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Abstract 

This report describes the design an current implementation of LLU 
(Layered Language Understander). LLU is application-building software (a 
"shell") for natural language processing using abduction, but designed to 
be independent of any particular language or level of processing (syllables, 
words, sentences, etc.). It is. a specialization of a generic abduction 
mechanism with support for layered abduction and for handling 
temporally-bounded hypotheses. 
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Introduction 

Abduction, or inference to the best explanation, is a pervasive 
phenomenon. It appears in medical diagnosis, legal reasoning, perception, 
and hypothesis testing, just to mention a few areas; the first use of the 
word Abduction is generally ascribed to the American philosopher, 
Charles Saunders Peirce. 

The general pattern of reasoning has been described as follows: 

D is a collection of data (facts, observations, givens). 
H explains D (would, if true, explain D). 
No other hypothesis can explain D as well as H does. 

Therefore, H is probably true. (Josephson & Josephson, 1994) 

While this description covers a lot of territory, our work focuses on 
implementing a generic machine that is procedurally abductive, and is 
applicable to a variety of domains and knowledge sources. In particular, 
we are currently focusing on LLU, or Layered Language Understander, 
which is intended to be a generic, layered abduction framework for 
language processing. 

LLU is implemented in C++, and is the sixth in a series of abduction 
machines (see Josephson & Josephson, ch. 9, 10). It is specifically targeted 
towards speech recognition and language understanding, and contains 
vestiges of the previous machines, as well as specific improvements. The 
first machines were designed for diagnosis, and LLU is a direct descendant 
of that legacy. 

The current implementation runs on a Power Macintosh 8100/SOAV, and 
is compatible with MetroWerks CodeWarrior 6.0. The core code is ANSI 
compatible,、andso is largely portable to other systems. 

Abduction 

While the general form was given above, abduction itself bears closer 
examination. The term "best explanation," in particular, needs exploring. 
We take it that the "best" explanation is one that is parsimonious, 
confident, and consistent: parsimonious, in the sense that the data is 
explained with as few hypotheses as possible; confident, in that the 
component parts surpass competitors to a convincing degree'and 
consistent, in that the accept parts of a composite explanation to not 
contradict each other. 
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Having evolved in a world of mixtures, humans have 
developed heuristic mechanisms capable of decomposing them. 
Because the conditions under which decomposition must be done 
are extremely variable, no single method is guaranteed to succeed. 
Therefore a number of heuristic criteria must be used to decide how 
to group the acoustic evidence. These criteria are allowed to 
combine their effects in a process very much like voting. No one 
factor will necessarily vote correctly, but if there are many of them, 
competing with or reinforcing one another, the right description of 
the input should generally emerge. (Bregman, 1990) 

Hypotheses 

In this formulation, a hypothesis is a volatile entity created during 
problem solving that instantiates if certain preconditions are met. It is 
updated during problem solving, and carries a Belief Status ("doxastic 
status"), as well as a confidence score based on a priori probabilities and the / 
current state of problem solving. 

During processing, hypotheses go through a cycle of evocation, 
instantiation, and composition. 
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Generating explanations by 
instantiation and composition 

task-subtask breakdown 
explain 

generate 
plausible 
elementary 
hypotheses 

evoke instantiate 

score 
determine 
explanatory 
coverage 

synthesize 
composite 
explanation 

Evocation generally occurs bottom-up, as a hypothesis becomes 
"stimulated" for consideration; however, a hypothesis may also be evoked 
from above, as an expectation. In LLU, the bottom-up evocation is done 
using triggers, while the top-down evocation is performed using 
expectations. 

Instantiation is the process by which a hypothesis gains an initial 
confidence score and determines how much of the data it can account for 
or cover. It combines a priori probabilities with how well the data "fits" 
the hypothesis. At instantiation time, no consideration has yet been given 
to rival hypotheses that may offer to explain or account for some or all of 
the data covered by the particular hypothesis; it is a logically parallel act. 
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Composition is the phase in which hypothesis interactions come into play, 
and, under good conditions, a coherent, "best" explanation emerges. LLU 
uses a least-commitment strategy to exploit essential hypotheses and make 
easy decisions first, and propagating the results of acceptance. Initial 
confidence scores, set at instantiation, become modified as the abducer 
tentatively accepts the essentials and clear-best explainers, and the 
interactions between hypotheses are leveraged to dynamically update the 
confidence scores. This is discussed in more detail later. 
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Layered Abduction 

The loci of hypothesis formation an are named agora after the marketplace 
where the ancient Greeks gathered for dialog and debate. An agora is a 
place where hypotheses of a certain type gather and contend and where, 
under good conditions, a consensus hypothesis emerges. 

In typical cases the emerging hypothesis will be a composite, coherent in 
itself, and with different subhypotheses accounting for different portions 
of the data. For example a syllable agora is the presumed location where 
syllable hypotheses are formed and accepted; each specific syllable 
hypothesis accounting for certain specific data from lower level agoras. 

Hypotheses go t加ougha cycle of evocation, instantiation, updating, and 
acceptance; results at one agora become data to be explained by another 

Note that abduction, as a logical form, encompasses many hypothesis 
relation topologies that already exist, such as neural networks (NNs), rule-
based resolution systems, hidden Markov models (HMMs), and directed 
acyclyc graphs. Each of these could be a particular instantiation of the truly 
generic abduction machine. 
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Fl F2 F3 F4 

Figure 1. Neural Net-type topology 

In the neural-net type topology (see Figure 1), the abduction machine can 
implement a feed-forward net by constraining the hypothesis 
relationships to be those of the appropriate network; i.e., findings (show as 
Fl through F4) stimulate covering hypotheses ("nodes"), and the covering 
nodes may have damping relations toward each other. However, 
transition probabilities are not considered. 
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Hl H2 H3 

Fl F2 F3 F4 

Figure 2. HMM-type topology 

In another type of topology, an HMM-type construct or a grammar-based 
set of relations can be constructed. The hypothesis under examination 
(here, H2) depends on the transition probabilities of temporally adjacent 
hypotheses. If the link between H2 and H3 is replaced by a trigger, the 
relationship becomes more clear. Of course, the statistics required must be 
initialized and updated based on learning to satisfy the requirements of an 
HMM to actually be an HMM. 

In the current system, hypotheses exist in time. The beginning and end 
times of a hypothesis reflect their uncertainty; the times are represented in 
interval representations (see Figure 3). 

hyp-name 

earliest 
begin 
time 

latest 
begin 
time 

Figure 3. 

earliest 
end 
time 

Temporal Hypotheses in LLU 

latest 
end 
time 

Often the regions covered by a piece of data to be explained may be 
accounted for by overlapping hypotheses. Consider for instance "six 
stockings". If the s-fix frication region at the end of "six" and the s-
frication at the beginning of "stockings" is forced to one side or the other, 
the parse will be wrong. "sick stockings" or "six talkings". The duration of 
the frication may not be longer than it would be for a single word, 
especially in rapid or casual speech. This forces an overlapping 
representation, where more than one hypothesis can account for the same 
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data. Overlapping hypotheses were possible in the abduction machine, but 
knowledge is not present from higher-order parsing such as syntax or 
semantics to disambiguate these sorts of errors. 

Rather than specifying absolute time intervals, a user who wants to 
explicitly specify the knowledge should be able to use some notation for a 
partial ordering. It would be highly desirable to characterize partially-
ordered sets with constraints rather than actual time values in some cases, 
considering the amount of temporal variability under various prosodic 
conditions. Otherwise, the fuzzy boundaries used for temporal 
specification spread out so far as to become almost meaningless. 

恥四othesescan be mutually incompatible, or they can coexist and overlap 
m time. For instance, in the feature-based machine, a syllable explains a 
set of overlapping, articulatorially-based features around a region of time. 
In the phonemoid-based machine, however, one phoneme is posited by 
the HMM front-end for each time slice, and thus they do not overlap. 
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Figure 4. Overlapping, non-contradictory hypotheses 

For the edge-driven, 2-layer abduction machine, a trigger from the layer 
below instantiates a hypothesis at the next level, and these triggers are 
positioned along the left edge of the higher-level hypothesis. An efficient, 
cost-based abductive parser has also been discussed in (Den, 1994). 
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trigger 

Figure 5. Some relationships between hypotheses in a 2-level machine 

In our work, an "abducer" is a software agent that manages problem 
solving within a defined hypothesis space, known as an agora. An agora 
may be considered a "marketplace of ideas," where hypotheses gather and 
contend for the data to be explained. The collection of abducers are, in 
turn, managed by an agent called an "abducer manager." 

Conflation 

Among the other duties on the abducers, one is hypothesis conflation. 
When two hypotheses of the same type exist, and the boundaries of their 
temporal coverage completely intersect, hypothesis'conflation'occurs, 
with one of two possible results: 1) one hypothesis adjusted and the other 
is eliminated, or 2) one hypothesis is adjusted and the other is left 
untouched. 

11 11 

Figure 6. Overlapping boundaries of temporal coverage for two hyps of 
the same type 

The EFLI strategy 

The acceptance agenda follows a strategy we call EFLI, or Essentials First 
Leveraging Incompatibilities. Hypotheses that offer unique explanations 
are considered Essentials. Essentials are added to the composite as they 
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appear, and the consequences of their acceptance are propagated through 
the system. 

Hypotheses are added to the composite in order of certainty, where 
certainty IS determined by 

• the confidence rating of the hypothesis 
• how well the confidence rating surpasses competing hyps 
• the distribution of alternate explainers 

See (Josephson, Smetters, et al., 1989) for a discussion of the criteria. 

The threshold for acceptance is gradually lowered, and hypotheses are 
added to the composite explanation; their consequences are propagated 
through the system. Consistent with least commitment and island-driven 
strategies, hard decisions are delayed until further evidence can be 
evaluated, and may not be hard decisions if a conclusion is forced by 
confident hypotheses. As the system moves down the confidence 
gradient, the composite explanation covers more but may reduce in 
overall confidence. 

The EFLI strategy is used for control of hypothesis assembly (Josephson & 
Josephson, 1994, ch. 9). EFLI m.ay be briefly described as: 

• Find the data with the lowest ambiguity. This m.ay be either a datum. 
with only a unique possible explainer, an "essential hypothesis, "or 
with one explanation being m.uch better than all others. 

• Accept the best explanation for each low-ambiguity data point. That 
is, m.ake a local, confident abduction. 

• Propagate the consequences of acceptance by using known hypothesis 
relationships. This includes the rejection of incompatible hypotheses 
which compete with accepted hypotheses, and rescoring those that 
have expectations towards the accepted hypothesis. 

• If necessary, lower the standards for acceptance and continue. 
(Lowering the standard for acceptance means accepting hypotheses that 
are best explanations, but surpass their competitors by a degrading 
margin.) 

Please refer to ATR ITL Tech Report TR-IT-0075, "Generic Software for 
Language Understanding: a design based on layered abduction," for a more 
complete discussion the LLU design. 

Automatic Generation of Abduction Machines from Pronunciation 
Dictionaries 
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In our work, a perl script was used to automatically generate 2-and 3-level 
abduction machines from pronunciation dictionaries. This allowed for 
testing under a variety of conditions, and also allowed for the rapid 
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creation of a very large recognition machine. A list of words, and a 
pronunciation dictionary, are given to the script, and it generates all of the 
appropriate hypothesis types and triggers between them. 

To create the abduction machine automatically, the script first finds all 
pronunciations for the target words in the dictionary. Then, it creates 
hypothesis types for each of them, including information about which 
constituents the expect and account for. Thereafter, a hypothesis type is 
made for each type of constituent, in a recursive descent fashion, and the 
relationships of triggering are described at the appropriate level as the 
levels descend. References which are not in the dictionary but may appear 
in the input can be included in a separate file of forced references; this was 
done for the PAU and brth (pause and breath, respectively) tokens, which 
did not appear in the dictionary but did in the input tokens. 

Unfortunately, there was no direct automatic generation of abduction 
machines based upon the Converter/Distributor (C/D) Model (Fujimura, 
1994), which was an initial goal of the work. The reason for this is that, as 
the project progressed, the generic abduction processing gained in 
precedence in comparison to the signal processing and stochastic database 
techniques that would be useful for making feature detectors for the 
features posited by the C/D model. 

Results 

More experiments need to be done in order to capture precise statistics; 
however, we report here some preliminary results using the Boston 
University Radio Data, speaker f2b. The corpus contains 116 utterances. 

• 42 phonemoid types (including PAU and brth) 
• 2315 unique syllables 
• 3283 pronunciation dictionary entries 

Utterances can be quite long, and have been broken into sentences. Each 
test was done on a sentence-length unit. 

short dictionary: uses only words in the utterance, 12-20 words 
moderate performance in initial tests. approaching 85%. 

confounding words: uses all the words in the paragraph; up to 4x as 
many words as in the target 

reasonable performance, with some degradation. ~75% 

full dictionary: uses 3283 words 
just beginning experiments now, but experiencing_ problems 
of scale. Abduction machine is refusing to commit due to 
the entertainment of so many hypotheses. 
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Conclusion 

Abduction is a generic inference mechanism that can be exploited 
explicitly for speech recognition. While the set-covering aspects of the 
system seem to be functioning effectively, there is a word-subword 
problem if the subword confirms first and marks the data as explained. 
The machine generates about 200 hypotheses, excluding the input 
hypotheses, for the short dictionary and confounding words case, while it 
generates several thousand for the complete dictionary. Some more 
aggressive pruning may be in order; see (Den, 1994) for a cost-based 
approach to search control. 

While almost all recognition devices are logically abductive, there 
are benefits to be obtained by generic, procedurally abductive systems --
these include: 

-hybrid integration of knowledge sources 
-multiple levels of abstraction 
-explicit coding and learning in the same mechanism 
-explanation-based reasoning 
-multiple partial explanations 
-consistent, generic mechanism 
-cognitively plausible 

But, pre-processing and the sensory periphery offer important 
challenges. Without good pre-processing, the system will fail --as would 
any. Models of hypothesis-hypothesis interaction provide important 
knowledge for the system. 

In our opinion, future research should be specifically aimed and prosodic 
controt using the assumptions of the C/D Model. Coherent integration of 
stress and focus are goals we were unable to achieve in the short span of 
one year, but the mechanism allows for it. 

Future possibilities also include 

• Auditory Scene Analysis processing project with Guy Brown 

• Rhythmogram and prosodic incorporation with Neil Todd 

• incorporation of other knowledge sources (syntax, semantics, etc.) 
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Appendix A: Specifying Hyptypes 

Hyptype specifications are put in a single file with extension ".ht" 

<. ht file entry> : : = 
<hyptype name> [ (<param defs>) 
<agora name> 
<total considered>, <total true>, <total false> 
<triggers, etc., in any order (order only matters for inheritance> 

<param def> : := <intparam def> 

<intparam def> : := d:<default initial value (an integer)> 

<refined from> : := r:<super hyptype> 
<trigger> : := t:<triggered hyptype> [ (<derived params>) J, 
<temporal offset> 
<expectation> : := e:<expected hyptype> [ (<derived params>) ], 
<temporal offset>, 

h&e, -h&e, h&-e, -h&-e 
<implication> : : = i: <implied hyptype> [ (<derived par ams>) J, 
<temporal offset>, 

<expectation decision (Yorn)>, 
<resulting hypothesis decision (y or n)> 

<accounts for> : := a:<accounts for hyptype> [ (<derived params>)), 
<temporal offset> 

<derived param> : := d:<intparam init> 
(use default value) 

<intparamini t> : : = 

<use this param ll in the original> / 
<add this offset to it to yield derived param> 

<temporal offset> : : = 

'[''['<min-start> <max-start>']''['<min-end> <max-end>'J''J' 
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Appendix B: Example HypTypes files 

<these are only an excerpts!> 

for 3-level phoneme-based machine: 

M 

phon 
100,1,99 
t:M.AE.S_s, [ [0/0 1/0] [2/3 3/3]] 
t:M.AX.N.T_s, [ [0/0 1/0] [2/3 3/3]] 
t:M.EH.N.D_s, [ [0/0 1/0] [2/3 3/3]] 
t: M. EH. N_s, [ [ 0/0 1/0] [ 2/2 3/2]] 
t:M.EY.D_s, [ [0/0 1/0] [2/2 3/2]] 

M.AE.S_s 
syll 
100,1,99 
a:M, [ [0/0 1/0] [2/0 3/0]] 
e:M, [ [0/0 1/0] [2/0 3/0]] 
a:AE,[[0/1 1/1] [2/1 3/1]] 
e:AE, [[0/1 1/1] [2/1 3/1]] 
a:S,[[0/2 1/2] [2/2 3/2]] 
e:S, [ [0/2 1/2] [2/2 3/2]] 
t: Massachusetts_w, [ [ 0/0 0/0] [ 2/8 3/10]] 

Massachusetts_w 
word 
100,1,99 
a: M. AE. S_s, [ [ 0/0 1/0] [ 1/2 2/2]] 
e: M. AE. S_s, [ [ 0/0 1/0] [ 1/2 2/2]] 
a:AX_s, [ [0/3 1/3] [1/3 2/3]] 
e:AX_s, [ [0/3 1/3] [1/3 2/3]] 
a:CH. uw_s, [ [0/4 1/4] [1/5 2/5] J 
e:CH.UW_s, [ [0/4 1/4] [1/5 2/5]] 
i:CH.UW_s, [ [0/4 1/4] [1/5 2/5]] ,n,n 
a:S.IH.T.S_s, [[0/6 1/6] [1/9 2/9]] 
e:S.IH.T.S_s, [[0/6 1/6] [1/9 2/9]] 

for 3-level feature-based machine: 

fricative 
feature 
100,50,50 
t:dh_ae_ts,[[0/0.0 1/0.0J [2/100.0 3/650.0JJ 
t:dh_ae_ts,[[0/-650.0 1/-300.0] [2/0.0 3/0.0]] 
t: fUl, [ [0/0. 0 1/0. OJ [2/60. 0 3/300. OJ J 

fUl 
syllable 
100,50,50 
e:fricative, [[0/0.0 1/0.0J [0/150.0 1/210.0JJ ,10,5,2,2 
e:labial,[[0/0.0 1/0.0J [0/150.0 1/210.0JJ,10,5,2,2 
e:lateral, [[2/-200.0 3/-50.0J [2/0.0 3/0.0JJ,10,5,2,2 
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a:fricative,[[0/0.0 1/0.0J [0/150.0 1/210.0]] 
a : 1 ab i a 1 , [ [ 0 / 0 . 0 1 / 0 . 0 ] [ 0 / 15 0 . 0 1/210 . 0 ]] 
a:lateral,[[2/-200.0 3/-50.0] [2/0.0 3/0.0]] 
t:wonderful,[[0/-600.0 1/-400.0] [2/0.0 3/0.0]] 

wonderful 
word 
100,50,50 
e:wUn, [[0/0.0 1/0.0] [0/160.0 1/300.0]J,10,5,2,2 
e:dR,[[0/200.0 1/400.0] [2/-10.0 3/-30.0]J,10,5,2,2 
e:fUl,[[2/-300.0 3/-200.0] [2/0.0 3/0.0]J,10,5,2,2 
a :wun, [ [0/0. O 1/0. OJ [0/160. O 1/300. OJ J 
a:dR,[[0/200.0 1/400.0J [2/-10.0 3/-30.0JJ 
a:fUl,[[2/-300.0 3/-200.0J [2/0.0 3/0.0JJ 
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Appendix C: Example Input Files 

for phoneme-based macl1ine: 

PAU, [[l l] [l 1]] 
AH , [ [ 2 2 ] [ 2 2 ] ] 
N, [ [3 3] [3 3]] 
AY,[[4 4] [4 4]] 
N,[[5 5] [5 5]] 
T,[[6 6] [6 6]] 
IY, [ [ 7 7 ] [ 7 7 ] ] 
N, [ [8 8] [8 8]] 
EY , [ [ 9 9 ] [ 9 9 ] ] 
T,[[10 10] [10 10]] 
IY,[[11 11] [11 11]] 
N,[[12 12] [12 12]] 
S,[[13 13] [13 13]] 
T,[[14 14] [14 14]] 
EY , [ [ 15 15 J [ 15 15 ] ] 
T, [ [16 16] [16 16]] 
K, [ [17 17] [17 17]] 
AA, [ [18 18] [18 18]] 
N,[[19 19] [19 19]] 
s, [ [20 20] [20 20]] 
T, [ [21 21] [21 21]] 
AX , [ [ 2 2 2 2 ] [ 2 2 2 2 ] ] 
T,[[23 23] [23 23]] 
uw, [ [24 24] [24 24]] 
SH, [ [25 25] [25 25]] 
EN, [ [ 2 6 2 6 ] [ 2 6 2 6 ] ] 
EL , [ [ 2 7 2 7 ] [ 2 7 2 7 ] ] 
AX , [ [ 2 8 2 8 ] [ 2 8 2 8 J ] 
M, [ [29 29] [29 29]] 
EH , [ [ 3 0 3 0 ] [ 3 0 3 0 ] ] 
N, [ [31 31] [31 31]] 
M,[[32 32] [32 32]] 
AX , [ [ 3 3 3 3 ] [ 3 3 3 3 ] ] 
N, [ [34 34] [34 34]] 
T, [ [35 35] [35 35]] 

"A 1918 state constitutional amendment" BU£2b 

----------------------------
for feature-based machine: 

voiced_cons, [ [20 30] [70 90]] 
interdental, [ [20 30] [70 90]] 
fricative, [ [20 30] [70 90]] 
low, [ [ 9 0 10 0] [ 2 4 0 2 5 0] ] 
stop, [ [250 260] [300 310]] 
apical, [ [250 260] [300 310]] 
fricative, [ [305 315] [440 455]] 
apical, [ [305 315] [440 455]] 
rhoticized, [ [470 490] [530 540]] 
high, [ [510 520] [560 570]] 
front,[[510 520] [560 570]] 
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reduced, [ [560 570] [625 635]] 
lateral, [ [630 640] [705 715]] 
high, [ [700 720] [840 850]] 
front, [ [700 720] [840 850]] 
glide, [ [850 860] [940 950]] 
labiovelar, [ [850 860] [940 950]] 
reduced, [ [940 960] [990 1010]] 
nasal,[[1000 1015] [1100 1110]] 
apical,[[1000 1015] [1100 1105]] 
stop, [ [1110 1115] [1130 1140]] 
apical, [ [ 1110 1115] [ 113 0 114 0]] 
voiced_cons, [ [1110 1115] [1130 1140]] 
rhoticized, [ [1130 1150] [1220 1230]] 
fricative, [ [1220 1230] [1340 1350]] 
labial, [ [1220 1230] [1340 1350]] 
lateral, [ [1370 1380] [1490 1500]] 

"That's really wonderful." 
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Appendix D: Example Output (Condensed) 

for feature-based machine 

(J 
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Abducer syllable: report continued 
Accepted hypotheses: 

1 . dh_ae_ ts [ [ -4 0 -4] [ 3 0 31] ] [ . 8 . 9 . 9] 
explains 4 5 6 6 

2. ri [[47 49][53 68]] [.9 11] 
explains 10 11 

3. lone vowe l_syllable [ [53 61] [57 70]] [l 1 l] 
explains 12 

4. li [[26 99][84 110]] [.9 .9 .9] 
explains 13 14 15 

5 . wun [ [ 8 5 8 6] [ 9 4 12 5] ] [ . 9 . 9 . 9] 
explains'16 176. 

6 . dR [ [ 10 4 12 7 ] [ 8 5 2 0 2 ] ] [ . 9 . 9 . 9 ] 
explains 21 22 23 24 

7. fUl [[122 123][140 165]] [.8 .8 .8] 
explains 27 

Other possible hypotheses: 

8 . dh_ae_ ts [ [ 2 3 ] [ 3 2 6 8] ] [ . 8 . 8 . 8] 
could explain 4 7 8 

9 . dh_ae_ ts [ [ -6 3 -2 7 ] [ 7 9] ] [ . 8 . 8 . 9 ] 
could explain 3 4 

1 O . wun [ [ -5 2 6] [ 3 O 31] ] [ . 8 . 8 . 9] 
could explain 6 

11. lone_vowel_syllable [[-5 30][26 31]] [.8 .8 .8] 
12. dh_ae_ts [ [12 67] [42 133]] [. 8 . 8 . 8] 

could explain 7 8 20 22 
13. fUl [[12 67][38 98]] [.8 .8 .8] 

could explain 7 13 
14. dh_ae_ts [[-345 15] [44 455]] [.8 .9 .9] 

could explain 4 7 8 
15 . wUn [ [ 5 315] [ 4 4 4 5 5] ] [ . 8 . 8 . 9 ] 

could explain 8 
16 . dR [ [ 3 9 4 9] [ 5 3 5 4] ] [ . 8 . 8 . 8] 

could explain 9 

Abducer word: report 

Data to be explained: 

1. dh_ae_ts [[-40 -4] [30 31]] [.8 .9 .9], explained 
2. ri [[47 49][53 68]] [.9 1 l], explained 
3. lone_vowel_syllable [ [53 61] [57 70]] [l 1 l], 

explained 
4. li [[26 99][84 110]] [.9 .9 .9], explained 
5. wUn [[85 86][94 125]] [.9 .9 .9], explained 
6. dR [ [104 127] [85 202]] [. 9 . 9 . 9], explained 
7. fUl [[122 123][140 165]] [.8 .8 .8], explained 

Accepted hypotheses: 
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1. thats [[-40 -4][30 31]] [ 1 1 1] 
explains 1 

2. really [[46 50][85 109]] [l 1 l] 
explains 2 3 4 

3. wonderful [[84 87)[86 205)) [.9 1 l] 
explains 5 6 7 

Other possible hypotheses: 

none 

Once the result is found, the Apple Speech Manager is used to speak the 
utterance "That's Really Wonderful." 
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