainly won't help at work nor anywhere else.
This was the case at ATR, and I often wished I was more fluent. However, even w~en
communication is not difficult, it is easy to notice the special treatment foreigners receive.
They are not expected to comply with all the sometimes fastidious formalities Japanese
colleagues have to endure. Also, the management section is full of attentions. Th¥s might
lead to think that gaijin have a privileged situation, but that is only partly true, for 1t seems
that foreigners are seldom fully accepted and integrated. A recent poll confirms this
impression, shared by people I met.

Concerning the state of research, I was slightly disappointed. It is a fact that Japan
is the world leader in consumer electronics; it's also a fact that Japan's share of scientific
Nobel Prizes and international papers, compared to Europe's or America's, is not very

ヽ

9G

Appendix

impressive. My impression during the six months of my stay was that ATR as a whole is
a big laboratory with many resources and much money at its disposal, and still it is
inefficient. The few comparable places I have visited seem to accomplish more with less. I
have only thought of two reasons to explain this : the still low percentage of foreigners,
and what we shall call the "self-restraint" of the Japanese. Indeed, mixing people with
different backgrounds and education can only increase the team's creativity, each member
providing a certain approach, method and point of view. And it is to be hoped that
researchers can communicate and discuss ideas freely, with bothering too much about loss
of face, excessive modesty or extreme respect of other people's point of view.

As a whole, working in Japan, with a workforce predominantly Japanese but still
quite international, was a splendid experience, that will certainly be of great help in the
future. If one is to be as productive as one could, some effort is required before
integration with the team is accomplished. This process can be tricky, and must be
learned. And an obligatory step is, I think, adaptation to the ways of the host country. The
stereotype of the narrow-minded, closed, no-nonsense Japanese working himself to death
has, as most cliches, little truth in it. For many of my colleagues, the initial barriers
eventually broke down, and they turned out to be great companions.

Too many foreigners, partly due to their poor level in Japanese, fail to make such a
step: and it is most regrettable. And besides professional reasons, they are missing a
fascmating country, in particular in the Kansai area of Osaka-Kyoto-Nara (featuring
fabulous temples and lively people) where ATR is located.

97

Appendix

遁

ヽ

Appendix 3

CHA TR voices

Take 1

no prosodic modifications, dumb+ concatenation

@gsw Hello, here is a short demonstration of the voices available in CHATR. This voice
is a British English RP male speaker called Gordon. It is based on a database of 200
phonetically balanced sentences. @sally This is a British English RP female speaker
called Sally. This voice was made from a database of the same 200 phonetically balanced
sentences as the previous male voice. @sab600 When we increase the number of
sentences to over 400, the quality improves. As now, thewre are many more examples to
choose from. But, if we use the data from isolated words, rather than continuous specch,
@sab5 the quality becomes less natural, and overarticulated. Also, the durations are much
longer. @wnc600 Another British English male speaker is Nick. This voice is based on
around 600 sentences. Again, due to the large number of examples to choose from,_ the
quality increases. @j2b With a quick flight across the Atlantic we get a female Amencan
voice. This voice is built from 45 minutes of speech, from the speaker called f2b, from the
Boston University FM Radio corpus. Of course, synthesizing from a news announcer
corpus means the speech sounds like an evening news broadcast. Now, over to our
correspondent in Tokyo.

、・

ヽ
(in Japanese)

@mhtbset This speech synthesizer is not limited to English, but can

also produce Japanese speech. This male voice was built from a set

of 503 sentences. @jmp A woman's voice also is available. Over to

you, Gordon-san.

93

゜

゜

Appendix

@gsw Thank you, FMP-san. We should not forget the older voices that existed in
CHATR from the near beginning. @gswdi This voice is the CSTR diphone synthesizer
developed at Edinburgh University. This British English male voice was recorded by the
same person, Gordon, who is in the other larger British English male databases. @isard
Another voice is this LPC diphone synthesizer, also developed at Edinburgh University.
Although clear, perhaps it sounds more like a synthesizer should ?

@sab600 Finally, let me play the voice thatCHATR first used. It is a formant synthesizer,
copied from a free synthesizer available on the net. @formant But unfortunately, it is
mostly incomprehensible.

@j2b And, that's the way it is. So from me, f2b, @sab600 Sally, @gsw Gordon,
@wnc600 Nick, @j2b and all the others, thank you for listening. For WBCR, I'm f2b.
Over to you, Jim

Take2

no prosodic modifications, dumb+ concatenation

A 1980 state constitutional ammendment made Massachussets one of 23 states where
citizens can enact laws by pleibiscite.

1. original natural waveform

2. minimize target distance

3. minimize continuity distance

4. equal weightings

5. minimize cepstrum distance

Take3

pitch modification in the final word with PSOIA

rm often perplexed by rapid advances in state of the art technology.

， ,

References

[1]

[2]

J.L. Flanagan
Speech Analysis, Synthesis and Perception
Second Edition, Springer-Verlag, 1972

Helene Valbret

，ヽ；•

ふ

Systeme de conversion de la voix pour la synthese de parole
PhD thesis, ENST, Paris 1994

Eric Moulines

Appendix

[3]
Algorithmes de codage et de modification des parametres prosodiques pour
la synthese de la parole a partir du texte.

[4]

[5]

[6]

[7]

[8]

[9]

PhD thesis, ENST, Paris 1990

Olivier Boeffard & Fabio Violaro
Using a hybrid model in a Text-To-Speech system to enlarge prosodic
modifications.
Proceedings ICSLP 94, Yokohama, Japon, Septembre'94

J.P. Olive, A. Greenwood & J.S. Coleman
The dynamics of American English speech

Alan W. Black & Paul Taylor
CHATR : a generic speech synthesis system
Proceedings COLING 94, Kyoto, Japon, Avril'94

Pierre-Yves le Meur
Protection de segments sub-phonetiques en synthese PSOLA
XXemes Joumees d'Etude sur la Parole, Tregastel, France, June 1994

J. Allen, M. Sharon Hunnicutt & D. Klatt
From text to speech : the MITalk system
1987, Cambridge University Press

Gael Richard
Modelisation de la composante stochastique de la parole
PhD thesis, Universite de Paris XI, April 1994

Reference guides

[10] Signal Processing Toolbox User's Guide, MATLAB
The Math Works Inc, November 1993

[11] Xwaves+ guide, version 5.0
Entropic Research Laboratory, Inc. 1993.

[12] Purify, version 3.01 User's Guide
Pure Software Inc., 1994.

1 (H)

	01
	02
	MX-4111FN_20201120_104455

