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Abstract

This report describes a statistical approach to parse spontaneous speech, taking into
account the phenomena of natural conversations. The input sentences are taken from
the ATR Dialogue Database. Using an adapted version of the stochastical language
model BLI, we yields in the detection and recovery of ill-formedness occuring in
spontaneous speech.
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1 Introduction

In contrast to conventional grammatical analysis the parsing of spontaneous speech has to
take into account the characteristics of natural conversations, which does not occur in more
formal styles of speech. These ungrammatical structures cause problems to an automated
syntactic analysis system.

We describe an approach to detect and recover from different kinds of ill-formedness, using
input sentences of the ATR Dialogue Database. The algorithm is based on the stochastical
language model BLI (Bayesian Language Inference). This model allows us to analyze ill-
formed input with mathematically sound consideration of full syntactic context.

First we give a short overview over the different phenomena of spontaneous speech. Then
we will describe the BLI model and the way how this approach can be adapted to our system.
Preliminary experiments to test our algorithm on artificially changed data will be described
and the results are used to improve our approach in order to be applied successfully on “real
data”. The report ends with the summary of the results and future aspects.

2 Ill-Formedness in Spontaneous Speech

Analysis of conversational data! collected by Laurel Fais [8] has shown that ill-formed input
proves to be very frequent. As reported in [15] about 75% of utterances in natural conversa-
tions are well-formed by any criterion. The remaining 25% of utterances are ungrammatical
and ill-formed, thus cannot be handled by conventional grammatical analysis.

In order to fulfill the goal of parsing ill-formed sentences we have to take into account
the nature of the phenomena of spontaneous speech. There are several characteristics of
spontaneous speech, which are not found in more formal styles of speech. These phenomena
can be grouped in different categories [7],[8):

syntactic violations
this category covers structural differences between speech and writing [19], e.g. the
omission of particles, which are used to identify the grammatical nature of the preceding
sequence. in spoken Japanese.

starts and stops of conversation

these phenomena introduce a certain number of structures, which make no significant
contribution to the conversation:

e false start: the initial uttered material is “replaced” by the following utterance. In
the case of a repetition the replacement is identical to the original; a repair corrects
a lexical item, whereas a fresh start corrects a phrase.

o filled pause: non-word sounds, that a speaker typically makes to fill silence, when
taking time to consider a structure, lexical item or conversational direction, e.g.
“um” or “ah” in English and “% &” or “®®” in Japanese [24]

!The ATR environment for Multimodal Interaction [14]
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e break: characterized by the lack of continuity between initial, discarded utterance
and the following restart. Breaks are instances of omissions, in which material is
deleted, that cannot be recovered.

o knowable omission: speaker deletes material from an utterances, that can be re-
covered in some way. Two categories can be distinguished: in the first syntactic
material necessary to the well-formedness is deleted (— break); in the second ad-
junctival material is omitted.

e interjection: break of utterance in order to change direction, but then return to the
breaking point and resumes the thought. Thereby the return to the first construction
is often accompanied by a repetition of the initial phrase.

e correction: switching from one syntactic direction to another (“self-repair”). In
contrast to breaks the semantic direction remains across the syntactic shift, but
corrections doesn’t return to the original structure, as interjections.

e repetition: repeating material around the reconstructing phrase. Many repetitions
only repeat a particular word or phrase. But they serve other functions as well, e.g.
emphasizing an utterance or confirming understanding of a statement.

noun phrase phenomena

structures, such as topicalization, left and right dislocation and the use of appositives are
all grammatical, but they are fairly common phenomena in natural conversations.

sentence level issues

fragmentary exclamatory phrases, which can be divided in different groups of expressions.
Idiomatic phrases and structures (e.g. “hey”, “oh look”) are singular, i.e. they occur
alone without a structural attachment to the sentence. Yes/No-answers (e.g. “OK?”,
“I2 ") are used to signify dis-/agreement with or understanding of a previous utterance.
Discourse markers (e.g. “well”, “32”) are sequentially dependent elements, which brackets
units of the talk [23].

Between human beings these phenomena do not weaken the understanding of natural con-
versations, because humans adapted some mechanism to overcome these problems. However,
the special characteristics of spontaneous speech do cause significant problems to automated
syntactic analysis systems.

Moreover, other errors introduced by speech recognizer failure or incorrect part-of-speech
tagging are likely to come up and widen the gap between the utterance as intended by the
speaker and the actual input given to the parser.

In the following, we will assume that this input is a string of symbols delivered by a
part-of-speech tagger, allowing some symbols to be considered “unrecognized”, the other
symbols being taken from a list of grammatical categories (cf. Appendix A and B). Each
string of symbols will be referred to as a sentence. The input will be considered ull-formed
whenever the intended sentence (as defined by human analysis) differs from the actual input
sentence yielded by the part-of-speech tagger. These differences between intended sentence
and actual input sentence can be classified into three elementary categories:
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e insertion of a symbol
e substitution of a symbol for another symbol

o deletion of a symbol

Insertion phenomena of unrecognized symbols are typically encountered in the case of “filled
pauses”, whereas insertion phenomena of recognized symbols occur in “false starts”. Filled
pauses and false starts, usually discussed in the literature as disfluencies, may of course
cause the insertion of one or more symbols.

A substitution of a symbol for another symbol typically occurs in cases, where speech
recognition either fails to identify a constituent or just mistakes a constituent for another
one. Errors coming from the speaker can also be responsible for this type of ill-formedness,
e.g. in the case of slips of the tongue, but these errors don’t occur frequently {4].

Finally a deletion of a symbol will be encountered whenever a speaker deletes material
from an utterance. This type of deletion is typical of the differences between spoken and
written language.

The framework defined so far is purely syntactic. The input sentences given to our parser
are a list of grammatical symbols, and only syntactic information is made available. Other
works taking into account semantics and world knowledge have been conducted, e.g. using
abduction-based inference schemes [5],[10].

But these approaches seems not be sufficient enough. So we have considered alternative
solutions in order to parse ill-formed input [11]. Because the use of stochastic models in
the field of natural language processing has recently led to dramatic improvements in the
performance of parsing systems, a statistical approach seems to be promising [1],[18]. While
allowing automatic training of stochastic grammars, these models also provide the quanti-
tative analysis needed in the disambiguation process. This mathematically sound analysis
makes the use of statistical models quite relevant to the task of parsing ill-formed input.

However simple local stochastic models like n-gram models [12], probabilistic context-free
grammars [13] or tree-adjoining grammar formalisms [22] only give us general information
about how likely a structure is to appear anywhere in a given sentence. Rule expansion at a
given node only depends on the portion of input spanned by this node (inside context), and
doesn’t consider the remaining part of the input (outside context). Therefore these simple
statistical models would not display the full consideration of context.

The target of our approach is to develop an algorithm, which allows the full use of
structural information (combining detection and parsing process), which takes into account
the whole input sentence (inside and outside context) and which uses powerful mathematical
tools in the disambiguation process in order to select the best parse among a great number
of possible parses. The approach is based on the stochastical language model BLI , which
we will describe in the next section.




3 Bayesian Language Inference (BLI )

The Bayesian Language Inference’ is a language model for speech recognition, which com-
bines the theory of Bayesian Networks [9] with the concept of Probabilistic Context Free
Grammars [2]. '

A Context Free Grammar (CFG) is used to describe the natural language. The words of
the language can be clustered in categories, e.g. a noun or an adverb, which are referred as
terminals. The fragments of sentences, e.g. a noun-phrase or a verb-phrase, are represented
by non-terminals. Through the repeated application of rewriting rules for non-terminals,
sentences can be generated. If these rules are restricted, so that a non-terminal symbol can
either be rewritten as a string of two non-terminals or as a single terminal symbol, the CFG
is said to be in Chomsky normal form [3].

In order to use context information during the selection of a rewriting rule, a Stochastic
Context Free Grammar (SCFG/PCFG) assigns a certain probability p to each rule, which
provides a measure for the strings which can be generated. A PCFG, which consist of Ny,
non-terminals and N; terminals, is defined as:

(Wii<icn, = set of terminals

< W,G, s, R >, (Gj)1<i<ivm, = set of non-terminals
E = starting symbol
R = set of rewriting rules

The BLI uses a PCFG in Chomsky normal form, which can be described by the following

quantities:
Ajjx  a tensor denoting the probabilities for the rewriting rules G; — GGy € R.
Bim a matrix denoting the probabilities for the rewriting rules G; — Wm € R.
Pn  a vector describing the probability of GG, being the initial symbol.

Additional, these quantities must satisfy the following stochastic constraints:

an Nnt N Nnt
Vi ZZAijk—l-ZBim:l, anZI
i=1 k=1 m==1 n=1

The theory of belief propagation in Bayesian networks [20] is concerned with the propagation
of partial information between (possibly hidden) nodes in a network. Given the observable
evidence, the probability distribution over the states of a node can be computed by passing
certain messages on a local scale, i.e. between adjacent nodes.

In BLI, these techniques are used, to learn the PCFG rules of a given grammar from
examples by processing unlabeled training text. The existing estimates of the grammar rule
probabilities are used to construct parse trees over segments of utterances. Belief propagation

?BLI was developed by Helmut Lucke at ATR. [16],(17].
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is then applied to these tree in order to obtain the posterior probability distribution of the

non-terminal symbols at each grammar node.
Before describing the single steps of the algorithm, we have to introduce the notations,
that are used in the rest of this report (cf. figure 1).

parse
<= {ree

observation

sequence
grammar
node
J
Cx Sy
<et—= eq er=
e

Figure 1: Definition of inner and outer evidence

With N,; and N; we denote the number of non-terminal and terminal symbols, respectively.
We will use the letters u,v,z as variables describing the non-terminal symbols. The part
of the observation sequence, which is produced by u, is called the inner evidence e and
the remaining part of the sequence outer evidence ef. e stands for the entire observation
sequence, which is spanned by the parse tree. Further we denote the conditional probability
BEL(u) = P(ule) the belief of u. In order to calculate the belief-vector BEL(u) we define
the auxiliary functions A(u) = P(e;|u) and 7(u) = P(ule}). Using these notation we can
define the entropy of a tree node u as:

E(u) = —log,(P(ey, e))) = —logy(A(u) - m(w))

Thereby a - b denotes the familiar dot product a - b = Zﬁ"{ a;b;, whereas the vector product
ab is the component-wise vector product (ab); = a;b;.

The BLI algorithm is divided in several steps. In the segmentation phase the observation
sequence is divided into segments. For each segment the topology of the spanning tree has to
be calculated, i.e. we have to decide on the structure of the tree without explicit knowledge
of the identity of the non-terminal symbols at each node. The decision, which non-terminal
should be assigned to the nodes of the structured tree, is carried out in the assignment
phase. The last problem in BLI is concerned with the continuous training of the parameter,
1.e. how can the A;;; and By, be re-estimated to reduce the overall entropy. But this phase
isn’t addressed here and the reader is referred to [16] and [17].




3.1 Segmentation Problem

The input of the BLI consist of unlabeled data, i.e. the algorithm uses no information about
sentence boundaries as segmentation points. So even units, smaller than a sentence (e.g. a
phrase), can be chosen as a segmentation unit. In order to find the segmentation points, the
BLI algorithm uses a simple dynamic programming type approach.

Up to a specified maximal length T}, — T, the parts of the input data (T, Tp) = s7, ... 57,
will be observed. Then for each pair (¢, t) of the observation sequence, with T, <, <1, <
Ty, a node n(t, tp) will be conjectured, which spans the segment s, ...sy,. For such a node
z the probability of generating e; = s, ...y, is defined as:

Az) = Mtearts,) = Pleg |2)

The following recursion allows us to calculate the A-values of the nodes of higher rank in a
bottom-up fashion:

A(u)i = A(twatu)i = ZZ Aijk . A(tx,tcw)j . A(twv,tu-)k

tzy jk

For each segment (¢, ?;) up to the maximum length these A-vectors and the entropy of
the spanning root node of (¢, t;) are calculated. Thus gives us a lattice, through which
the overall entropy minimizing path is selected to determine the segmentation points of the
observed sequence (cf. figure 2).

segment tree

segmentation

observation point

sequence

Figure 2: Determination of segmentation points

3.2 Structure Problem

These segmentation points represent the left and right boundaries of the trees. For each tree
we have a root node r, which spans e, = (t,, t,,) of the observation sequence. But until now
we don’t know anything about the structure of the tree, i.e. the identity of the descendants
of r.
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If r is no terminal node (ry — 7y > 1), then it expands into two nodes = = n(ry,r;) and
v = n(r,,79), whereas 11 < 7, < 7. Using a prior distribution vector = for the root node r
the outer evidence of the two daughter nodes are calculated (cf. section 3.3) and propagated
top-down through the tree spanned by r. Using these m-vectors and the A-vectors used in
the segmentation phase, the evidence of each node can be calculated as follows:

E(u) = —logy(A(u) - 7(u))

The division point is selected, by trying all possibilities of splitting the spanned observation
sequence into two parts and minimizing the sum E(z) 4+ E(v) of evidences of each pair of
daughter-nodes = and v. This approach is applied top-down, starting at the root node r,
until the structure of the complete tree is found (cf. figure 3).

minimize entropy
of daughter nodes

=
% B £ iy} iE 41 J& B £ By Hi ]
) h= H B B = ) = A L) )= j=
| % & il % il
il i) Eﬂ e
B ¥
it A Ey A
v . M T ¥ o 2 . H T N o

Figure 3: Calculation of the tree structure

3.3 Assignment Problem

In this probabilistic framework, the assignment task for each node u is simply that of de-
termining the non-terminal symbol of highest probability given the global evidence e. This
is achieved by finding the vector BEL(u) = P(ule), the i-th component of this vector being
defined as the probability, that node u corresponds to non-terminal symbol G;, given the
entire input sequence. In order to calculate BEL(u) we use the auxiliary vectors A and =

AMu) = Pleg|u) AMs) = (0,...,0,1,0,...,0)
m(u) = P(ef|u) (1) = P(s]ef)

The A(u)-vector provides us with information about the nature of u based on inner evidence,
whereas 7(u) provides us with the same type of information, but based on outer evidence.

Additional, the A- and w-vectors are defined for a terminal s;, whereby the 1 in A(s:)
appears in the s;’th position and m(s;) describes the probability distribution of s;, given all
other symbols except s;.




The difference between A- and A-vectors comes from the fact, that in assignment phase
the probabilities are calculated given the tree structure.
The relations between probabilities of adjacent nodes are provided by the equations:

/\(u)2 = Z};Aijk/\(v)]’/\(z)k
m(v); = azk:AijkW(u>i/\(m)k

m(@)e = B Aipm(u)iA(v);

where o and f are normalization constants. All the A’s and 7’s can be determined recursively
using only local calculations and the belief vector is then given by:

Au)r(u)
Alw) - m(u)

/\(Z)i = ZBim/\(St)m
T(2)m = aZB,-mw(z)i

BEL(u) =

These equations can be understood in the following way (cf. figure 1): A(u) is determined
using only A-values of daughter nodes z and v, i.e. the inside evidence e is divided into e
and e; and the A-vectors can be calculated bottom-up. On the other hand, calculating 7 (z)
is done using the m-values (outer evidence) of the mother node u and the A-values (inner
evidence) of the sister node v. So the outside evidence e} is being divided into e; and e .

Once all A-values have been determined, the m-vectors can be calculated from top to
bottom nodes. The final equation, yielding BEL(u), only means that the probability that
node v stands for a given non-terminal symbol is obtained through the combination of two
sources of information: inner evidence given by A(u) and outer evidence given by (u)
(cf. figure 4). Full syntactic context, divided into inner and outer evidence, is therefore
considered.

max BEL;
O assign: G
O — KB
7\
& B i1 E/ E
G % b £ % i
il i ol b
# B
1 & X A
W N H T K o W H T Kl o

Figure 4: Assignment of grammatical categories
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4 Parsing of Ill-Formedness

The BLI system forms the basis of our approach to parse ill-formedness in spoken natural
language. We will describe, how the methods developed in BLI can be adapted in order to
handle the kinds of ill-formedness described in section 2.

First experiments were carried out by Pierre Hudry [11]. He applied the ILLPARSE al-
gorithm to data, whose ill-formedness was achieved by artificially changing (insertion and
substitution) some parts of correct input sentences. In contrast to this hand-changed sen-
tences, we are concerned in real data, which provides the special characteristics of spoken
natural language. '

But first we have to introduce some additional notations, which will be used in the rest
of this report. S is denoted as the set of possible input sentences, i.e. the set of finite strings
formed of terminal symbols. We call Wy the subset of sentences, for which the BLI method
as we have described it in section 3 succeeds in yielding a parse; Iy is further defined as
S\ Wy, the subset of sentences, which could not be parsed successfully. Let s, € W be the
sentence originally intended by the speaker and s the actual input sentence obtained after
whatever deletions, insertions and substitutions occur.

4.1 Adaption of BLI

The BLI method uses the A- and 7-vectors only as auxiliary functions to calculate the belief
vector BEL. However, combining the two sources of information provided by the inner
evidence A and the outer evidence 7 yields in an effective method to detect and recover the
different types of ill-formedness. Before we can describe this algorithm (cf. section 4.2), we
have to explain how the single steps of the BLI approach can be adapted in our system.
Whereas in BLI the segmentation points of the unlabeled data are calculated automaticly,

_the ILLPARSE system uses sentence segmentation, i.e. the segmentation points are given

by the structure of the input sentences. For each input sentence one parse tree will be
generated, whereby each tree is represented by its root-node.

The structure phase of ILLPARSE is similar to the one of BLI (cf. section 3.2). Travers-
ing the parse tree top-downwards, for each lattice the possible splitting combinations are
determined and the one, who minimizes the entropy of its daughter nodes, is selected as the
division point.

In the case of s € I, however, the system should choose a tree structure taking into ac-
count the existence of well-formed subtrees and their different probabilities. To achieve this,
we introduced some noise in the probabilities attached to the different rewriting rules®. In
order to deal with the different types of ill-formedness, the original probabilistic context-free
grammar has to be altered, e.g. additional rules* like G; — G; G, or G; — G, G; are added
with extremely low probabilities, whereby G, can be any of the specified grammar categories.
Because the assigned probabilities of these rules are extremely low, the ILLPARSE systems

3These modified rules are only to be used in the structure task, and not in the assignment task.
“These rules are represented by the vectors A;,; and Ay of the tensor A.




obtains the same results as the BLI system, if s € W;. In the case of ill-formed input,
however, a tree structure will be chosen using the greatest number of well-formed subtrees.

In the assignment phase of BLI the syntactic nature of the words is given by the inner
evidences, i.e. the A-vectors are propagated bottom-up. These values are then used to
calculate the outer evidences 7, which determines the expected non-terminals given the
global sentence context.

In ILLPARSE , however, the ill-formedness can cause P(e; [u) = 0 for a node u. Thus
the bottom-up propagation of A(u) results in zero probability vectors for all superior nodes.
This causes BEL= 0 and prevents us to assign categories to those nodes.

But, the partial information provided by the non-zero probability vectors, can be analyzed
on a finer-grain level, in order to recover from the ill-formedness.

4.2 Detection and Repair of Ill-Formedness

Before we can describe the algorithm, we have to mention some limitations of the current
ILLPARSE system. First we are restricted to the case of a single error. In theory multiple
errors can be handled, but we haven’t considered these problem yet. Furthermore we are
only concerned with ill-formedness of the kind insertion and substitution, leaving aside the
case of deletions.

Now, let us consider the tasks, which has to be performed in order to parse an ill-formed
input successfully:

o detection of the region, where the ill-formedness is present.
e identification of the type of ill-formedness
e recovery from the ill-formedness identified in previous step

The region of the ill-formedness can be determined in a very straightforward way. The
ill-formedness causes A(u) = 0 for a node u and because of the bottom-up propagation all
superior nodes will have zero A-probabilities (cf. section 3.3). Thus our criteria for identifying
the region of ill-formedness is to find a node u, with daughter nodes z and v, such that (cf.
figures 5 and 6):

Mu)=0; Aaz)#0; Alv) #0

Whereas the inner evidence of the ancestors of u gives us no information at all (zero
A-probabilities), the outer evidence of these nodes is still reliable. Using a prior distribution
vector for the root-node the recursive formula for calculating the outer evidence takes into
account the outer evidence of the mother node and the inner evidence of the sister node. But
in the case of a single error the sister node has a non-zero A-probability. So the 7 vectors of
the ancestor nodes of u can be accurately determined, including = (u).

The identification of ill-formedness, detected in the previous step, will then be performed
by directly comparing the A- and w-vectors for the group of the nodes u, z, v and analyzing
coherence between their different values.
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Insertion

In the case of an insertion at node v (cf. figure 5) the nodes u and z are actually the same
node, i.e. if there would be no insertion, these nodes are identical. In order to hypothesize
an insertion at node v, we have to check, whether the vectors 7 (u) and A(z) are “sufliciently
close” to each other. The values of 7(u) and A(z) should provide similar information, 1.e.
there should be no contradiction (r(u) - A(z) 3> 0). Thus we have to introduce a threshold
value 0;, which yields in the following criteria for identifying an insertion at node v:

Mz) - w(w) > 0;

The part of the input sentence, which is responsible for the ill-formedness; can then be
eliminated and the parser proceeds with the calculation of the A- and r-vectors.

- -
I & B iy E &
) J=1 A ) ) E2h J=1
il % i i
| e i)
L Bg
1% Vi
v . B T T a o

Figure 5: Insertion occuring at node v

Substitution

A substitution occuring at node z (cf. figure 6) brings false information about the inner
evidence of this node. Therefore, the information provided by the inner evidence A(v) at
node v and outside evidence 7 (u) at node u are likely to contradict each other. Consequently
m(z) = w(u)M(v) gives us no information at all (7(z) - x(z) ~ 0). Again we introduce a
threshold variable to define the following criteria for identifying a substitution at node z:
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w(z) m(z) <0,

In the assignment task we have to rely upon the outer evidence of node u, because the

inner evidence fails to bring us any information. Thus we have to determine the most likely

grammar category G, based on the information provided by the outer evidence probabilities
- (max; 7(u);) and assign it to node .

T T

Figure 6: Substitution at node x

W \

In order to check the validity of the recovery, the sentence has to be re-parsed, i.e. starting
from node u the A-vectors have to be propagated up to the root node of the parse tree. Using
the prior distribution, as well as the new A-values the outer evidence and the BEL-vector of
each node are re-calculated. If the re-parse failed, we have to determine the next most likely
grammar category, assign it to node u and re-parse it again, until the sentence is successful
recovered or no valid assignment is found.

Computational Costs

It is important to note, that the computational costs of the operations to detect and recover
from an ill-formedness are not any higher than the one involved in parsing well-formed input.
This can be explained by the fact, that an ill-formed section of input will generate a great
number of zero A- and w-probability vectors, which all lead to trivial calculations.

This apparent reduction in costs will of course be compensated later on in the recalcula-
tion of probability vectors from the new non-zero As- and w-vectors. But the important point
here is, that dealing with ill-formed input using the described methods does not increase the
computational costs tremendously.

12
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4.3 Parsing of Artificially Changed Data

In order to prove the validity of the described approach, preliminary experiments were carried
out using artificially altered, tagged data [11]. The input sentences were taken from the
ATR Dialogue Database [6]. The set of input data, used in this experiments, consisted of
245 sentences, whereby its length ranged between 2 and 8 symbols.

Each of these well-formed sentences were artificially changed by randomly inserting and
substituting one of the following categories:

BEhaE (kandoshi) —  interjection
Z8E  (gobi) —  suffix
¥BhE]  (kakujoshi) —  case particle

The categories &R and #BIF were chosen, because they are strongly constrained gram-
matical categories, which should be easily detected as the source of the ill-formedness.

For each of the input sentences we made 7 iterations of the algorithm. First the correct,
unchanged input data was parsed. Then, each of the above mentioned categories were
randomly inserted (3 parses) and substituted (3 parses). Thus the altering of the the correct
input data gives us a set of 735 input sentences for testing insertions and substitutions,
respectively.

As described in section 4.2 the system had to detect the region of the ill-formedness, i.e.
the category, we used to modify the input sentence, and to identify the type of the present
ill-formedness. If an insertion was detected, we recover the original sentence by deleting
the ill-formed branch of the parse tree. In the case of substitution we have to rely on the
outer evidence of the detected node, i.e we assign the category with max. probability, given
the outer evidence, and re-parse the sentence in order to update the assignment of the zero
probability nodes in the parse tree.

The results of the preliminary experiments are summarized in Table 1.

Changed to Well-Form Detected Recovered
(% of parsed) (% of failed to parse ) | (% of failed to parse )
Insertion 24.19 % 87.75 % 59.46 %
Substitution 20.14 % 82.29 % 68.65 %
Total 22.16 % 85.01 % 64.05 %

Table 1: Results using artificially changed data
Out of the 735 input sentence for insertion 180 sentence (24.19%) were parsed correctly, i.e.

the ill-formed inputs were changed to well-formedness. For the remaining 555 sentences the
system failed to parse the input. For 527 of the failed sentences (87.75%) an insertion was

13




identified as the type of ill-formedness and in 330 cases (59.46%) the system succeeded in
recovering the exact parse tree, i.e. a sentence structure identical to the original input data
was found.

In the case of substitution 148 sentences (20.14%) were changed to well-formedness. Out
of the remaining 587 input sentences 468 (82.29%) were detected as a substitution and 403
(68.65%) were recovered identical to the unchanged data.

After describing the results of the experiments, we have to mention the limitations of
our approach, too. First of all, only a single error is allowed, i.e. only one ill-formedness
is introduced at one time for each input sentence. Another limitation is, that we are only
concerned in the detection and recovery of insertions and substitutions, leaving out the case
of deletion and unrecognized symbols.

4.4 Parsing of Spontaneous Speech

Starting with the results of the preliminary experiments we are now concerned in parsing
spontaneous speech. The “real data”, also taken from the ATR Dialogue Database, is
provided by a part-of-speech tagger, whereby the ill-formed parts of the utterances are
marked, using the following meta-characters:

[J] — interjection {} — overlap
() — repair <> — comment

Our experiments are focused on the detection and recovery of the first two types of marked
ill-formedness. These characters are eliminated from the input sequence during the reading
of the data. Thus the input of our system consist of a sequence of known grammatical
categories, just as in the experiments described above. But the information, provided by the
meta-characters, can be used in order to analyze the results of our algorithm.

In contrast to the preliminary experiments, there are no substitutions marked in our
corpus, only insertions. The kind of ill-formedness, which has to be detected, is therefore
limited to filled-pause, false start, interjection and correction.

The corpus of our experiments consists of 2311 sentences. Because the input of our system
requires a sequence of grammatical categories, we have to abstract from the symbolic level
of the sentences. Thus the number of the associated category sequences decreases to 1960
unique input sequences. Out of them we uses 1399 utterances, its length ranging between 2
and 17, to extract single errors, yielding in 595 well-formed input sequences, 690 interjections
and 114 repairs. '

In order to elucidate the recovery mechanism, we illustrate our approach (cf. section 4.2)
given the two examples in figure 8 and 7.

In the trivial case of an interjection the category [EJ#F (kantoshi) is detected as the
source of the ill-formedness, occuring in the second position. Again, by eliminating the ill-
formed branch of the parse tree and re-calculating the BEL-vector for each node, the correct
sentence can be recovered.

In the case of the repair the ill-formedness, introduced by the category jH#AF (rentaishi),
is detected on the left side of the lowest node marked with “A = 0”. After eliminating the
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Figure 8: Recover from ill-formedness of type repair

left branch the re-propagation of the A- and w-values yields in recovering the correct sentence
structure.

The results of our experiments are summarized in Table 2. In the case of well-formed
input sentences a success rate of parsing correctly of 61.34% were yielded. In the remaining
38.66% an ill-formedness was erroneously detected.

In the case of ill-formed input sentences we distinguish between trivial cases, i.e. the
insertion of the category fE#¢%, and non-trivial cases (e.g. repairs). Out of the 755 trivial
cases none was changed to well-formedness. A correct detection was done in 53.38% of the
ill-formed input and in 2.65% the detection was wrong. The non-trivial cases consist only
of 49 examples, out of which only 11 sentences (22.45%) were detected correct. Besides 11
sentences (20.40%) were wrongly detected and 23 cases (46.94%) are changed to well-form.

Thus gives us a total rate of correct detected insertion of 53.00% and a failure of the
identification of the ill-form type in 13.33%. But all detected insertions, even the wrong
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Well — Formed Input

Il — Formed Input

Good

Failed

61.34%

38.66%

Trivial (fE#%5) | Non-Trivial | Total

%S:ﬁlg;ig — 46.94% 2.86%
Diireliztd 53.38% 22.45% | 53.00%
D"!;‘;ifd 2.65% 20.40% | 13.44%

Table 2: Results using spontaneous speech data

detected ones, could be recovered to well-form sentence structure.

The detection of 113 substitutions was wrong in each case, because there are no substi-
tutions marked in our spontaneous speech data. But even if the detection was wrong, the

system yielded to recover 75 sentences (66.37%).

5 Implementation Details

In this section we describe some characteristics of the implementation of our approach, which
should be mentioned for those, who are willing to continue the work described in this report.

Data

The input data is part of the ATR Dialogue Database and is provided by a part-of-speech

tagger. The following examples (cf. figure 7) shows the format of our data:

5|930/2050(11980| T | 7 | Td | &EEF | ||| |
5/930/2060(11990] || C| || ]|
5/930(2060{12000| B> [ 7/ | B> || ||| |
5930]2060(12010(1 |13 |||
5(930[2070|12020| W< B[4 27 | W b | R&F| | | ] |

51930|2070[12030| < | &

T

BEhE | 45k | BB | | |

5/930(2070]12040] 3 | = | 3 | BBRE | W |4k | ||
5|930]2070]12050| 2> | 3 | 2> | #EHFA | | | | |
5/930|2070]12060|, ||o |ECE ||| ||

—



In order to handle Japanese characters correct, ILLPARSE requires the EUC-format for the
data-files. We used the UNIX-command “nkf -¢” for changing the original data® to the
required file-format.

Grammar

The grammar used in our approach is a probabilistic context-free grammar (PCFG) in
Chomsky normal form, which consists of 412 rewriting rules (cf. Appendix C). The original
grammar was not in Chomsky normal form, so we had to transform the grammar to the re-
- quired format by introducing additional “non-terminals” (symbol G251, ..., symbol_G262).

The probabilities assigned to the rules of our PCFG are not optimal. They are directly
estimated from the corpus of the ATR Dialogue Database. But , at least, these frequency
counts provides us with likely values for the rewriting rules.

In contrast to the basic work, described in [11], the meaning of the categories used in
the grammar differs slightly from those used in the spontaneous speech data. On the one
side the differentiation between the categories {Hif&BIBFEE#: (shiekijoddshigokan) and 525
BhEhEEE (ukemijoddshigokan) in the grammar, can not be found in the data. So we have
to adapt the grammar by mapping both categories to the more general category BhEhEiEE
B (jodoshigokan). On the other side the part-of-speech tagger assigned some categories to
the corresponding part of the utterance, which are too general to be handled by the parser.
Therefore we have to change the categories BiElFd (jodoshi) and #iBIEIF (hojodoshi) to the
more specific ones BIENFIEE#: (joddshigokan) and #iBhEIEIEE: (hojodoshigokan).

Another adaption is concerned with the category 2% (kigd). During the tagging process
this category is used as well for “; ” and “, ”, as for other special characters, like “ 7”7,
9", etc. But in the grammar the symbols “, ” and “, ” are assigned to the categories AJx{
and ki, respectively.

The changes of the data takes place during the reading of the input data. The changes
of the categories can be summarized as follows:

data grammar
BUE - AR
MBI — BB EEYBEES - B
w5 o st SHYWFRES - BB
RLE — iRl for 47

As described earlier we are not working on the symbolic sentence level, but using a sequence
of grammar categories as basic patterns. In the implementation described in [11] there is no
differentiation between a non-terminal, used in the input sequence, and the one assigned to
a non-leaf node in the parse tree. There the same symbol is used in both cases. In order to
clear the notation we introduce an additional naming convention, by adding an asterix (“*”)
at the end of the categories used in the input sequences (cf. Appendix A and B). Thus we

5~mizu/HUMAN_INTERPRETER/TAGGED_DATA
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have to introduce explicit rules of the form “G — G* : 1.0” for all input categories and

add them to the grammar.

Parsing

One limitation of our approach is the restriction to a single error. But due to the character-
istics of spontaneous speech, there are multiple errors occuring in the data. Thus we have
to eliminate all, but one ill-formedness in each input sentence.

In order to identify the type of the detected ill-formedness the threshold-values §; and 8,
are not used explicitly. Instead a multiplication factor is used for comparing the probabilities
of the respective ill-type. Analyzing the results of the preliminary experiments we refined
this factor, yielding better results for the parsing of natural dialogue utterances.

6 Discussion and Conclusion

Comparing the results of the preliminary experiments (cf. section 4.3) and the ones with
spontaneous speech data (cf. section 4.4), there are some remarks, which has to be men-
tioned.

In [21] the average rate of “changes to well-formed” is reported as 10%. In our ex-
periments only 2.86% of parsing an ill-formed input yields in a good parse. But because
substitutions are not marked in our data, we only take into account the case of insertions.
The high percentage (22.16%) found in the preliminary experiments is due to the randomly
introducing of the ill-formedness.

Concerning the case of ill-formed input we had a high percentage of trivial insertions of
the category fE#5¢5i (755 sentences). Only 49 examples of non-trivial cases of insertions could
be extracted from the corpus. Out of them only 22.45% could be detected correct. This
is due to high percentage of changes to well-formedness for these ill-formed input sentences
(46.94%).

For 13.44% of the input sentences an ill-formedness of type insertion was erroneously
detected. But all these cases were well-formed. Thus the wrong detection was due to the
failure of the parser and not to identification method. Also most of the detections of a
substitution are due to a failure of the parser, i.e. a well-formed input sentence failed to
be parse. Only in 30 cases a substitution was identified for an ill-formed (insertion) input
sequence, i.e. in 13.76% of the wrong detected sentences. But with increasing length of the
input sentence the failing rate of the parser decreases (cf. figure 9).

Because there are no substitutions marked in the corpus, all detections of an ill-formed-
ness of type substitution were wrong. But the recovery rate for these sentences (66.37%)
corroborate the results, found in the previous experiments (68.65%).

One possible improvement of our approach is concerned with the rule probabilities of our
PCFG. As mentioned before these are only frequency counts, estimated from the corpus and
thus not optimal. In order to optimize these parameters we can adapt the BLI algorithm,
to take into account the sentence boundaries of our input sequences. Using the training
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Figure 9: Wrong detection of substitution and insertion

feature of the original BLI approach, we should obtain optimal probability values for our
rewriting rules and can thus reduce the percentage of erroneous parses, as well in the cases
of ill-formed sentences (change to well-formedness and wrong detection of the ill-type), as
in well-formed input (fail to parse).

Besides, the PCF G, we presently use, should be revised. In case of short input sequences
the grammar is not specific enough, failing to find an applicable rule, especially in the case
of short input sentence (cf. figure 9). Thus the system failed to parse the sentence.

Another task for the future is to get ride of the limitation of a single error. In order to
parse spontaneous speech in a reasonable way, the handling of multiple errors is indispens-
able. The problem in the case of multiple error is, that the outer evidence of all nodes in
the parse tree can’t be calculated top-downwards (cf. section 3.3) any longer. The multi-
ple error can cause two daughter nodes to have zero A probabilities, resulting in zero outer
evidences for these nodes, when propagating the m-vectors top-down in the structure task.
One solution to this problem is to use prior distribution vectors not only for the root node of
the parse tree, but also assigning such a vector to all tree nodes. These distribution vectors
should, at least, depend upon the number of symbols it covers and the relative position in
the tree. In the case of multiple errors, we can use these additional information to calculate
the outer evidence of the respective nodes and proceed with the algorithm described above.
The recursive application of this approach should yield in reasonable results.

Until now there is only a Japanese grammar available in our implementation. Thus we
have to extract only the Japanese part of our natural conversation data, leaving the English
part aside. Because of the more complex sentence structure in English utterance it would be
an interesting enhancement of our approach to get hold of an English grammar and apply
our algorithm to the English part of the ATR Dialogue Database.
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C Grammar Rules
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: 0.00655738
: 0.01967213
: 0,20655738
: 0.04590164
: 0.08524590
: 0.00655738
: 0.05245902
: 0,00327869
: 0,01311475
3 0.04918033
: 0,06557377
: 0.00327869
+ 0.02622951
: 0.00327869
: 0.04918033
1 0.03934428
+ 0.04918033
: 0.00655738
: 0,00983607
: 0.04262295
1 0.04262295
1 0.06573770
: 0.00327869
: 0.00655738
: 0,.00983607
+ 0.00327869
: 0.00655738
: 0.07540984
: 0,00327869
: 0,00178571
: 0.08035714
1 0.25714286
1 0,64642857
: 0.00535714
1 0,00714286
1 0.00178571
: 1,00000000
: 1.00000000
: 0.50000000
: 0.560000000
: 0.50000000
+ 0,31250000
+ 0.12500000
"1 0.06250000
+ 0.04000000
+ 0,.96000000
1 0.85365854
1 0.02439024
: 0.12195122
+ 1.00000000
+ 0,14502822
1 0.04385584
: 0.38428137
: 0,08990881
: 0,00043422
+ 0.08165871
: 0.29483283
: 0.06818182
: 0,93181818
+ 1,00000000
1 0.00681818
: 0.99318182
: 0,00261097
: 0,96344648
: 0.00261097
: 0.01044386
: 0,01827676
: 0,00261097
: 0.00057904
: 0.00067904
: 0,00231816
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symbol.G252
3ymbol G253
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: 0.00173712
: 0.00057904
: 0.00057904
: 0.00057904
: 0.00115808
: 0.00463231
: 0.00752750
: 0.00057904
1 0.00057904
: 0.00289519
: 0.00231616
: 0.00057904
: 0.00115808
: 0.00289519
: 0.00231616
1 0.00057904
: 0.00405327
: 0.00231616
: 0.00579039
: 0.00057904
: 0.00173712
: 0.05616676
: 0.00057904
: 0.00231616
: 0.00231616
: 0.00984366
: 0.00405327
: 0.10364794
: 0.00057904
: 0.00521135
: 0.00579039
: 0.00636943
: 0.008108654
: 0.00289519
:70.002318616
: 0.00463231
+ 0.01215981
3 0.02663578
: 0.00057904
: 0.00115808
: 0.06195715
1 0.00579039
: 0.00057904
: 0.00289519
: 0.07759120
: 0.01968732
: 0.00405327
© 1 0.00868558
: 0.00057904
: 0.00463231
1 0.00694847
: 0.00231616
: 0.00752750
: 0.35726694
: 0.07527504
: 0.00057904
1 0.00173712
: 0.04574406
1 0.00289519
: 0.00926462
: 0.02346041
: 0.31085044
: 0.57184751
: 0.09384164
: 0.00367309
: 0.09366391
: 0.00642792
: 0.09366391
: 0.02571166
: 0.00091827
: 0.00183655
: 0,00183655
: 0.01928375
: 0.00091827
: 0.00367309
: 0.00183655
: 0.00091827
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: 0.06427916
: 0.01836547
: 0.01469238
: 0.00918274
: 0.03581267
: 0.297520686
: 0.00459137
: 0.00367309
: 0.01377410
1 0.11202938
: 0.00091827
: 0.00367309
: 0.01285583
: 0.15426997
1 0.01754386
: 0.03508772
: 0.01754386
: 0.01754386
: 0.07017544
: 0.01754386
1 0.31578947
1 0.40350877
: 0.01754386
: 0.01754386
: 0.07017544
: 1.00000000
: 0.03846154
: 0.25000000
1 0.55769231
1 0.01923077
: 0.06730769
1 0.03846154
: 0,02884815
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1,00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1,.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
: 1.00000000
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