
Internal Use Only

・002

TR-IT-0119
Layered Language Understander:

Generic Abductive Inference for Language Processing

Kevin Lenzo t John R. Josephson t* Christopher Bailey-Kellogg*

1995.6

Abstract

This report describes the design an current implementation of LLU
(Layered Language Understander). LLU is application-building software (a
"shell") for natural language processing using abduction, but designed to
be independent of any particular language or level of processing (syllables,
words, sentences, etc.). It is. a specialization of a generic abduction
mechanism with support for layered abduction and for handling
temporally-bounded hypotheses.

ATR Interpreting Telecommunications Research Laboratories
c1995 by ATR Interpreting Telecommunications Research Laboratories

t ATR Interpreting Telecommunications Research Laboratories, Kyoto, Japan.
* Laboratory for Artificial Intelligence Research, Department of Computer and Information
Science, The Ohio State University, Columbus, Ohio, USA

Contents

Introduction
Abduction
Hypotheses
Layered Abduction
Conflation
The EFLI Strategy
Automatic Generation of Abduction Machines

Results
Conclusion
Acknow led gm en ts
Bibliography

Appendix A: Specifying Hyp Types
Appendix B: Example HypTypes files
Appendix C: Example Input Files
Appendix D: Example Output

r

Introduction

Abduction, or inference to the best explanation, is a pervasive
phenomenon. It appears in medical diagnosis, legal reasoning, perception,
and hypothesis testing, just to mention a few areas; the first use of the
word Abduction is generally ascribed to the American philosopher,
Charles Saunders Peirce.

The general pattern of reasoning has been described as follows:

D is a collection of data (facts, observations, givens).
H explains D (would, if true, explain D).
No other hypothesis can explain D as well as H does.

Therefore, H is probably true. (Josephson & Josephson, 1994)

While this description covers a lot of territory, our work focuses on
implementing a generic machine that is procedurally abductive, and is
applicable to a variety of domains and knowledge sources. In particular,
we are currently focusing on LLU, or Layered Language Understander,
which is intended to be a generic, layered abduction framework for
language processing.

LLU is implemented in C++, and is the sixth in a series of abduction
machines (see Josephson & Josephson, ch. 9, 10). It is specifically targeted
towards speech recognition and language understanding, and contains
vestiges of the previous machines, as well as specific improvements. The
first machines were designed for diagnosis, and LLU is a direct descendant
of that legacy.

The current implementation runs on a Power Macintosh 8100/SOAV, and
is compatible with MetroWerks CodeWarrior 6.0. The core code is ANSI
compatible,、andso is largely portable to other systems.

Abduction

While the general form was given above, abduction itself bears closer
examination. The term "best explanation," in particular, needs exploring.
We take it that the "best" explanation is one that is parsimonious,
confident, and consistent: parsimonious, in the sense that the data is
explained with as few hypotheses as possible; confident, in that the
component parts surpass competitors to a convincing degree'and
consistent, in that the accept parts of a composite explanation to not
contradict each other.

«~i

Having evolved in a world of mixtures, humans have
developed heuristic mechanisms capable of decomposing them.
Because the conditions under which decomposition must be done
are extremely variable, no single method is guaranteed to succeed.
Therefore a number of heuristic criteria must be used to decide how
to group the acoustic evidence. These criteria are allowed to
combine their effects in a process very much like voting. No one
factor will necessarily vote correctly, but if there are many of them,
competing with or reinforcing one another, the right description of
the input should generally emerge. (Bregman, 1990)

Hypotheses

In this formulation, a hypothesis is a volatile entity created during
problem solving that instantiates if certain preconditions are met. It is
updated during problem solving, and carries a Belief Status ("doxastic
status"), as well as a confidence score based on a priori probabilities and the /
current state of problem solving.

During processing, hypotheses go through a cycle of evocation,
instantiation, and composition.

r
1

／
~
ー
、

ー”ー

り
ん

Generating explanations by
instantiation and composition

task-subtask breakdown
explain

generate
plausible
elementary
hypotheses

evoke instantiate

score
determine
explanatory
coverage

synthesize
composite
explanation

Evocation generally occurs bottom-up, as a hypothesis becomes
"stimulated" for consideration; however, a hypothesis may also be evoked
from above, as an expectation. In LLU, the bottom-up evocation is done
using triggers, while the top-down evocation is performed using
expectations.

Instantiation is the process by which a hypothesis gains an initial
confidence score and determines how much of the data it can account for
or cover. It combines a priori probabilities with how well the data "fits"
the hypothesis. At instantiation time, no consideration has yet been given
to rival hypotheses that may offer to explain or account for some or all of
the data covered by the particular hypothesis; it is a logically parallel act.

3

Composition is the phase in which hypothesis interactions come into play,
and, under good conditions, a coherent, "best" explanation emerges. LLU
uses a least-commitment strategy to exploit essential hypotheses and make
easy decisions first, and propagating the results of acceptance. Initial
confidence scores, set at instantiation, become modified as the abducer
tentatively accepts the essentials and clear-best explainers, and the
interactions between hypotheses are leveraged to dynamically update the
confidence scores. This is discussed in more detail later.

5
、
•
ー

Layered Abduction

The loci of hypothesis formation an are named agora after the marketplace
where the ancient Greeks gathered for dialog and debate. An agora is a
place where hypotheses of a certain type gather and contend and where,
under good conditions, a consensus hypothesis emerges.

In typical cases the emerging hypothesis will be a composite, coherent in
itself, and with different subhypotheses accounting for different portions
of the data. For example a syllable agora is the presumed location where
syllable hypotheses are formed and accepted; each specific syllable
hypothesis accounting for certain specific data from lower level agoras.

Hypotheses go t加ougha cycle of evocation, instantiation, updating, and
acceptance; results at one agora become data to be explained by another

Note that abduction, as a logical form, encompasses many hypothesis
relation topologies that already exist, such as neural networks (NNs), rule-
based resolution systems, hidden Markov models (HMMs), and directed
acyclyc graphs. Each of these could be a particular instantiation of the truly
generic abduction machine.

＼

~
~

／

trigger
／
ー
＼

r,

Fl F2 F3 F4

Figure 1. Neural Net-type topology

In the neural-net type topology (see Figure 1), the abduction machine can
implement a feed-forward net by constraining the hypothesis
relationships to be those of the appropriate network; i.e., findings (show as
Fl through F4) stimulate covering hypotheses ("nodes"), and the covering
nodes may have damping relations toward each other. However,
transition probabilities are not considered.

ーー

Hl H2 H3

Fl F2 F3 F4

Figure 2. HMM-type topology

In another type of topology, an HMM-type construct or a grammar-based
set of relations can be constructed. The hypothesis under examination
(here, H2) depends on the transition probabilities of temporally adjacent
hypotheses. If the link between H2 and H3 is replaced by a trigger, the
relationship becomes more clear. Of course, the statistics required must be
initialized and updated based on learning to satisfy the requirements of an
HMM to actually be an HMM.

In the current system, hypotheses exist in time. The beginning and end
times of a hypothesis reflect their uncertainty; the times are represented in
interval representations (see Figure 3).

hyp-name

earliest
begin
time

latest
begin
time

Figure 3.

earliest
end
time

Temporal Hypotheses in LLU

latest
end
time

Often the regions covered by a piece of data to be explained may be
accounted for by overlapping hypotheses. Consider for instance "six
stockings". If the s-fix frication region at the end of "six" and the s-
frication at the beginning of "stockings" is forced to one side or the other,
the parse will be wrong. "sick stockings" or "six talkings". The duration of
the frication may not be longer than it would be for a single word,
especially in rapid or casual speech. This forces an overlapping
representation, where more than one hypothesis can account for the same

r
J

data. Overlapping hypotheses were possible in the abduction machine, but
knowledge is not present from higher-order parsing such as syntax or
semantics to disambiguate these sorts of errors.

Rather than specifying absolute time intervals, a user who wants to
explicitly specify the knowledge should be able to use some notation for a
partial ordering. It would be highly desirable to characterize partially-
ordered sets with constraints rather than actual time values in some cases,
considering the amount of temporal variability under various prosodic
conditions. Otherwise, the fuzzy boundaries used for temporal
specification spread out so far as to become almost meaningless.

恥四othesescan be mutually incompatible, or they can coexist and overlap
m time. For instance, in the feature-based machine, a syllable explains a
set of overlapping, articulatorially-based features around a region of time.
In the phonemoid-based machine, however, one phoneme is posited by
the HMM front-end for each time slice, and thus they do not overlap.

e

c

n

r
a
|

e

ー

゜
T

e

c

n

r
a
,

e

ー

゜
T

ー ＼＼

Figure 4. Overlapping, non-contradictory hypotheses

For the edge-driven, 2-layer abduction machine, a trigger from the layer
below instantiates a hypothesis at the next level, and these triggers are
positioned along the left edge of the higher-level hypothesis. An efficient,
cost-based abductive parser has also been discussed in (Den, 1994).

？

（

/
,
1
¥

F

6

Tolerance

↓
e

c

n
 ra,

e

ー

゜
T

trigger

Figure 5. Some relationships between hypotheses in a 2-level machine

In our work, an "abducer" is a software agent that manages problem
solving within a defined hypothesis space, known as an agora. An agora
may be considered a "marketplace of ideas," where hypotheses gather and
contend for the data to be explained. The collection of abducers are, in
turn, managed by an agent called an "abducer manager."

Conflation

Among the other duties on the abducers, one is hypothesis conflation.
When two hypotheses of the same type exist, and the boundaries of their
temporal coverage completely intersect, hypothesis'conflation'occurs,
with one of two possible results: 1) one hypothesis adjusted and the other
is eliminated, or 2) one hypothesis is adjusted and the other is left
untouched.

11 11

Figure 6. Overlapping boundaries of temporal coverage for two hyps of
the same type

The EFLI strategy

The acceptance agenda follows a strategy we call EFLI, or Essentials First
Leveraging Incompatibilities. Hypotheses that offer unique explanations
are considered Essentials. Essentials are added to the composite as they

？

appear, and the consequences of their acceptance are propagated through
the system.

Hypotheses are added to the composite in order of certainty, where
certainty IS determined by

• the confidence rating of the hypothesis
• how well the confidence rating surpasses competing hyps
• the distribution of alternate explainers

See (Josephson, Smetters, et al., 1989) for a discussion of the criteria.

The threshold for acceptance is gradually lowered, and hypotheses are
added to the composite explanation; their consequences are propagated
through the system. Consistent with least commitment and island-driven
strategies, hard decisions are delayed until further evidence can be
evaluated, and may not be hard decisions if a conclusion is forced by
confident hypotheses. As the system moves down the confidence
gradient, the composite explanation covers more but may reduce in
overall confidence.

The EFLI strategy is used for control of hypothesis assembly (Josephson &
Josephson, 1994, ch. 9). EFLI m.ay be briefly described as:

• Find the data with the lowest ambiguity. This m.ay be either a datum.
with only a unique possible explainer, an "essential hypothesis, "or
with one explanation being m.uch better than all others.

• Accept the best explanation for each low-ambiguity data point. That
is, m.ake a local, confident abduction.

• Propagate the consequences of acceptance by using known hypothesis
relationships. This includes the rejection of incompatible hypotheses
which compete with accepted hypotheses, and rescoring those that
have expectations towards the accepted hypothesis.

• If necessary, lower the standards for acceptance and continue.
(Lowering the standard for acceptance means accepting hypotheses that
are best explanations, but surpass their competitors by a degrading
margin.)

Please refer to ATR ITL Tech Report TR-IT-0075, "Generic Software for
Language Understanding: a design based on layered abduction," for a more
complete discussion the LLU design.

Automatic Generation of Abduction Machines from Pronunciation
Dictionaries

（

／
＼

r ＇

In our work, a perl script was used to automatically generate 2-and 3-level
abduction machines from pronunciation dictionaries. This allowed for
testing under a variety of conditions, and also allowed for the rapid

3

1』

creation of a very large recognition machine. A list of words, and a
pronunciation dictionary, are given to the script, and it generates all of the
appropriate hypothesis types and triggers between them.

To create the abduction machine automatically, the script first finds all
pronunciations for the target words in the dictionary. Then, it creates
hypothesis types for each of them, including information about which
constituents the expect and account for. Thereafter, a hypothesis type is
made for each type of constituent, in a recursive descent fashion, and the
relationships of triggering are described at the appropriate level as the
levels descend. References which are not in the dictionary but may appear
in the input can be included in a separate file of forced references; this was
done for the PAU and brth (pause and breath, respectively) tokens, which
did not appear in the dictionary but did in the input tokens.

Unfortunately, there was no direct automatic generation of abduction
machines based upon the Converter/Distributor (C/D) Model (Fujimura,
1994), which was an initial goal of the work. The reason for this is that, as
the project progressed, the generic abduction processing gained in
precedence in comparison to the signal processing and stochastic database
techniques that would be useful for making feature detectors for the
features posited by the C/D model.

Results

More experiments need to be done in order to capture precise statistics;
however, we report here some preliminary results using the Boston
University Radio Data, speaker f2b. The corpus contains 116 utterances.

• 42 phonemoid types (including PAU and brth)
• 2315 unique syllables
• 3283 pronunciation dictionary entries

Utterances can be quite long, and have been broken into sentences. Each
test was done on a sentence-length unit.

short dictionary: uses only words in the utterance, 12-20 words
moderate performance in initial tests. approaching 85%.

confounding words: uses all the words in the paragraph; up to 4x as
many words as in the target

reasonable performance, with some degradation. ~75%

full dictionary: uses 3283 words
just beginning experiments now, but experiencing_ problems
of scale. Abduction machine is refusing to commit due to
the entertainment of so many hypotheses.

，

Conclusion

Abduction is a generic inference mechanism that can be exploited
explicitly for speech recognition. While the set-covering aspects of the
system seem to be functioning effectively, there is a word-subword
problem if the subword confirms first and marks the data as explained.
The machine generates about 200 hypotheses, excluding the input
hypotheses, for the short dictionary and confounding words case, while it
generates several thousand for the complete dictionary. Some more
aggressive pruning may be in order; see (Den, 1994) for a cost-based
approach to search control.

While almost all recognition devices are logically abductive, there
are benefits to be obtained by generic, procedurally abductive systems --
these include:

-hybrid integration of knowledge sources
-multiple levels of abstraction
-explicit coding and learning in the same mechanism
-explanation-based reasoning
-multiple partial explanations
-consistent, generic mechanism
-cognitively plausible

But, pre-processing and the sensory periphery offer important
challenges. Without good pre-processing, the system will fail --as would
any. Models of hypothesis-hypothesis interaction provide important
knowledge for the system.

In our opinion, future research should be specifically aimed and prosodic
controt using the assumptions of the C/D Model. Coherent integration of
stress and focus are goals we were unable to achieve in the short span of
one year, but the mechanism allows for it.

Future possibilities also include

• Auditory Scene Analysis processing project with Guy Brown

• Rhythmogram and prosodic incorporation with Neil Todd

• incorporation of other knowledge sources (syntax, semantics, etc.)

會
，

(
＼

(9,＼

10

Acknowledgments
This work was supported mostly by ATR Interpreting
Telecommunications Research Laboratories.

Bibliography

Bregman, A. (1990). Auditory Scene Analysis, A Bradford Book, MIT Press,
Boston, Massachusetts.

Den, Y. (1994). Generalized Chart Algorithm: An Efficient Procedure for
Cost-based Abduction. In Proceedings of the 32nd Annual Meeting of the
Association for Computational Linguistics, Las Cruces, New Mexico.

Fujimura, 0. (1994). Syllable Timing Computation in the C/D Model. In
Proceedings of the 3rd International Conference on Spoken Language
Processing, Yokohama Japan.

Josephson, J. R., & Josephson, S. G. (Eds.). (1994). Abductive Inference:
Computation, Philosophy, Technology. New York: Cambridge University
press.

Josephson, J. R., Smetters, D., Fox, R., Oblinger, D., Welch, A., & Northrup,
G. (1989). The Integrated Generic Task Toolset, Fafner Release 1.0.
Technical Report, The Ohio State University, Laboratory for Artificial
Intelligence Research.

1
A

ー

Appendix A: Specifying Hyptypes

Hyptype specifications are put in a single file with extension ".ht"

<. ht file entry> : : =
<hyptype name> [(<param defs>)
<agora name>
<total considered>, <total true>, <total false>
<triggers, etc., in any order (order only matters for inheritance>

<param def> : := <intparam def>

<intparam def> : := d:<default initial value (an integer)>

<refined from> : := r:<super hyptype>
<trigger> : := t:<triggered hyptype> [(<derived params>) J,
<temporal offset>
<expectation> : := e:<expected hyptype> [(<derived params>)],
<temporal offset>,

h&e, -h&e, h&-e, -h&-e
<implication> : : = i: <implied hyptype> [(<derived par ams>) J,
<temporal offset>,

<expectation decision (Yorn)>,
<resulting hypothesis decision (y or n)>

<accounts for> : := a:<accounts for hyptype> [(<derived params>)),
<temporal offset>

<derived param> : := d:<intparam init>
(use default value)

<intparamini t> : : =

<use this param ll in the original> /
<add this offset to it to yield derived param>

<temporal offset> : : =

'[''['<min-start> <max-start>']''['<min-end> <max-end>'J''J'

（、

／
ー
＼

皐

，

．

．

．

i,

12

Appendix B: Example HypTypes files

<these are only an excerpts!>

for 3-level phoneme-based machine:

M

phon
100,1,99
t:M.AE.S_s, [[0/0 1/0] [2/3 3/3]]
t:M.AX.N.T_s, [[0/0 1/0] [2/3 3/3]]
t:M.EH.N.D_s, [[0/0 1/0] [2/3 3/3]]
t: M. EH. N_s, [[0/0 1/0] [2/2 3/2]]
t:M.EY.D_s, [[0/0 1/0] [2/2 3/2]]

M.AE.S_s
syll
100,1,99
a:M, [[0/0 1/0] [2/0 3/0]]
e:M, [[0/0 1/0] [2/0 3/0]]
a:AE,[[0/1 1/1] [2/1 3/1]]
e:AE, [[0/1 1/1] [2/1 3/1]]
a:S,[[0/2 1/2] [2/2 3/2]]
e:S, [[0/2 1/2] [2/2 3/2]]
t: Massachusetts_w, [[0/0 0/0] [2/8 3/10]]

Massachusetts_w
word
100,1,99
a: M. AE. S_s, [[0/0 1/0] [1/2 2/2]]
e: M. AE. S_s, [[0/0 1/0] [1/2 2/2]]
a:AX_s, [[0/3 1/3] [1/3 2/3]]
e:AX_s, [[0/3 1/3] [1/3 2/3]]
a:CH. uw_s, [[0/4 1/4] [1/5 2/5] J
e:CH.UW_s, [[0/4 1/4] [1/5 2/5]]
i:CH.UW_s, [[0/4 1/4] [1/5 2/5]] ,n,n
a:S.IH.T.S_s, [[0/6 1/6] [1/9 2/9]]
e:S.IH.T.S_s, [[0/6 1/6] [1/9 2/9]]

for 3-level feature-based machine:

fricative
feature
100,50,50
t:dh_ae_ts,[[0/0.0 1/0.0J [2/100.0 3/650.0JJ
t:dh_ae_ts,[[0/-650.0 1/-300.0] [2/0.0 3/0.0]]
t: fUl, [[0/0. 0 1/0. OJ [2/60. 0 3/300. OJ J

fUl
syllable
100,50,50
e:fricative, [[0/0.0 1/0.0J [0/150.0 1/210.0JJ ,10,5,2,2
e:labial,[[0/0.0 1/0.0J [0/150.0 1/210.0JJ,10,5,2,2
e:lateral, [[2/-200.0 3/-50.0J [2/0.0 3/0.0JJ,10,5,2,2

13

a:fricative,[[0/0.0 1/0.0J [0/150.0 1/210.0]]
a : 1 ab i a 1 , [[0 / 0 . 0 1 / 0 . 0] [0 / 15 0 . 0 1/210 . 0]]
a:lateral,[[2/-200.0 3/-50.0] [2/0.0 3/0.0]]
t:wonderful,[[0/-600.0 1/-400.0] [2/0.0 3/0.0]]

wonderful
word
100,50,50
e:wUn, [[0/0.0 1/0.0] [0/160.0 1/300.0]J,10,5,2,2
e:dR,[[0/200.0 1/400.0] [2/-10.0 3/-30.0]J,10,5,2,2
e:fUl,[[2/-300.0 3/-200.0] [2/0.0 3/0.0]J,10,5,2,2
a :wun, [[0/0. O 1/0. OJ [0/160. O 1/300. OJ J
a:dR,[[0/200.0 1/400.0J [2/-10.0 3/-30.0JJ
a:fUl,[[2/-300.0 3/-200.0J [2/0.0 3/0.0JJ

（
＼

/

(‘

”
 111
,
A

1,、1

Appendix C: Example Input Files

for phoneme-based macl1ine:

PAU, [[l l] [l 1]]
AH , [[2 2] [2 2]]
N, [[3 3] [3 3]]
AY,[[4 4] [4 4]]
N,[[5 5] [5 5]]
T,[[6 6] [6 6]]
IY, [[7 7] [7 7]]
N, [[8 8] [8 8]]
EY , [[9 9] [9 9]]
T,[[10 10] [10 10]]
IY,[[11 11] [11 11]]
N,[[12 12] [12 12]]
S,[[13 13] [13 13]]
T,[[14 14] [14 14]]
EY , [[15 15 J [15 15]]
T, [[16 16] [16 16]]
K, [[17 17] [17 17]]
AA, [[18 18] [18 18]]
N,[[19 19] [19 19]]
s, [[20 20] [20 20]]
T, [[21 21] [21 21]]
AX , [[2 2 2 2] [2 2 2 2]]
T,[[23 23] [23 23]]
uw, [[24 24] [24 24]]
SH, [[25 25] [25 25]]
EN, [[2 6 2 6] [2 6 2 6]]
EL , [[2 7 2 7] [2 7 2 7]]
AX , [[2 8 2 8] [2 8 2 8 J]
M, [[29 29] [29 29]]
EH , [[3 0 3 0] [3 0 3 0]]
N, [[31 31] [31 31]]
M,[[32 32] [32 32]]
AX , [[3 3 3 3] [3 3 3 3]]
N, [[34 34] [34 34]]
T, [[35 35] [35 35]]

"A 1918 state constitutional amendment" BU£2b

for feature-based machine:

voiced_cons, [[20 30] [70 90]]
interdental, [[20 30] [70 90]]
fricative, [[20 30] [70 90]]
low, [[9 0 10 0] [2 4 0 2 5 0]]
stop, [[250 260] [300 310]]
apical, [[250 260] [300 310]]
fricative, [[305 315] [440 455]]
apical, [[305 315] [440 455]]
rhoticized, [[470 490] [530 540]]
high, [[510 520] [560 570]]
front,[[510 520] [560 570]]

r
J

ー

reduced, [[560 570] [625 635]]
lateral, [[630 640] [705 715]]
high, [[700 720] [840 850]]
front, [[700 720] [840 850]]
glide, [[850 860] [940 950]]
labiovelar, [[850 860] [940 950]]
reduced, [[940 960] [990 1010]]
nasal,[[1000 1015] [1100 1110]]
apical,[[1000 1015] [1100 1105]]
stop, [[1110 1115] [1130 1140]]
apical, [[1110 1115] [113 0 114 0]]
voiced_cons, [[1110 1115] [1130 1140]]
rhoticized, [[1130 1150] [1220 1230]]
fricative, [[1220 1230] [1340 1350]]
labial, [[1220 1230] [1340 1350]]
lateral, [[1370 1380] [1490 1500]]

"That's really wonderful."

鼻
~
＼

（
＼

（＼

●

,
_
4
!
_
1
,
9

lG

Appendix D: Example Output (Condensed)

for feature-based machine

(J

＼

I

!

I

I

:

；，

(~

Abducer syllable: report continued
Accepted hypotheses:

1 . dh_ae_ ts [[-4 0 -4] [3 0 31]] [. 8 . 9 . 9]
explains 4 5 6 6

2. ri [[47 49][53 68]] [.9 11]
explains 10 11

3. lone vowe l_syllable [[53 61] [57 70]] [l 1 l]
explains 12

4. li [[26 99][84 110]] [.9 .9 .9]
explains 13 14 15

5 . wun [[8 5 8 6] [9 4 12 5]] [. 9 . 9 . 9]
explains'16 176.

6 . dR [[10 4 12 7] [8 5 2 0 2]] [. 9 . 9 . 9]
explains 21 22 23 24

7. fUl [[122 123][140 165]] [.8 .8 .8]
explains 27

Other possible hypotheses:

8 . dh_ae_ ts [[2 3] [3 2 6 8]] [. 8 . 8 . 8]
could explain 4 7 8

9 . dh_ae_ ts [[-6 3 -2 7] [7 9]] [. 8 . 8 . 9]
could explain 3 4

1 O . wun [[-5 2 6] [3 O 31]] [. 8 . 8 . 9]
could explain 6

11. lone_vowel_syllable [[-5 30][26 31]] [.8 .8 .8]
12. dh_ae_ts [[12 67] [42 133]] [. 8 . 8 . 8]

could explain 7 8 20 22
13. fUl [[12 67][38 98]] [.8 .8 .8]

could explain 7 13
14. dh_ae_ts [[-345 15] [44 455]] [.8 .9 .9]

could explain 4 7 8
15 . wUn [[5 315] [4 4 4 5 5]] [. 8 . 8 . 9]

could explain 8
16 . dR [[3 9 4 9] [5 3 5 4]] [. 8 . 8 . 8]

could explain 9

Abducer word: report

Data to be explained:

1. dh_ae_ts [[-40 -4] [30 31]] [.8 .9 .9], explained
2. ri [[47 49][53 68]] [.9 1 l], explained
3. lone_vowel_syllable [[53 61] [57 70]] [l 1 l],

explained
4. li [[26 99][84 110]] [.9 .9 .9], explained
5. wUn [[85 86][94 125]] [.9 .9 .9], explained
6. dR [[104 127] [85 202]] [. 9 . 9 . 9], explained
7. fUl [[122 123][140 165]] [.8 .8 .8], explained

Accepted hypotheses:

17

1. thats [[-40 -4][30 31]] [1 1 1]
explains 1

2. really [[46 50][85 109]] [l 1 l]
explains 2 3 4

3. wonderful [[84 87)[86 205)) [.9 1 l]
explains 5 6 7

Other possible hypotheses:

none

Once the result is found, the Apple Speech Manager is used to speak the
utterance "That's Really Wonderful."

(>

＼

／

 ，

13

	001
	002
	003

