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1 Introduction 

In contrast to conventional grammatical analysis the parsing of spontaneous speech has to 

take into account the characteristics of natural conversations, which does not occur in more 
formal styles of speech. These ungrammatical structures cause problems to an automated 

syntactic analysis system. 
We describe an approach to detect and recover from different kinds of ill-forrnedness, using 
input sentences of the ATR Dialogue Database. The algorithm is based on the stochastical 

language model BLI (Bayesian Language Inference). This model allows us to analyze ill-

formed input with mathematically sound consideration of full syntactic context. 
First we give a short overview over the different phenomena of spontaneous speech. Then 

we will describe the BLI model and the way how this approach can be adapted to our system. 

Preliminary experiments to test our algorithm on artificially changed data will be described 
and the results are used to improve our approach in order to be applied successfully on "real 

data". The report ends with the summary of the results and future aspects. 

2 Ill-Formedness in Spontaneous Speech 

Analysis of conversational data1 collected by Laurel Fais [8] has shown that ill-formed input 

proves to be very frequent. As reported in [15] about 75% of utterances in natural conversa-
tions are well-formed by any criterion. The remaining 25% of utterances are ungrammatical 
and ill-formed, thus cannot be handled by conventional grammatical analysis. 

In order to fulfill the goal of parsing ill-formed sentences we have to take into account 

the nature of the phenomena of spontaneous speech. There are several characteristics of 
spontaneous speech, which are not found in more formal styles of speech. These phenomena 

can be grouped in different categories [7], [8]: 

syntactic violations 

this category covers structural differences between speech and writing [19], e.g. the 
omission of particles, which are used to identify the grammatical nature of the preceding 

sequence. in spoken Japanese. 

starts and stops of conversation 

these phenomena introduce a certain number of structures, which make no significant 

contribution to the conversation: 

• false start: the initial uttered material is "replaced" by the following utterance. In 
the case of a repetition the replacement is identical to the original; a repair corrects 

a lexical item, whereas a fresh start corrects a phrase. 

• filled pause: non-word sounds, that a speaker typically makes to fill silence, when 
taking time to consider a structure, lexical item or conversational direction, e.g. 

"um" or "ah" in English and "えと"or"あの"in Japanese [24] 

1The ATR environment for Multimodal Interaction [14] 
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• break: characterized by the lack of continuity between initial, discarded utterance 
and the following restart. Breaks are instances of omissions, in which material is 

deleted, that cannot be recovered. 

• knowable omission: speaker deletes material from an utterances, that can be re-
covered in some way. Two categories can be distinguished: in the first syntactic 

material necessary to the well-formedness is deleted (→ break); in the second ad-
junctival material is omitted. 

• interjection: break of utterance in order to change direction, but then return to the 
breaking point and resumes the thought. Thereby the return to the first construction 

is often accompanied by a repetition of the initial phrase. 

• correction: switching from one syntactic direction to another ("self-repair"). In 
contrast to breaks the semantic direction remains across the syntactic shift, but 
corrections doesn't return to the original structure, as interjections. 

• repetition: repeating material around the reconstructing phrase. Many repetitions / 

only repeat a particular word or phrase. But they serve other functions as well, e.g. 

emphasizing an utterance or confirming understanding of a statement. 

noun phrase phenomena 

structures, such as topicalization, left and right dislocation and the use of appositives are 
all grammatical, but they are fairly common phenomena in natural conversations. 

sentence level issues 

fragmentary exclamatory phrases, which can be divided in different groups of expressions. 
Idiomatic phrases and structures (e.g. "hey", "oh look") are singular, i.e. they occur 

alone without a structural attachment to the sentence. Yes/No-answers (e.g. "OK", 

"はい")are used to signify dis-/ agreement with or understanding of a previous utterance. 
Discourse markers (e.g. "well", "ね")are sequentially dependent elements, which brackets 
units of the talk [23]. 

Between human beings these phenomena do not weaken the understanding of natural con-
versations, because humans adapted some mechanism to overcome these problems. However, 

the special characteristics of spontaneous speech do cause significant problems to automated 
syntactic analysis systems. 

Moreover, other errors introduced by speech recognizer failure or incorrect part-of-speech 
tagging are likely to come up and widen the gap between the utterance as intended by the 

speaker and the actual input given to the parser. 
In the following, we will assume that this input is a string of symbols delivered by a 

part-of-speech tagger, allowing some symbols to be considered "unrecognized", the other 

symbols being taken from a list of grammatical categories (cf. Appendix A and B). Each 
string of symbols will be referred to as a sentence. The input will be considered ill-formed 

whenever the intended sentence (as defined by human analysis) differs from the actual input 

sentence yielded by the part-of-speech tagger. These differences between intended sentence 
and actual input sentence can be classified into three elementary categories: 

／
ー
．
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• insertion of a symbol 

• substitution of a symbol for another symbol 

• deletion of a symbol 

Insertion phenomena of unrecognized symbols are typically encountered in the case of "filled 

pauses", whereas insertion phenomena of recognized symbols occur in "false starts". Filled 
pauses and false starts, usually discussed in the literature as disfiuencies, may of course 

cause the insertion of one or more symbols. 
A substitution of a symbol for another symbol typically occurs in cases, where speech 

recognition either fails to identify a constituent or just mistakes a constituent for another 

one. Errors coming from the speaker can also be responsible for this type of ill-formedness, 
e.g. in the case of slips of the tongue, but these errors don't occur frequently [4]. 
Finally a deletion of a symbol will be encountered whenever a speaker deletes material 
from an utterance. This type of deletion is typical of the differences between spoken and 

written language. 
The framework defined so far is purely syntactic. The input sentences given to our parser 

are a list of grammatical symbols, and only syntactic information is made available. Other 

works taking into account semantics and world knowledge have been conducted, e.g. using 

abduction-based inference schemes [5],[10]. 
But these approaches seems not be sufficient enough. So we have considered alternative 

solutions in order to parse ill-formed input [11]. Because the use of stochastic models in 
the field of natural language processing has recently led to dramatic improvements in the 
performance of parsing systems, a statistical approach seems to be promising [1], [18]. While 
allowing automatic training of stochastic grammars, these models also provide the quanti-

tative analysis needed in the disambiguation process. This mathematically sound analysis 
makes the use of statistical models quite relevant to the task of parsing ill-formed input. 

However simple local stochastic models liken-gram models [12], probabilistic context-free 
grammars [13] or tree-adjoining grammar formalisms [22] only give us general information 
about how likely a structure is to appear anywhere in a given sentence. Rule expansion at a 

given node only depends on the portion of input spanned by this node (inside context), and 
doesn't consider the remaining part of the input (outside context). Therefore these simple 

statistical models would not display the full consideration of context. 
The target of our approach is to develop an algorithm, which allows the full use of 

structural information (combining detection and parsing process), which takes in to account 
the whole input sentence (inside and outside context) and which uses powerful mathematical 

tools in the disambiguation process in order to select the best parse among a great number 

of possible parses. The approach is based on the stochastical language model BLI , which 

we will describe in the next section. 
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Bayesian Language Inf ere nee (BLI 、`ヽ＇／’

The Bayesian Language Inference2 is a language model for speech recognition, which com-

bines the theory of Bayesian Networks [9] with the concept of Probabilistic Context Free 

Grammars [2]. 
A Context Free Grammar (CFG) is used to describe the natural language. The words of 

the language can be clustered in categories, e.g. a noun or an adverb, which are referred as 

terminals. The fragments of sentences, e.g. a noun-phrase or a verb-phrase, are represented 

by non-terminals. Through the repeated application of rewriting rules for non-terminals, 

sentences can be generated. If these rules are restricted, so that a non-terminal symbol can 
either be rewritten as a string of two non-terminals or as a single terminal symbol, the CFG 

is said to be in Chomsky normal form [3]. 
In order to use context information during the selection of a rewriting rule, a Stochastic 

Context Free Grammar (SCFG/PCFG) assigns a certain probability p to each rule, which 
provides a measure for the strings which can be generated. A PCFG, which consist of Nnt 
non-terminals and Nt termi叫 s,is defined as: 

< W,G,s,R >, 
(W・) i 1<i<N1 = set of termmals 
(G) j 1<j<Nnt = set of non-termmals 
s = startmg symbol 
R ・= set of rewn tmg rules 

The BLI uses a POFG in Chomsky normal form, which can be described by the following 
quantities: 

Aijk 

Bim 

Pn 

a tensor denoting the probabilities for the rewriting rules Gi→ GjGk ER. 

a matrix denoting the probabilities for the rewriting rules Gi→ Wm ER. 

a vector describing the probability of Gn being the initial symbol. 

Additional, these quantities must satisfy the following stochastic constraints: 

Vi: 
Nnt Nnt 

~~ 知 +t如 =1
J=l k=l m=l 

Nnt 
こ四=1
n=l 

The theory of belief propagation in Bayesian networks [20] is concerned with the propagation 
of partial information between (possibly hidden) nodes in a network. Given the observable 

evidence, the probability distribution over the states of a node can be computed by passing 
certain messages on a local scale, i.e. between adjacent nodes. 

In BLI , these techniques are used, to learn the PCFG rules of a given grammar from 

examples by processing unlabeled training text. The existing estimates of the grammar rule 
probabilities are used to construct parse trees over segments of utterances. Belief propagation 

（
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2BLI was developed by Helmut Lucke at ATR [16],[17]. 
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is then applied to these tree in order to obtain the posterior probability distribution of the 

non-terminal symbols at each grammar node. 
Before describing the single steps of the algorithm, we have to introduce the notations, 

that are used in the rest of this report (cf. figure 1). 

observation 
sequence 

＋ eu 
＋ eu 

e 

Figure 1: Definition of inner and outer evidence 

With Nnt and Nt we denote the number of non-terminal and terminal symbols, respectively. 
We will use the letters u,v,x as variables describing the non-terminal symbols. The part 

of the observation sequence, which is produced by u, is called the inner evidence e;: and 

the remaining part of the sequence outer evidence et. e stands for the entire observation 
sequence, which is spanned by the parse tree. Further we denote the conditional probability 

BEL(u) = P(ule) the belief of u. In order to calculate the belief-vector BEL(u) we define 
the auxiliary functions入(u)= P(e;:lu) and 7r(u) = P(ulet). Using these notation we can 
de恥 ethe entropy of a tree node u as: 

E(u) = -log2(P(e~,e!)) = -log2い(u)•1r(u))

Thereby a• b denotes the familiar dot product a・b =区灼鴫， whereasthe vector product 
ab is the component-wise vector product (ab)i = a丸
The BLI algorithm is divided in several steps. In the segmentation phase the observation 

sequence is divided into segments. For each segment the topology of the spanning tree has to 
be calculated, i.e. we have to decide on the structure of the tree without explicit knowledge 
of the identity of the non-terminal symbols at each node. The decision, which non-terminal 

should be assigned to the nodes of the structured tree, is carried out in the assignment 
phase. The last problem in BLI is concerned with the continuous training of the parameter, 

i.e. how can the Aijk and Bim be re-estimated to reduce the overall entropy. But this phase 
isn't addressed here and the reader is referred to [16] and [17]. 
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3.1 Segmentation Problem 

The input of the BLI consist of unlabeled data, i.e. the algorithm uses no information about 
sentence boundaries as segmentation points. So even units, smaller than a sentence (e.g. a 
phrase), can be chosen as a segmentation unit. In order to find the segmentation points, the 
BLI algorithm uses a simple dynamic programming type approach. 

Up to a specified maximal length⑰ -Ta, the parts of the input data (Ta四） = STa• • • 3Tb 
will be observed. Then for each pair (ta九） of the observation sequence, with Ta~ 払<tb~ 
n, a node n(ta杯） will be conjectured, which spans the segment s柘...Stb. For such a node 
し℃ the probability of generating e-;; = sxa ... s缶bis defined as: 

A(x):;:::::: A(ixa, 伝） =P(e;lx) 

The following recursion allows us to calculate the A-values of the nodes of higher rank in a 
bottom-up fashion: 

A(u)i = A(tx, tふ =~~Aijk. A(tの9年）j・A(tのV)iv)k 
t⑪ JK 

For each segment (ta tb) up to the maximum length these A-vectors and the entropy of 
the spanning root node of (ta九） are calculated. Thus gives us a lattice, through which 
the overall entropy minimizing path is selected to determine the segmentation points of the 

observed sequence (cf. figure 2). 

~ 
segment tree 

observation 
sequence 

I 
Figure 2: Determination of segmentation points 

3.2 Structure Problem 

These segmentation points represent the left and right boundaries of the trees. For each tree 

we have a root node r, which spans e-; = (tr1 trJ of the observation sequence. But until now 
we don't know anything about the structure of the tree, i.e. the identity of the descendants 
of r. 

／
＼
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If r is no terminal node (乃一門>1), then it expands into two nodes x = n(rぃr8)and 
V = n(八，乃）， whereasr1 :::; 匹さ乃.Using a prior distribution vector 7r for the root node r 

the outer evidence of the two daughter nodes are calculated (cf. section 3.3) and propagated 
top-down through the tree spanned by r. Using these 1r-vectors and the A-vectors used in 

the segmentation phase, the evidence of each node can be calculated as follows: 

E(u) = -log2(A(u)・1r(u)) 

The division point is selected, by trying all possibilities of splitting the spanned observation 

sequence into two parts and minimizing the sum E(x) + E(v) of evidences of each pair of 
daughter-nodes x and v. This approach is applied top-down, starting at the root node r, 

until the structure of the complete tree is found (cf. figure 3). 

minimize entropy 
of daughter nodes 

＝⇒ 
＼ ＼ノ ＼ ＼ ＼ノ ＼ノ

感 二=鸞~ 士

> 鷹
語
翌 感

吾虚'士" ， 助 胃 悶胃 尾 冒 ， ， 詞

は 本 は 本
vヽ 田 で す

゜
vヽ 田 で す

゜
Figure 3: Calculation of the tree structure 

3.3 Assignment Problem 

In this probabilistic framework, the assignment task for each node u is simply that of de-
termining the non-terminal symbol of highest probability given the global evidence e. This 

is achieved by finding the vector BEL(u) = P(ule), the i-th component of this vector being 
defined as the probability, that node u corresponds to non-terminal symbol Gi, given the 
entire input sequence. In order to calculate BEL(u) we use the auxiliary vectors入and1r: 

入(u)= P(e;;lu) 入(st)=(0, ... ,0,1,0, ... ,0) 
1r(u) = P(e!lu) 1r(st) = P(s麟）

The入(u)-vectorprovides us with information about the nature of u based on inner evidence, 

whereas 1r(u) provides us with the same type of information, but based on outer evidence. 

Additional, the入-and炉 vectorsare defined for a terminal St, whereby the 1 in入(sリ
appears in the st'th position and 1r(st) describes the probability distribution of sぃgivenall 
other symbols except sか
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The difference between A-and入-vectorscomes from the fact, that in assignment phase 

the probabilities are calculated given the tree structure. 
The relations between probabilities of adjacent nodes are provided by the equations: 

I:A勺k入(v)j>-(x)k
鉢

C¥I: Ajk7r(u)i,¥(X)k 
ik 

(3 I: Aij汀 (u)i,¥(v)3
ij 

where a and (3 are normalization constants. All the入'sand 1r's can be determined recursively 
using only local calculations and the belief vector is then given by: 

入(u)i

1r(V)j 

1r(x)k 

＝ 

＝ 

BEL(u) = 
入(u)1r(u)

刷）・1r('U)

These equations can be understood in the following way (cf. figure 1): 入(u)is determined 
using only入-valuesof daughter nodes x and v, i.e. the inside evidence e~is divided into e;;; 
and e; and the入-vectorscan be calculated bottom-up. On the other hand, calculating 1r(x) 
is done using the'Tr-values (outer evidence) of the mother node u and the入-values(inner 
evidence) of the sister node v. So the outside evidence e; is being divided into e! and e;. 
Once all入-valueshave been determined, the 1r-vectors can be calculated from top to 
bottom nodes. The final equation, yielding BEL(u), only means that the probability that 
node u stands for a given non-terminal symbol is obtained through the combination of two 
sources of information: inner evidence given by入(u)and outer evidence given by 1r(u) 
(cf. figure 4). Full syntactic context, divided into inner and outer evidence, is therefore 
considered. 

感
動
詞

読
点
固

有

名

詞

本

田

助
動
詞
語
幹

語
尾
句
点

maxBELi 

assign: Gi 

⇒ 

入(z)i

1r(z)m 

LBim入（叫m
m 

吟こBim1r(z)i
i 

詞
＼
動

詞
ヽ
助
／／
 

動

文／
fJ

＼／
 

んん且

読
点

詞
＼
動感

／

助
動
詞
語
幹

固
有
名
詞

感
動
詞

語
尾
旬
点

は
Vヽ で す

゜

は
Vヽ

本
田 で す

゜Figure 4: Assignment of grammatical categories 
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4 Parsing of Ill-Formedness 

The BLI system forms the basis of our approach to parse ill-formedness in spoken natural 

language. We will describe, how the methods developed in BLI can be adapted in order to 
handle the kinds of ill-formedness described in section 2. 
First experiments were carried out by Pierre Hudry [11]. He applied the ILLPARSE al-

gorithm to data, whose ill-formedness was achieved by artificially changing (insertion and 
substitution) some parts of correct input sentences. In contrast to this hand-changed sen-

tences, we are concerned in real data, which provides the special characteristics of spoken 

natural language. ・ 
But first we have to introduce some additional notations, which will be used in the rest 

of this report. S is denoted as the set of possible input sentences, i.e. the set of finite strings 
formed of terminal symbols. We call vV1 the subset of sentences, for which the BLI method 
as we have described it in section 3 succeeds in yielding a parse; 11 is further defined as 

S ¥ W1, the subset of sentences, which could not be parsed successfully. Let s。EW1 be the 
sentence originally intended by the speaker and s the actual input sentence obtained after 

whatever deletions, insertions and substitutions occur. 

4.1 Adaption of BLI 

The BLI method uses the入-and 1r-vectors only as auxiliary functions to calculate the belief 

vector BEL. However, combining the two sources of information provided by the inner 
evidence入andthe outer evidence 1r yields in an effective method to detect and recover the 
different types of ill-formedness. Before we can describe this algorithm (cf. section 4.2), we 
have to explain how the single steps of the BLI approach can be adapted in our system. 

Whereas in BLI the segmentation points of the unlabeled data are calculated automaticly, 
the ILLPARSE system uses sentence segmentation, i.e. the segmentation points are given 

by the structure of the input sentences. For each input sentence one parse tree will be 
generated, whereby each tree is represented by its root-node. 

The structure phase of ILLP ARSE is similar to the one of BLI (cf. section 3 .2). Travers-
ing the parse tree top-downwards, for each lattice the possible splitting combinations are 

determined and the one, who minimizes the entropy of its daughter nodes, is selected as the 

division point. 

In the case of s E 11, however, the system should choose a tree structure taking into ac-
count the existence of well-formed subtrees and their different probabilities. To achieve this, 

we introduced some noise in the probabilities attached to the different rewriting rules釘 In

order to deal with the different types of ill-formedness, the original probabilistic context-free 

grammar has to be altered, e.g. additional rule翌likeGi→ Gi G* or Gi→ G凸 areadded 
with extremely low probabilities, whereby G* can be any of the specified grammar categories. 
Because the assigned probabilities of these rules are extremely low, the ILLPARSE systems 

3These modified rules are only to be used in the structure task, and not in the assignment task. 
4These rules are represented by the vectors Ai*i and Aii* of the tensor A. 
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obtains the same results as the BLI system, if s E vV1. In the case of ill-formed input, 
however, a tree structure will be chosen using the greatest number of well-formed subtrees. 
In the assignment phase of BLI the syntactic nature of the words is given by the inner 
evidences, i.e. the入-vectorsare propagated bottom-up. These values are then used to 
calculate the outer evidences 1r, which determines the expected non-terminals given the 

global sentence context. 

In ILLPARSE, however, the ill-formedness can cause P(e~lu) = 0 for a node u. Thus 
the bottom-up propagation of入(u)results in zero probability vectors for all superior nodes. 

This causes BEL= 0 and prevents us to assign categories to those nodes. 

But, the partial information provided by the non-zero probability vectors, can be analyzed 
on a finer-grain level, in order to recover from the ill-formedness. 

4.2 Detection and Repair of 111-Formedness 

Before we can describe the algorithm, we have to mention some limitations of the current 
ILLPARSE system. First we are restricted to the case of a single error. In theory multiple 

errors can be handled, but we haven't considered these problem yet. Furthermore we are 

only concerned with ill-formedness of the kind切sertionand substitution, leaving aside the 
case of deletions. 

Now, let us consider the tasks, which has to be performed in order to parse an ill-formed 
input successfully: 

• detection of the region, where the ill-formedness is present. 

• identification of the type of ill-formedness 

• recovery from the ill-formedness identified in previous step 

The region of the ill-formedness can be determined in a very straightforward way. The 

ill-formedness causes入(u)= 0 for a node u and because of the bottom-up propagation all 
superior nodes will have zero入-probabilities(cf. section 3 .3). Thus our criteria for identifying 
the region of ill-formedness is to find a node u, with daughter nodes x and v, such that (cf. ( 
figures 5 and 6): 

入(u)= O; 入(x)# O; 入(v)# 0 

Whereas the inner evidence of the ancestors of u gives us no information at all (zero 
入-probabilities),the outer evidence of these nodes is still reliable. Using a prior distribution 

vector for the root-node the recursive formula for calculating the outer evidence takes into 

account the outer evidence of the mother node and the inner evidence of the sister node. But 

in the case of a single error the sister node has a non-zero入-probability.So the 7r vectors of 

the ancestor nodes of u can be accurately determined, including 1r(u). 

The奴lentificationof ill-formedness, detected in the previous step, will then be performed 
by directly comparing the入-and 1r-vectors for the group of the nodes u, x, v and analyzing 
coherence between their different values. 

10 



． 
Insert10n 

In the case of an insertion at node v (cf. figure 5) the nodes u and x are actually the same 
node, i.e. if there would be no insertion, these nodes are identical. In order to hypothesize 
an insertion at node v, we have to check, whether the vectors 1r(u) and入(x)are "sufficiently 

close" to each other. The values of 1r(u) and入(x)should provide similar information, i.e. 

there should be no contradiction (叫）．入(x)≫0).Thus we have to introduce a threshold 
value 0i, which yields in the following criteria for identifying an insertion at node v: 

入(x).7r(u) > ei 

The part of the input sentence, which is responsible for the ill-formedness; can then be 

eliminated and the parser proceeds with the calculation of the入-and 7r-vectors. 

感
吾閤‘ ’主‘ ‘ ， 助 助 語 旬

動 動 動 尾 ‘占‘‘‘ 
詞

冒幹
詞

詞 喜
は 本
¥,,¥ 

ヽ 田 で で す
゜Figure 5: Insertion occuring at node v 

Substitution 

A substitution occuring at node x (cf. figure 6) brings false information about the inner 
evidence of this node. Therefore, the information provided by the inner evidence入(v)at 
node v and outside evidence 1r(u) at node u are likely to contradict each other. Consequently 

元(x)= 1r(u)入(v)gives us no information at all (叩(x).1r(x)~0). Again we introduce a 
threshold variable to define the following criteria for identifying a substitution at node x: 

11 



吋x)・1r(x)< 08 

In the assignment task we have to rely upon the outer evidence of node u, because the 
inner evidence fails to bring us any information. Thus we have to determine the most likely 

grammar category Gi, based on the information provided by the outer evidence probabilities 

・(maxi1r(u)i)and assign it to node u. 

（ 
し）

昌 ニ詈‘ ’士‘ ‘ 
連 助 語

讐ヽ体 動 尾
詞 詞 >

..,. 
し一

は ん
Vヽ ヽ な で す

゜Figure 6: Substitution at node x 

In order to check the validity of the recovery, the sentence has to be re-parsed, i.e. starting 
from node u the 入—vectorshave to be propagated up to the root node of the parse tree. Using 
the prior distribution, as well as the new入-valuesthe outer evidence and the BEL-vector of 

each node are re-calculated. If the re-parse failed, we have to determine the next most likely 
grammar category, assign it to node u and re-parse it again, until the sentence is successful 

recovered or no valid assignment is found. 

（＼ 

Computational Costs 

It is important to note, that the computational costs of the operations to detect and recover 
from an ill-formedness are not any higher than the one involved in parsing well-formed input. 

This can be explained by the fact, that an ill-formed section of input will generate a great 

number of zero入-and 1r-probability vectors, which all lead to trivial calculations. 

This apparent reduction in costs will of course be compensated later on in the recalcula-
tion of probability vectors from the new non-zero入s-and元 vectors.But the important point 

here is, that dealing with ill-formed input using the described methods does not increase the 

computational costs tremendously. 
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4.3 Parsing of Artificially Changed Data 

In order to prove the validity of the described approach, preliminary experiments were carried 
out using artificially altered, tagged data [11]. The input sentences were taken from the 
ATR Dialogue Database [6]. The set of input data, used in this experiments, consisted of 

245 sentences, whereby its length ranged between 2 and 8 symbols. 
Each of these well-formed sentences were artificially changed by randomly inserting and 

substituting one of the following categories: 

感動詞 (kandoshi) 
語尾 (gobi) 

→ interjection 
→ suffix 

格助詞 (kakujoshi) → case particle 

The categories語尾 and格助詞 werechosen, because they are strongly constrained gram-
matical categories, which should be easily detected as the source of the ill-formedness. 

For each of the input sentences we made 7 iterations of the algorithm. First the correct, 
unchanged input data was parsed. Then, each of the above mentioned categories were 
randomly inserted (3 parses) and substituted (3 parses). Thus the altering of the the correct 
input data gives us a set of 735 input sentences for testing insertions and substitutions, 
respectively. 

As described in section 4.2 the system had to detect the region of the ill-formedness, i.e. 

the category, we used to modify the input sentence, and to identify the type of the present 

ill-formedness. If an insertion was detected, we recover the original sentence by deleting 
the ill-formed branch of the parse tree. In the case of substitution we have to rely on the 
outer evidence of the detected node, i.e we assign the category with max. probability, given 

the outer evidence, and re-parse the sentence in order to update the assignment of the zero 
probability nodes in the parse tree. 

The results of the preliminary experiments are summarized in Table 1. 

Changed to Well-Form Detected Recovered 

(% of parsed) (% of failed to parse) (% of failed to parse) 

Insertion 24.19 % 87.75 % 59.46 % 

Substitution 20.14 % 82.29 % 68.65 % 

Total 22.16 % 85.01 % 64.05 % 

Table 1: Results using artificially changed data 

Out of the 735 input sentence for insertion 180 sentence (24.19%) were parsed correctly, i.e. 

the ill-formed inputs were changed to well-formedness. For the remaining 555 sentences the 

system failed to parse the input. For 527 of the failed sentences (87.75%) an insertion was 
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identified as the type of ill-formedness and in 330 cases (59.46%) the system succeeded in 

recovering the exact parse tree, i.e. a sentence structure identical to the original input data 

was found. 
In the case of substitution 148 sentences (20.14%) were changed to well-formedness. Out 
of the remaining 587 input sentences 468 (82.29%) were detected as a substitution and 403 

(68.65%) were recovered identical to the unchanged data. 

After describing the results of the experiments, we have to mention the limitations of 

our approach, too. First of all, only a single error is allowed, i.e. only one ill-formedness 
is introduced at one time for each input sentence. Another limitation is, that we are only 

concerned in the detection and recovery of insertions and substitutions, leaving out the case 

of deletion and unrecognized symbols, 

4.4 Parsing of Spontaneous Speech 

Starting with the results of the preliminary experiments we are now concerned in parsing 

spontaneous speech. The "real data", also taken from the ATR Dialogue Database, is 

provided by a part-of-speech tagger, whereby the ill-formed parts of the utterances are 
marked, using the following meta-characters: 

［］ → in terJ ection ｛｝ → overlap 
()→ repair <>→  comment 

Our experiments are focused on the detection and recovery of the first two types of marked 

ill-formedness. These characters are eliminated from the input sequence during the reading 

of the data. Thus the input of our system consist of a sequence of known grammatical 
categories, just as in the experiments described above. But the information, provided by the 
meta-characters, can be used in order to analyze the results of our algorithm. 

In contrast to the preliminary experiments, there are no substitutions marked in our 

corpus, only insertions. The kind of ill-formedness, which has to be detected, is therefore 

limited to filled-pause, false start, interjection and correction. 

The corpus of our experiments consists of 2311 sentences. Because the input of our system 
req1iires a sequence of grammatical categories, we have to abstract from the symbolic level 1 

of the sentences. Thus the number of the associated category sequences decreases to 1960 
unique input sequences. Out of them we uses 1399 utterances, its length ranging between 2 

and 17, to extract single errors, yielding in 595 well-formed input sequences, 690 interjections 
and 114 repairs. 

In order to elucidate the recovery mechanism, we illustrate our approach (cf. section 4.2) 
given the two examples in figure 8 and 7. 

In the trivial case of an interjection the category間投詞 (kantoshi)is detected as the 
source of the ill-formedness, occuring in the second position. Again, by eliminating the ill-
formed branch of the parse tree and re-calculating the BEL-vector for each node, the correct 
sentence can be recovered. 

In the case of the repair the ill-formedness, introduced by the category連体詞 (rentaishi),
is detected on the left side of the lowest node marked with "入=O". After eliminating the 
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left branch the re-propagation of the入-and炉 valuesyields in recovering the correct sentence 
structure. 
The results of our experiments are summarized in Table 2. In the case of well-formed 

input sentences a success rate of parsing correctly of 61.34% were yielded. In the remaining 

38.66% an ill-formedness was erroneously detected. 

In the case of ill-formed input sentences we distinguish between trivial cases, i.e. the 

insertion of the category間投詞， andnon-trivial cases (e.g. repairs). Out of the 755 trivial 

cases none was changed to well-formedness. A correct detection was done in 53.38% of the 
ill-formed input and in 2.65% the detection was wrong. The non-trivial cases consist only 

of 49 examples, out of which only 11 sentences (22.45%) were detected correct. Besides 11 
sentences (20.40%) were wrongly detected and 23 cases (46.94%) are changed to well-form. 
Thus gives us a total rate of correct detected insertion of 53.00% and a failure of the 

identification of the ill-form type in 13.33%. But all detected insertions, even the wrong 
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Ill -Formed Input 

Well -Formed Input 

Good Failed 

61.34% 38.66% 

Trivial (間投詞） Non-Trivial Total 

Changed to 
Well-Form 46.94% 2.86% 

Correct 
Detected 53.38% 22.45% 53.00% 

Wrong 
2.65% Detected 20.40% 13.44% 

Table 2: Results using spontaneous speech data 
（
 

detected ones, could be recovered to well-form sentence structure. 
The detection of 113 substitutions was wrong in each case, because there are no substi-
tutions marked in our spontaneous speech data. But even if the detection was wrong, the 
system yielded to recover 75 sentences (66.37%). 

5 Implementation Details 

In this section we describe some characteristics of the implementation of our approach, which 
should be mentioned for those, who are willing to continue the work described in this report. 

Data 

The input data is part of the ATR Dialogue Database and is provided by a part-of-speech 
tagger. The following examples (cf. figure 7) shows the format of our data: 

5j9so12050111gso1でも Iデモ lでも I接続詞 11111 
5l9so120601119901 Cl I Cl 11 I I I 
5l930l2060jl2000Iあの Iアノ Iあの I間投詞 II 111 

5l9so120601120101J I IJ I 11 I I I 
司93012010112020Iいくら Iィクラ Iいくら I代名詞IIII I 
5 l93o 12010112030 I で l デ尺：~I 助動詞 I 特殊サ l 語幹 111
5l930l2070ll2040IすIスlすl語尾 I特殊町終止 111
5l930l2070ll2050Iか|力 IかI終助詞 11111 
5l930l2070ll2060I。II。I記号 III I I 

（
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In order to handle Japanese characters correct, ILLPARSE requires the EUC-format for the 

data-files. We used the UNIX-command "nkf -e" for changing the original data5 to the 

required file-format. 

Gran1mar 

The grammar used in our approach is a probabilistic context-free grammar (PCFG) in 

Chomsky normal form, which consists of 412 rewriting rules (cf. Appendix C). The original 
grammar was not in Chomsky normal form, so we had to transform the grammar to the re-

quired format by introducing additional "non-terminals" (symboLG251, ... , symboLG262). 
The probabilities assigned to the rules of our PCFG are not optimal. They are directly 
estimated from the corpus of the ATR Dialogue Database. But , at least, these frequency 

counts provides us with likely values for the rewriting rules. 

In contrast to the basic work, described in [11], the meaning of the categories used in 

the grammar differs slightly from those used in the spontaneous speech data. On the one 

side the differentiation between the categories使役助動詞語幹 (shiekijodoshigokan) and受身
助動詞語幹 (ukemijodoshigokan)in the grammar, can not be found in the data. So we have 

to adapt the grammar by mapping both categories to the more general category助動詞語
幹 (jodoshigokan).On the other side the part-of-speech tagger assigned some categories to 
the corresponding part of the utterance, which are too general to be handled by the parser. 

Therefore we have to change the categories助動詞 (jodoshi)and補助動詞 (hojodoshi)to the 

more specific ones助動詞語幹 (jodoshigokan)and補助動詞語幹 (hojodoshigokan).
Another adaption is concerned with the category記号 (kigo).During the tagging process 
this category is used as well for "。 "and"、",as for other special characters, like "? "," 
%", etc. But in the grammar the symbols "。 "and"、"are assigned to the categories句点
and読点， respectively.
The changes of the data takes place during the reading of the input data. The changes 
of the categories can be summarized as follows: 

麟 grammar 

助動詞 → 助動詞語幹
補助動詞 → 補助動詞語幹 使役助動詞語幹 → 助動詞語幹
記号 → 句点 for"。" 受身助動詞語幹 → 助動詞語幹
記号 → 読点 for"、"

As described earlier we are not working on the symbolic sentence level, but using a sequence 

of grammar categories as basic patterns. In the implementation described in [11] there is no 
differentiation between a non-terminal, used in the input sequence, and the one assigned to 
a non-leaf node in the parse tree. There the same symbol is used in both cases. In order to 

clear the notation we introduce an additional naming convention, by adding an asterix ("*") 
at the end of the categories used in the input sequences (cf. Appendix A and B). Thus we 

5 ~mizu/HUMAN _INTERPRETER/TAGG ED_DATA 
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have to introduce explicit rules of the form "G―→ G* : 1.0" for all input categories and 
add them to the grammar. 

Parsing 

One limitation of our approach is the restriction to a single error. But due to the character-

istics of spontaneous speech, there are multiple errors occuring in the data. Thus we have 

to eliminate all, but one ill-formedness in each input sentence. 
In order to identify the type of the detected ill-formedness the threshold-values 0i and 0s 
are not used explicitly. Instead a multiplication factor is used for comparing the probabilities 
of the respective ill-type. Analyzing the results of the preliminary experiments we refined 

this factor, yielding better results for the parsing of natural dialogue utterances. 

6 Discussion and Conclusion 

Comparing the results of the preliminary experiments (cf. section 4.3) and the ones with 
spontaneous speech data (cf. section 4.4), there are some remarks, which has to be men-
tioned. 

In [21] the average rate of "changes to well-formed" is reported as 10%. In our ex-

periments only 2.86% of parsing an ill-formed input yields in a good parse. But because 
substitutions are not marked in our data, we only take into account the case of insertions. 

The high percentage (22.16%) found in the preliminary experiments is due to the randomly 
introducing of the ill-formedness. 

Concerning the case of ill-formed input we had a high percentage of trivial insertions of 

the category間投詞 (755sentences). Only 49 examples of non-trivial cases of insertions could 
be extracted from the corpus. Out of them only 22.45% could be detected correct. This 
is due to high percentage of changes to well-formedness for these ill-formed input sentences 

(46.94%). 
For 13.44% of the input sentences an ill-formedness of type insertion was erroneously 

detected. But all these cases were well-formed. Thus the wrong detection was due to the 
failure of the parser and not to identification method. Also most of the detections of a 

substitution are due to a failure of the parser, i.e. a well-formed input sentence failed to 
be parse. Only in 30 cases a substitution was identified for an ill-formed (insertion) input 

sequence, i.e. in 13.76% of the wrong detected sentences. But with increasing length of the 
input sentence the failing rate of the parser decreases (cf. figure 9). 
Because there are no substitutions marked in the corpus, all detections of an ill-formed-

ness of type substitution were wrong. But the recovery rate for these sentences (66.37%) 
corroborate the results, found in the previous experiments (68.65%). 

One possible improvement of our approach is concerned with the rule probabilities of our 

PCFG. As mentioned before these are only frequency counts, estimated from the corpus and 

thus not optimal. In order to optimize these parameters we can adapt the BLI algorithm, 

to take into account the sentence boundaries of our input sequences. Using the training 
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Figure 9: Wrong detection of substitution and insertion 

feature of the original BLI approach, we should obtain optimal probability values for our 

rewriting rules and can thus reduce the percentage of erroneous parses, as well in the cases 
of ill-formed sentences (change to well-formedness and wrong detection of the ill-type), as 

in well-formed input (fail to parse). 
Besides, the PCFG, we presently use, should be revised. In case of short input sequences 

the grammar is not specific enough, failing to find an applicable rule, especially in the case 
of short input sentence (cf. figure 9). Thus the system failed to parse the sentence. 
Another task for the future is to get ride of the limitation of a single error. In order to 
parse spontaneous speech in a reasonable way, the handling of multiple errors is indispens-

able. The problem in the case of multiple error is, that the outer evidence of all nodes in 
the parse tree can't be calculated top-downwards (cf. section 3.3) any longer. The multi-
ple error can cause two daughter nodes to have zero入probabilities,resulting in zero outer 

evidences for these nodes, when propagating the 1r-vectors top-down in the structure task. 
One solution to this problem is to use prior distribution vectors not only for the root node of 

the parse tree, but also assigning such a vector to all tree nodes. These distribution vectors 
should, at least, depend upon the number of symbols it covers and the relative position in 
the tree. In the case of multiple errors, we can use these additional information to calculate 
the outer evidence of the respective nodes and proceed with the algorithm described above. 

The recursive application of this approach should yield in reasonable results. 
Until now there is only a Japanese grammar available in our implementation. Thus we 
have to extract only the Japanese part of our natural conversation data, leaving the English 

part aside. Because of the more complex sentence structure in English utterance it would be 

an interesting enhancement of our approach to get hold of an English grammar and apply 

our algorithm to the English part of the ATR Dialogue Database. 
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A Terminal Symbols 

サ変名詞＊ 固有名詞＊ 接続助詞＊ 補助動詞語幹＊

引用助詞＊ 語尾＊ 接頭辞＊ 本動詞＊ ＇ I 
格助詞＊ 終助詞＊ 接尾辞＊ 連体詞＊

感動詞＊ 住所名＊ 代名詞＊ 連体助詞＊ 1 ． 
間投詞＊ 泄体助詞＊ 日時＊ 読点＊

記号＊ 助動詞語幹＊ 普通名詞＊ 句点＊

係助詞＊ 人名＊ 副詞＊

形容詞＊ 数詞＊ 副助詞＊

形容名詞＊ 接続詞＊ 並立助詞＊

（ 

B Non-Terminal Symbols 

symbol_G251 感動詞 数詞 副詞句
symbol_G252 間投詞 数詞連体詞句 副詞節
symbol_G253 丸括弧 数量詞 副詞的名詞
symbol_G254 記号 姓名 副助詞
symbol_G255 疑問符 接続詞 複合区画番地
symbol_G256 句点 接続助詞 複合語
symbol_G257 区画番地 接頭辞 複合数詞
symbol_G258 係助詞 接尾辞 複合日時
symbol_G259 形容詞 節 複合番地要素
symbol_G260 形容名詞 態の助動詞 文
symbol_G261 固有名詞 態の動詞 文副詞
symbol_G262 後置詞句 態の動詞句 並立助詞
かぎ括弧 語尾 代名詞 補助動詞

（ 
アンダーバー 使役助動詞語幹 中黒 補助動詞語幹

サ変名詞 受身助動詞語幹 通貨記号 本動詞
テ形補助動詞 終助詞 等号 名詞句

テ形補助動詞語幹 住所 動詞 名詞節
パーセント記号 住所名 動詞句 連体詞
ピリオド 住所要素 読点 連体詞句
引用助詞 準体助詞 日時 連体修飾節
引用符 助動詞 番地連体詞句 連体助詞
格助詞 助動詞語幹 普通名詞 連用修飾 " 
感嘆符 人名 副詞

鼻’
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C Grammar Rules 

/ 

symboLG251 -数詞 丸括弧 ： 1,00000000 

symboLG252 → 普通名詞 引用符 ： 1.00000000 
symboLG253 → 複合語 引用符 ： 1.00000000 
symbol.G254 ーアンダーバー 人名 ： 1.00000000 
symboLG255 → 中黒 人名 ： 1.00000000 

symboLG256 ー等号 人名 ： 1.00000000 

symbol.G257 → サ変名詞 読点 ： 1.00000000 
symbol.G258 → 普通名詞 格助詞 ： 1.00000000 
symbol.G259 → ピリオド 人名 ： 1.00000000 

symbol.G260 - symboLG259 ピリオド ： 1.00000000 

symbol.G261 - symbol.G260 人名 ： 1.00000000 

symbol.G262 一固有名詞 かぎ括弧 ： 1.00000000 
サ変名詞 ーサ変名詞 読点 ： 0.01265823 
サ変名詞 一接頭辞 symbol.G257 : 0.00632911 

サ変名詞 → 接頭辞 サ変名詞 ： 0.98101266 
テ形補助動詞 ーテ形補助動詞語幹語尾 ： 1.00000000 
テ形補助動詞語幹→ 接続助詞 補助動詞語幹： 1.00000000 
引用助詞 → 引用助詞 引用助詞 ： 0.06250000 
引用助詞 → 引用助詞 読点 ： 0.93750000 
格助詞 ー格助詞 格助詞 ： 0.11627907 
格助詞 → 格助詞 読点 ： 0.88372093 
感動詞 → サ変名詞 感動詞 ： 0.03004292 
感動詞 → 感動詞 読点 ： 0.62017167 
感動詞 → 後置詞句 感動詞 ： 0.03648069 
感動詞 → 副詞 感動詞 ： 0.25536481 
感動詞 一副詞句 感動詞 ： 0.04721030 
感珈司 →名詞句 感動詞 ： 0.01072961 
区画番地 → 数詞 接尾辞 ： 1.00000000 
係助詞 → 係助詞 読点 ： 1.00000000 
形容詞 一接頭辞 形容詞 ： 1.00000000 
形容名詞 一接頭辞 形容名詞 ： 1.00000000 
後置詞旬 ーサ変名詞 格助詞 ： 0.05732689 
後置詞旬 → サ変名詞 鈴助詞 ： 0.01417069 
後置詞句 ーサ変名詞 副助詞 ： 0.00128824 
後置詞句 → 固有名詞 格助詞 ： 0.03832528 
後置詞句 一固有名詞 係助詞 ： 0.00161031 
後置詞旬 → 後置詞句 節助詞 ： 0.05088567 
後置詞旬 ー後置詞句 副助詞 ： 0.00032206 
後置詞句 → 人名 格助詞 ： 0,00032206 
後樅詞句 →数量詞 格助詞 ： 0.01449275 
後置詞旬 一数量詞 係助詞 ： 0.00064412 
後骰詞旬 → 姓名 格助詞 ； 0.00354267 

後懺詞旬 → 節 引用助詞 ： 0.01159420 
後置詞旬 一態の動詞句 引用助詞 ： 0,00096618 
後置詞旬 → 代名詞 格助詞 ： 0.04573269 
後置詞旬 → 代名詞 係助詞 ： 0.02673108 
後置詞句 一代名詞 副助詞 ： 0.00418680 
後置詞句 ー動詞 symboLG258 : 0.00032206 

後慨詞句 → 動詞 引用助詞 ： 0.01449275 
後置詞句 → 動詞 格助詞 ： 0.00096618 
後置詞句 → 動詞旬 引用助詞 ： 0.02705314 
後置詞句 ー動詞句 副助詞 ： 0.00032206 
後龍詞句 → 日時 格助詞 ： 0.00837359 
後置詞句 → 日時 係助詞 ： 0.00032206 
後置詞句 一普通名詞 格助詞 ： 0.15169082 
後置詞句 → 普通名詞 係助詞 ： 0.04090177 
後置詞句 → 普通名詞 副助詞 ： 0.00193237 
後置詞句 → 複合語 格助詞 ： 0.06312399 
後置詞句 → 複合語 係助詞 ： 0.02769726 
後置詞句 → 複合語 副助詞 ： 0.00128824 
後置詞句 → 複合数詞 格助詞 ： 0.00032206 
後置詞句 ー複合日時 格助詞 ： 0.00740741 
後置詞句 ー名詞句 格助詞 ： 0.28276973 
後置詞句 ー名詞句 係助詞 ： 0.08566828 
後置詞句 ー名詞旬 副助詞 ： 0.00515298 
後置詞句 → 名詞節 格助詞 ： 0.00450886 
後置詞句 → 名詞節 係助詞 ： 0.00354267 
語尾 → 語尾 読点 ： 1.00000000 
終助詞 ー終助詞 読点 ： 1.00000000 
住所 ー住所 住所名 ： 0.27272727 
住所 → 住所 姓名 ： 0.09090909 
住所 ー住所 複合区画番地： 0.03030303 
住所 ー住所 複合番地要素： 0.27272727 
住所 → 住所名 住所名 ： 0.03030303 

住所 ー住所要素住所名 ： 0.03030303 
住所 ー住所要素住所要素 ： 0.27272727 
住所名 ー住所名 読点 ： 1.00000000 
住所要素 —住所名 接尾辞 ： 1.00000000 
助動詞 ー助動詞 読点 ： 0,00438917 
助動詞 一助動詞語幹語尾 ： 0.99561083 
人名 一人名 読点 ： 1.00000000 
数詞 → 丸括弧 symboLG251 : 0,12500000 

数詞 → 数詞 読点 ： 0.37500000 
数詞 → 接頭辞 数詞 ： 0.50000000 
数詞連体詞旬→ 数詞 記号 ： 0.54166667 
数詞連体詞旬ー複合数詞 記号 ： 0.45833333 
数量詞 一数詞 パーセント記号： 0,00977199 
数量詞 一数詞 接尾辞 ： 0.62540717 
数量詞 一数詞 通貨記号 ： 0.00325733 
数量詞 → 数詞 普通名詞 ： 0.03583062 
数塁詞 ー数量詞 接尾辞 ： 0.16286645 
数量詞 一数撒詞 副助詞 ： 0.08143322 
数蓋詞 一接頭辞 数量詞 ： 0.04885993 
数量詞 → 通貨記号 数詞 ： 0.01302932 
数量詞 一普通名詞 数量詞 ： 0.01628664 
数量詞 ー副詞 数蓋詞 ： 0.00325733 
姓名 一人名 symboLG254 : 0,04166667 
姓名 一人名 symbol_G255 : 0,20833333 

姓名 一人名 symboLG256 : 0.14583333 

姓名 一人名 symboLG261 : 0,02083333 

姓名 一人名 人名 ： 0.58333333 
接続詞 ー接続詞 読点 ： 1.00000000 
接続助詞 → 接続助詞 読点 ： 1.00000000 
接尾辞 一接尾辞 接尾辞 ： 0,42307692 
接尾辞 → 接尾辞 読点 ： 0.57692308 
節 → 感動詞 感動詞 ： 0.05551020 
節 → 感動詞 節 ： 0.04244898 
節 → 感動詞 動詞 ： 0.04571429 
節 → 感動詞 動詞旬 ： 0.11102041 
節 → 接続詞 感動詞 ： 0.02693878 
節 → 接続詞 節 ： 0.03346939 
節 → 接続詞 動詞 ： 0.01469388 
節 → 接続詞 動詞句 ： 0.16408163 
節 → 動詞 節 ： 0,00081633 

節 ー動詞 動詞 ： 0.00244898 
節 → 動詞 動詞句 ： 0.00897959 
節 → 動詞句 感動詞 ： 0.00489796 

節 → 動詞旬 節 ： 0.00163265 
節 → 動詞句 動詞 ： 0.00081633 
節 一動詞句 動詞旬 ： 0,02204082 
節 → 副詞節 感動詞 ： 0.02775510 
節 → 副詞節 節 ： 0.04408163 
節 → 副詞節 動詞 ： 0.01877551 
節 ー副詞節 動詞句 ： 0.32489796 
節 →文副詞 感動詞 ： 0.00081633 
節 一文副詞節 ： 0.00408163 
節 → 文副詞 動詞 ： 0.00244898 
節 → 文副詞 動詞句 ： 0.04163265 
態の助動詞 → 助動詞語幹語尾 ： 1.00000000 
態の動詞 ーサ変名詞 補助動詞 ： 0.434 78261 
態の動詞 一本動詞 語尾 ： 0.56521739 
態の動詞句 ー後置詞句 態の動詞旬 ： 0.53960396 
態の動洞句 一態の動詞 助動詞語幹 ： 0.21287129 
態の動詞句 → 態の動詞 態の助動詞 ： 0.12871287 
態の動詞句 → 副詞 態の動詞句 ： 0.10396040 
態の動詞句 → 本動詞 助動詞語幹 ： 0.01485149 
代名詞 → 接頭辞 代名詞 ： 0.55555556 
代名詞 → 代名詞 読点 ： 0.44444444 
動詞 ーサ変名詞形容名詞 ： 0.00017271 
動詞 ーサ変名詞助動詞 ： 0.00086356 
動詞 ーサ変名詞動詞 ： 0.00155440 
動詞 ー形容詞 語尾 ： 0.02797927 
動詞 → 固有名詞 助動詞 ： 0.00811744 
動詞 ー後置詞句 サ変名詞 ： 0.05250432 
動詞 ー後置詞句形容名詞 ： 0.00777202 
麒 —後置肩句 助動詞 ： 0.00483592 
動詞 ー後概詞句動詞 ： 0.36062176 
動詞 ー後置詞句本動詞 ： 0,0564 7668 
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動詞 ー住所 ： 0.00189983 昌副湖詞詞句旬詞 普通名詞 ： 0,59728507 動詞 ー ： 0.00120898 詞 接尾辞： 0.15837104 
詞 接尾辞； 0,16289593 

ー ： 0.00155440 詞 読点： 0.02262443 
ー ： 0.00034542 読点 ： 1.00000000 

—• : 0 , 0 0 6 5630 4 接接接副格接接副並尾絞尾助助続尾詞立辞辞助詞潟助辞助的詞詞名洞甑l: 0 . 0 0 9 83 6 0 7 ， 
ー： 0.00111202 : 0.00655738 I 
ー： 0.00051813 : 0.01967213 

ー： 0.00138169 , 0.20655738 I 
→ : 0.00777202 : 0.04590164 ． 
ー： 0.00794473 : 0.08524590 

ー： 0.00017271 : 0.00655738 

ー： 0,00725389 : 0.05245902 

→ : 0.00241796 - : 0.00327869 

ー： 0.00034542 —• : 0,01311475 

ー： 0.00708117 → : 0.04918033 

ー： 0.00207254 ー： 0,06557377 

→ : 0.01381693 → : 0,00327869 

ー： 0.06113990 - : 0.02622951 

→ : 0.00846287 
←→ : 0.00431779 ー： 0.04918033 

ー： 0.00069085 - : 0.03934426 

ー： 0.00120898 

ー： 0.03419689 
→ : 0.00189983 → : 0.00983607 

ー： 0,00017271 - : 0,04262295 

ー： 0.00034542 ー： 0.05573770 

→ : 0,00207254 ー： 0.00327869 

→ : 0,00051813 → : 0.00655738 

ー： 0.22987910 - : 0,00983607 
ー： 0.00327869 

副

副副螂副副詞詞詞湖節節節句句句 ー ： 0.00655738 
ー： 0.07540984 

ー： 0.00327869 

ー： 0.00178571 

ー： 0.08035714 

→ : 0.00431779 - : 0,25714286 

ー： 0,01087866 → : 0,64642857 

ー： 0,00125523 ー： 0.00535714 

ー： 0.00041841 - : 0,00714286 

→ : 0.01213389 → : 0.00178571 

ー： 0.00711297 → : 1.00000000 

ー： 0.00104603 ー： 1.00000000 

ー： 0.00146444 

ー： 0,00020921 地- : 0.50000000 

ー ： 0.00167364 → 数接複合黛尾詞辞語 : 0.50000000 
ー： 0.03054393 → : 0,31250000 

→ : 0,20669456 - : 0.12500000 

ー→ : 0.02029289 藩文複複複複複複複合合合合合合合飴数数滸n88詞甑時時時地l要 → 旦且複合日時 : 0.06250000 

→ : 0.04000000 

- : 0,02008368 → : 0.96000000 

ー： 0.00020921 ー： 0.85365854 

→ : 0,00167364 ー： 0,02439024 

ー→ ： 0,10941423 - : 0.12195122 

ー ： 0、30376569 素ー ： 1.00000000 （ 
ー ： 0.01255230 - : 0.14502822 

→ : 0.00020921 ー： 0.04385584 

ー ： 0.01589958 文 ー 句点： 0.38428137 
ー ： 0 . 0 0 2 9 2 8 8 7 文 → 句讐，， : 0 , 0 6 9 9 0 8 8 1 
- : 0,00041841 文―:0,00043422 
ー ： 0.00376569 文ー ： 0.06165871 

- : 0,00020921 文 一 麗並補助立助勁：詞詞 : 0.29483283 

響
ー ： 0.00209205 文文並副副立詞詞助詞 一 文副詞 ： 0.06818182 
ー ： 0.00083682 ー 読点： 0.93181818 

ー 読点： 1,00000000 

補助動詞 → → 言補曲動謡語幹 読語接本接本本読尾尾動尾勅点点辞開辞詞 : : 00..090963818181818 2 ー： 0.11111111 ー： 0,00261097 

ー： 0.33333333 → : 0,96344648 

ー： 0.35714286 - : 0,00261097 

ー： 0.28571429 - : 0.01044386 
ー ： 0.28571429 一動詞句 ： o.01s21616 ... ヽI 
ー ： 0.07142857 一本動詞 ： 0,00261097 

→ : 0,00904977 - かササ変変ぎ括名名詞詞弧 読副,ym点助b詞ol _G262 : 0.00057904 
ー： 0.04524887 ー： 0.00057904 

ー： 0.00452489 ー： 0,00231616 
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,ymbol_G252 

,ymboLG253 

普通名詞
接尾辞
副助詞
接尾辞
普通名詞
副助詞
副助詞
接尾辞
普通名詞
副助詞
サ変名詞
固有名詞
普通名詞
名詞句
読点
副助詞
サ変名詞
固有名詞
数黛詞
普通名詞
副助詞
複合語
名詞句
サ変名詞
固有名詞
普通名詞
副助詞
複合語
名詞句
読点
副助詞
普通名詞
読点
副助詞
副助詞
サ変名詞
固有名詞
数蛍詞
普通名詞
複合語
複合日時
名詞句
サ変名詞
固有名詞
準体助詞

縁
数景詞
姓名
代名詞
日時
普通名詞
複合語
複合数詞
複合日時
名詞句
サ変名詞
普通名詞
準体助詞
準体助詞
準体助詞
準体助詞
並立助詞
連体助詞
並立助詞
連体助詞
連体助詞
連体助詞
連体助詞
並立助詞
連体助詞
並立助詞
連体助詞
連体助詞
並立助詞

: 0.00173712 
: 0.00057904 

: 0.00057904 

: 0.00057904 

: 0.00115808 

: 0.00463231 

: 0.00752750 

: 0.00057904 

: 0.00057904 

: 0.00289519 

: 0.00231616 

: 0.00057904 

: 0.00115808 

: 0.00289519 

: 0.00231616 

: 0.00057904 

: 0.00405327 

: 0.00231616 

: 0.00579039 

: 0.00057904 

: 0.00173712 

: 0.05616676 

: 0.00057904 

: 0.00231616 

: 0.00231616 

: 0.00984366 

: 0.00405327 

: 0.10364794 

: 0.00057904 

: 0.00521135 

: 0.00579039 

: 0.00636943 

: 0.00810654 

: 0.00289519 

: ・o.00231e16 

: 0.00463231 

: 0.01215981 

: 0.02663578 

: 0.00057904 

: 0.00115808 

: 0.06195715 

: 0.00579039 

: 0.00057904 

: 0.00289519 

: 0.07759120 

: 0.01968732 

: 0.00405327 

: 0.00868558 

: 0.00057904 

: 0.00463231 

: 0.0069484 7 

: 0.00231616 

: 0.00752750 

: 0.35726694 

: 0.07527504 

: 0.00057904 

: 0.00173712 

: 0.04574406 

: 0.00289519 

: 0.00926462 

: 0.02346041 

: 0.31085044 

: 0.57184751 

: 0.09384164 

: 0.00367309 

: 0.09366391 

: 0.00642792 

: 0.09366391 

: 0.02571166 

: 0.00091827 

: 0.00183655 

: 0,00183655 

: 0.01928375 

: 0.00091827 

: 0.00367309 

: 0.00183655 

: 0.00091827 
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連体詞句
連体詞句
連体詞句
連体詞句
連体詞句
連体詞句
連体詞句
連体詞句
連体詞句
連体詞句
連体詞句
連体詞句
連体詞句
連体詞句
連体修飾節
連体修飾節
連体修飾節
連体修飾節
連体修飾節
連体修飾節
連体修飾節
連体修飾節
連体修飾節
連体修飾節
運体修飾節
連体助詞
連用修飾
連用修飾
連用修飾
連用修飾
連用修飾
連用修飾
連用修飾
サ変名詞
引用助詞
格助詞
感動詞
間投詞
記号
係助詞
形容詞
形容名詞
固有名詞
語尾
終助詞
住所名
準体助詞
助動詞語幹

縁
接続詞
接続助詞
接頭辞
接尾辞
代名詞
日時
普通名詞
副詞
副助詞
並立助詞
補助動詞語幹
本動詞
連体詞
連体助詞

悶

連体助詞
連体助詞
連体助詞
連体助詞
並立助詞
連体助詞
連体助詞
連体助詞
並立助詞
連体助詞
並立助詞
連体助詞
並立助詞
連体助詞

麟句
連体修飾節

麟句
連体修飾節
動詞
動詞句
連体修飾節
動詞
助動詞
読点
連用修飾
語尾
助動詞
連用修飾
連用修飾
助動詞
係助詞

: 0.06427916 

: 0.0183654 7 

: 0.01469238 

: 0.00918274 

: 0.03581267 

: 0.29752066 

: 0.00459137 

: 0.00367309 

: 0.01377410 

: 0.11202938 

: 0.00091827 

: 0.00367309 

: 0.01285583 

: 0.15426997 

: 0.01754386 

: 0.03508772 

: 0.01754386 

: 0.01754386 

: 0.07017544 

: 0.01754386 

: 0.3157894 7 

: 0.40350877 

: 0.01754386 

: 0.01754386 

: 0.07017544 

: 1.00000000 

: 0.03846154 

: 0.25000000 

: 0.55769231 

: 0.01923077 

: 0.06730769 

: 0.03846154 

: 0.02884615 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

: 1.00000000 

25 


	001
	002
	003



