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1 Introduction 1 

1 Introduction 

こ
・

To perform£ 邸 tspeaker adaptation within a speech recognition system it is necessary to adapt the 

model parameters of the system b邸 edon a limited amount of adaptation data. This includes the model 

parameters of classes for which no adaptation data has been encountered. To do this, the adaptation of 

these parameters must be performed using only the observations available from other classes. Transfer 

vector field smoothing (VFS) is one method for performing this t蘊 whichh邸 provensuccessful [2, 4]. VFS 

has been shown to provide f邸 tspeaker adaptation of the mean vectors of a continuous mixture density 

hidden Markov model (CDHMM). However, the main assumption behind VFS adaptation is that parameter 

transfer vectors for states in which no adaptation data exists can be linearly interpolated from the transfer 

vectors of acoustically similar states. While this approach h邸 beenshown to be successful, the current 

research investigates a probabilistic approach in which the transfer vectors of states with no adaptation data 

are predicted using a priori knowledge about the correlations between the transfer vectors of different states. 

This paper introduces probabilistic transfer vector prediction (PVP)邸 onemethod for incorporating a 

predictive model into the VFS framework. PVP utilizes a priori knowledge about the correlations which 

exist between states to be able to predict the transfer vector of one state from the estimates of transfer 

vectors of other states. In its use of Gaussian models to capture a priori knowledge about correlations, PVP 

is similar to the extended maximum a posteriori probability (EMAP) approach [l]. However, several key 

differences between EMAP and PVP exist and are discussed in this paper. 
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Theory 

Problem Statement 

The goal in a probabilistic approach to speaker adaptation is to adapt the models utilized by a speech 

recognition system to best fit the characteristics of a particular speaker given a set of adaptation data. To 

begin, let入representa vector of model parameters that are used by the recognizer and are to be adjusted 

using adaptation data. If we assume that入containsparameters which model C different classes then we 

can subdivide the vector入intosubvectors such that 

入＝［入『，入r,... , 碍F (1) 

where each入jrepresents the vector of parameters used to model the /h class. Next, let氾 bethe set of 
adaptation data. In particular, let X be represented as 

X = {X1, X2, ... , Xe} (2) 

where each Xj is a set of example observations from the /h class as spoken by the current speaker. In total 
there are C different classes. Furthermore, we will represent the sets of observations from each class as 

ふ={xj,1 , Xj,2, ... , Xj,n;} (3) 

where each Xj,k is a specific example vector of class j, and nj is the number of adaptation examples for 

cl邸 sj. Using the above definition the adaptation problem can be approached using a maximum a posteriori 

probability (MAP) algorithm which is b邸 edon the equation 

＾ 入=argmax p(入IX).V入
(4) 

In this equation入containsthe adapted values of the model's parameters. 

can be rewritten as: 

Using Bayes rule the equation 

>-= arg max p(お I入）p(入）
V入 p(X) . 

By noting that the denominator in the equation is independent of入theequation can be equivalently 

expressed as: 

(5) 

＾ 入=arg max p(X I入）p(入）．
V入

(6) 

Various different MAP approaches, including the one presented in this paper, utilize the equation above 

as the basis for their adaptation algorithm. 

2.2 Standard MAP A pp roach 

The most b函 capproach to speaker adaptation is known邸 thestandard MAP approach. In this 

approach, two primary assumptions are made. First, each acoustic observation Xj,k is considered to be 

dependent only on the parameters of the model corresponding to its own class. Thus, each observation is 

considered independent of all other observations and independent of the parameters of all classes in the 

model except the cl邸 sto which it belongs. This assumption allows Equation (6) to be rewritten邸：

’ー『
4

,

、F

C n; 

入=arg咽Xp(入）II II p(xj,k I入j)
j=lk=l 

(7) 

The standard MAP approach also assumes that the parameters of each class are independent of each other. 

With this assumption Eq叫 ion(7) can be reduced to 

C 巧

j = arg咽翌rr凸）II p(xjょI朽）
j=l k=l 

(8) 
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Because of the assumption of independence between the classes, the parameters for each cla認 'modelcan be 

adapted separately using the equation 

朽

＾ 入j== arg max p(入j)II p(xjょl入j)
V入j

k=l 
(9) 

If we assume that for a given class, the likelihood of an observation is represented by a Gaussian density 

function then we can write 

p(Xj I入j)三 N(μi,Si) (10) 

whereμj and Sj represent the mean vector and covariance matrix for the Gaussian density function. 

Suppose we are interested in adapting only the mean parameters of a Gaussian model. In such a case we 

need to know the a priori density function of the mean vector for any random speaker as well. Let this be 

represented as 

p(附）三N(μoi,s。)') (11) 

whereμoj and S。jare the a pri゚rimean vector and covariance matrix for a random speaker's parameter 
space. Using the above assumptions it can be shown that the adapted valueふthatmaximizes the a 
posteriori probability density function can be represented as: 

~j = s。i(s 。1+~) ― 1Xj +~(冠＋臼）ー1µ。J (12) 

whereヌ：j is the maximum likelihood (ML) estimate of the mean vector as estimated from the adaptation 

data using the equation 

1 
ni 

均＝一こ巧，k・
n・ 
J k=l 

(13) 

By examining Equation (12) it can be seen that the MAP estimate of a mean vector is simply an 

interpolation between the a priori mean and the ML estimate of the mean from the adaptation data. As 

the number of adaptation observations increases and the 111 estimate becomes more reliable, the adapted 

mean vector shifts away from the a priori mean towards the ML estimate. Because of this涵 icresult the 

MAP estimation equation is often approximated with the simpler equation 

入j= ~n点i+ rμoj 
巧+r

(14) 

where r is a scalar (or possibly matrix) which is experimentally found to optimize the speaker adaptation 

performance on held out data. 

Standard MAP estimation has optimal asymptotic performance, i.e. with standard MAP estimation 

the model parameters will converge to the ML estimate of the speaker's parameter space as the amount 

of adaptation data increases towards infinity. However, because the algorithm does not take advantage of 

correlations which might exist between the parameters of different classes, the algorithm can only provide 

good estimates of the parameters of classes for which it has observed an adequate amount of examples. Be-

cause of this limitation, the algorithm is slow in adapting to a new speaker's parameter space and significant 

improvements in the model's parameters may require many adaptation sentences. 

2.3 Extended MAP Approach 

To take advantage of the correlations that may exist between parameters from different classes across 

the space of all speakers, the extended MAP (EMAP) estimation algorithm was proposed [1]. To describe 

EMAP begin with Equation (7): 

C 巧

>. = argnJ翌p(入)II II p(xj,k I入］）
j=lk=l 

(15) 



4 2 Theory 

In this equation, standard MAP estimation assumes that the parameters for each separate class in the 

p(入） are independent. EMAP does not use this assumption. Instead EMAP maintains the original form of 

Equation (7) in order to capture the correlations between the class~s within the p(入） term. 
If we again utilize Gaussian density functions to model the different p(xjょI入j)terms, EMAP is the 
same as MAP in its use of the expression 

p(Xj I入j)三 N(μi,Si)- (16) 

However, in EMAP, instead of using a separate a priori model for the mean vector's入jfor each state, the 

generalized vector入ismodeled with one single Gaussian density function incorporating the parameters from 

all classes. Thus, we utilize the expression 

p(μ)三 N(μ。,So) 

μ= [μ 『,μ{'... μ 各F

(17) 

where 

(18) 

and where 
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~=S。 (NS。+ S)-1 Nx + S (NS。+s)―1μ。
where 
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S=II t :: ~ ~c l 
Theoretically, EMAP has nice properties in that it accounts for the correlations between the parameters 

of different classes and the adapted parameters converge asymptotically to their ML estimated as the amount 

of adaptation data is increased. However, in practice it is very difficult to gain advantage from using the 

EMAP algorithm because of the size of the correlation matrix that must be trained. If there are C classes 

and each class has a D dimensio叫 parametervector then the matrix S。isa CD x CD size matrix. In 
order for this matrix to even be invertible a total of CD+ 1 training vectors must be used in training. In 

other words, a corpus containing CD different speakers must be available to prevent S。frombeing singular. 
Additionally, an estimate for the mean of each class for all speakers is also necessary in training. Thus, 

spontaneous speech databases in which each speaker may not have uttered examples of all classes will be 

difficult to use for training the EMAP covariance matrix. 

In practice, simplifying assumptions can be made which reduce the number of covariance elements in S。
which must be trained. For example, only the diagonal elements of each submatrix S;j can be trained with 

all other elements being set to zero [3, 5]. This simplification reduces the amount of training data necessary 

to sufficiently train S。butit does not remove the requirement that an estimate of the mean vector for all 
classes must be made for all speakers. 

(23) 
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2.4 MAP-VFS 

Transfer vector field smoothing using maximum a posteriori probability estimation (MAP-VFS) is based 

on the assumption that acoustically similar classes can be adapted in similar fashions [2, 4]. In particular 

let us define a transfer vector as the difference between the a priori parameter vector and an estimate of the 

same parameter vector for one particular speaker. Mathematically, we can express this as 

v;= 入iO —入i (24) 

whereふisthe speaker specific estimate of the parameter vector and v; is the transfer vector. 

The MAP-VFS algorithm is a three step process with the following steps: 

l. Estimate the transfer vectors for classes present in the adaptation data using standard MAP estimation. 

2. Create transfer vectors for cl邸 seswhich have not been encountered in the adaptation data through 

interpolation of acoustically similar classes for which transfer vector estimates exist. 

3. Smooth the transfer vectors to help compensate for estimates which may be poorly trained due to 

insufficient amounts of adaptation data. 

MAP-VFS has been shown to be effective for fast speaker adaptation [4]. It's success comes from the 

fact that the interpolation and smoothing portions of the algorithm are able to adapt the parameters of a 

particular class'model even without having seen examples of that class. By assuming that the parameters 

of acoustically similar classes will be adapted in similar fashions many classes can be adapted based on the 

observations of only a few cl邸 ses.This algorithm also has the advantage that it has no models which require 

prior training and only a few parameters that need to be optimized. However, the邸 sumptionsin VFS may 

also leave room for improvement in the algorithm. It may be possible to improve the VFS adaptation scheme 

by introducing probabilistic prediction as an alternative to the interpolation scheme. 

2.5 Probabilistic Transfer Vector Prediction 

Probabilistic transfer vector prediction (PVP) is intended to be a compromise between EMAP adaptation 

and MAP-VFS adaptation. The general idea behind PVP is to utilize the correlations inherent between 

classes to guide the adaptation of classes for which little or no adaptation data has been seen. MAP-VFS uses 

no a priori information about these correlations, while EMAP assumes a large global correlation structure 

covering all classes which in practice is difficult to train. PVP attempts to utilize the same correlations 

between classes without requiring a global correlation structure. 

To understand the basis of PVP, begin with the generic MAP expression 

＾ 入=argmax p(入）
p(X I入）

'r/,¥ p(ズ）’
(25) 

Next, expand the expression out to the individual observations by assuming all observations are independent 

of each other to yield the expression 

C 巧

,¥ = arg 閃~x p(入)II II p(xj,k I入）．
j=lk=l 

p(xj,k) 
(26) 

Up to this point EMAP and PVP have utilized the same邸 sumptions.However, from this equation EMAP 

makes the assumption that observations of each class are independent of all model parameters except the 

parameters of their own class, while at the same time not making any simplifying assumptions about the 

correlations between the models parameters themselves. Theoretically, these邸 sumptionsare generally 

considered sound. PVP, on the other hand, takes a slightly different approach. 

First, the expression can be rewritten using Bayes rule to yield the equation: 

C n1 

~= arg~ ↓笠 p(>-)II II p(入IXj,k) 
j=lk=l 

p(>.) . 
(27) 
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Next, we assume that the parameters of each class are independent of the parameters of all other classes. 

Thus, we can rewrite the maximization process by considering each class independently as follows: 

C 巧

,¥; = argmax p ; 
籾

(入)II II p(入iI Xj,k) 
j=lk=l 

p(ふ）．
(28) 

The final expression in Equation (28) shows an adaptation scheme in which the models begin with the 
a priori models and are readapted with each new observation. Each new observation produces a model 

p(入iI Xj,k) which predicts a new value for each parameterふbasedthe correlation between observations of 
class j and the model parameters for class i. The ratio between the density function for the new prediction 

ofふandthe a priori prediction ofふisused to update the current prediction of入j.

Using this approach, the classes in which little or no adaptation data is available can be adapted using 

observations of other classes and a priori correlation information. On the other hand, the assumptions that 

are made also prevent the parameters of a class from ever asymptotically converging to the ML estimate 

when sufficient data from a particular class is available. This is because the assumption that the observations 

of a class are dependent only on the parameters of its class was not made, as it was in both the MAP and 

EMAP formulations. However, if this method of adaptation is combined with the standard MAP adaptation 

algorithm using an interpolation scheme which shifts the weight of a class'estimate from the PVP estimate 

to the MAP estimate as more examples of a particular class are seen, then the proper asymptotic properties 

can also be achieved. 

じ
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3 Gaussian Modeling with PVP 

3.1 Models Utilized in PVP 

To utilize PVP, models must exist for the expressions p(ふ） and p(ふ，Xj).The term p(入;)is the a priori 

probability density function of a random speaker possessing the model parameters入;for class i. The term 

p(入;, Xj) is the joint probability density function of a random speaker possessing the model parametersふ

for class i and producing the observation vector Xj as a random example of class J. The joint probability 
expression is needed in order to calculate p(入;I Xj) when a given observation Xj is provided. Both of these 
models must by created from a training corpus. While any parametric density function can theoretically 

be used to model these expressions, the remainder of this section will assume that the models are standard 

multivariate Gaussian density functions. 

3.2 Training the a priori Model 

The model p(入;)is designed to capture the a priori likelihood of a random speaker possessing the model 

parametersふforclass i. This model can be created by estimating the values of入，:for every speaker in a 

training corpus and using this collection of入itraining vectors to estimate the parameters for p(ふ） • This 
training will result in a Gaussian density function which we will define as follows: 

p(ふ）三N(μ;o,S;a). 

3.3 Training the Joint Probability Model 

(29) 

The model p(ふ，Xj)is designed to capture the joint likelihood of observing a random observation Xj from 

class j as spoken by a random speaker possessing model parameters入;for class i. To train the model, we 

must create a set of joint probability vectors for each speaker. Each vector must contain the mean vector 

of class i (i.e., 入;)and an observation of class j (i.e., Xj)- One joint vector is created for each example of 

Xj within the training set for each training speaker. The accumulation of all of these vectors can then be 

used to train the model p(入;, Xj). Figure 1 shows an illustration of the training for this model. In this 

illustration there are vectors from 4 speakers with each speaker contributing 7 data points. For all data 

points for a particular speaker the mean vector入;remains the same but the observations of Xj change. By 

building a Gaussian model of the conglomeration of all vectors from all speakers we hope to capture the 

general correlations between入;and Xj across all speakers in the training set. 

There is one major training problem that must be addressed: what should be done about the varying 

sizes of the sets of Xj vectors for each speaker. Ideally we would like to have identical numbers of Xj examples 

for each speaker, thus allowing each speaker to contribute equally in the training of the model. The two 

most obvious methods of training are: (1) ignore the disparities that exist in the amounts of data from each 

speaker and train the model with all training vectors weighted equally, or (2)、veightall vectors from the 
same speaker by the inverse of the total number of vectors from that speaker. Option (1) could cause the 

model to be dominated by the speakers with the most data while option (2) allows the example data points 

from speakers with fewer examples to be weighted more heavily than the data points from speakers with 

more data. Estimation problems will likely arise from either solution unless a very large amount of data from 

all speakers is available. For the experiments discussed later in this paper, option (2) was used for training. 

In the end the trained model can be represented as: 

p(入i,Xj)三N(μ;i,S;j). (30) 

In discussing this model we will use the definitions 

匹=[ :~ 入：］ (31) 

and 

S計=[ (S尉）入入 (S0り心
(Siい (S計）xx l - (32) 
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ふ

図 1:Illustration of example set of vectors used to train jointly Gaussian expression p(入ゎXj)

Within these definitions it can be noted thatμ;o =μ 心

3.4 Adaptation Calculations 

In practice we are interested in using the conditional density function p(ふI巧）， andnot the joint density 
function p(入;, Xj). However, given the conditional value Xj the conditional density function can be e函 ly

found from the joint density function. The conditional density function is also Gaussian and can be described 

as 

p(入iI Xj)三 N(μ入，1巧，S入ゎ）．

where 

S心= (S計）入入
and 

μ>.;Jx; =μ>,, + (S計）式(S尉）叫μx;-Xj)-

‘
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Given the expressions for p(ふ） and p(ふI巧）， wecan generate an expression for p(,¥; j X) using the 
equation 

C 巧

p(ふ信） = p(入i)Cl-N)II II p(ふIXj,k) 
j=l k=l 

where 
C 

N = I:ni. 
j=l 

From this equation we find that p(ふI北')is also a Gaussian which can be defined as 

p(ふIX)三 N(μ;1x,S;1x) 

where 
C 

S註=(1-N)S尉+L叫s::;1)入入
j=l 

and 

µ,1x~ μ;, + S;1x [t, 巧(S計）心(μ;,-X;)] . 

(36) 

(37) 

(38) 

(39) 

(40) 
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Thus, the final PVP adaptation expression is 

ふ=argmaxμ;IX・ 
V入，

(41) 

We can also express the adapted mean in terms of transfer vectors where the ML transfer vector Vj is 

defined as 

和＝えj-µjO• (42) 

Thus, in terms of transfer vectors, Equation (40) can be expressed as 

μ;1x =μw + v; (43) 

where vi is simply a predicted transfer vector which is expressed as 

v, ~s,1x [t, 巧(S計）入三）］ (44) 

In examining the expression forμ;1x we see that with no example observations, μ りxsimply equals the a 

priori mean for the cl邸 s,μw. As adaptation data is introduced, thenμ;1x is shifted away from the a priori 

mean by adding a predicted transfer vector v;. The vector v; is calculated from weighted predictions of the 
transfer vector provided by the ML estimated transfer vectors of all cl邸 sesthat have already been seen. The 

weighting factors in this c邸 eare nj and (S計）入x・The(S計）入xterm allows transfer vectors which are most 
highly correlated with the current class i to be weighted more heavily than those from classes less correlated 

with cl邸 si. The nj term allows transfer vectors which have been estimated from larger amounts of data 

to be be more heavily weighted than than those with small numbers of examples for basing an estimate, 

i.e. the transfer vectors that are more accurately estimated are weighted more than the ones that are less 

accurately estimated. 

3.5 Comparison of PVP Algorithm to VFS Algorithm 

In some ways PVP is very similar to VFS. Both attempt to create new transfer vectors for unseen classes 

based on the transfer vectors which have been estimated from the available adaptation data. Both, do not 

solely rely on the ML estimated transfer vector for classes in which data has been seen; rather, both perform 

a form of "smoothing" using the transfer vectors of other cl邸 ses.Despite the similarities the three major 

differences that exist are: 

1. VFS does not predict the transfer vectors of unseen classes but rather just interpolates them from 

acoustically similar classes. 

2. VFS uses an acoustic distance between two classes rather than a correlation matrix to determine the 

influence or weight that one class'estimated transfer vector has in predicting another class'transfer 

vector. 

3. Standard VFS does not consider the reliability of a transfer vectors'estimate when using it during 

vector smoothing. To compensate for this drawback, MAP-VFS w邸 introduced. MAP-VFS uses 

the MAP estimates of the transfer vectors rather than the ML estimates during its interpolation and 

smoothing process. 
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Gaussian Modeling with PVP 

3.6 Comparison of PVP Algorithm to EMAP Algorithm 

In several ways PVP is very similar to EMAP. For one, both require that (CD)2 correlation values be 

estimated. These correlation values also correspond to roughly the same measurements and hence both are 

attempting to capture the same information. Thus, both PVP and EMAP will suffer from a lack of sufficient 

training data to accurately estimate such a large collection of parameters. To compensate for this both 

require some form of parameter reduction to be effective. The major differences between PVP and EMAP 

are as follows: 

1. In EMAP the trained correlation values all occupy one giant CD x CD correlation matri.x while in 

PVP these values are distributed amongst C2 separate DxD matrices. Thus EMAP assumes one giant 

global model while PVP contains many it local models. 

2. The global nature of the EMAP correlation matrix requires than an estimate of the models parameters 

for all classes must be made for each speaker in order to be able to utilize that speaker's data during 

training. PVP does not have this requirement. 

3. The EMAP parameter estimate will converge to the ML parameter estimate as the amount of adap-

tation data is increased. The PVP estimate needs an interpolation scheme in order to converge to the 

ML estimate. 

書
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4 Implementation Issues 

4.1 Overview 

In implementing the PVP algorithm there are several engineering issues that must be addressed. The 

issues stem from two primary problems. The first problem is that we currently do not have a sufficient 

amount of training data to estimate the entire set of (CD)2 PVP correlation parameters accurately. Thus, 

ways must be found to reduce the number of correlation parameters that are trained and/or to compensate 

for the inaccurate predictions that may result from poorly estimated correlation matrices. 

The second problem stems from the assumption that all frames are independent of each other. This 

assumption ignores the correlations which do exist between adjacent frames or frames within the same 

phoneme. In PVP, because each frame is used as a new observation, the system adapts too rapidly to the 

adaptation data because of this ignorance of the frame to frame correlations. Thus, ways must be found to 

adjust the adaptation rate to provide more reliable predictions. 

4.2 Parameter Reduction 

If the correlations between all C classes and all D measurements are utilized, parameter estimation 

problems will cause large difficulties. An HMM system with 50 states and 34 measurements would thus 

require (50 x 34)2 or 2.89 million parameters to be trained in the set of correlation matrices alone. To reduce 

the number of parameters to a more reasonable level two steps are taken. 

First, consider the covariance matrix 

S;j = [ (S心 (S;j)心
(Sり;)が (S;j)xxl・ (45) 

Within each submatrix the strongest correlations exist along the diagonal elements. Thus by considering only 

the diagonal elements of each submatrix (and zeroing out all other covariance elements) we can reduce the 

number of elements that must be trained from (CD)2 to 2DC2. For the 50 state HMM with 34 measurements 

this is a reduction from 2.89 million parameters to 170 thousand parameters. 

Second, the correlations between all states need not be considered. Only the correlations between the 

most similar or most correlated states can be considered. One means of doing this is to consider only the 

correlations of the K-nearest neighbors to a class (including itself). Thus, with I{= 2, only the correlations 

between a class and itself and its one nearest neighbor are considered. In this case the number of trained 

correlation parameters is reduced to 2DKC, or 6,800 in the given example. 

4.3 Adaptation Rate Control 

In practice PVP suffers from overly rapid adaption. This is a result of the邸 sumptionthat all frames are 

considered independent. PVP utilizes every new frame to readapt the model parameters. Because successive 

frames from the same observation of one class are highly correlated, each new frame from this phone may not 

be contributing any new information that is useful for adaptation. There are several ways to compensate for 

this problem. One potential method is to reduce the weight that each frame contributes to the adaptation. 

In examining the equation 

判x=μ,o+ s,ix [t, 巧(S計）心（一も）］ (46) 

it is seen that each ML estimated transfer vector is weighted by the number of frames used to estimate 

the transfer vector. By reducing this weight the adaptation can be slowed. The simplest way to do this 

is to multiply each count value nj by a rate factor r where O < r~1. Thus each count value would be 

rerepresented as 

朽=rnj, (47) 
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4.4 Model Interpolation 

Despite the reduction in parameters, the PVP prediction may not be entirely reliable because of the 

potential of the correlation parameters being poorly estimated. In this case, it is desirable to avoid placing 

full faith in the PVP predicted transfer vectors, but rather interpolate the PVP predicted mean vectors with 

the a priori and/or ML estimated mean vectors. Thus, a weighted combination of the different estimates of 

the means can be defined as 

). = Wo入。+Wpv砂pvp+ Wm/入ml (48) 
＂ーー

where 
1

ー、

Wo + Wpvp + Wm/ = l. (49) 

Thus, if Wpvp = 0 then the proper selection of wo and Wm/ will simply yield the MAP estimate. Regardless, 
it is desirable to shift the estimate j towards the ML estimate as more and more adaptation for each specific 

class becomes available. 
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5 Experimental Results 

5.1 Experimental Platform 

A series of experiments were performed using a simple HMM system to exan五riethe capabilities of PVP. 

This preliminary set of experiments was conducted using a 50 state HMM phonetic recognition system where 

each state's output density function was modeled with a single diagonal Gaussian. The recognition system 

and the PVP a pガorimodels were both trained using Japanese read speech collected from 291 different 

speakers. The adaptation of the HMM was performed by adapting the mean values of the Gaussian density 

functions of each state. The variances of the Gaussian density functions were not adapted. 

Testing of the system was performed using data from seven adaptation speakers. Adaptation sets con-

taining random selections of 1, 3, 5 and 7 adaptation phrases were created for each speaker. A separate test 

set containing 280 phrases per speaker was used for testing. Performance improvements were measured by 

the drop in phonetic recognition error rate. 

5.2 Standard PVP 

The first experiment was to examine standard PVP adaptation without utilizing any adaptation rate 

adjustment (i.e. r = 1) and without smoothing the PVP estimate with the a priori speaker independent 
model or the the ML model (i.e. wo = 0, Wpvp = 1 and Wm/ = 0). The PVP performance was examined using 
1, 3, 5, and 7 adaptation phrases per speaker as the number of K-nearest neighbor correlation matrices was 

varied. As can be seen in Figure 2, for each K recognition performance improves as the number of adaptation 

phrases is increased. Unfortunately, for all K the performance drops below the speaker independent (SI) 

performance after 1 adaptation utterance is observed. For K = 1, K = 2 and K = 3 the performance 
eventually surpasses the SI performance with more adaptation data. However, as K is increased beyond 2 

the performance degrades significantly. 

42 
K=10 

401-
K=7 ~ 

38ト ::~ 麟|
喜

ll_"・' 
K=2 

32 

30 

28。
2 3 4 5 6 
Number of Adaptation Phrases 

7
 

8
 

医2:Phonetic recognition performance of standard PVP using 1, 3 ,5 and 7 adaptation phrases over varying 

values of I<. 

5.3 PVP with Adaptation Rate Control 

It is believed that the poor performance PVP demonstrated in Figure 2 can be partially corrected by 

slowing down the adaptation rate of the system to prevent the system from adapting too quickly to poorly 
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estimated predictions. Figure 3 shows the performance of PVP using J{ = 2 as the adaptation rate r and 
the number of adaptation phrases is varied. As can be seen in the figure, the error rate can be reduced, 

especially when fewer adaptation phrases are utilized, by reducing the adaptation rate. The performance is 

also optimized by pushing the adaptation rate back up towards r = 1 as the number of adaptation phrases 
is increased. 
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医 3:Phonetic recognition performance of PVP using J{ = 2 as the adaptation rate r and the number of 
adaptation phrases P is varied. 

Figure 4 shows the performance of PVP when the adaptation rate is optimized as the value of I{ and the 

number of adaptation phrases is varied. As can be seen, optimizing the adaptation rate greatly improves 

the performance of the system over the standard PVP performance shown in Figure 2. However, PVP with 

I{ = 2 still performs better than PVP with I{ > 2 and only performs marginally better than PVP with 
I{= 1. 

5.4 PVP with Model Smoothing 

As an alternative to utilizing an adaptation rate factor. PVP was tested using model smoothing. Smooth-

ing was performed only with the a priori SI model (and not the ML model) using the following expression 

~=(1-w)入。 +w入pvp (50) 

where w is the weight for the PVP estimated model and the remainder of the weight is placed on the a priori 

SI model. Figure 5 shows the performance of PVP for J{ = 2 as the smoothing weight w and the number of 
adaptation phrases P are varied. As can be seen in the figure, the PVP performance can be improved more 

using optimized smoothing weights than with using optimized adaptation rates as presented in Figure 3. 

Experiments also showed that combining the adaptation rate and smoothing weights together within the 

system performs worse than only using that smoothing weight factors. 

1 
1 
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図4:Phonetic recognition performance of PVP when the adaptation rate is optimized as the value of I{ 

and the number of adaptation phrases are varied. 
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5.5 PVP vs. MAP vs. VFS 

Figure 6 shows the performance of PVP using optimized smoothing weights in comparison to the standard 

MAP algorithm using optimized values of r. As can be seen PVP performs marginally better than MAP, 

achieving approximately the same reduction in error邸 MAPwith one fewer adaptation phr邸 ethan MAP. 

Experiments to compare PVP to VFS were also conducted. For this task, VFS performed worse than 

standard MAP for all tested c邸 es.This indicates that for this small t邸 kthe VFS smoothing process harn1S 

the MAP predicted values. 
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医6:Phonetic recognition performance of PVP with optimized smoothing weights vs. MAP with optimized 

values for r as the number of adaptation phrases is varied. 
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6 Conclusion 

r-ヽ、
(_ 

The results from the experiments presented in this paper allow two primary conclusions to be drawn. 

First, the use of a priori information about within speaker correlations across states can be useful for 

improving speaker adaptation performance. However, this information is difficult to capture efficiently and 

care must be taken to insure the proper balance between complexity and trainability. The tremendous 

reduction in the parameter set size that must be undertaken in order for PVP to be effective is evidence 

for this belief. By reducing the number of correlation matrices used per class down to I{ = 2 much of the 
useful correlation information from other classes has been removed. However this reduction in parameter 

size is necessary to insure that the estimation noise introduced from the large number of parameters that are 

potentially undertrained is kept in check. In order for methods such as PVP to work more effectively, means 

of capturing the most relevant correlation information in an efficient representation must be develop~d. Blind 
selection of the correlation.matrices and parameters to be used will not achieve optimal results. 

The second conclusion that can be made is that VFS smoothing does not work well across states that do 

not belong to the same phoneme. VFS has been shown to be effective for an HMM system with 200 states 

with a mixture of 5 Gaussian per state. In this system, VFS smoothing of the MAP estimated transfer vectors 

of the 6 nearest neighbor distributions allows for considerable improvement over standard MAP adaptation 

techniques. However, within this system the smoothing is primarily performed using distributions from the 

same mixture or distributions from the mixture of the nearest adjacent state, which is often just a different 

context dependent state for the same phoneme. Thus, the linear interpolation is most often performed on 

distributions stemming from the same phoneme. However, with only 50 states and 1 Gaussian per state, 

smoothing is usually performed across states belonging to different phonemes. Under these conditions, VFS 

does not perform well. Thus, we must conclude that VFS primarily helps in smoothing the estimates made 

across distributions representing the same phoneme but does not help in predicting the transfer vectors of 

states from one phoneme based on observations from different phonemes. 
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