
‘ヽ

Internal use only

002

TR-IT-0129

An Interactive Disambiguation Module
for English Input: _

an Engine and the Associated Lingware

Herve BLANCHON

1995.8.25

An interactive disambiguation methodology has been proposed and implemented at the GET A
lab. in the framework of Dialogue-Based MachineTranslation. This methodology has been
generalized and re-engineered at ATR-ITL in the framework of spoken language transtlation and
the MIDDIM project, a joint research between ATR-ITL and the GETA-CNRS aimed to study

Multimodal Interactive Disambiguation.

The proposed disambiguation methodology is based on the manipulation of tree structures. A
kind of ambiguity is described with a set of patterns called a beam. A pattern contains variables
and descibes a tree structure with constraints on its geometry and labelling. Once a beam has

been recognized, a question is prepare . q d The uestion items are produced through the

manipulation, with a set of basic operators, of the values given to the variables instanciated

during the recognition of the beam.

A particular disambiguation module is described with a lingware which is language and analyzer
dependant. This lingware is then used as input data to an interactive disambiguation engine so as
to describe a particular instance of a running disambiguation module. In this paper we are going
to describe the engine and the lingware w叫havedeveloped at.ATR-ITL for English input.

A TR -Interpreting Telecommunications Research Laboratories
2-2 Hikari-dai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan

c1995 by A TR Interpreting Telecommunications Research Laboratories

Content

INTRODUCTION 1

PART I THE DISAMBIGUATION ENGINE

INTRODUCTION i 3

CHAPTER 1. PATTERN MATCHING & BEAM MATCHING MECHANISMS 15

1.1.

1.1.1.

1.1.2.

1.2.

1.2.1.

1.2.2.

1.2.3.

1.3.

CHAPTER 2.

Pattern matching ... 16

Patterns descnpt10n language .. 16

Pattern recogmt10n mechamsm …・ ・・・・・・・....…•• •• …................. 17

The beam matching mechanism . ……………….... ………•……•• ・・・・・・•… 19
Beams and stacks .. 19

Beam matching: formal description …• ・・・・・・・・・・・・・・・・••…....... …, 20
Beam matching: implementation .. ….... …... …, 21

Comments ... 24

CONSTRUCTION AND PRESENTATION OF A QUESTION TREE 27

2.1.

2.2.

2.2.1.

2.2.2.

2.2.3.

2.3.

2.4.

Disambiguat10n automaton ... 28

Q . uest10n tree construct10n .. 30

Strategy ... 30

Implementation ... 31

Construction of a question .. 32

Q . uest10n tree presentation ... 33

Comments ... 33

9―1

I-

CHAPTER 3. DIALOGUE & QUESTION CLASSES 35

3 1 . . A generic disambiguation question class .. ……......... …• ….. …... ….. 36

3.2. A generic textual disambiguation dialogue class…………………….36

3.3. Comments ... 38

CHAPTER 4.

4.1.

4.1.1.

4.1.2.

4.2.

4.2.1.

4.2.2.

4.3.

4.3.1.

4.3.2.

4.5.

PART II

CHAPTER 5.

5.1.

5.2.

5.2.1.

5.2.2.

5.2.3.

5.2.4.

5.2.5.

5.2.6.

5.3.

5.3.1.

5.3.3.

5.3.2.

5.4.

OPERATORS 39

Selective projection .. 40

Definitions (selection) ... 40

Implementation (selection) .. 40

Acces to the Multilingual Lexical Data Base …•……………………… 42

Definition・・・.・・・・・・・・・・・・・・・・・・・・・・・・・・42
Implementation .. 42

Other operations ... 42

Definition ... 42

Implementation .. 42

Comments .. 43

THE ENGLISH LINGWARE

INTRODUCTION

AMBIGUITIES, PATTERNS & PATTERN BEAMS

47

49

Situation .. 50

English pattern-defined ambigmtles ... 50

Second verbal-phrase prepositional attachment .. …………………………50

Simple adverbial attachment. ... 51

Verbal Phrase prepos1t10nal attachment …..... …•• • …...... …....... 51
Relative verbal phrase adverbial attachment. ………………………………52

Verbal-phrase conjunct10n attachment …... ・・・・・・・・・・・・・・...…... 53

Non-verbal-phrase prepos1t10nal attachment…….. ……………………….. 54

English listed b ut not solved ambigmt1es 56

noun-adjective ambiguity .. 56

Other syntactic class ambiguities ... 56

Phrasal verb amb1gu1ty .. 57

Comments ... 58

11

CHAPTER 6. CLARIFICATION AUTOMATON 59

6.1. The beam matching ambiguity recognition states …•…………... ….. 60

6.3. The implemented automaton …............................... 61

6.3. Comments ... 61

CHAPTER 7. DIALOGUES CLASSES 63

7 .1. Language dependent constraints …........... 64

7 .2. Dialogue classes ... 64

7 .3. Comments ... 65

CHAPTER 8. DIALOGUE ITEM PRODUCTION METHODS 67

8.1. Prmc1ple .. 68

8.2. Methods skeleton .. 68

8.3. Comments ... 69

CONCLUSION 71

REFERENCES 75

APPENDIX A PATTERNS, BEAMS, & STACKS DEFINED

APPENDIX 8 METHODS

APPENDIX C PRODUCED DIALOGUES

APPENDIX D ORGANIZATION OF THE SOFTWARE

1

1

1

7

8

9

0

0

1

1

lll

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 1.1:

Figure 1.2:

Figure 1.3:

Figure 1.4:

Figure 1.5:

Figure 1.6:

Figure 1.7:

Figure 1.8:

Figure 1.9:

Figure 1.10:

Figure 1.11:

Figure 1.12:

Figure 1.13:

Figure 1.14:

Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5:

Figure 2.6:

Figure 2.7:

Figure 2.8:

Figures

General idea of an archirecture for clarification modules………………………4

A particular instance of a disambiguation module………………………………. .4

An example of an mc-structure (multilevel, concrete)………………………….. 5

A disambiguat10n moduke's general architecture ……………………• ………….. 7

A disambiguation module's engme-defined part ……•……………………·…… 13

An example of an mc-structure (multilevel, concrete)…………………………14

Matching mechanisms in the global architecture ……••………………………… 15

The pattern descnpt1on grammar …・・・・・・・・・・・・・・・・・・・・・・・・16
The engine class pattern .. 17

2 patterns forming a beam ... 17

Some examples of pattern matching results ... …・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・18
The engine class pattern-beam .. 19

The engine class beam-stack ... 19

Beam matching definition ... 20

Matching distance definition ... 20

match-beam 1npu t and output .. 21

The synchronisat10n of the different pattern matchings……………………….22

The engme method match-beam . …... …... ・・・・・••…・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23

A multiple data-structure disambiguation module architecture…………….24

Automatic leam1g of new beams .. 25

Construction & presentation of a question tree in the global architecture 27

uest10n tree to d1scnmmate 5 solut10ns .. ……・・・・・・・・・ …•• ・・・・・・・・・・・・・・・••…..... 28 Aq .

The engme method automaton-scheduler………………………………………….28

General organisation of a disambiguation automaton………………………….29

The engme method same-categones-p-state…………………………………….. 30

The engme method same-geometry-p-state…………………………... …………30

The engme method prepare-quest10n-tree …・ ・・・・・・・・・・・…...31

The engme method prepare-quest10n-list …・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・32

IV

Figure 2.9:

Figure 2.10:

Figure 2.11:

Figur~2.12:

Figure 2.13:

Figure 3.1:

Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 4.1:

Figure 4.2:

Figure 4.3:

Figure 4.4:

Figure 4.5:

Figure 4.6:

Figure 4.7:

Figure 4.8:

Figure 4.9:

Figure 4.10:

Figure 4.11:

Figure 4.12:

Figure 4.13:

Figure 7:

Figure 5.1:

Figure 5.2:

Figure 5.3:

Figure 5.4:

Figure 5.5:

Figure 5.6:

Figure 5.7:

Figure 5.8:

Figure 5.9:

Figure 5.10:

Figure 5.11:

Figure 5.12:

Figure 5.13:

Figure 5 .14:

Figure 5.15:

Figure 5.16:

Figure 5.17:

The engine method prepare-question .. …... …・・・・・・ …・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・32

The engine function produce-item ... …......... 32

Th e engme method quest1on-tree-presentat10n………………………………….. 33

Th e engme method ask-question .. 33

Better organisation of the reentry in the desambiguation automaton…….. 34

Dialogue & question classes in the global architecture. …………•……………35

The engine class clarification-quest10n-class .. 36

The engine class clanf1cation-question-class ... …・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ …36

The engine class generic-textual-clarif-dialogue-class …………•…………… .37

The operators m the global architecture …..... …・ ・・・・・・••…・……...... …• ….... 39
The engine operator text .. 40

The engme sub-operator text-dans-stream………………………………• ………... 40
The engine operator coord ... 41

Th e engine operator but-coord ... 41

The engine sub-operator moins-coordonnant-dans -stream. ……••……………41

The engine sub-operator disgard-coordonnant……………………………………41

Th e engme operator distribute .. .42

The engine sub-operator distribue-dans-stream. …………………………………42

The engine sub-operator distribue-pattem-dans-stream ……•…………………43

The engine operator bracket• .. 43

The engine sub-operator parenthese-dans-stream ………•………………………43

A language in dependant operator coord ….. ・・・・・・・•…... ……... ・・・・・・・・•••……43

Components of the English disamb1guat10n lingware …………•………………47

The English patterns, beams and stacks in the global architecture…………49

Mmc-strctuture for "Let me pull out my maps to help you."…・……………50

The patterns for a Second phvb prepositional attachment ambiguity…….51

Mmc-structure for "You can pay for it right on the bus."………………....... 51

Mmc-structure for "It says that here on my flyer."…………………………….. 51

The patterns for a Simple adverbial attachment ambiguity .. …………………51

Mmc-structure for "Where can I catch a taxi from Kyoto station."……….52

The patterns for a phvb prepositional attachment type 1 ambiguity………52

Mmc-structure for "Go across the street to the North of the station."…….52

The patterns for a phvb prepositional attachment type 2 ambiguity………52

Mmc-structure for "That is where you can pick up a taxi as well." . ………53

The patterns for a relative phvb adverbial attachment type 1 ambiguity .. 53

Mmc-structure for "I will show you where you are located right now." ... 53

The patterns for a phvb prepositional attachment type 2 ambiguity………53

Mmc-structure for "You can tell him that you are going to the international
conference center and it should be a twenty minute ride."……………………54

The patterns for a Verbal-phrase conjunction attachment ambiguity…….. 54

Mmc-structure for "You are going to the international conference center. "55

＞

Figure 5.18:

Figure 5.19:

Figure 5.20:

Figure 5.21:

Figure 5.22:

Figure 5.23:

Figure 5.24:

Figure 5.25:

Figure 5.26:

Figure 6.1:

Figure 6.2:

Figure 6.3:

Figure 7.1:

Figure 7.2:

Figure 7.3:

Figure 7.4:

Figure 8.1:

Figure 8.2:

Figure 8:

Figure A.I:

Figure A.2:

Figure A.3:

Figure A.4:

Figure A.5:

Figure A.6:

Figure A.7:

Figure A.8:

Figure A.9:

Figure A. I 0:

Figure A.11 :

Figure A.12:

Figure A.13:

Figure A.14:

Figure A.15:

Figure A.16:

Figure A.1 7:

Figure A.18:

Figure A.19:

Figure A.20:

Figure A.21:

The patterns for a non phvb prepositional attachment type 1 ambiguity .. 55

Mme-structure for "I want the symposium on interpreting telecommunication at
the mtemational conference center. ... 55

The patterns for a non phvb prepositional attachment type 2 ambiguity .. 56

Mmc-structure for "This is an English speaking agent."…………………….. 56

Mmc-structure for "You can catch a taxi at the second level platform." .. 56

Mmc-structure for "The quickest route would be taking a taxi."………….. 57

Mmc-structure for "You can either travel by subway, but or taxi."……….57

Mmc-structure for "It is difficult to get out of Kyoto station."…………….. 57

Mmc-structure for "Do you want to go over that again." ……•……………… 57

The clarification automaton in the global architecture…………………………59

Skeleton of an ambiguity recognition state …...................... 60

Th e implemented disambiguat10n automaton…………………………………….61

The English dialogue classes in the general architecture…………………….. 63

Some dialogues'slots .. 64

The lingware class english-general-textual-dialog-class………………………64

The lingware class english-polysemy-textual-dialog-class………………….. 65

The dialogue item production methods in the global architecture…………67

A typical item-production-method method……………………………………….. 68

Evolution of the coverage of a given disambiguation module………………73

The pattern *2phvbadvatt-1 * ... 82

The pattern *2phvbadvatt-1 * ... 82

The beam *2phvbadvatt_set_l * .. 82

The stack *2phvbadvatt_beam_stack* …................................. 82

The pattern *2phvbadvatt-1 * ... 83

The pattern *2phvbadvatt-1 * ... 83

The beam *2phvbadvatt_set_l * .. 83

The stack *2phvbadvatt_beam_stack* .. 83

The pattern *2phvbadvatt-1 * ... 84

The pattern *2phvbadvatt-1 * ... 84

The beam *2phvbadvatt_set_l * .. 84

The pattern *2phvbadvatt-1 * ... 85

The pattern *2phvbadvatt-l * ... 85

The beam *2phvbadvatt_set_ 1 * .. 85

The stack *2phvbadvatt_beam_stack* ….. ・・・・・・・・..…...................... 85

The pattern *2phvbadvatt-1 * ... 86

The pattern *2phvbadvatt-1 * ... 86

The beam *2phvbadvatt_set_l * .. 86

The pattern *2phvbadvatt-l * ... 87

The pattern *2phvbadvatt-1 * ... 87

The beam *2phvbadvatt_set_l * .. 87

VI

Figure A.22:

Figure A.23:

Figure A.24:

Figur~A.25:

Figure A.26:

Figure A.27:

Figure A.28:

Figure A.29:

Figure A.30:

Figure A.31:

Figure A.32:

Figure A.33:

Figure B.1:

Figure B.2:

Figure B.3:

Figure B.4:

Figure B.5:

Figure B.6:

Figure B.7:

Figure B.8:

Figure B.9:

Figure B.10:

Figure B.11:

Figure B.12:

Figure B.13:

Figure B.14:

Figure B.15:

Figure B.16:

Figure B.1 7:

Figure B.18:

Figure C.1 :

Figure C.2:

Figure C.3:

Figure C.4:

Figure C.5:

Figure C.6:

Figure C.7:

Figure C.8:

Figure C.9:

Figure C.10 :

The stack *2phvbadvatt_beam_stack* …•• • ・・・・・・..…• •… ····················87
The pattern *2phvbadvatt-1 * ... 88

The pattern *2phvbadvatt-1 * ... 88

The beam *2phvbadvatt_set_l * .. 88

The stack *2phvbadvatt_beam_stack* …• ● ● ● ●● ● ● ● ● • …・・・・・・・・・・・・・・・・・88

The pattern *2phvbadvatt-1 * ... 89

The pattern *2phvbadvatt-1 * ... 89

The beam *2phvbadvatt_set_l * .. 89

The pattern *2phvbadvatt-1 * ... 90

The pattern *2phvbadvatt-1 * ... 90

The beam *2phvbadvatt_set_l * .. 90

The stack *2phvbadvatt_beam_stack* ….. …• …・ ………・・・・・・・・・・・・・・・・・・・・・・・・・90

Item-prod-method ((pat-name (eql'*2phvbadvatt-1 *)) binding) …•……… .92

Item-prod-method ((pat-name (eql'*2phvbadvatt-2*)) binding)………….. 92

Item-prod-method ((pat-name (eql'*spladvatt-1 *)) binding)……………….. 93

Item-prod-method ((pat-name (eql'*spladvatt-2*)) binding)……………….. 93

Item-prod-method ((pat-name (eql'*phvbprepatt-tl-1 *)) binding)……….94

Item-prod-method ((pat-name (eql'*phvbprepatt-tl-2*)) binding)……….94

Item-prod-method ((pat-name (eql'*phvbprepatt-t2-1 *)) binding)……….95

Item-prod-method ((pat-name (eql'*phvbprepatt-t2-2*)) binding)……….95

Item-prod-method ((pat-name (eql'*relphvbadvatt-tl-1 *)) binding)…….. 96

Item-prod-method ((pat-name (eql'*relphvbadvatt-tl-2*)) binding)…….. 96

Item-prod-method ((pat-name (eql'*relphvbadvatt-t2-1 *)) binding)…….. 97

Item-prod-method ((pat-name (eql'*relphvbadvatt-t2-2*)) binding)…….. 97

Item-prod-method ((pat-name (eql'*phvbconjatt-1 *)) binding) …•……….. 98
Item-prod-method ((pat-name (eql'*phvbconjatt-2*)) binding)……………98

Item-prod-method ((pat-name (eql'*nphvbprepatt-tl-1 *)) binding)…….. 99

Item-prod-method ((pat-name (eql'*nphvbprepatt-tl-2*)) binding)…….. 99

Item-prod-method ((pat-name (eql'*nphvbprepatt-t2-1 *)) binding)……100

Item-prod-method ((pat-name (eql'*nphvbprepatt-t2-2*)) binding)……100

Dialogue for "Let me pull up my maps to help you."……………………….. 101

Dialogue for "You can pay for it right on the bus." …………•……………… .102

Dialogue for "It says that here on my flyer." ……………………………•• …….. 102
Dialogue for "Where can I catch a taxi form Kyoto station." .. ……………102

Dialogue for "Go across the stree to the North of the station."……………103

Dialogue for "This is where you can pick up a taxi as well." .. ……………103

Dialogue for "I wil show you where you are located right now."……….. 103

Dialogue for "You can tell hin that you are going to the international
conference center and it should be a twenty minutes ride.". ……………….104

Dialogue for "You are going to the international conference center."….104

Dialogue for "I want the symposium on interpreting telecommunications at the
mtemational conference center . ・・・・・・・・・・・・・・・・・・・・・・・..................................... 105

／

＼

．．
Vll

Introduction

/

＼

Situation, motivation

Natural language processing components are introduced in a growing number of software.
Natural language can be seen as:

- the core data to be manipulated as in machine translation system, spelling and grammar
checker, etc.

- a communication modality between the user and the system itself as in multi-modal
drawing tools [Caelen 1994 ; Hiyoshi & Shimazu 1994 ; Nishimoto, et al. 1994), oral
control systems, etc.

In some system the use of natural language may fall in both categories as, for example, in on-line
information retrieval [Haddock 1992 ; Zue, et al. 1993 ; Goddeau, et al. l 994], and face to face
translation systems [Morimoto, et al. 1992 ; Kay, et al. 1994)

Natural language processing techniques and tools have made many progress in the last few years.
But so far they are facing major issues in two areas: speech recognition and natural language
analysis. Central issue in speech recognition research is recognition accuracy according to
vocabulary size, speaker-dependency, continuous speech, and task characteristics. Central issue
in natural language analysis is the development of broad coverage analyzers able to produce
accurate representations of real utterances.

For real applications, the bests results are achieved when speech, vocabulary (size and meaning),
syntax, semantics, and pragmatics are well controlled. Experience has shown that, even when
those parameters are well controlled, the data to be manipulated and analyzed could be
ambiguous. Thus, it can be impossible for a system to compute the actual "meaning" of a natural
language input. In this situation the system's answer is likely not to be the expected one.

Interactive disambiguation is seen as a solution to overcome the difficulties the analysis modules
to be used in real running systems, and not small mockups, will ever face. It is often argued
that interactive disambiguation is not necessary because heuristics and statistics are to be used to
build analyzers producing an accurate enougt output . Is is has been shown that it is not the case
(cf. discussion and pointers in [Boitet & Tomokiyo 1995)).

Of course we do not mean that interactive disambiguation has to be mandatory for each sentence
or phrase to be analyzed but we consider this interactive process more as a safety net to be used
when is it necessary to avoid any error in the system answers. Thus, five years ago we began a
study on interactive disambiguation. Taking into account the preceeding results and failures in
the field we gave ourself two constaints:

- interactive disambiguation dialogue can be presented only to the "author" of the utterance
to be disambiguated.

- to be answered, interactive disambiguation dialogues should require neither linguistic
knowledge, nor knowledge of the internal repersentations used by system.

3

Interest

In the architecture we propose, an interactive disambiguation module is made of two component:

- An engine, that is the core of the module and is language independant. This component
will be used in all the disambiguation modules to be developped.

- A lingware, that is language dependant. This component is considered as input data to the
engine so as to instanciate a particular disambiguation module for a given language.

The following figure gives an idea of the global architecture.

Figure 1: General idea of an archirecture for clarification modules

As shown bellow, an instance of a disambiguation module is the association of a lingware and
the engine to process a representation of an ambiguous utterrance and to produce a set of
disambiguation questions.

Input
representing an ambiguous utterrance

Disamb module Version 1.0 for Language x
't'

Eng;,n~~~ 悶re
.0

I
I

output
a set of disambiguation questions

Figure 2: A particular instance of a disambiguation module

4

Idealy, we would like to provide the designer of a disambiguation module with a set of tools
allowing him, at least, to describe:

- the ambiguities to be solved

-・the labelling of the dialogues to be proposed to solve these ambiguities

- the order in which the ambiguities have to be solved, if several are present in the same
utterance,

- the modalities to be used to solve each ambiguity,

-the modalities to be used to answer the questions about each ambigity,

- the way questions should be prepared and answered.

These descriptions are called the lingware.

The engine is then supposed to use the lingware to realize an interactive disambiguation process.
ldealy it should provide:

- an ambiguity recognition mechanism to be used to recognize the ambiguities descibed by
the designer,

a set of operators to be used to describe the construction of the labelling of the dialogues,

- a kind of automaton mechanism to realize the ordering in the ambiguity recognition
process,

- predefined dialog classes corresponding to the possible modalities,

- a question presentation mechanism,

- a set of question preparation and display strategies.

In the framework of this architecture, a first interactive disambiguation module has been
proposed and implemented at the GETA lab. as a part of the LIDIA-1.0 mockup of a Dialogue-
Based Machine Translation system [Blanchon 1994c ; Boitet & Blanchon 1995]. This first
interactive disambiguation module was made of:

- a first version of an interactive disambiguation engine [Blanchon 1992 ; Blanchon
1994b],

- a first version of a lingware for French written input [Blanchon 1994b].

The analyzer used in the LIDIA project produces tree structures called mmc-structures
(multisolution, multilevel, and conctrete). Multisolution means that the analyser produces every
analysis fitting with the syntagmatic, syntactic and logico-semantic model of the grammar. Fig. 3
shows an example for the sentence "The student calcul this integral by the method of residue."

PHVB

GN

叫
ARGa

GN
QRC
INST

GN

COMP
DET

L1 eleve calcule cette integrate par la methode des
ARTD NCOM VB DEM NCOM PREP ARTD NCOM PREP

DES llilV_ G_OV_ DE_S_ GOV REG DE_S GO_V_ REG

rゐsidus
NCOM

麟

Figure 3: An example of an me-structure (multilevel, concrete)

5

Multilevel means that the same structure consists of three levels of linguistic interpretation,
namely the level of syntactic and syntagmatic classes, the level of syntactic functions and the
level of logic and semantic relations. Finally, the structure is said to be concrete because the
original utterance can be found back by a simple left-to-right reading of the structure.

The ambiguities are then descibed in terms of tree structures and the ambiguity recognition
mechanism proposed is manipulating tree structures. More precisely, a kind of ambiguity is
described with a set of patterns called a beam. A pattern contains variables and descibes a tree
structure with constraints on its geometry and labelling. Once a beam has been recognized, a
question is prepared. The question items are produced through the manipulation, with a set of
basic operators, of the values given to the variables instanciated during the recognition of the
beam.

The methodology has been generalized and re-engineered at ATR-ITL in the framework of
spoken language transtlation and the MIDDIM project, a joint research between ATR-ITL and
the GETA-CNRS aimed to study Multimodal Interactive Disambiguation. The first version of an
interactive disambiguation module (cf also [Blanchon & Loken-Kim 1994; Blanchon, et al.
1995b]) has been developped which is made of:

- a new version of an interactive disambiguation engine,

-the first version of a lingware for English input.

6

Overview of the realisation

The following figure, describing the implementation of the English disambiguation module,
will be presented at the begining of each chapter with the irrelevant parts shaded. This is to help
the reading by pointing out the integration in the overall process of each chapter's topic.

• Question tree constntction
mechanism

• Generic Question Classes

• General Operators
Dialogue-Item Construction
Methods result of a test

data structure

new NSSs

•w;=.%W.0r-"'"'""""'"''"'""°'-'''I
no new NSSs data for dialog

newNSSs

I

I

l

山▼＇

I

I

I

>

'

• Question-tree presentation
mechanism

• Generic Dialogue Classes
English Dialogue Classes

ー：羽忍

numbered-solμtions set (NSS)

• engine metbod

• engine class

lingware method

lingware class Noamb如 ity

question tree

d

• Beam Matching Mechanism
• Pattern Matching Mechanism

Beam stack
Beams

Patterns
船染：：攻；：：：高：苺：忍；., 高；,,,,, 必：泌；,,, 点,,数：：碑．吟：森媒：碑；必；,,. 翠；心忍：高：高；，,,,,, 魯：姻：森：碑；碑：席：! 些＿

，

＼

/~

Figure 4: A disambiguation moduke's general architecture

As far as the overall disambiguation process is concerned, the core component is an automaton
used to organize the detection of all the ambiguities occuring in the utterances to be
disambiguated. This automaton is made of tree kind of states:

an automaton scheduler,

ambiguity-meta-class recognition states,

ambiguity-class recognition states.

7

The ambiguity recognition states are defined by the designer of the lingware. They use the
following services:

a beam-matching mechanism, which uses:

a pattern matching mechanism operating on tree structures, and

a set of

patterns, grouped to from

pattern-beams, grouped to form

beam-stacks.

The automaton is recursivelly re-entered through the automaton-scheduler state until there is no
more ambiguity to be solved. The recursive re-entrence is organized by the prepare question tree
module. This module uses the following services:

a question tree construction mechanism,

a set of generic question classes,

a set of general operators, and

a set of dialogue-item construction methods.

When there is no more ambiguity to be solved tha question tree has been completed. This
question tree is then presented to the user by the question tree presentation module. This module
uses the following services:

a question-tree presentation mechanism,

a set of generic dialogue classes, and

a set of English dialogue classes.

As far as the implementation is concerned, the described engine and English lingware have been
realized in Macintosh Common Lisp V 2.0.1, an implementation of the Common Lisp Object
System [Steele 1990 ; Keene 1989]. The only Macintosh dependant source code is the one used
for the display of the dialogues. This code is calling the Macintosh toolbox routines.

8

Organisation of the document

In its current state, the engine is made thus up of:

- a pattern matching mechanism and a beam matching mechanism,

- a question tree construction mechanism and a question tree presentation mechanism,

- a set of generic dialogue and question classes, and

- a set of operators to be used to produce the dialogue items.

As far as the English lingware is concerned, it is made up of:

-patterns and patterns beams describing the handled ambiguities,

- an automaton organizing the order the ambiguities are searched in the input,

- a set of English specific dialogue classes, and

- a set of dialogue item construction methods used to produce the disambiguation
dialogues.

The first part of this document, dedicated to the desciption of the engine, consists of four
chapters decicated respectively to the components of the engine listed above. The second part,
deficated to the English lingware, consists of four chapters dedicated respectively to the
components of the lingware listed above. An exhaustive desciption of the lingware is given in
the appendices.

，

／

I
 ＼

Part I

The disambiguation engine

Introduction

The disambiguation engine components are shown in plain style in the following figure.

numbered-solutions set (NSS)

• Question tree construction
mechanism

• Generic Question Classes

• General Operators
.U・.・・:,:: (::,.:・.';¥.:'.,・・:・,:(i,'・'.:,::

':,',・・,,:,,>,.,-_: ... ・.:

new NSSs

no new NSSs
,,J曹：'・:,,,:,/,,, ••. 曹

• Question-tree presentation
mechanism

• Generic Dialogue Classes
唸．．．：：：：を：·:•,'":•.:•,..;.,

question tree

present-question-tree .,,.,i

c:::::::

• Beam Matching Mechanism
• Pattem Matching Mechanism

忍弘::;,烙c",渡． ::.:• 者 i' も足．• ぶ：．

斎匁支：：．賓:,:,翁

Error 二
Figure 5 : A disambiguation module's engine-defined part

I!

The disambiguation engine, is the language independent part of an interactive disambiguation
module. This engine should thus be reused in each disambiguation module to be developped
with the proposed methodology. It provides ambiguity recognition facilities as well as

13

i ヽ

disambiguation question construction and presentation facilities.

The ambiguities are represented in terms of tree strucures. Indeed, as far as the structure
produced by the parser is concerned, in the study carried out so far we have been using a
multisolution, mulltilevel and concrete tree structure.

Multisolution means that the analyzer produces every analysis fitting with the
syntagmatic, syntactic and logico-semantic model of the grammar.

Multilevel means that the same structure consists of three levels of linguistic
interpretation, namely the level of syntactic and syntagmatic classes, the level of syntactic
functions and the level of logic and semantic relations.

Finally, the structure is said to be concrete because the original utterances can be
reconstructed by a simple left-to-right reading of each analysis tree (mc-structure)
occurring in the mmc-structure.

The following figure is the multilevel and concrete structure produced for the sentence "L'eleve
calcule cette integrale par le methode des residusじ'

GN

迅
ARGO

PHVB

GN

COMP

DET

L'eleve calcule cette integrale par la methode des residus

ARTD NCOM VB DEM NCOM PREP ARTD NCOM PREP NCOM

DES GOV GOV DES GOV REG DES GOV REG QQY

Figure 6: an example of an me-structure (multilevel, concrete)

We will discuss the possible use of other structures in the§1 .4.

The disambiguation engine is made of:

- a pattern matching mechanism and a beam matching mechanism which are the ambiguity
recognition facilities,

- a question tree construction mechanism and a question tree presentation mechanism,

- a set of generic dialogue and question classes, which are the representation of the objects
involved in the disambiguation process, and

- a set of operators to be used to produce the dialogue items, which are the dialogue item
construction facilities.

Thoses elements will be described in the four following chapters. At the end of each chapter, we
will discuss the ideas and the implementation proposed. We will also present new ideas and
possible or required improvments of the current implementation.

The student calculate this integral by the method of the residue.

14

Chapter 1

Pattern matching & beam matching
mechanisms

As shown bellow, the pattern matching and the beam matching mechanisms are used as
facilities by the ambiguity recognition states to actually recognize the presence of an ambiguity.

numbered-solutions set (NSS)
:・: ., ... •..:.c·.. , i'iii·',.• ,

. ,., , :::,,::.'.. ::・-.

<J: 悛：•条李忍：・・.:}
・・・:,,,-:,-¥・;"

... ,,

(:,.・,.,.:...-.r,・,.,,, 曹:",:
・・r,:.i:,,." i・.-

／
 ‘’

§ 裟{.•··邁．．• 沢.\.•'-.,..,,:

・・ ：，： ： J ,: .:-: : ' .

.,,,, .. :,,

裟・:終翌緑・：；・,:-,:

苔：ざ.:,,::・,';,:翌i.iY,・, 姿’．．．：ぐ'(':,:

• Pattern Matching Mechanism

萎鯰,..忍象恣支支 :,,・ 忍：忍令．蕊i

Figure 1.1: Matching mechanisms in the global architecture

15

1.1. Pattern matching

The recognition of an ambiguity is based, at the lower level, on the recognition of tree
structures. Those tree structures are called patterns. A pattern, is the description with a pattern
description language, of a tree structure with constraints on the geometry and the labelling of the
nodes.

1.1.1. Patterns description language

The patterns are described with a language derived from the one proposed in [Norvig
1992]. Here is the BNF description of the pattern description language.

i. Grammar

pattern ．．． ． 一."' - variable
; match every expression

constant I
; match only the atom (constant)

segment-pattern I
; match a segment

simple-pattern
; match an expression

(pattern . pattern)
; recognize the first characterthen the rest

simple-pattern 一.' (?is variable pred args) I
; check the predicate pred (cf ii. comments on the grammar)

(?or pattern ...) I
; match one of the different character

(?and pattern…) I
; match all the patterns

(?not pattern…)
; match if the patterns are not recognized

segment-pattern ．.． . ●■ "'"" ' ((?* variable) ...) I
; match zero or more expressions

((?+ variable) ...) I
; match one or more expression

((?? variable) ...) I
; match zero or one expression

({?if expression) ...)
; check if the expression (which may contain variables) is true

variable 一.' ?character+
; ? followed by letters

constante .. = atom
; an atom

Figure] .2: The pattern description grammar

For the simple-pattern "(?is variable pred args)" the predicate "pred" is applied on the arguments
"variable" and "args" namely: pred (variable args).

ii. Internal representation

For the disambiguation process, a particular pattern is an instance of class called pattern. This
class is defined as follows:

16

(def class pattern ()
((pattern-name :initarg :pa廿ern-name

: accessor pattern-name
: documentation 1111)

(pattern-value :type list
: initarg :pattern-value
: initform nil
: accessor pattern-value
: documentation 1111)

(pattern-method :type function
: initarg :pattern-method
: accessor pattern-method
: documentation "item production method associated with the pattern11)))

Figure 1.3: The engine class pattern

An object pattern is defined with 3 slots:

- a pattern-name that is the external name of the pattern,

- a pattern-value that is the actual description of the pattern, in terms of its structure and
labelling constraints, that will be used in the matching step, and,

- a pattern-method is a clos method that will be used to produce the dialogue item
associated with recognized pattern in the dialogue to be presented to the user.

iii. Illustration

A pattern (as show in the figure bellow) describes a family of trees, with constraints on their
geometry and labelling.

?x:CS=PHVB ?x:CS=PHVB

ロ
•

>

Figure 1.4: 2 patterns forming a beam

A pattern contains two kinds of variable: node variables (?x, ?y, ?z) describing constrains on
nodes (CS=PHVB), and forest variables that can be sets of trees (?po, ?p1, ?p2).

1.1.2. Pattern regognition mechanism

The pattern matching mechanism is also inspired by [Norvig 1992]'s proposal.

The result of the pattern matching mechanism is a list whose first element is t if matched, n i 1
if not, and whose second element is a binding list containing the value of each variable in the
pattern.

Here is some example of the produced results with the first version of the pattern matcher used at
the GETA lab. in the framework of the LIDIA projet [Blanchon 1994a]. The matcher currently
used is just slightly different. The matching can be said to be a lazy one because, a pattern has
only to superpose itself on a prefix of the matched structure, and not on the whole structure.

17

: :: —-三／―-ーロー―::―-: __ -:: ―一ーロー一ー一ーーロロ――::ーーロロー一ーーロロ::ーローロロー:ーロ―:-::ーロロー一ー／
;；； Authors

; ; ； ---

...
''' ．．．
''I
...
''I
...
''' ...
''I
...
''' ...
''' ．．．
'''
...
''' ...
''I
...
''I
...
''I
...
I, I

...
''I
...
''' ...
''I
...
''' ...
''' ...
''' ...
''I
...
''I
．．．
' 1 1

Pattern-matcher

: Mathieu Iafourcade & Herve Blanchon

•9.,

.,.,.,.,.,.,.,.,.,.,.,.,.,.

I.,•9.

,.,.,.,.,

•9.,

.,.,.

‘•9.,

.,.,.,.,.,

•9.,

.,.,.,.,.

‘•9.,

.,.,

•9.,

.,.,

.'•9.,

.,.,.

,•9.

,.,.

'•9.,

.,.,.,.,.,.,.'

Filename : pat-match. lisp

version : 1.0

訟 amples : (pat-match'(a (?* ?x) d)'(a b c d))

: -> ((?X BC))

: (pat-match'(a (?* ?x) (?* ?y) d)'(ab c d))

: -> ((?YB C) (?X))

: (pat-match'(a (?* ?x) (?* ?y) ?x ?y)'(a b c d (b c) (d)))

: -> ((?Y D) (?X B C))

: (pat-match'(?x ?op ?y is ?z (?if (eql (?op ?x ?y) ?z)))'(3 + 4 is 7))

: -> ((?Z. 7) (?Y. 4) (?OP.+) (?X. 3))

: (pat-match'(?x ?op ?y (?if (?op ?x ?y)))'(4 > 3))

: -> ((?Y. 3) (?OP.>) (?X. 4))

: (setf (get'lidia-patterns ℃ v-1)

: ' ((? i s ?x ncxie-prop-equal-p'CS'PHVB)

：（？＊匹）

: ((?is ?y n⑳ e-prop-equal-p'FS

: ((?is ?z n⑳ e-prop-equal-p'CS

?punc

）

）

(match (get'lidia-patterns'cv-1)

(get-solution (get'lidia-test'boule) 2)

）

'OBJ) (?* ?pl))

'PHVB) (?* ?p2))

: -->

：（

: (?PUNC (" . " " . " (CAT P)))

: (?P2 (("et" "ET" (FS団知 CATC))) ((NIL "GPRON" (K GN FS OBJ RL ARGl

CAT R GNR FEM PERS 3 NBR SING VALET N)) (("la" "BOULE" (FS GOV CAT

(R N) GNR FEM PERS 3 NBR SING SENS l)))) ((NIL "NV" (K PHVB FS CXX)RD

RL ID CATV ENONCP DECL VOIX ACT直 IPRPHASE NONACC SUBV VF PERS 3

LINKS OUエNBRSING VALEI'Q ARGS Al)) (("lance" "LANCER" (FS GOV CAT V

：紅 IPRSUBV VF PERS 3 NBR SING SENS (6 5 4 3 2 1))))))

: (?Z NIL "PHVB" (K PHVB FS CXX)RD RL ID CATV ENONCP D匝I,VOIX ACT紅 IPR

: PHASE NONACC SUBV VF PERS 3 LINKS OUI NBR SING VALET Q ARGS Al))

: (?Pl (("la" "LE" (FS DES CAT D GNR FEM NBR SING))) (("boule" "BOULE"

: (FS GOV CAT N SUEN NC GNR FEM NBR SING SENS 1))))

: (?Y NIL "IGN" (K GN FS OBJ RL ARGl CAT (D N) SUBN NC GNR FEM PERS 3

: NBR SING VALEI'N))

: (?W ((NIL "GN" (K GN FS SUJ RL ARGO CAT N SUEN NP GNR MAS PERS 3

NBR SING VALEI'N)) (("Pierre" "*PエERRE" (FS GOV CAT N SUEN NP GNR MAS

PERS 3 NBR SING SENS 1)))) ((NIL "NV" (K PHVB CAT V ENONCP D取エ

VOェX ACT Mr IPR PHASE NONACC SUBV VF PERS 3 LINKS OUI RECHTS OUI

VCXX)R OUI NBR SING VALEI'Q ARGS (Al AO))) (("prend" "PRENDRE" (FS GOV

CATV紅 IPRSUBV VF PERS 3 NBR SING SENS (4 2 1))))))

(?X NIL "PHVB" (K PHVB CATV ENONCP D匹 VOIXACT虹 IPRPHASE NONACC

SUBV VF PERS 3 LINKS OUI RECHTS our VCCX)R OUI NBR SING VALET Q

ARGS (Al AO)))

, , ,
．．． , , ,
．．． , , ,

; ； ; ---

：）

Figure 1.5: Some examples of pattern matching results

18

1.2. The beam matching mechanism

An ambiguity is described in terms of a co-occurrence of several patterns, sharing a set of
variables, in the solutions produced by the analyzer. These patterns are groupped into what is
called a beam.

Thus, the beam matching step is the actual step in the disambiguation process where an
ambiguity is recognized. Not only is the recognition performed, but the data to be used to
produce the disambiguation dialogue are also extracted from the structure produced by the
analyzer. These data are the bindings of the variables used in the patterns.

1.2.1. Beams and stacks

An ambiguity is descibed as the simultaneous co-occurrence of several different patterns in
the different solutions produced for an input. Those different patterns are grouped a set of
patterns called a beam. A beam is an instance of the class pattern-beam defined as follows:

(defclass pattern-beam ()
((beam-name :type string

: initarg :beam-name
: initform 1111

: accessor beam-name
: documentation 11name of the beam")

(beam-value :type list
: initarg :beam-value
: initform nil
: accessor beam-value
: documentation "list of the patterns of the beam")))

Figure 1.6: The engine class patern-beam

A beam is made of two slots:

- a beam-name that is used to refer to the beam within the disambiguation module, and,

- a beam-value that is the list of the patterns making up the beam.

A class of ambiguity can be defined (specified) with several beams. Thus beams are grouped into
beam-stacks. A beam-stack is an instance of the class beam-stack defined as follows:

(defclass beam-stack ()
((beam-stack-name :type list

: initarg :beam-stack-name
: initform nil
: accessor beam-stack-name
: documentation 1111)

(beam-stack-value :type list
: initarg :beam-stack-value
: initform nil
: accessor beam-stack-value
: documentation 1111)))

Figure 1.7: The engine class beam-stack

A beam-stack is made of two slots:

- a beam-stack-name that is used to refer to the stack within the appiication,

19

＼ヽ

a beam-stack-value that is the list of the beams making up the stack.

1.2.2. Beam matching: formal description

For a better understanding of the implementation, let's see the formal description of the beam
matching mechanism.

A sentence s, with s solutions Solゎcontainsthe ambiguity described by the beam B made of b
patterns Pj if and only if:

the number of solutions (s) is strictly greater than the number of pattern (b),

for each solution Soli there is an unique pattern Pj that match that solution,

each pattern Pj match at least one solution Solむ

the distance f d between the bindings of the forest variables is null.

That is:

—① b < s

—② Vi, ヨ!j / match -p (Si , P j) =t

—③ Vj' ヨi/ match-p(Si, Pj)=t

—④ Vi, i',Vj, j'

match-p(Si, Pj)=t
and match-p (Si, , Pj,) =t

⇔ f d C binding (Si , P j) ,

binding(Si', P-j'))=O

Figure 1.8: Beam matching definition

fd the distance between the forest variables of two bindings is null if and only if:

That is:

the coverage of each forest variable, except the last one, is the same in each binding, and

for the last forest variable of the patterns, if the coverage are not the same, then one
coverage has to be a prefix of the others.

Let ?pj , k, 1 <k~l, be the forest variables used in pattern Pj.

d(binding(Si, Pj),
binding(Si', Pj'))=O

⇔ Vk, l<k<l,

coverage(?Pj,k)=coverage(?pj',k)
and

coverage(?Pj,1)=coverage(?pj',1)
or prefix-p(?Pj,l, ?pj',1)
or prefix-p (?p-j', 1, ?p7, 1)

Figure 1.9: Matching distance definition

The coverage of a variable is the projection of the leaves of the subtree this variable
represents.

20

1.2.3. Beam matching: implementation

．
1. overview

In practice, the beam matching mechanism is realized by the method match-beam schematized
bellow.

Data forDialog

newNSSs

Figure 1.10: match-beam input and output

The input paramaters for match-beam are

a pattern-beam that is a list of patterns used to descibe the different forms (realization) of
ambiguity to be looked for.

a numbered-solutions set that is a list of couples: ((number solutions)+). The solutions
produced by the analyzer are numbered and the disambiguation process allows the user to
select the number of the solution he meant.

The output of match-beam is a list of four data:

t or nil, if the beam has matched or not. In the latter case the other data are irrelevant,

the name of the matched beam,

a list of triplets which will enable the engine to construct the dialogue items to be used to
solve the ambiguity,

a list of new numbered-solutions sets in which, if necessary, other ambiguity will be
searched to produce follow up disambiguation questions.

The core of the beam matching process is the filling up of a matrix.

ii. Matrix filling up and satisfaction of the required properties

The match-beam method uses a method called fill-the-matrix. This method is in charge to
check that a given beam in the a beam-stack is able to match the set of solutions provided for a
given utterance. For e given class of ambiguities to be recognized, each beam in the associated
stack is matched is sequence against the set of solutions until a success is reached or there is no
more beam to be matched.

The matrix is organized as follows: the patterns are the columns and the solutions are the lines.

21

＼

An indix k is used for the matching of the patterns to be performed on the "same2" node in each
solution as shown in the following figure:

区Jalready examined [二Jbeing examined [コ tobe examined

Figure 1.11: The synchronisation of the different pattern matchings

Indeed, an ambiguity is to be regognized in parts of a trees that are different as far as the
geometry and/or the labelling is concerned. This means that in the different solutions there is
always a common subtree (empty or not) that is shared, as a prefix, by all the solutions. In the

above figure, the口 strippedsubtree is this common subtree, the亡Jdotted ones are those

representing the ambiguity. The□ subtrees are called the scope of the ambiguity in [Boitet &
Tomokiyo 1995].

Thus the beam matching process is trying to find the smallest k allowing to fill con疇ectlythe
matrix.

The squares of the matrix are filled with two values. The first value (match-p(Si, Pj)) equal t if

P・has matched Si starting at node k. If there was no matching starting at node k, then the value J
is nil. If there has been a match, the second value (binding(Si, Pj)) representes the binding

produced by the matching. This binding contains the value of each variable used in the pattern.

solution pattern P1 ... Pj ．．． Pb

S1

...

Si match-p(Si, pPjJ ・),
binding(Si,)

...

Ss

The matrix is correctly filled if the required properties defined figure 1.8 are satisfied that is:

to satisfy property② there should be no empty lines or lines with more than one box
filled, each solution must be matched by exactly one pattern.

to satisfiy property③ there should be no empty columns, each pattern should match at
least one solution.

2 It is the same node as far as its indix in a breath first traversal of the tree is concerned. We call that multtiple
pattern matching a synchronized one.

22

Property① is satisfied before the matching begins and property④ is satisfied because of the lazy

synchronized pattern matching.

iii. Implementation

The actual match-beam method is defined as follows:

(defmethod match-beam ((self pattern-beam) the_numbered_analysis_list)

"out: a 4 items list

First Item -> t or nil (t if matched, nil if not)

Second Item-> the_beam_name

Third Item-> list of triplets (pattern-name binding concerned-solutions)

: Fourth Item-> the_new_solution_sets

(let* ((the_bearn_name (beam-name self))

(the__pattern_list (beam-value self)) ;the patterns of the beam

(the__patterns_number (length the__pattern_list)) ;the number of patterns in the beam

(the_analysis_number (length the_numbered_analysis_list)) ;the number of solutions

(the_fill_in_result (fill-the-matrix self the_numbered_analysis_list))

(the_f ill_in_success (car the_f ill_in_resul t))

(the_filled_matrix (cadr the_fill_in_result)))

; if the matrix has been filled correctly

(if the—_fill_in—_success

(let*

(;tor each binding, the values of the last forest variables may have to be reduced.

; they may have different values because of the lazy matching

; the variables are reduced to the prefix value shared by the different instance

(the_reduced_list

(if(= the__patterns_number the_analysis_number)

; if the matrix is a square only the lines have to be reduced

(project-square-matrix-into-list the_patterns_number

the_analysis_number

the_filled―_matrix)

; if the matrix is not a square the lines and columns have to be reduced

(project-rectangle-matrix-into-list the__patterns_number

the_analysis_number

the_filled_matrix)))

(the_normalized_list (normalize-list the_reduced_list the_numbered_analysis_list))

; the triplets used to build the question (cf Fig. xx)

(the_named_binding_list (construct-named-binding-list self the_normalized_list))

; the new numbered-solutions-sets for the follow up questions (cf Fig.)

(the_new_solution_sets (construct-new-solution-sets the_normalized_list

the_numbered_analysis_list)))

; construction of the result

(list t the_beam_name the_named_binding_list the_new_solution_sets))

; the regognition failed

'(nil nil nil nil))))

Figure 1.12: The engine method match-beam

23

1.3. Comments
The reduction process is not very orthogonal with the global implementation, as solution
has to be found to avoid this inelegance.

It may be interesting to be able to define more complex constraints on the variables of the
patterns. In the current implementation we have a one to one correspondance using
eq叫 ity.

As it will shown later, is it also necessay to provide a property recognition mechanism
working on lists because all the ambiguities can not be defined in terms of tree-patterns.

How to reduce the number of unsuccessfull match while trying to recognize an
ambiguity?

The current data structure used to represent the analysis is a tree. Thus, the description of
an ambiguity is made in terms of trees and the recognition mechanism is maniplulating
tree structures.

Meta

Engine

As a first solution, we can imagine a more flexile engine providing several
recognition modules to deal with differents representation of the analysis.

Lingware
Ld, V1.0

I ,

Figure 1.13: A multiple data-structure disambiguation module architecture

In this solution, serveral data-structure-dependant (DS) engine would inherit
serveral modules from a data-structure-independant engine.

An other solution would be to provide a family of transducers to transform
different data structures into tree-strcuctures. With this solution the description of
the ambiguities is not made in terms of the original data structure.

24

-The manipluated data structures have to be weighted so that the module can learn from
the history of the dialogue (adapt itself to the user), and be tunable.

- Weighted patterns

-Reorder the patterns inside a beam. The most likely selected item should be
selected by default

- If likelihood of answer > value then question not asked

-Weighted beams

-Reorder the beams describing a kind of ambiguity. Speed up the system

- If likelihood of beam < value then beam not tested

- Weighted ambiguities

-Reorder the states of the automaton. Speed up the system

- If likelihood or importance of ambiguity < value then automatic selection

-New patterns have to be constructed automatically. When an ambiguity is not recognized
by the module, it should prepare the patterns to be used to recognize it. The module will
learn to recognize new ambiguities. Of course, the dialogue items production methods to
be associated with the new patterns will have to be prepared by hand. The following "
figure shows one possible realization.

numbered-solutions set
'(NSS)

Figure 1.14: Automatic learnig of new beams

25

Chapter 2

Construction and presentation of a
question tree

The construction of the question tree is a loop in the disambiguation automaton organized
by the question-tree-constrction module. When a question tree (cf Fig. 2.2) has been built it is
presented to the user by the question-tree-presentation module.

numbered-solutions set (NSS)
• Question tree constmction
mechanism

丸"'●:.:. を,.. ・(とを0-.,'唸；,.:-- 妥)袋．哀...,.. 委欠•虔．

.,,,-(_,:・::.・')・, ぷ．．．：努...・:,・, ...'/t.-:,・.-,

..... -.-,, . .-..'・翌芯．；：＇・．．塁：

9・-:,•-_•:,,·.,.. _,.,.・、

new NSSs

new NSS

No ambi"(uitv

prepare-question-tree

no new NSSs

• Question-tree presentation
mechanism

; .J .. : 苓.,も．緑・：：：：:i

祢,,元：；~

data for dialog
newNSSs

question tree

present-question-tree

-ヽ,,"

些ーご二＞

Figure 2.1: Construction & presentation of a question tree in the global architecture

27

鼻

The disambiguation automaton organizes the order the presence of the ambiguities has to be
ckecked. Among other states this autonamon contains one distinguished state per class of
ambiguity defined in the lingware.

S1
S4

S1--j-N、＇ /¥: I S2
$4

S2

Ss

$3
Ss
Sa

Figure 2.2: A question tree to discriminate 5 solutions

Figure 2.2 shows a example of a question tree. The nodes of the tree are representing questions
and the leaves are representing the set of analysis from which the right interpretation have to be
choosen.

2.1. Disambiguation automaton

Each state of the automaton is defined as a CLOS method [Keene 1989). There is basically
3 kind of states:

- an entry point, that is the first state of the automaton. It is called automaton-scheduler and
provided by the engine,

- ambiguity meta-class recognition states provided by the engine, and,

- ambiguity class recognition states provided by the lingware.

i. Automaton scheduler

As the entry point of a disambiguation automaton the automaton-scheduler (fig 2.3) is
also the exit point of the automaton when the whole question tree has been produced. The first
action completed is thus to test whether or not the the_numbered_analysis_list contains
several analysis. If not, an empty question is prepared that will be a leaf of the question tree.

(defmethod automaton-scheduler ((the_language (eql'english))
the_sentence
the_nurrわered_analysis_list)

" in: the_numbered_analysis_list is a list of indexed-solution-sets,
question if<> nil is an object of type clarification_question_class

out: a question tree
effects: produce a question tree

(if (= 1 (length the_numbered_analysis_list))
(list (make-instance'empty-question

: concerned逗 olution(first (first the_numbered_analysis_list))
: concerned-tree (second (first the_numbered_analysis_list))))

(same-categories-p-state the_language the_sentence the_numbered_analysis_list)))

Figure 2.3: The engine method automaton-scheduler

28

This method is specialised on the language parameter so that, the entry point name of each
automaton is the same.

ii. ambiguity meta-class recognition states

An ambiguity meta-class recognition state is a predicative state used as a branching state in
the automaton. So far we have proposed three ambiguity meta-classes defined in§5.1. These
classes are called: lexical-ambiguity, geometrical-ambiguity and labelling-ambiguity, they are
supposed to be refined by the designer of the lingware into serveral designer-defined classes of
ambiguity.

Thus, a disambiguation automaton should be shaped as follows:

no yes

I no

v t I ¥
yes (Lexical i)

I no I no
I
I no

y y y
Lexical I

Figure 2.4: General organisation of a disambiguation automaton

The lexical ambiguities are to be solved first, then the geometrical ones, and finally the labelling
ones. This strategy is guided by the following principles:

1 first, find the right simple phrases (ie. solve the lexical ambiguities),

2 second, find the construction of the verbs (ie. solve the labelling and some of the
geometry ambiguities),

3 third, find the structure of the dependents of the verbs (ie. solve the geometry ambiguities
which did not fall in the previous case),

4 last, find the word senses.

29

＼

Pragmatic considerations led us to define them:

The simple phrases are the basic bricks of the sentence, producing the sense;

Then, we want to find the constituents of the sentence at the higher level, the level of the
construction of the verb;

After that, we want to find the right organization for the constituants of the verbs;

Finally, it is time to find the sense of each occurrence as the whole set of senses of an
occurrence has been reduced once the previous steps allowed to find its use in the
sentence.

Those criteria seem reasonable and natural. Moreover, the order of the kinds of question will not
be changed to improve the usability of the system. ・

The implemented ambiguity metaclass regognition states are defined as follows:

(defmethod same-categorュes-p-state ((the_language (eql'english))

the_sentence

the_numbered_analysis_list)

; the same number of leaves and different lexical classes

(let ((same_lex_class (same-categories-p the_numbered_analysis_list))

; the number of leaves is different (ie. not the same lexical units)

(same_number_of_leaves (same-number-of-leaves-p the_numbered_analysis_list)))

(Cond

((not same_number_of_leaves) (phrasal-verb-ambiguity-state the_language

the_sentence

the_numbered_analysis_list))

((not same_categories) (noun-adjective-ambiguity-state the_language

(t (same-geometry-p-state the_language

the_sentence

the_numbered_analysis_list))

the_sentence

the_numbered_analysis_list)))))

Figure 2.5: The engine method same-categories-p-state

(defmethod same-geometry-p-state ((the_language (eql'english))

the_sentence

the_numbered_analysis_list)

(if (same-geometry-p the_numbered_analysis_list)

"labelling ambiguity not handled yet"

(second-phvb-adv-att-state the_language the_sentence the_numbered_analysis_list)))

Figure 2.6: The engine method same-geometry-p-state

iii. ambiguity class recognition states.

Provided by the lingware, the ambiguity recognition states are descibed in chapter 6.

2.2. Q uestion tree construction

2.2.1. Strategy

Several question tree construction strategies can be designed according to the global

30

constraints a disambiguation module has to fullfil.

In the context of the LIDIA project the translation process is realized in a batch mode [Blanchon
1990 ; Boitet 1989 ; Boitet 1990]. The user of the system is not disturbed in the conception of the
document he is writing and translating somehow simultaneously.

Question trees are also produced in batch mode without time constraints. When a question tree is
ready, the user is told that new questions are waiting to be answered.

In the current implementation we did not propose a new strategy. That is why the whole question
tree is build in one blow.

In the current clarification engine, this strategy is available by means of the prepare -
question-tree method.

2.2.2. Implementation

The prepare-question -tree method is defined as follows:

(def method prepare-question-tree ((the_language (eql'english))
the_type
(the_modality (eql'textual))
the_sentence
the_list_of_triplets
the_new_solution_sets)

; the current question is prepared
(let* ((the_first_question (prepare-question the_language

the_type
the_modality
the_sentence
the_list_of—_triplets))

; the follow up questions are prepared
(the_next_questions (prepare-question-list the_language

the_sentence
the_new_solution_sets))

; the question tree is constructed
(the_result (list the_first_question the_next_questions)))

the_result))

Figure 2.7: The engine method prepare-question-tree

The prepare-question -tree method is first called when a first ambiguity has been
recognized in the disambiguation automaton. This method is called with the result of the method
beam-match:

the data to construct the question for the regognized ambiguity
(the_list_of_triplets) with the method prepare-question,

the data to construct the questions to follow (the_new_solution_sets) with the
method prepare-question-list.

The questions to follow are prepared by the method prepare-question -1 is t reentering the
automaton through the automaton -sceduler state as shown bellow:

31

＼

I

(defmethod prepare-questュon-list((the_language (eql'english))

the_sentence

the_new_solution_sets)

(if (= l (length the_new_solution_sets))

; there is only one question sub-tree to built

(list (automaton-scheduler the_language the_sentence (car the_new_solution_sets)))

; there is several question sub-trees to be built

(cons (automaton-scheduler the_language the_sentence (car the_new_solution_sets))

(prepare-question-list the_language the_sentence (cdr the_new_solution_sets)))))

Figure 2.8: The engine method prepare-question-list

Thus, the construction of the question tree is made through a recursive process.

2.2.3. C onstruction of a question

Questions are actualy prepared with the method prepare-question defined as follows:

(defmethod prepare-question ((the_language (eql'english))

the_type

(the_modality (eql'textual))

the_sentence

the_list_of_triplets)

; construction of the list of dialogue items

(let ((the_items (mapcar #'produce-item the_list_of_triplets)))

; creation of an object of the class clarification-question-class to be intertered

; in the current question tree

(make-instance'clarification-question-class

: question-language the_language ;language desmabiguated (for the meta-language)

: question-type the_type ;type of the question (for the labelling)

: question-modality the_modality ;modality(ies) of the presention

: ambiguous-item the_sentence ;tha ambiguaous utterance

: question-items-list the_items))) ;list of the rephasing items to be proposed

Figure 2.9: The engine method prepare-question

A triplet is a list of three elements: the name of the pattern which has matched, the resulting

binding, and, a list of the indix numbers of the solutions concerned with the matching of the

pattern. This triplet is used to construct a dialogue item.

The produce -i tern is implemented a follows:

(defun produce-item (self)

(let ((the平 attern (first self))

(the_binding (second self))

(the_concerned_solutions (third self)))

; the pattern-method associated with the pattern is applied to the binding

(list (apply (pattern-method the_pattern)

(list (pattern-name the_pattern) the_binding))

the_concerned_solutions)))

Figure 2.10: The engine function produce-item

32

2.3. Question tree presentation

For a given ambigutous utterance, the disambiguation automaton produces a question tree.

The question tree is covered by the question-tree-presentation function (cf Fig. 2.11)
until no more question is to be asked. The method ask-question (cf Fig. 2.12) proposes the
question to the user.

(defun question-tree-presentation (the_question_tree)

(if (= 1 (length the_question_tree)) ;it is a leaf

(progn

(concerned-solution (first the_question_tree)) ;indix number the choosen analysis

(geta-grapher:browse (concerned-tree (first the_question_tree))

'geta-grapher::ariane-tree)) ;display of the chosen tree for demo

; several questions are to be asked

; answer to the root question of the current question tree

(let ((the_choice (ask-question (first the_question_tree)))

; list of the possible follow up sub-question-trees

(the_other_questions (second the_question_tree)))

; the relevant sub-question-tree is going to be presented to the user

(question-tree-presentation (nth (-the_choice 1) the_other_questions)))))
＼

Figure 2.11: The engine method question-tree-presentation

The method ask-question is itself defined as follows:

(defmethod ask-question ((self clarification-question-class))

(let ((the_question_language (question -language self))

(the_question_type (question-type self))

(the_question_modality (question-modality self))

(the_ambiguous_item (ambiguous-item self))

(the_question_items_list (question-items-list self)))

(progn

(purge-lidia-dialog-answer)

; actual presentation of the dialogue

(do-dialog the_question_type

the_question_language

the_question_modality

the_ambiguous_item

(mapcar #'first the_question_items_list)

）

; waiting for the answer

(wait-for-an-answer))))

Figure 2.12: The engine method ask-question

2.4. Comments
We did not mention the ambiguities of polysemy. In our opinion, they should be the lasts

to be solved. The door have to be left open to describe the different option.

In the current implementation, the question tree is first completly constructed and then

the_~uestions are asked. This means that unused questions have been prepared. If time
efficiency is crucial, at least, two other stategies can be proposed:

When a question has been prepared, wait for the answer to that question to prepare

and present the next relevant one.

33

When a question has been prepared, ask the question to the user. While the user is
providing the answer to the current question, prepare the follow up questions.
When the answer has been given present the user with the relevant question.

These strateges, or other ones can be easily implemented specializing the cu汀entprepare-
question-tree method on an new argument called strategy that would be a global
parameter of a given module.

The current implentation of the sarne-category-p-state is not able to cope with the
3 families of lexical ambiguities defined in the§5.1.

When an ambiguity has been detected and a question prepared, the reentry point in the
automaton should not be the first state (automaton scheduler). It should be the state where
the ambiguity was discovered. Indeed, no ambiguity can be found in the the states
preceding this last one. The new organization would look as follows:

numbered-solutions set (NSS)

No ambi~uity

no new NSSs new NSSs

I question tree

data for dialog
newNSSs

I
I
I
V

l
 _

_

 山
▼
＇

ー＞＇

new NSS

present-question-tree

Figure 2.13: Better organisation of the reentry in the desambiguation automaton

Can the defintion of the ambiguity meta-class recognition state be done by the designer of
the lingware? It is necessary, usefull?

Is-it important and desirable to broaden the tree, thus adding more less specific tests, so
as to reduce the depth of the automaton.

34

Chapter 3

Dialogue & Question classes

Two kinds of generic classes are defined in the kernel: questions classes specifiying the
diambiguation questions'content and dialogue classes specifying the presentation of the
diambiguation dialogues to the user.

,,・,::.)': 溶i認；．む：苓；：':'.:岱．．．苓．．点LuT.. ;,: 及ぶ．： ¥ゞ.呼：冬： i翌'娑：:::!/
を ぐ：:・,,,:c_:-:r,・,,c,_・. 弩；．：．，・

,:,,._._,.,・:_;・.-,・・ ●：翠，,.,..,

• Generic Question Classes
,,・;,; き窃

.,,,.(.,.'>・.,. ・・・-・・.,:,、

,:. 苓謗．支：：I !:: : ・.. , 苓・'ti:¥S+:

唸,..

i:-.n

• Generic Dialogue Classes
苓·:::i.:::c::::.,:,:•秘,:',:-,,

question tree

present-question-tree

Figure 3.1: Dialogue & question classes in the global architecture

35

3.1. A generic disambiguation question class

The disambiguation process is producing a question-tree made of disambiguation questions
that are to be displayed as dialogues on the screen. Each disambiguation question is an instance
of the predefined class clarification-question-class defined as follows:

(defclass clarification-question-class ()
((question—language :initarg :question-language

: accessor question-language)
(question-type :initarg :question-type

: accessor question-type)
(question-modality :initarg :question-modality

: accessor question-modality)
(ambiguous-item :initarg :ambiguous-item

: accessor ambiguous-item
(question-items-list :initarg :question-items-list

: accessor question-items-list)))

Figure 3.2: The engine class clarification-question-class

The slots have the following meanings:

- question-language is the language disambiguated and the metalanguage used to present
the question. For an English module it is English, for a French module is French, etc…

- question-type is the type (the class) of ambiguity to be solved with the question.

- question-modality is the modality(ies) to be used to present the question to the user. So
far it is textual. In the futur it may be also spoken, textual+spoken, spoken+drawn, etc ...

- ambiguous-item is the utterance to be disambiguated with the question.

—. question-items-list: is the list of the dialogue items to be proposed to the user.

The is also a particular class called empty-question that is a subclass of the clarification-question-
class. This particular class of question is used to construct the leaves of the question trees. It is
defined a follows:

(def class empty-question (clarification-question-class)
((concerned-solution :type integer

: initarg :concerned-solution
: initform O
: accessor concerned-solution)

(concerned-tree :type list
: initarg :concerned-tree
: initform nil
: accessor concerned-tree)))

Figure 3.3: The engine class clarification-question-class

The slots have the following meanings:

- concerned-solution is the number of the chosen solution.

- concerned-tree is the analysis tree associated with the chosen solution.

3.2. A generic textual disambiguation dialogue class

As the presentation modality for the disambiguation have been so far only textual, we have

36

defined a generic-textual-clarif-dialog-class. All the textual clarification dialogues classes to be
defined will inherit from this class defined as follows.

(def class generic-textual-clarif-dialog-class (dialog)
((window-length
: initarg :window-length :accessor window-length)
(invitation-string
: initarg : invitation-string : accessor invitation-string)
(invitation-string-font
: initarg :invitation-string-font : accessor invitation-string-font)
(ambiguous-string
: initarg :ambiguous-string :accessor ambiguous-string)
(ambiguous-string-font
: initarg :ambiguous-string-font :accessor ambiguous-string-font)
(separation-line-position
: initform :separation-line-position :accessor separation-line-position
: initform 0)
(prompt-string
: initarg :prompt-string :accessor prompt-string)
(prompt-string-font
: initarg :prompt-string-font :accessor prompt-string-font)
(items
: initarg :items :accessor items)
(items-font
: initarg :items-font :accessor items-font)
(current-choice
: initarg :current-choice :accessor current-choice)

: initform 1)
(:default-initargs
: close-box-p nil))

Figure 3.4: The engine class generic-textual-clar炉dialogue-class

The slots have the following meaning:

- window-length is the length of the disambiguation dialogue. It may change according to
the dialogue to be disambiguated.

- invitation-string tells the user about the kind of problem to be solved in the

ambiguous-string.

- invitation-string-font is the font, size and style to be used to display the invitation-string.

- ambiguous-string is the utterance the disambiguation dialogue is about.

- ambiguous-string-font is the font, size and style to be used to display the

ambiguous-string.

- separation-line-position is the relaive position of a sepation line displayed in the dialogue
between the ambiguous-string and the prompt-string.

- prompt-string is the text inviting the user to choose one of the proposed items.

- prompt-string-font is the font, size and style to be used to display the prompt-string.

- items is the list of the items to be proposed among which the user is asked to choose one.

- items-font is the font, size and style to be used to display the items.

- current-choice is the choice selected by default.

37

(:default-initargs :close-box-p nil)) says the the only means to close the dialogue is to
validate a chosen item by clicking the OK button.

3.3. Comments
as we are going towards the use of several modalities, new classes will have to be
developped.

if serveral modalities are to be used simultaneousely, the desciption of the presentation of
the dialogues may have to be descibed with a markup language (synchronizations,
successions of the different messages in the dialogue). This is the meta-dialogue (the
fixed part of the question).

the desciption of the dialogue items has to be revised also to allow the manipulation of
the offered modalities with the same problems of synchonization of the events.

38

Chapter 4

Operators

Operators are used to describe the dialogue items'construction. They are used by the prepare-
question-tree module and allow to perform several operations on the binding of the variables.
Three families of operators are defined to perform: selective projection, access to the lexical
database and formating operations.

／

＼

L.•:.:.,'姿I.●：：恣：：．窓：；.'.'::}・・・ 怒・:・::::!.唸．念:.-.'..Ci°''・ 唸 ,,・,. ぐ.':°":.. .,,. 翠：,:_:::"_::}
,,,,.

•','•'(·':<',·:,-::,::-念.:-:·: 四i.

,.., .. ·,.•i\· 含:.,.,.. ,:.-::-

心・ 妥：，;受：{,: 受：：苓...,,. .. 受，..: 斎忍；裟：,ye.;,;,• ・蕊
唸．茫裟・

• General Operators
．．．．．．

・・-''・,_;_, •. -·,.'.'.Si-•'·i

';;:,ii>>

C咀is:"-・ 忍：；•,.. ら．
•e

• •• }怨．支..i. 約：且•

Figure 4.1: The operators in the global architecture

39

4.1. Selective projection

Operators of the first family describe some manipulations of subtree structures, basicaly the
selection or the suppression of some part of the trees.

4.1.1. Definitions (selection)
Text produce the text of the linguistic trees given as parameter.

subject produce the text of the subject of the linguistic trees given as parameter.

note: There is such a function for each syntactic function and
syntagmatic class. Example: verbalGroup, Circcomp ...

produce th coord e coordinating occurrence of the lingmstic trees given as

But_Coord

But_Sub

But_Det

Project

parameter.

produce the text of the linguistic trees given as parameter without the
coordinating occurrence.

produce the text of the linguistic trees given as parameter without the
subordinating particle.

produce the text of the linguistic trees given as parameter without the
determiner.

applied to a leaf of the mmc-structure, project the occurrence and the
syntactic class of the occurrence. In the future some other information may
also be proposed.

4.1.2. Implementation (selection)

Here is some of the implemented operators. The operators entry point function names are in
bold.

(defun text (&rest more-trees)
(if more-trees
(let ((result (with-output-to-string (str)

(string-trim'(#¥space)
(apply #'texte-dans-stream str

(first more-trees)
(rest more-trees))))))

(if result result""))
＂＂））

Figure 4.2: The engine operator text

(defun texte-dans-stream (str tree &rest more-trees)
(if more-trees
(progn
(texte-dans-stream str tree)
(apply IF'texte-dans-stream str more-trees))

(if (est-feuille? tree)
(when (surface (racine tree))
(format str "-A" (surface (racine tree))))

(apply IF'texte-dans-stream str (fils tree)))))

Figure 4.3: The engine sub-operator text-dans-stream

40

(defun coord (tree &rest more-trees)

(declare (ignore more-trees))

(if (est-feuille? tree)

(when (or (string-equal (ul (racine tree)) "ET")

(string-equal (ul (racine tree)) "OU") ; for French

(string-equal (ul (racine tree)) "AND")

(string-equal (ul (racine tree)) "OR")) ; for English

(surface (racine tree))

(let ((coord nil)

(the-sons (fils tree)))

(do ((sons the-sons))

((or coord

(not sons)))

(setf coord (coordonnant (first sons)))

(setf sons (cdr sons)))

coord)))

Figure 4.4: The engine operator coord

(defun but-coord (tree &rest more-trees)

(with-output-to-string (str)

(apply #'moins-coordonnant-dans-stream str tree more-trees)))

Figure 4.5: The engine operator but-coord

(defun moins-coordonnant-dans-stream (str tree &rest more-trees)

(texte-dans-stream str (discard-coordonnant tree nil))

(if more-trees

(apply #'texte-dans-stream str more-trees)))

Figure 4.6: The engine sub-operator moins-coordonnant-dans -stream

(defun discard-coordonnant (tree found?)

(if (est-feuille? tree)

(if (and (not found?)

（

(or (string-equal (ul (racine tree)) "ET")

(string-equal (ul (racine tree)) "OU") ;for French

(string-equal (ul (racine tree)) "AND")

(string-equal (ul (racine tree)) "OR"))) ;for English

values nil t)

(values tree found?)

(let ((result nil))

））

(do ((sons (fils tree)))

((not sons))

(multiple-value-bind (discarded-tree discarded?)

(discard-coordonnant (first sons) found?)

(setf found? discarded?)

(setf sons (cdr sons))

(setf result (concatenate'list result (list discarded-tree)))))

(values (concatenate'list (list (racine tree)) result) found?))

Figure 4.7: The engine sub-operator disgard-coordonnant

41

＼ ヽ

4.2. Acces to the Multilingual Lexical Data Base

4.2.1. Definition

Agreement produce the form of an adjective according to gender and number
constraints.

ex : Agreement("noirs", (("gn" [...] (gnr fem nbr plu)) ([…)))) -> "noires"

Substitute replace an ambiguous preposition by a non-ambiguous one (in the context)
according to several properties: syntactic function or logico-semantic
relation.

ex : Substitute("de" I #Objet_l) -> "a propos de"

Definition produce the definition of the occu汀encegiven as the parameter.

4.2 2 . . Implementat10n

No English adaptation yet.

4.3. Other operations

Operators of the third family describe some more complex operations of distribution and
bracketing of subtrees.

4.3.1. Definition
Distribute distribute an occurrence or a groupe of occurrences over other groups of

occurrences and link the new groups with a preposition of coordination.

-note: The distribution is done agreeing the gender and the number of the
adjective with the gender an the number of the different substentives

ex : Distribute((A, B C, D), OU , (1, 2), (l, 3)) -> A B C OU AD

Bracket brackets the text of the arguments.

ex : Bracket("classeurs" , "noirs") -> "(classeurs noirs)"

4.3.2. Implementation

(defun distribute (list-of-strings link pattern &rest more-patterns)
(with-output-to-string (str)
(apply #'distribue-dans-stream str list-of-strings link pattern more-patterns)))

Figure 4.8: The engine operator distribute

(defun distribue-dans-stream (str list-of-strings link pattern &rest more-patterns)
(distribue-pattern-dans-stream str list-of-strings pattern)
(format str "-A" link)
(if more-patterns
(apply Jt.'distribue-pattern-dans-stream str list-of-strings more-patterns)))

Figure 4.9: The engine sub-operator distribue-dans-stream

42

(defun distribue-pattern-dans-stream (str list-of-strings pattern &rest more-patterns)
(if more-patterns
(progn (distribue-pattern-dans-stream str list-of-strings pattern)

(apply #'distribue-pattern-dans-stream str list-of-strings more-patterns))
(progn
(dolist (num pattern)
(format str "-A " (nth (-num 1) list-of-strings))))))

Figure 4.10: The engine sub-operator distribue-pattern-dans-stream

(defun bracket (tree &rest more-trees)
(with-output-to-string (str)
(apply #'parenthese-dans-strearn str tree more-trees)))

Figure 4.11: The engine operator bracket

(defun parenthese-dans-stream (str tree &rest more-trees)
(format str "(")
(string-trim'(#¥space) (apply #'texte-dans-stream str tree more-trees))
(format str ")"))

Figure 4.12: The engine sub-operator parenthese-dans-stream

4.5. Comments
some of the operators are language independant and tree-labelling independant. Those
operators do not create any problem.

some of the operators are language dependant and/or tree-labelling dependent. Some
problems have to be solved as far as operators are concerned.

Instead of using an explicit description of the values to be looked for (as the
conjunctions of coordinations) directly into the programs of the operators themselves
(cf. Fig. 4.4), there should be an indirection.

For this indirection to be organized, there is serveral requirements:

the language and/or tree-labelling dependant elements have to be
variabilized, and

the operators have to use those variables instead and not direct encoding of
the values.

Here is an example for the operator coordination

In an English lingware:

In a French lingware:

(defvar conjunctions_of_coordination_set'("and" "or"))

(defvar conjunctions_of_coordination_set'("et" "ou"})

In th e eno1ne:

(゚defun coord (tree &rest more-trees)
(declare (ignore more-trees))
(if (est-feuille? tree)
(when (menber (ul (racine tree)) conjunctions_of_coordination_set)
(surface (racine tree))

）

（．．．）））

，

Figure 4.13: A language independant operator coord

43

Part 11

The English lingware

/,\~
9

.

Introduction

The English disambiguation lingware components are shown in plain style in the following
figure.

客：：．，：．；．斑：．忍:<'●●・:. ざ：，:5.・・・.: 冷．：唸.L'裟t.・.:.. c,-,・,.: 稔 ,,・, ・,:.':定． .,. 翠＄：ざ：：
,,,,. ， ・ャ・,,.-:,'.,・:c::, , .;.i ・・ ：，. ・., ., ...

.. :,;-,. ・・・ ； ．：ぷ・.. , ..

今：；—―惑．―·-吝,,-{.'.・唸•忍―: 各・:;:::c叙・ら：唸；，・唸,.,.

.. ··,··• .. .-・.:

Dialogue-Item Constmction
Methods

ぷ；忍裟：・ . :ii

,,, 姫：；

・冷 ···:,(·.,.-··,...:,.,•,.,,,:_.,,....,..,...., .. ,,:'-::・'
~＊ぐ-,::,.,-,: :ヽ:曹,..

,,,,(: 代：':I姿：：'.':箋＇，；ー：：::: 箋―:：:-支-:I叙：忍nー：：_忍桑':-,: ___ ._::.:-.:::•-•:-· 況：；翠岳．
ざ•，.

English Dialogue Classes

．：：象痘．ふ.•·.呼；芯:.:;,.::.:,:-....

蒻．；を苓．：：： 虔,;::,忍•,•

妥忍：；"'¥i:" : 笈ぷ\·•

＇

支~．：的・足：妥·.'

I

I

I

I

I

V

l

l

l

>

'

_
_
_
 >＇

,,r;・ •: : ... :・.

/

，

¥

．

i

Figure 7: Components of the English disambiguation lingware

The lingware is used to describe all the language dependant parts of a disambiguation module. It
should provide the disambiguation engine with a description of the ambiguities to be solved, the

47

order in which those ambiguities have to be solved, and the way the disambiguation dialogues
should be labelled to solve them.

Thus, the lingware consists of:

-a set of beams; made of patterns, describing the ambiguities to be solved,

-a set of beam stacks grouping ambiguities of the same class,

-a set of ambiguity recognition states organized and ordered within a disambiguation
automaton,

-a set of dialogue items production methods — one per defined pattern— each one
describing what to do in order to construct a rephrasing of the original utterance to be
disambiguated,

-a set of dialogue classes describing the language-to-be-disambiguated specific parts of the
dialogues to be presented to the user.

Those components are going to be described in the four following chapters. At the end of each
chapter, we will discuss the ideas and the implementation proposed. We will also present new
ideas and possible or required improvements of the current implementation.

48

Chapter 5

Ambiguities, Patterns & pattern beams

As shown in the figure bellow, patterns, beams, and stacks are used inside the ambiguity
recognition states of the disambiguation automaton.

＼

’
¥

／

ヽ--,·:._:,·,,:/,;.:,•.'·'.':'."·•'.':,·,J ・ ・：：c,:tさ.rt-... i ,:.-.: ・・冬.::.:''' :',':.''.': 克 ：：． ：・・i之.:.,::

:''.::t.i/・: •. :(-・ ·•. ···•·· 翌.,........ 7

.,.・t・・,, ・支： ；；•も受：· rf,, .

. ,,. { ... ,,-.,-,,,'.,.--:; .,,. .. ,,,・::,::・・・

r:L凌怒．をー：；裂＇裕，

., .. ,: .. ::. 冬：-://・.,/,・., .. , ...

i iぐ~翌： ,: ・・・,:,..

,,,, .•,.·.. ,,.,r:,,・.,・,.

.. ;,・t・・, ・亙·.,·.,:c.•,,:,.,,.. , .•

名・<・,受 ;;;1,;.:·;;•;,,,,. (.: 忍・凌：.... 令・支．． 苔・

(}森：姿．：忍忍>忍

". 忍t.:忍.,i)¥ .. t•.> 鉛．支.J: , .••.•• 区

Figure 5.1: The English patterns, beams and stacks in the global architecture

In this chapter we are going to list the ambiguity defined for this first version of an English
disambiguation module for English input.

49

5.1. Situation

We have defined a set of three meta-classes of ambiguities to be used and refined in each
instance of a particular disambiguation module. Those meta-classes - lexical ambiguity,
geometrical ambiguity, labeling ambiguity - are defined as follows:

There is a lexical ambiguity when the analyzer is unable to operate a unique segmentation
into words or terms ([right here] vs. [right] [here]), or unable to choose a word among
homophones (to vs. too vs. two), or unable to choose a syntactic class among homographs
(conduct noun vs. verb).

There is a geometrical ambiguity when the analyzer produces several solutions with
different geometry without a lexical ambiguity. -

There is a labeling: ambiguity when the analyzer produces several solutions with the same
geometry without a lexical ambiguity.

The ambiguities which make up the first corpus upon which the disambiguation mechanism was
based were taken from a data base of spontaneous speech collected at A TR-ITL.

The conversations, between native speakers of American English, were recorded [Loken-Kim, et
al. 1993a] during an experiment conducted in the Environment for MultiModal Interaction
(EMMI) [Loken-Kim, et al. 1993b], and took place via both telephone and multimedia
communication contexts [Fais 1994]. The 17 conversations from the experiment, comprising
over 8000 words, were examined by hand, and all detected ambiguities were extracted.
Ambiguities due solely to polysemy were disregarded; typical examples of all other types of
ambiguity were selected to form the final corpus. The chosen sentences and their multiple,
multilevel and concrete representations can be found in [Blanchon, et al. 1995a].

As far as the description of an ambiguity is concerned, it is somehow an approximation to say
that they are described by sets of patterns called beams. Indeed, some ambiguities, namely the
lexical ambiguities (at least most of them) can not be described effectively with patterns. They
should be described by means of lists'properties. Much work has been done in the field of
pattern-defined recognizable ambiguities, and far less for the other kind. We are going to give
the results we get For English for the first corpus we used.

5.2. English pattern-defined ambiguities

So far we have defined six categories of pattern-defined ambiguities. The objects defined
for the English module are listed in Appendix A.

5.2.1. S econd verbal-phrase prepos1t10nal attachment

• Example sentence

Let me pull out my maps to help you.

• Possible analysis trees

"PHVB" "PHVB"
~

11PHVB11

"PHVB" I ¥ ¥、 arg1

phvb

八 八~
Let me pull up my maps to help you Let me

Figure 5.2: Mmc-strctuture for "Let me pull out my maps to help you."

50

• Patterns

X:PHVB X:PHVB
Y:PHVB

Figure 5.3: The patterns for a Second phvb prepositional attachment ambiguity

5.2.2. Simple adverbial attachment

• Example sentence

-You can pay for it right on the bus.

-It says that here on my flyer.

• Possible analysis trees

"GP"
circ "GP"

You can pay for it right on the bus

"GP" "GP"

dee~

You can pay for it right on the bus

Figure 5.4: Mme-structure for "You can pay for it right on the bus."

"GP"
circ "GP" ~''GP'' 118p11

circ~

It says that here on my flyE It says that here on my flyE

Figure 5.5: Mme-structure for "It says that here on my flyer."

• Patterns

X:PHVB X:PHVB
Y:CIRC

Z:ATG or GOV

p1 p2 [
/

c

R

_

1

Q

P

Y

Figure 5.6: The patterns for a Simple adverbial attachment ambiguity

5.2.3. Verbal-phrase prepositional attachment

i. phvb prepositional attachment type 1

• Example sentence

-Where can I catch a taxi from Kyoto station.

贔

51

• Possible analysis trees

"PHVB"

"PHVB"

:~t'~" "GP"
atg

catch a taxi from kyoto station Where can catch a taxi from kyoto station

Figure 5. 7: Mme-structure for "Where can I catch a taxi from Kyoto station."

• Patterns

X:PHVB X:PHVB

Z:ATG
YDBJ□ C

Figure 5.8: The patterns for a phvb prepositional attachment type 1 ambiguity

ii. phvb prepositional attachment type 2

• Example sentence

Go across the street to the North of the station.

• Possible analysis trees

"GP"
gn
circ

―- -

"GP"
gn
atg

"GP"
gn
circ

"GP"
gn
atr

"GP"
gn
atg

口Go across the street to the north of station Go across the street to north of the station

Figure 5.9: Mme-structure for "Go across the street to the North of the station."

• Patterns

X:PHVB X:PHVB

Z:ATG
YcCIRC□□C

Figure 5.10: The patterns for a phvb prepositional attachment type 2 ambiguity

5.2.4. Relative verbal-phrase adverbial attachment

i. relative phvb adverbial attachment type 1

• Example sentence

That is where you can pick up a taxi as well.

52

• Possible analysis trees

That is where you ／ can pick up

"DGN" "GADV"

obj rad,
a taxi as well

PHR[/ That is where you can pick up a taxi

Figure 5.11: Mme-structure for "That is where you can pick up a taxi as well."

• Patterns

as well

X:PHVB X:PHVB
Y:PHREL

Figure 5.12: The patterns for a relative phvb adverbial attachment type 1 ambiguity

ii. relative phvb adverbial attachment type 2

• Example sentence

- I will show you where you are located right now.

• Possible analysis trees

I will show you where you are located right now I will show you where you are located right now

Figure 5.13: Mme-structure for "I will show you where you are located right now."

• Patterns

X:PHVB X:PHVB

Z:CIRC

[／
L

E

＼

R

H

p

ー

．．

p

Y

Figure 5.14: The patterns for a phvb prepositional attachment type 2 ambiguity

5.2.5. Verbal-ph rase conJunction attachment

• Example sentence

- You can tell him that you are going to the international conference center and it should be
a twenty minute ride.

.:

53

• Possible analysis trees

You can tell him that you are going to the international conference center and ,t should be
. . ¥

a twenty minute ride

＼
You can tell him that you are going to the international conference center and it should be a twenty minute ride

You can tell him that you are going to the international conference center and it should be a twenty minute ride

You can tell him that you are going to the international conference center and it should be a twenty minut;, ride

Figure 5.15: Mme-structure for "You can tell him that you are going to the international
conference center and it should be a twenty minute ride."

• Patterns

X:PHVB X:PHVB

B

u

s

H
 匹

〗
八

T:PHVB

Z:PHVB T:PHVB

~
Figure 5.16: The patterns for a Verbal-phrase conjunction attachment ambiguity

5.2.6. Non-verbal-phrase prepositional attachment

i. non phvb prepositional attachment type 1

• Example sentence

You are going to the international conference center.

54

• Possible analysis trees

"GP"

＼

"GP"

gn

You are going to the International Conference Center You are going to the International Conference Center

Figure 5.17: Mme-structure for "You are going to the international conference center."

• Patterns

X:GP+CIRC X:GP+CIRC

pO p1 p2 p3 p4 4

p

TG

＼
匹

料
＼
匹

□

Po
Figure 5 .18: The patterns for a non phvb prepositional attachment type 1 ambiguity

ii. non phvb prepositional attachment type 2

• Example sentence

-I want the symposium on interpreting telecommunication at the international conference
center.

• Possible analysis trees

＼ ＼

I want the symposium on interpreting telecommunications at the international conference center

I want the symposium on interpreting telecommunications at the international conference center

｀

I want the symposium on interpreting telecommunications at the international conference center

A
I want the symposium on interpreting telecommunications at the international conference center

Figure 5. 19: Mme-structure for "I want the symposium on interpreting telecommunication at the
international conference center."

55

• Patterns

X:DGN X:DGN

Z:ATG
YcATG--=二

Figure 5.20: The patterns for a non phvb prepositional attachment type 2 ambiguity

5.3. English listed but not solved ambiguities

These ambiguities are those to be recognized by list property recognition mechanism that
has not been studied enough for results to be given.

5.3.1. Noun-adjective ambiguity

• Example sentence

This is an English speaking agent.

You can catch a taxi at the second level platform.

• Possible analysis trees

"DGN"
gn
obj

This is an english
N

、 ＼
speaking agent

A N

11DGN11
gn
obj

This is an english
A

speaking
A

Figure 5.21: Mme-structure for "This is an English speaking agent."

"DGN"
gn
obj

、＼
This is an english speaking agent This is an english speaking

N A N A A

"GN"
gn

agent
N

11GN11

gn

agent
N

Figure 5.22: Mmc-structurefor "You can catch a taxi at the second level plaげorm."

5.3.3. Other syntactic class ambiguities

• Example sentence

The quickest route would be taking a taxi.

You can either travel by subway, but or taxi.

56

• Possible analysis trees

／
The quickest route would be taking a taxi The quickest route would be taking a taxi

V V N V V V

Figure 5.23: Mme-structure for "The quickest route would be taking a taxi."

You can either travel by subway bus or taxi You can either travel by subway bus or taxi
N V V N N N

Figure 5.24: Mme-structure for "You can either travel by subway, but or taxi."

5.3.2. Phrasal verb ambiguity

• Example sentence

-It is difficult to get out of Kyoto station.

- Do you want to go over that again.

• Possible analysis trees

It is difficult to get out of Kyoto station It is difficult to get out of Kyoto station

Anaphora No anaphora

Figure 5.25: Mme-structure for "It is difficult to get out of Kyoto station."

Do you want to go over that again Do you want to go over that again

Figure 5.26: Mme-structure for "Do you want to go over that again."

57

5.4. Comments
- This description is just a very first draft.

-Work in the field of list-described and recognized ambiguities to be developed.

58

Chapter 6

Clarification automaton

As shown in the following figure, the language independent part of the disambiguation
automaton consists of the language specific ambiguity recognition states.

..... ば；苔：；：；・:,.,_'_'-彎t乏さ・：J・・・,_,;'.) L n t .. i ,::.:,. 殺．：・合 を；．茫・ 凡 •• ．．．
••••

`̀

"'f.“

•••
,

・・’
,・

9・,

．

",．

9

••
．．．．

•••• ~·

令 ,,・.:,:::',:''・, •• ,,,,,., 翌・.,・:'.,c,・・t,:.,::,::-.::

','¥{.".:',. ('., i ,','.'..": 丸：

.,,, . .(/ . ..,,:,.i'i'•'·,··

.,,. (・<<'i,.--:: :'"':: ..-'i).:.-';', ・'[(:,:: ..

Dialogue-Item Constntction
Methods

I

I

I

V

I

I

I

山＞＇

"''
’・．．忍.•,·. 殺.,:-.•-:••.. , .. ,,,

,,,,(・；；．支：：緑：；.:"f'姜：；．．

/ i,-.:.c•c:;°•••C;

(斎'.;,裟・>:・''::・.:.::.

裟.\藷哀：•忍..;":: 苔；

,-,.,,_,:,'-",'r.rr:,: ー：',

i.)¥)(;'冦¥.• i.•>n 気；; ： ••. , •••• ,.,.,

''/,.-どゞ:.,・・,., .-.,_ ; /,~/,,::、:, :/: ::: ,,

し/ ＼

Figure 6.1: The clarification automaton in the global architecture

The disambiguation automaton is made of three kinds of states: an automaton-scheduler,
meta-class recognition states, and ambiguity-class recognition states. The ambiguity-class

59

recognition states are described as a part of the lingware. They will be described here.

There is two kinds of ambiguity-class recognition states: those using the beam matching

mechanism for the ambiguities described with beams (cf. chapter 5), and the other ones using a

property recognition mechanism (for the ambiguities not described with beams). The work on

the second category of states is not yet enough advanced to be described here.

6.1. The beam matching ambiguity recognition states

The beam matching ambiguity class recognition states are described by methods sharing a

common skeleton described bellow:

(defmethod ambX-recognition-state ((the_language (eql'english))

the_sentence

the_numbered_analysis_list)

; the related beam is attached to the state

(let* ((the_beam_stack the-stack-describing-ambX)

; looking for a beam matching the_numbered_analysis_list

(the_beam_stack_match (beam-stack-match the_beam_stack

the_numbered_analysis_list))

; was a matching found?

(matched? (first the_beam_stack_match)))

(if matched?

; if a matching has been found then the searched ambiguity is recognized

; instanciation of the ambiguity type that will fixe some

parameters about the dialogue labelling

(let ((the_type I general)

; instanciation of the dialogue modality

(the_modality'textual)

; this list_of_triplets will be used to build the dialogue items

(the_list_of_triplets (third the_beam_stack_match))

; this new_solution_sets will be used to produce the follow up

questions

(the_new_solution_sets (fourth the_beam_stack_match)))

; continuation of the construction of the question tree

(prepare-question-tree the_language

the_type

the_modality

the_sentence

the_list_of_triplets

the_new_solution_sets))

; no matching were found, the next state is triggered

(ambX+l-recognition-state the_language the_sentence

the_numbered_analysis_list))))

Figure 6.2: Skeleton of an ambiguity recognition state

6.3. The implemented automaton

With the ambiguities defined in the paragraphs 5.2. and 5.3. the following automaton has
been defined and implemented.

no ambiguit),:'.

no

same-geometry-p-state

no yes

＊
 Second _phvb _adv _att

no

Simple_adv _att

yes

yes
三1 no

t

）匹：匹い`
I lno

I

I ー＞＇
no

phvb_prep_att

no

Relative_phvb_adv _att

no

phvb _ conjunction

no

yes

yes

yes

yes

+ not completd yet
* no ambiguity of decoration

in the fi江 stcorpus

~ ＼

Figure 6.3: The implemented disambiguation automaton

6.3. Comments
-Resolution of the lexical ambiguities: THE problem to be tackled.

- A dynamic automaton via an evolving transition matrix

- Forms for the designer to describe the states of the automaton, the patterns, the dialogue
item-production methods, ...

61

Chapter 7

Dialogues classes

For the language and the ambiguity (inside this language) dependent elements of the
disambiguation dialogues to fit imposed constraints (font used, size, style, metalanguage
utterances for the presentation of the question), English dialogue classes have been defined.

•,· ¥ヽ::・,::::¥,.:・'.''.':'唸.,j... 森.::.:,t u t: .. ,. ,::,:, . 忍：；裕：洛．茫,([音；翌；:-.;. }
-,,,. r:-:;..・,,・'・,_, .. , .. , 翌:·.•...... ·:::'.•.•')'•·

• .・ .,{,-.:. ,•:·• ., , .' .' } .',: ・唸<;

.,,,,(,, 汝:i'裟支:rh ¥――). 筏怜：：-,:,,: ー・:怒．

.,,,. ,/.,,,,.,.,,,,,, ... ,

/...'ば：：・ぷ ... ,,・.,.,, ,,,.,·•.

} .r ... _,・・u ,.-,..,. c-.:-:-

箋各.e"?i・；¥,, ぎ：ぶ：笈

え： ・・.,・.. ,,・

・・・：・・： :·,•, 曹 冬¥;'.': i:,. 翌ゑ

次・(/.-:・n.<.-.'..--忍；：．． 裟:'J:,::,.:'ふ：埓・C:符．

English Dialogue Classes
,,,. /'.:',,_,.,.-_;:.,:,:: . 図ぎ

ゃ/・'ふ；，・.'-.'¥-・:,-・..

苔；•• : ふ： ,•:< .. ::..:.>r 苓：.}裕．ふ

多：冬4支：•：：・足．娑苓笈 さ各t:亙:<:.h,

婆姿•！ぎ器笈条支""·'

Figure 7.1: The English dialogue classes in the general architecture

63

'•·\,•: .¥., ..'.ii':°.・,,

-;・, 登；：・.,,,::.':'',:"•

7.1. Language dependent constraints

As we are preparing dialogues to be labeled in the language disambiguated, the whole text
of the dialogues must be labeled in the disambiguated language. So if the "look and feel" of the
dialogue may be language-independent, the "static text" appearing in the dialogue will have to
change.

In the designed dialogues, window-titles, invitation-strings and prompt strings (shown bellows)
are parts of the "static text" labeled dialogue elements.

window-title

I 曹
: ... ; .. , ;,, :•~: ; .. ;; .. •: が.;.... ,、• む.;... ; ;,;, ヽ........,; 疇〗fij:ffl.:.fiJg·μ・lt: y))『；．． 硲．．ふ・;... ; .;. 吟.-.;.. •.·.、．．．．．ぷ-.;.;.;、・ぶ：；；·:-:•;•.•;がぷ硲ぶ

，
The followi g sentence has several possible interpretations.

the amb guous utterance ,,
Choose the right one:

@ dialogue item 1

C) dialogue item 2

(―:：裟蕊OfQ —:)

Figure 7.2: Some dialogues'slots

7 .2. Dialogue c~asses

Two specializations of the generic-textual-clarif-dialog-class have been proposed as follows:

- on for the ambiguities of polysemy, and

(defclass english-general-textual-dialog-class (generic-textual-clarif-dialog-class)
((window-length
: initform 550)
(invitation-string
: initform "The following sentence has several possible interpretations.")
(invitation-string-font
: initform'("helvetica" 16))
(ambiguous-string-font
: initform'("helvetica" 16 :bold))
(prompt-string
: initform "Choose the right one:")
(prompt-string-font
: initform'("helvetica" 16))
(items-font
: initform'("helvetica" 16 :bold)))

(:default-initargs
: window-title "Ambiguity"))

Figure 7.3: The lingware class english-general-textual-dialog-class

64

- the other one for all the other ambiguities.

(def class eng I ish-polysemy-textual-dialog-class (generic-textual-clarif-dialog-class)
((window-length
: initform 500)
(invitation-string
: initform "The following word has several possible meanings.")
(invitation-string-font
: initform'("helvetica" 16))
(ambiguous-string-font
: initform'("helvetica" 16 :bold))
(prompt-string
: initform "Choose the right one:")
(prompt-string-font
: initform'("helvetica" 16 10))
(items-font
: initform'("helvetica" 16 :bold)))

(:default-initargs
: window-title "Ambiguity"))

Figure 7.4: The lingware class english-polysemy-textual-dialog-class

7 .3. Comments
- Lingware designer defined dialogue classes, how far can we go in the customization of

the presentation? In the current implementation, the designer can change only the static
strings, and the font, size and style of what is displayed. Access to a dialogue presentation
design environment??

- Forms for the description of the dialogue classes.

65

Chapter 8

Dialogue item production methods

The dialogue items are actually produced with the dialogue item construction method
associated with each pattern.

心 "'•:,.-·,· ' ,_,_.,,. 梵芍.,・:'cC",・・::"c',)::・.::

,, •• 梵令・,,:,::.,:,.・・

.,,, .. 支．：：汽：§忍支：・r)●::． J慕；冤緑裟：％

.,,,. ,..,,.・.,.,,.',・':'.. ,'ぇ：:'ii.\•·.'·:;曹：'::・・・

Dialogue-Item Constntction
Methods

,,, , ..'"'i.:.''{'"',, :・:.:: ゞ:i>),

・・ t:・ ,. t' , ;, _, , ,, _, . ,'・・・.::

····•. 捻冠

雰:..... (; ふ::-,.. t•> 予： t. •··,.,,:, ..

r, ・,.:,.,-,;/・.:,.,_,_,.・;::"'.':cit・・・.,_,,, r.:c 1. n ":. . .i ,:.-.:c.'J .:'c'' 整．を．，冬:. ;'./iii,::-.,.}

Figure 8.1: The dialogue item production methods in the global architecture

67

8.1. Principle

Each method produces a string of characters which is an arrangement or a manipulation, with
the operators defined in§2.4, of the binding of some of the variables defined in the pattern the
method is associated with. These methods use the lisp-defined function format. The function
format is very useful for producing nicely formatted text, producing good-looking messages, and
so on. format can generate a string or output to a stream.

The function format is defined as follows配

[Function]

format destination control-string &rest arguments

format is used to produce formatted output. format outputs the characters of control-string,
except that a tilde (~) introduces a directive. The typical directive puts the next element of
arguments into the output, formatted in some special way.

The output is sent to destination. If destination is nil, a string is created that contains the output;
this string is returned as the value of the call to format.

With the directive ~A4, an arg, any Lisp object, is printed without escape characters (as by
princ). In particular, if arg is a string, its characters will be output verbatim.

Example

(setq y "elephant")
(format nil "Look at the ~Al" y) => "Look at the elephant!"

8.2. Methods skeleton

The dialogue item production methods are described with a set of item-production-method
methods. Such methods have two parameters:

a pattern-name, which is the specializer of the method,

a binding, which represents, for the current situation, the value of each of the variables
defined in the patterns.

One of these methods is typically defined as follows:

(def method item-production-method
((pattern-name (eql'*phvbprepatt-t1-1 *)) binding)

(format nil "~A (~A ~A).11
(apply #'text (cdr (assoc'?pO binding)))
(apply #'text (cdr (assoc'?p1 binding)))
(apply #'text (cdr (assoc'?p2 binding)))))

Figure 8.2: A typical item-production-method method

This method will produce the following string: text(?pO) (text(?p 1) text(?p2)) • A complete list

of the defined methods is given in Appendix B.

3 The definition is taken from [Steele 1990].
4 In the descriptions of the directive that follow, the term arg in general refers to the next item of the set of

arguments to be processed.

68

8.3. Comments
- Specializing a method on the pattern-name may not be a good idea. The designer would

never do that.

-Provide a means to describe the methods without having to write a lisp program.

- Describe the methods in a language using the operators and a metalanguage (bracketing,
point, comma, etc ...) directly associated with the patterns.

- A pattems+methods editor. A beam editor. A stack editor.

69

＼

Conclusion

On the methodology

The methodology we proposed allows to develop customized disambiguation modules that
can be easily improved incrementally.

The ability to customize comes from the clear separation of the lingware from the engine. In this
framework, different disambiguation modules can be produced for one or several different
languages and kinds of input.

The description of the linguistic data can be improved incrementally as the design and the use of
a disambiguation module progress.

Certainly, we do not claim that any given module will cover all the ambiguities found in natural
language (written or written). On the other hand, we claim that a given module for a given
application can incrementally reach a broad coverage for the application it has been designed to
be integrated into.

We imagine the following figure.

100%
C

゜V

e
r
a
g
e

0%
Manual

Bootstraping
Module Learning

Number of disambiguated input

Figure 8: Evolution of the coverage of a given disambiguation module

Global perspectives

In addition to the comments given at the end of each chapter, we can propose broader
perspectives and evaluations of this work.

We think that, whenever a system is using a natural language analysis module, the evaluation
criterion must not only the task's time-completion, more important is the user satisfaction. That

73

,¥‘

is why we feel that it is very important to study the design of the clarification sessions, and
moreover the design of the questions to be asked. We are aware that this kind of study is energy
and time consuming but we can not afford to do without.

Thus, we have proposed to run experiments to study, before other things, the understandability
of the proposed disambiguation dialogues. Although we were just able to run only a pilot
experiment [Blanchon & Fais 1995] within a too short imposed delay, we have gathered some
interesting feedback. We learnt also, and that is very important, how not to design such
experiment. We strongly hope that this work on understandability and assessment will have a
chance to be carried on.

There is also a need for a kind of real coverage evaluation. For this evaluation to be conduced
properly, a large amount of data (analysis) should be provided. There is a possible opportunity to
do this using the results produced in the framework of the EBMT system developed at A TR-ITL
[Furuse & Iida 1992 ; Furuse & Iida 1994]. Those results that are numerous enough for this
study to be meaningful. In this context, we would finally be able to use a huge set of real data
produced by an analyzer and not a small set of handmade data.

In the context of the system to be developed a ATR, any data collected through a simulated
environment (such as EMMI) or any actual data produced by an analyzer should be carefully
analyzed. The analysis should allow to study the kind and the frequency of odd meanings (those
not likely to be ranked first by an analyzer). It should allow also to evaluate the consequences of
possible mistanslations, and then establish the need or un-need for interactive disambiguation.

Finally, to complement the first studies on French and English, we will be very happy to carry
out a similar study for Japanese.

Recommendation

If we were asked to propose a recommendation for the system final system (or demonstrator) to
be developed at ATR-ITL, we would say that is it necessary to built an analyzer (speech to
concrete analysis) or a set of analyzers (speech to text, and text to concrete analysis) producing
multiple ranked structures to leave the door open to interactive disambiguation which may reveal
itself indispensable for the targeted task to be achieved correctly at the satisfaction of real
potential users.

74

＼

References

Blanchon H. (1990). LIDIA-I : Un prototype de TAO personnelle pour redacteur unilingue.
Proc. Avignon-90, conference specialisee : Le Traitement Automatique des Langues Naturelles
et ses Applications. Avignon, France. 28 mai-1 juin 1990, vol. 111 : pp. 51-60.

Blanchon H. (1992). A Solution to the Problem of Interactive Disambiguation. Proc. Coling-92.
Nantes, France. July 23-28, 1992, vol. 4/4: pp. 1233-1238.

Blanchon H. (1994a). LIDIA-I : une premiere maquette vers la TA interactive "pour tous".
These. Universite Joseph Fourier -Grenoble 1. 1994a. 321 p.

Blanchon H. (1994b). Pattern-based approach to interactive disambiguation: first definition
and implementation. Rap. ATR-Interpreting Telecommunications Research Laboratories.
Technical Report. n°TR-IT-0073. Sept. 8, 1994. 91 p.

Blanchon H. (1994c). Perspectives of DBMT for monolingual authors on the basis of LIDIA-I,
an implemented mock-up. Proc. Coling-94. Kyoto, Japan. August 5-9, 1994, vol. 112 :
pp. 115-119.

Blanchon H. & Fais L. (1995). Pilot Experiment on the Understandability of Interactive
Disambiguation Dialogues. Rap. ATR-ITL. Technical repport. n°TR-IT-0130. September, 1995.
To be published.

Blanchon H., Fais L. & Guilbaud J.-P. (1995a). A Corpus of Ambiguous English Sentences
with their Multisolution, Multilevel and Concrete Tree Representations. Rap. ATR-ITL.
Technical Report. n°TR-IT-0131. September, 1995. To be published.

Blanchon H., Fais L., Loken-Kim K. H. & Morimoto T. (1995b). A Pattern-Based Approach
如 InteractiveClarification of Natural Language Utterances. in Bulletin of the Information
Processing Society of Japan (95-NL-107). vol. 95(52): pp. 11-18.

Blanchon H. & Loken-Kim K. H. (1994). Towards More Robust, Fault-Tolerant and User-
Friendly Software Integrating Natural Language Processing Components. in Bulletin of the
Information Processing Society of Japan (94-SLP-4). vol. 94(109): pp. 17-24.

Boitet C. (1989). Motivations, aims and architecture of the Lidia project. Proc. MT SUUMMIT
IL Munich. 16-18 aout 1989, vol. 1/1: pp. 53-57.

Boitet C. (1990). Towards Personnal MT: general design, dialogue structure, potential role of
speech. Proc. Coling-90. Helsinki. 20-25 Aout 1990, vol. 3/3 : pp. 30-35.

Boitet C. & Blanchon H. (1995). Multilingual Dialogue-Based MT for monolingual authors:
the LIDIA project and a first mockup. in Machine Translation. vol. 9(2) : pp. 99-132.

Boitet C. & Tomokiyo M. (1995). Towards ambiguity labelling for the study of interactive
disambiguation methods. Rap. ATR-ITL. Technical Repport. n°TR-IT-0112. April 27, 1995.
22p.

Caelen J. (1994). Multimodal Human-Computer Interaction. in Fundamentals of Speech
Synthesis and Speech Recognition. Keller, E. (ed.). John Wiley & Sons. New York. pp. 339-373.

Fais L. (1994). Effects of communicative mode on spontaneous English speech. Rap. Institute of
Electronics, Information and Communication Engineers. Technical Report. n°NLC94-22.
Oct. 94. 6 p.

Furuse 0. & Iida H. (1992). Cooperation Between Transfert and Analysis in Example-Based
Framework. Proc. Coling-92. Nantes, France. July 23-28, 1992, vol. 2/4: pp. 645-651.

Furuse 0. & Iida H. (1994). Constutuant Boundary Parsing for Example-Based Machine
Translation. Proc. Coling-94. Kyoto, Japan. August 5-9, 1994, vol. 1/2: pp. 105-111.

Goddeau D., Brill E., Glass J., Pao C., Philips M., Polifroni J., Seneff S. & Zue V. (1994).
GALAXY: a Human-Language Interface to On-Line Travel Information. Proc. ICSLP 94.
Yokohama, Japan. September 18-22, 1994, vol. 2/4: pp. 707-710.

77

Haddock N. J. (1992). Multimodal Database Query. Proc. Coling-92. Nantes, France. 23-28
juillet 1992, vol. 4/4: pp. 1274-1278.

Hiyoshi M. & Shimazu H. (1994). Drawing Pictures with Natural Language and Direct
Manipulation. Proc. Coling-94. Kyoto, Japan. August 5-9, 1994, vol. 2/2 : pp. 722-726.

Kay M., Gawron J.M. & Norvig P. (1994). Verbmobil: A Translation System for Face-to-Face
Dialog. CSL! lecture note no 33. Center for the Study of Language and Information, Stanford,
CA. 235 p.

Keene S. E. (1989). Object-Oriented Programming in Common Lisp: A Programmer's Guide to
CLOS. Addison-Wesley Publishing Compagny. New York. 266 p.

Loken-Kim K.-H., Yato F., Fais L., Kurihara K., Furukawa R. & Kitagawa Y. (1993a).

マルチモーダル・シミュレータEMMIを用いた道案内デー
タベースのテキスト.Rap. ATR-ITL. Technical Report. n°TR-IT-0029. December,
1993. 101 p.

Loken-Kim K.-H., Yato F., Kurihara K., Fais L. & Furukawa R. (1993b). EMMI-ATR
environment for multi-modal interactions. Rap. ATR-ITL. Technical Report. n°TR-IT-0018.
Sept 30, 1993. 28 p.

Morimoto T., Suzuki M., Takezawa T., Kikui G., Nagata M. & Tomokio M. (1992). A
Spoken Language Translation System: SL-TRANS2. Proc. Coling-92. Nantes, France. 23-28
juillet 1992, vol. 3/4 : pp. 1048-1052.

Nishimoto T., Shida N., Kobayashi T. & Shirai K. (1994). Multimodal Drawing Tool Using
Speech, Mouse and Key-Board. Proc. ICSLP 94. Yokohama, Japan. September 18-22, 1994,
vol. 3/4: pp. 1287-1290.

Norvig P. (1992). Paradigms of Artificial Intelligence Programming: Case Studies in Common
Lisp. Morgan Kaufmann Publishers. San Mateo, California. 945 p.

Steele G. L. J. (1990). Common Lisp -The language. Digital Press. 1027 p.

Zue V., Seneff S., Polifroni J. & Phillips M. (1993). PEGASUS: a Spoken Dialogue Interface
for On-Line Air Travel Planing. Proc. ISSD-93 - New Directions in Human and Man-Machine
Communication. International Conference Center, Waseda University, Tokyo, Japan. November
10-12, 1993, vol. 1/1: pp. 157-160.

78

/'

．曹

＼

Appendix

＼

9
、
i

Appendix A

Patterns, beams, & stacks defined

; ; ;--

I I I

;;; Title : English Disambiguation Patterns

I I I

.. ・--I I I

, , , Author

Address

, , ,

Herve Blanchon

Advanced Telecommunication Research Labs

Interpreting Telephony Research Labs.

2-2 Hikaridai, Seika-cho Soraku-gun

Kyoto,Japan 619-02

Blanchon@i tl. atr. co. jp

.. ・--, , ,

I I I

Filename

Version

Abstract

History

Bugs

Toda

Disarnb_English-Patterns.lisp

1. 0

Here are the disambiguation patterns used for English

For on ambiguity the patterns are ordrered on a stack

01/23/95 Herve Blanchon

.. ・--, , ,

81

＼

I I I

; ; ； ---

I I I

I I I

Patterns for second phvb adverbial attachment

; ; ； Author : Herve Blanchon

; ; ； Date : 01/23/95

; ； ; Abstract :

; ; ； ---
．．．
I I I

(defvar *2phvbadvatt-l* (make-instance'pattern

: pattern-name'*2phvbadvatt-l*

: pattern-value'((?is ?x node-prop-equal-p'CS'PHVB)

(?+ ?pO)

((?is ?y node-prop-equal-p'CS'PHVB)

(?+ ?pl)

((?is ?z node-prop-equal-p'FS'OBJ)

(?+ ?p2)

((?is ?t node-prop-equal-p'FS'ATG)

(?+ ?p3)))))

: pattern-method #'item-production-method))

Figure A.I: The pattern *2phvbadvatt-1*

(defvar *2phvbadvatt-2* (make-instance'pattern

: pattern-name'*2phvbadvatt-2*

: pattern-value'((?is ?x node-prop-equal-p'CS'PHVB)

(?+ ?pO)

((?is ?y node-prop-equal-p'CS'PHVB)

(?+ ?pl)

((?is ?z node-prop-equal-p'FS'OBJ)

(?+ ?p2))

((?is ?t node-prop-equal-p'FS'CIRC)

(?+ ?p3))))

: pattern-method #'item-production-method))

Figure A.2: The pattern *2phvbadvatt-1*

(defvar *2phvbadvatt_set_l* (make-instance'pattern-beam

: beam-name'*2phvbadvatt_set_l*

: beam-value (list *2phvbadvatt-l* *2phvbadvatt-2*)))

Figure A.3: The beam *2phvbadvatt_set_l*

(defvar *2phvbadvatt_bearn_stack* (make-instance'beam-stack

: beam-stack-name'*2phvbadvatt_beam_stack*

: beam-stack-value (list *2phvbadvatt_set_l*)))

Figure A.4: The stack *2phvbadvatt _beam _stack*

82

I I I

I I I

I I I Simple adverbial attachment

I I I

; ; ; Author Herve Blanchon
; ; ; Date 01/23/95
; ; ; Abstract

I I I

I I I

(defvar *spladvatt-1* (make-instance'pattern

: pattern-name'*spladvatt-1*

: pattern-value'((?is ?x node-prop-equal-p'CS'PHVB)

(?+ ?pO)

((?is ?y node-prop-equal-p'K'GADV)

(?+ ?pl)

((?is ?z node-prop-in-p'FS'CIRC'GOV)

(?+ ?p2))))

: pattern-method #'item-production-method))
ー
＼

Figure A.5: The pattern *2phvbadvatt-l*

(defvar *spladvatt-2* (make-instance'pattern

: pattern-name'*spladvatt-2*

: pattern-value'((?is ?x node-prop-equal-p'CS'PHVB)

(?+ ?pO)

((?is ?y node-prop-equal-p'K'GADY)

(?+ ?pl))

((?is ?z node-prop-equal-p'FS'CIRC)

(?+ ?p2)))

: pattern-method #'item-production-method))

Figure A.6: The pattern *2phvbadvatt-1*

(defvar *spladvatt_set_l* (make-instance'pattern-beam

: beam-name'*spladvatt_set_l*

: beam-value (list *spladvatt-1* *spladvatt-2*)))

＼

＼

,＇

Figure A.7: The beam *2phvbadvatt_set_l*

(def var * spladvatt_bearn_stack* (make-instance'beam-stack

: beam-stack-name'*spladvatt_beam_stack*

: beam-stack-value (list *spladvatt_set_l*)))

Figure A.8: The stack *2phvbadvatt_beam_stack*

83

I I I

; ; ； ---

; ; ； phvb prepositional attachment

; ; ； Author : Herve Blanchon

; ； ; Date : 10/19/94
; ; ； Abstract

; ； ; ---
...
I I I

'''
; ; ； ---

; ;; phvb prepositional attachment type 1
; ; ； Author : Herve Blanchon

; ; ； Date : 10/19/94
; ; ； Abstract :

; ; ； ---

'''

(def var *phvbprepa tt-tl -1 * (make-instance'pattern

: pattern-name'*phvbprepatt-tl-1*

: pattern-value'((?is ?x node-prop-equal-p'CS'PHVB)

(?+ ?pO)

((?is ?y node-prop-equal-p'FS'OBJ)

(?+ ?pl)

((?is ?z node-prop-equal-p'FS'ATG)

(?+ ?p2))))

: pattern-method #'item-production-method))

Figure A.9: The pattern *2phvbadvatt-l*

(defvar *phvbprepatt-tl-2* (make-instance'pattern

: pattern-name'*phvbprepatt-tl-2*

: pattern-value'((?is ?x node-prop-equal-p'CS'PHVB)

(?+ ?pO)

((?is ?y node-prop-equal-p'FS'OBJ)

(?+ ?pl))

((?is ?z node-prop-equal-p'FS'CIRC)

(?+ ?p2)))

: pattern-method #'item-production-method))

Figure A.JO: The pattern *2phvbadvatt-l*

(def var *phvbprepatt_set_l * (make-instance'pattern -beam

: beam-name'*phvbprepatt_set_l*

: beam-value (list *phvbprepatt-tl-1* *phvbprepatt-tl-2*)))

Figure A.11: The beam *2phvbadvatt_set_l*

84

I I I

I I I

I I I

f I I

I I I

I I I

phvb prepositional attachment type 2

Author : Herve Blanchon

Date : 10/19/94
Abstract

'''
I I I

(defvar *phvbprepatt-t2-l* (make-instance'pattern

: pattern-name'*phvbprepatt-t2-l*

: pattern-value'((?is ?x node-prop-equal-p'CS'PHVB)

(?+ ?pO)

((?is ?y node-prop-equal-p'FS'CIRC)

(?+ ?pl)

((?is ?z node-prop-equal-p'FS'ATG)

(?+ ?p2))))

: pattern-method #'item-production-method))

Figure A.12: The pattern *2phvbadvatt-1*

(defvar *phvbprepatt-t2-2* (make-instance'pattern

: pattern-name'*phvbprepatt-t2-2*

: pattern-value'((?is ?x node-prop-equal-p',CS'PHVB)

(?+ ?pO)

((?is ?y node-prop-equal-p'FS'CIRC)

(?+ ?pl))

((?is ?z node-prop-equal-p'FS'CIRC)

(?+ ?p2)))

: pattern-method IF'item-production-method))

Figure A.13: The pattern *2phvbadvatt-1*

(defvar *phvbprepatt_set_2* (make-instance'pattern-beam

: beam-name'*phvbprepatt_set_2*

: beam-value (list *phvbprepatt-t2-l* *phvbprepatt-t2-2*)))

＼

Figure A.14: The beam *2phvbadvatt_set_J*

(def var * phvbprepa t t_beam_stack* (make-instance'beam-stack

: beam-stack-name'*phvbprepatt_beam_stack*

: beam-stack-value (list *phvbprepatt_set_l* *phvbprepatt_set_2*)))

Figure A.15: The stack *2phvbadvatt_beam_stack*

85

I I I

; ; ； ---
．．．
I I I relative phvb adverbial attachment
...
I I I

; ; ； Author

; ; ； Date

; ; ; Abstract

Herve Blanchon

01/23/95

; ； ; ---
...
I I I

I I I

iii---

．．．
I I I relative phvb adverbial attachment type 1
...
I I I

iii Author

iii Date

i i i Abstract

Herve Blanchon

01/23/95

; ; ； ---
．．．
I I I

(defvar *relphvbadvatt-tl-1* (make-instance'pattern

: pattern-name'*relphvbadvatt-tl-1*

: pattern-value'((?is ?x node-prop-equal-p'CS'PHVB)

(?+ ?pO)

((?is ?y node-prop-equal-p'CS'PHREL)

(?+ ?pl)

((?is ?z node-prop-equal-p'FS'OBJ)

(?+ ?p2)

((?is ?t node-prop-equal-p'CS'GADJ)

(?+ ?p3)))))

: pattern-method tl-'item-production-method))

Figure A.I 6: The pattern *2phvbadvatt-1*

(defvar *relphvbadvatt-tl-2* (make-instance'pattern

: pattern-name'*relphvbadvatt-tl-2*

: pattern-value'((?is ?x node-prop-equal-p'CS'PHVB)

(?+ ?pO)

((?is ?y node-prop-equal-p'CS'PHREL)

(?+ ?pl)

((?is ?z node-prop-equal-p'FS'OBJ)

(?+ ?p2))

((?is ?t node-prop-equal-p'CS'GADV)

(?+ ?p3))))

: pattern-method #'item-production-method))

Figure A.17: The pattern *2phvbadvatt-l*

(defvar *relphvbadvatt_set—_1 * (make-instance'pattern-beam

: beam-name'*relphvbadvatt_set_l*

: beam-value (list *relphvbadvatt-tl-1* *relphvbadvatt-tl-2*)))

Figure A.18: The beam *2phvbadvatt_set_l*

86

I I I

I I I

f I I relative phvb adverbial attachment type 2

'''
Author : Herve Blanchon

f I I Date : 10/19/94

I I I Abstract

f I I

I I I

(def var * relphvbadvatt-t2-1 * (make-instance'pattern

: pattern-name'*relphvbadvatt-t2-l*

: pattern-value'((?is ?x node-prop-equal-p'CS'PINE)

(?+ ?pO)

((?is ?y node-prop-equal-p'CS'PHREL)

(?+ ?pl)

((?is ?z node-prop-equal-p'FS'CIRC)

(?+ ?p2))))

: pattern-method #'item-production-method))

Figure A.19: The pattern *2phvbadvatt-1*

(defvar *relphvbadvatt-t2-2* (make-instance'pattern

: pattern-name'*relphvbadvatt-t2-2*

: pattern-value'((?is ?x node-prop-equal-p'CS'PHVB)

(?+ ?pO)

((?is ?y node-prop-equal-p'CS'PHREL)

(?+ ?pl))

((?is ?z node-prop-equal-p'FS'CIRC)

(?+ ?p2)))

: pattern-method #-'item-production-method))

Figure A.20: The pattern *2phvbadvatt-l*

(defvar *relphvbadvatt_set_2* (make-instance'pattern-beam

: beam-name'*relphvbadvatt_set_2*

: beam-value (list *relphvbadvatt-t2-l* *relphvbadvatt-t2-2*)))

Figure A.21: The beam *2phvbadvatt_set_l*

(defvar *relphvbadvatt―_beam_stack* (make-instance'beam-stack

: beam-stack-name'*relphvbadvatt_beam_stack*

: beam-stack-value (list *relphvbadvatt_set_l* *relphvbadvatt_set_2*)))

Figure A.22: The stack *2phvbadvatt _beam _stack*

87

I I I

.. ・---
I I I

; ； ; phvb conjunction attachment

I I I

; ; ; Author : Herve Blanchon

; ; ; Date : 01/23/95

; ; ； Abstract :

; ; ; ---
I I I

(defvar *phvbconjatt-1* (make-instance'pattern

: pattern-name'*phvbconjatt-1*

: pattern-value'((?is ?x node-prop-equal-p'CS'PHVB)

(?+ ?pO)

((?is ?y node-prop-equal-p'CS'PHVB)

(?+ ?pl)

((?is ?z node-prop-equal-p'CS'PHVB)

(?+ ?p2)))

((?is ?t node-prop-equal-p'CS'PHVB)

(?+ ?p3)))

: pattern-method #'item-production-method))

Figure A.23: The pattern *2phvbadvatt-l*

(defvar *phvbconjatt-2* (make-instance'pattern

: pattern-name'*phvbconjatt-2*

: pattern-value'((?is ?x node-prop-equal-p'CS'PHVB)

(?+ ?pO)

((?is ?y node-prop-equal-p'CS'PHVB)

(?+ ?pl)

((?is ?z node-prop-equal-p'CS'PHVB)

(?+ ?p2))

((?is ?t node-prop-equal-p'CS'PHVB)

(?+ ?p3))))

: pattern-method #'item-production-method))

Figure A.24: The pattern *2phvbadvatt-1*

(defvar *phvbconjatt_set_l* (make-instance'pattern← beam

: beam-name'*phvbconjatt_set_l*

: beam-value (list *phvbconjatt-1* *phvbconjatt-2*)))

Figure A.25: The beam *2phvbadvatt_set_l*

(def var *phvbconj att_beam_stack* (make-instance'beam-stack

: beam-stack-name'*phvbconjatt_beam_stack*

: beam-stack-value (list *phvbconjatt_set_l*)))

Figure A.26: The stack *2phvbadvatt_beam_stack*

88

; ; ;---

I I I

I I I

; ; ; Author : Herve Blanchon

; ; ; Date : 01/23/95

; ; ; Abstract :

; ; ; ---

I I I

non phvb prepositional attachment

f If

If f

; ; ; non phvb prepositional attachment type 1
．．．
I I I

; ; ; Author

; ; ; Date

; ; ; Abstract

i;; ---
．．．
I I I

Herve Blanchon

01/23/95

ヽヽ

／
 •\

(def var *nphvbprepatt-tl -1 * (make-instance'pattern

: pattern-name'*nphvbprepatt-tl-1*

: pattern-value'((?is ?x node-prop-equal-p'CS'GP)

(?+ ?pO)

(?+ ?pl)

(?+ ?p2)

(?+ ?p3)

(?+ ?p4))

: pattern-method #'item-production-method))

Figure A.27: The pattern *2phvbadvatt-1*

(defvar *nphvbprepatt-tl-2* (make-instance'pattern

: pattern-name'*nphvbprepatt-tl-2*

: pattern-value'((?is ?x node-prop-equal-p'CS'GP)

(?+ ?pO)

(?+ ?pl)

((?is ?z node-prop-equal-p'FS'ATG)

(?+ ?p2)

(?+ ?p3))

(?+ ?p4))

: pattern-method ll'item-production-method))

/

‘

‘

..
Figure A.28: The pattern *2phvbadvatt-J*

(def var *nphvbprepatt_set_l * (make-instance'pattern -beam

: beam-name'*nphvbprepatt_set_l*

: beam-value (list *nphvbprepatt-tl-1* *nphvbprepatt-tl-2*)))

Figure A.29: The beam *2phvbadvatt_set_l*

89

I I I

'''
I I I non phvb prepositional attachment type 2

I I I

; ; ; Author Herve Blanchon

; ; ; Date 01/23/95

; ; ; Abstract

I I I

If I

(defvar *nphvbprepatt-t2-l* (make-instance'pattern

: pattern-name'*nphvbprepatt-t2-l*

: pattern-value'((?is ?x node-prop-equal-p'CS'DGN)

(?+ ?pO)

((?is ?y node-prop-equal-p'CS'GP)

(?+ ?pl)

((?is ?z node-prop-equal-p'CS'GP)

(?+ ?p2))))

: pattern-method #'item-production-method))

Figure A.30: The pattern *2phvbadvatt-l*

(defvar *nphvbprepatt-t2-2* (make-instance'pattern

: pattern-name'*nphvbprepatt-t2-2*

: pattern-value'((?is ?x node-prop-equal-p'CS'DGN)

(?+ ?pO)

((?is ?y node-prop-equal-p'CS'GP)

(?+ ?pl))

((?is ?z node-prop-equal-p'CS'GP)

(?+ ?p2)))

: pattern-method #'item-production-method))

Figure A.3 I: The pattern *2phvbadvatt-l*

(defvar *nphvbprepatt_set_2* (make-instance'pattern-beam

: beam-name'*nphvbprepatt_set_2*

: beam-value (list *nphvbprepatt-t2-l* *nphvbprepatt-t2-2*)))

Figure A.32: The beam *2phvbadvatt_set_l*

(def var *nphvbprepa tt_bearn_stack* (make-instance'beam-stack

: beam-stack-name'*nphvbprepatt_beam_stack*

: beam-stack-value (list *nphvbprepatt―_set_l* *nphvbprepatt_set_2*)))

Figure A.33: The stack *2phvbadvatt_beam_stack*

90

Appendix B

Methods

;;;--

; ;; Title : English Disarnbiguation Methods

; ; ;---← ------------------------------
Author

Address

Herve Blanchon

Advanced Telecommunication Research Labs

Interpreting Telephony Research Labs.

2-2 Hikaridai, Seika-cho Soraku-gun

Kyoto,Japan 619-02

Blanchon@itl.atr.co.jp

;;;--
Filename

Version

; ; ; Abstract

I I I

; ; ; History

;;; Bugs

; ; ; Todo

Disamb_English-Methods.lisp

1. 0

English disambiguation methods associated with the

English Disa叫)iguationpatterns

10/18/94 Herve Blanchon

.. ・--
'''

91

f If

・ー---f If

iii ITEM-PRODUCTION-METHOD [Method]
iii Specializers (eql'2phvbadvatt-l) T

I If

iii Author : Herve Blanchon
iii Date : 1/23/95
; ; ； Abstract :
iii---

I I I

(defmethod item-production-method ((pattern-name (eql'*2phvbadvatt-l*)) binding)

(format nil "~A ~A (~A ~A)."

I I I

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pO binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pl binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p2 binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p3 binding))))))

Figure B. I: Item-production-method ((pattern-name (eql'* 2phvbadvatt-l *)) binding)

・---
I I I

; ; ; ITEM-PRODUCTION-METHOD [Method]
; ; ； Specializers (eql'2phvbadvatt-2) T

I I I

; ； ; Author
; ; ; Date

Herve Blanchon
1/23/95

; ; ； Abstract
; ； ; ---

I I I

(defmethod item-production-method ((pattern-name (eql'*2phvbadvatt-2*)) binding)

(format nil "-A, -A -A -A."

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p3 binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pO binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pl binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p2 binding))))))

Figure B.2: Item-production-method ((pattern-name (eql'*2phvbadvatt-2*)) binding)

92

''' ・---
'''
;;; ITEM-PRODUCTION-METHOD [Method]
; ; ; Specializers (eql'spladvatt-1) T

'''
; ; ； Author : Herve Blanchon
; ; ； Date : 1/23/95
; ; ； Abstract :
; ; ； ---

'''

(defmethod item-production-method ((pattern-name (eql'*spladvatt-1*)) binding)

(format nil "-A (-A)."

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pO binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p2 binding))))))

Figure B.3: Item-production-method ((pattern-name (eql'* spladvatt-1 *)) binding)

I I I

. ・---
I I I

iii ITEM-PRODUCTION-METHOD [Method]
;;; Specializers (eql'spladvatt-2) T

I I I

; ; ; Author
; ; ; Date
; ; ; Abstract
;;;---

I I I

Herve Blanchon
1/23/95

(defmethod item-production-method ((pattern-name (eql'*spladvatt-2*)) binding)

(format nil "~A, ~A ~A."

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p2 binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pO binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pl binding))))))
',,

Figure B.4: Item-production-method ((pattern-name (eql'*spladvatt-2*)) binding)

』

93

I I I

I I I

I I I

'''
'''
I I I

'''
'''

ITEM-PRODUCTION-METHOD [Method]
Specializers (eql'phvbprepatt-tl-1) T

Author
Date
Abstract

Herve Blanchon
1/23/95

;;;---

I I I

(defmethod item-production-method ((pattern-name (eql'*phvbprepatt-tl-1*)) binding)

(format nil "-A (~A -A)."

I I I

I I I

I I I

I I I

I I I

'''
I I I

I I I

'''
I I I

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pO binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pl binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p2 binding))))))

Figure B.5: Item-production-method ((pattern-name (eql'*phvbprepatt-tl -1 *))binding)

ITEM-PRODUCTION-METHOD [Method]
Specializers (eql'phvbprepatt-tl-2) T

Author
Date
Abstract

Herve Blanchon
1/23/95

(defmethod item-production-method ((pattern-name (eql'*phvbprepatt-tl-2*)) binding)

(format nil 11 ~A, ~A ~A. 11

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p2 binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pO binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pl binding))))))

Figure B.6: Item-production-method ((pattern-name (eql'*phvbprepatt-tl -2 *)) binding)

94

I I I

I I I

I I I

I I I

I I I

, , ,

'''
'''
'''
I I I

ITEM-PRODUCTION-METHOD [Method]
Specializers (eql'phvbprepatt-t2-l) T

Author
Date
Abstract

Herve Blanchon
1/23/95

(defmethod item-production-method ((pattern-name (eql'*phvbprepatt-t2-l*)) binding)

(format nil "~A (~A ~A)."

I I I

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pO binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pl binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p2 binding))))))

Figure B. 7: Item-production-method ((pattern-name (eql 1*phvbprepatt-t2-1 *)) binding)

I / / ---

, , ,

I I I

I I I

I I I

f f I

f f f

I I I

If f

ITEM-PRODUCTION-METHOD [Method]
Specializers (eql'phvbprepatt-t2-2) T

Author
Date
Abstract

Herve Blanchon
1/23/95

(defmethod item-production-method ((pattern-name (eql'*phvbprepatt-t2-2*)) binding)

(format nil "-A, -A -A."

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p2 binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pO binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pl binding))))))

Figure B.8: Item-production-method ((pattern-name (eql'*phvbprepatt-t2-2*)) binding)

95

＼ ＼

I I I

.. ・---
I I I

; ; ； ITEM-PRODUCTION-METHOD [Method]
; ; ; Specializers (eql'relphvbadvatt-tl-1) T
...
'''
; ; ； Author Herve Blanchon

1/23/95 ; ; ; Date
; ; ； Abstract
; ; ； ---

'''

(defmethod item-production-method ((pattern-name (eql'*relphvbadvatt-tl-1*)) binding)

(format nil "-A, -A, -A ~A."

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pO binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p3 binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pl binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p2 binding))))))

Figure B.9: Item-production-method ((pattern-name (eql'*relphvbadvatt-tl-1*)) binding)

I I I

• 一--I I I

iii ITEM-PRODUCTION-METHOD [Method]
iii Specializers (eql'relphvbadvatt-tl-2) T

I I I

I I I

I I I

I I I

Author
Date
Abstract

Herve Blanchon
1/23/95

iii---

I I I

(defmethod item-production-method ((pattern-name (eql'*relphvbadvatt-tl-2*)) binding)

(format nil "-A -A (-A -A)."

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pO binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pl binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p2 binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p3 binding))))))

Figure B.I 0: Item-production-method ((pattern-name (eql'*relphvbadvatt-tl-2*)) binding)

96

I I I

'''
f I I

'''
'''
ff I

f I I

I I I

ITEM-PRODUCTION-METHOD [Method]
Specializers (eql'relphvbadvatt-t2-l) T

Author
Date
Abstract

Herve Blanchon
1/23/95

'''
I I I

r

(defmethod item-production-method ((pattern-name (eql'*relphvbadvatt-t2-l*)) binding)

(format nil "~A (~A ~A)."

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pO binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pl binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p2 binding))))))

Figure B.11: Item-production-method ((pattern-name (eql'*relphvbadvatt-t2-l*)) binding)

I I I

I I I

'''
'''
'''
I I I

I I I

I I I

ITEM-PRODUCTION-METHOD [Method]
Specializers (eql'relphvbadvatt-t2-2) T

Author
Date
Abstract

Herve Blanchon
1/23/95

'''
'''

(defmethod item-production-method ((pattern-name (eql'*relphvbadvatt-t2-2*)) binding)

(format nil "~A, ~A ~A."

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p2 binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pO binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pl binding))))))

Figure B.12: Item-production-method ((pattern-name (eql'*relphvbadvatt-t2-2*)) binding)

97

If I

.. ・---
I I I

；；；エTEM-PRODUCTION-METHOD [Method]
; ; ； Specializers (eql'phvbconjatt-1) T

I I I

I I I

...
I I I

I I I

Author
Date
Abstract

Herve Blanchon
1/23/95

; ; ； ---

If I

(defrnethod item-production-method ((pattern-name (eql'*phvbconjatt-1*)) binding)

(format nil "-A -A -A. -A."

I I I

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pO binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pl binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p2 binding))))

(string-trim'(#¥space) (apply #'rnoins-coordonnant (cdr (assoc'?p3 binding))))))

Figure B.13: Item-production-method ((pattern-name (eql'*phvbconjatt-1*)) binding)

.. ・---
'''
iii ITEM-PRODUCTION-METHOD [Method]
iii Specializers (eql'phvbconjatt-2) T
．．．
I I I

iii Author
iii Date
i i i Abstract

Herve Blanchon
1/23/95

i i i―--
I I I

(defmethod item-production-method ((pattern-name (eql'*phvbconjatt-2*)) binding)

(format nil "-A -A -A."

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pO binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pl binding))))

(string-trim'(#¥space) (apply #'moins-coordonnant (cdr (assoc'?p3 binding))))))

Figure B.14: Item-production-method ((pattern-name (eql 1*phvbconjatt-2*)) binding)

98

I I I

I I I

I I I

'''
I I I

I I I

I I I

'''

ITEM-PRODUCTION-METHOD [Method]
Specializers (eql'nphvbprepatt-tl-1) T

Author
Date
Abstract

Herve Blanchon
1/23/95

噸

I I I

'''

(defmethod item-production-method ((pattern-name (eql'*nphvbprepatt-tl-1*)) binding)

(format nil "~A (~A ~A) for ~A"

(string-trim'(if¥space) (apply if'texte (cdr (assoc'?pl binding))))

(string-trim'(#¥space) (apply if'texte (cdr (assoc'?p2 binding))))

(string-trim'(#¥space) (apply if'texte (cdr (assoc'?p4 binding))))

(string-trim'(#¥space) (apply if'texte (cdr (assoc'?p3 binding))))))

Figure B.15: Item-production-method ((pattern-name (eql'*nphvbprepatt-tl -1*)) binding)

'''
I f I

'''
'''
I I I

'''
'''
I I I

ITEM-PRODUCTION-METHOD [Method]
Specializers (eql'nphvbprepatt-tl-2) T

Author
Date
Abstract

Herve Blanchon
1/23/95

I I I

I I I

(defmethod item-production-method ((pattern-name (eql'*nphvbprepatt-tl-2*)) binding)

(format nil "~A ~A for (~A ~A)"

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pl binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p4 binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p2 binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p3 binding))))))

Figure B. 16: Item-production-method ((pattern-name (eql'* nphvbprepatt-tl -2*)) binding)

て

99

''' ・---
f If

; ; ； ITEM-PRODUCTION-METHOD [Method]
; ; ； Specializers (eql'nphvbprepatt-t2-l) T

'''
f If

'''
If f

; ; ； ---
．．．
'''

Author
Date
Abstract

Herve Blanchon
1/23/95

(defmethod item-production-method ((pattern-name (eql'*nphvbprepatt-t2-l*)) binding)

(format nil "~A (~A ~A)"

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pO binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pl binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p2 binding))))))

/
Figure B.17: Item-production-method ((pattern-name (eql'*nphvbprepatt-t2-1*)) binding)

f I I

. ---
If f

; ; ； ITEM-PRODUCTION-METHOD [Method]
; ; ; Specializers (eql'nphvbprepatt-t2-2) T

If I

I I I

．．．
If f

'''
; ; ； ---

f I I

Author
Date
Abstract

Herve Blanchon
1/23/95

(defmethod item-production-method ((pattern-name (eql'*nphvbprepatt-t2-2*)) binding)

(format nil "~A, ~A ~A"

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?p2 binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pO binding))))

(string-trim'(#¥space) (apply #'texte (cdr (assoc'?pl binding))))))

Figure B.l 8: Item-production-method ((pattern-name (eql 1*nphvbprepatt-t2-2*)) binding)

゜

100

Appendix C

Produced dialogues

In this appendix, we have listed all the dialogues currently produced by the English
disambiguation module.

「一—- - Ambiguity

The f o 11 O¥vi rig se rite nee has seve ra 1 possi b 1 e i rite r p retati onさ．

Let me pull up mりmapsto helpりOU.

Choose the right one:

@ let me pull up (mりmapsto helpりou).

0 to help you, let me pull up my maps_

・-・・・・・・--・--・
~

-

""'""''

C!w)

Figure C.l : Dialogue for "Let me pull up my maps to help you."

101

..

畷

~-~-~~9~t! リ
The fo 11 owi ng se nte nee has several possi bl e i nte r p retati o ns.

You can pay for it right on the bus.

Choose the right one:

R りoucan p判 forit (on the bus).

0 on the bus, りoucan pay for it right.

CE:i)

Figure C.2 : Dialogue for "You can pay for it right on the bus."

The following sentence has several possible interpretations.

It says that here on my flyer.

Choose the right one:

@ it :says that (on my flyer).

0 on my flyer, it :says that here.

~
Figure C.3 : Dialogue for "It says that here on my flyer."

~m~Jg~·•'t!
The following sentence has several possible interpretations.

Where can I catch a taxi fr-om Kyoto station?

Choose the right one:

@'where can I catch (a taxi from Kyoto Station).

0 from Kyoto Station,'where can I catch a taxi.

~
Figure C.4 : Dialogue for "Where can I catch a taxi form Kyoto station."

10?.

~r.-.~if!lJiJ り
The follo¥,;i ng sentence has several possible interpretations.

Go across the street to the north of the station_

Choose the right one:

@ go (across the street to the no『th).

0 to the north, go across the street.

•

蒐

(CE)

Figure C.5: Dialogue for "Go across the stree to the North of the station."

The fo 11 o'Yli ng se nte nee has several possi bl e i nte r p retati o ns.

That i:s "ri'here you can pick: up a taxi a:s "ri'ell.

Choose the right one:

@ that is, as'w/ell,'wlhere gou can picl:: up a taxi.

0 that is'wlhere gou can picl:: up (a taxi as'w/ell) _

C!w)

Figure C.6: Dialogue for "This is where you can pick up a taxi as well."

flpimg lilj§'!I! ‘ヽ

.‘

The fo 11 ov1i ng se nte nee has several possi bl e i nte r p retati o ns.

Iヽ,ill:shoヽヽリOU、;hereりou a re located rig ht no,,,,_

鴫

Choose the rig ht one:

@ I Yill shoYりou(Yhere you are located right noY) _

Q right DO丸 IYi 11 s ho-.., りouYhere you are located_

3
,

~
Figure C.7: Dialogue for "I wil show you where you are located right now."

101


~~~i!J':litリ

The following sentence has several possible interpretations. 

You can tell him that you are going to the international 
conference center and it :should be a tヽ,ent y mi n ute:s ride 

Choose the right one: 

R りoucan tell him thatりouare going to the international 
conference center. it :should be a t"rlenty mi nute:s ride. 

0 you can tell him that it should be a tYenty minutes ride. 

(JO 

Figure C. 8 : Dialogue for "You can tell hin that you are going to the international co,iference 
center and it should be a twenty minutes ride." 

The fo 11 owi rig se rite nee has several possi bl e i rite r p retati o ns. 

You a re goi ng to the i nte r national co nfe re nee center. 

Choose the right one: 

@ the (international center) for conference 

0 the center for (international conference) 

~ 
Figure C.9 : Dialogue for "You are going to the international conference center." 

104 



~~llig~ity 
The fo 11 ov1i ng se nte nee has several possible interpretations. 

lヽ,antthe sりmposium on interpreting telecommunication at 
the i nte r national co nfe re nce center. 

亀l

Choose the right one: 

@ the判 mposium (on interpreting telecommunications at the 
i nte r natio na 1 co nfe re nce center) 

0 at the international conference center, the判 mpo:sium on 
interpreting telecommunications 

Clw) 

囀

Figure C.l O : Dialogue for "I want the symposium on interpreting telecommunications at the 
international conference center." 

•
、

10ベ





編＇

ヽ

Appendix D 

Organization of the software 

The English disambiguation module is defined thanks to defunit, a kind of defsystem叫ity.

A unit represents a logical regrouping of lisp source files. They are similar to Common Lisp's 
concept of modules. The main difference is that by explicitly specifying the files that make up 
units, operations other than loading can be globally applied to them. 

Units are named objects. They are named by strings where case is not treated as significant. 
Every command in this module that wants a unit as an argument, will accept either strings or 
symbols. When symbols are used, their print name is taken and uppercased to make it case 
independent. 

The standard way to define units, is via unit definition files. When a command is passed a unit 
name say x, it first checks if a unit named x is already loaded in memory. If so, it uses that 
definition, otherwise it searches all the files in *unit-reg is try* for a file with name x. If 
none is found, an error is signaled, otherwise the file is loaded. The file is supposed to define 
unit x, if it does not, an error is also signaled. 

The actual definition follows. 

107 



゜

゜



(defunit "English_Disarnbiguation_Unit" 
(:depends-on :geta-stuff :geta-grapher) 
(:source-pathname "working-folder:ATR's Clarification Process;") 
(: binary-pathname II cc: binaries・; projects; ATR's Clarification Process; 11) 
(: components 11tree-grapher11 ; drawing of the selected tree 

;The engine 
; definition of the classes pattern, pattern-beam & beam-stack 

"Pattern&others_Class" 

; defintion of the class generic-textual-dialog-class, of the presentation 
methods, and other dialogue-related methodes 

"Dialog_Class" 

; def"rnition of the classes clarification-question-class & empty-question 

"Question_Class" 

; deirnitiofl of the operators 

",Operators" 

; some functions for the manipulation of the tree structure 

"Ling_Struct" 

, ;definition of the pattern matcher 

"Pattern-Matcher" 

; deirnition of the predicates to be used in the pattern and other services 

"Pattern-Matcher_Utils" 

; deirnition of the beam matching process (itlling of the matrix) 

"Beam_Match" 

; definition of the binding reduction process・ 

"Matching_Reduce" 

; definition of the ambiguity meta-class recognition states 

"Automaton_Services" 

; the question tree construction module 

"Question-Tree_Construction" 

; the question tre_e presentation module 

"Question-Tree_Presentation" 

>

;The English lingware 
; defintion of the disambiguation methods 

"English-Methods" 

; defintion of the English patterns, beams & stacks 

"English-Patterns" 

; defintion of the English dialogue classes 

"English_Dialog_Classes" 

; defintion of the English disambiguation automaton 

"English-Automaton" 

; Corpus of the mmc-structures to be used in the current 

impelementation 

"English_Analysis" 

; definition of the demonstration functions 

"Entry_Point")) 

）
 

109 


	01
	02
	03



