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Abstract 

This report describes a new approach to successive state splitting that uses the maximum 

likelihood criterion directly in choosing specific splits, rather than first choosing the state with 
the most variability and then choosing the best split for that state. By testing splits directly, 

the algorithm is better suited to speaker-independent HM-Net training, which we believe will 
improve recognition performance on spontaneous speech. Preliminary experiments are described 
for assessing recognition performance gains and training cost reduction associated with the 

algorithm. 

1 Introduction 

Successive state splitting (SSS) is a powerful technique for HMM design that provides a mechanism 

for automatically learning the most appropriate HMM topology [l]. The basic idea behind SSS is 

that a network of HMM states (referred to as an HM-Net) can be increased in size by choosing to 

split the state with the most variability, and then picking the best splitting domain (either temporal 

or contextual) for that state. The iterative application of this splitting results in an HM-Net that 

efficiently represents context and temporal variability of specified subword units (e.g. phones or 

moras). SSS has been used successfully by ATR and shown to outperform other HMM design 

techniques in several studies [2, 3, 4]. 

A disadvantage of SSS, as it is currently implemented, is that it only works well for training 

topologies on speaker-dependent data. In speaker-independent training, the state with the most 

variability, which would be chosen by SSS, is likely to reflect speaker variability rather than coar-

ticulation or temporal effects. In order to use SSS for building a speaker-independent model, one 

first designs a speaker-dependent topology and then retrains this model on speaker-independent 

data, as in [5]. Although this solution works well in experiments with carefully read speech by pro-

fessional speakers [6], it is likely that it will be a limiting factor in recognition under less controlled 

conditions. For spontaneous speech, in particular, the optimal topology for one speaker may not 

be a good choice for another speaker with a different accent, speaking rate or style. Therefore, 

the goal of this work is to reformulate the SSS approach to allow for speaker-independent HM-Net 

training. 

A technique similar to successive state splitting used in many HMM systems is divisive distri-

bution clustering, sometimes referred to as decision tree context modeling. Divisive clustering of 
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distributions using decision tree design techniques was first proposed in [7, 8] for whole phone model 

clustering, and later extended to state-level clustering for tied mixtures [9] and single Gaussians 

[10, 11, 12]. All approaches used either Viterbi or forward-backward alignment to associate training 

observations with states given some pre-specified HMM topology, followed by decision tree growing 

of contextual splits under some objective function related to maximum likelihood of the tr址ning

data. Unlike SSS, decision tree context modeling has been successfully used in speaker-independent 

HMM tr叫ning.

An important difference between the decision tree and SSS approaches is that the choice of which 

distribution to split in decision tree modeling is based on a specific contextual split rather than on 

the generic measure of state distribution variance used in SSS. This difference suggests a solution to 

the problem of speaker-independent tr叫ningin SSS: simply choose the state to split based on the 

most likely splitting dom叫nfor that state, rather than choosing the splitting dom叫nafter choosing 

the state. At a high level, this difference is simply a reordering of them函nsteps in the SSS algorithm 

[1], as summarized in Section 2. However, the tests for splits change form, since the most likely 

case is now found directly from the data rather than from pre-specified mixture distributions. In 

addition, since these tests are called frequently, it is important that they be implemented efficiently, 

which impacts the splitting objective function as discussed in Section 3. Efficient algorithms for 

generating comparable "scores" for a split in the contextual and temporal dom叫nsare described 

in Sections 4 and 5, respectively. In our reformulated version of SSS, HM-net design is very similar 

to the distribution clustering algorithms used in other recognition systems, except that SSS allows 

unrestricted distribution sharing as opposed to sharing within specific phone-dependent regions 

[10, 11]. Together the SSS changes result in an algorithm that gives slightly better performance 

on speaker-dependent data in preliminary experiments, as shown in Section 6. This is the most 

difficult test for the new algorithm since it is on data that SSS was tuned on, and we therefore 

expect significant g叫nsfor speaker-independent training. General implications of the results and 

recommendations for future research are outlined in Section 7. 

， 

2 Reformulation of SSS 

The original version of the SSS algorithm, as described in [1], is an iterative algorithm that progres-

sively grows the HM-Net. First, the state is selected to be split according to which has the largest 

divergence between its two mixtures, and then splits in the contextual and temporal dom叫nsare 

tested. Figure 1 illustrates the topology changes, showing how a selected state would be split into 

two states in the contextual dom叫nand the temporal dom叫n.The algorithm proceeds as follows. 
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Original SSS Algorithm 

• Initialization: 

1. Run Baum-Welch (2 Gaussian mixture) 

• Iterate: 

1. Find best state to split 

2. Find the best domain and factor to split the state 

(a contextual split test and two temporal split tests for the chosen state) 

3. Determine affected states and get new initial mixture distribution parameters for each 

(K context clustering calls for J(affected states) 

4. Run Baum-Welch on affected states 

(2 Gaussian mixture distribution) 

The term "affected states" includes all states that might have parameters change because of 

this split, given that phone boundaries are fixed. (Phone boundaries might be known given by 

hand-marked labels or by a Viterbi alignment.) More specifically, the affected states are all states 

in the subnet of states connected to the current state to be split after the network has been cut at 

the dummy beginning and end nodes, as illustrated in Figure 1. By this de恥 ition,nearly all states 

are affected by every split, until more specific phone-dependent subnets start to evolve. Note that, 

for a contextual split, some new paths between states may be impossible because of a mismatch in 

contextual dependence, and these paths are pruned, as illustrated in Figure 1 (b) with the "X" to 

indicate path pruning. 

The key problem with the original SSS algorithm is that the best state to split is chosen before 

the actual split is chosen. The output distribution for each state is a mixture of two Gaussians, 

and the "best" state is that which has the largest separation between the two mixture components. 

However, these mixture components are generic and do not necessarily correspond to an allowable 

split, and so the best state to split by this criterion may not in fact be the best choice given 

the constraints on allowable splits. In speaker-independent training, for example, the mixture 

components might be well separated because of speaker differences, but this variability cannot be 

modeled by adding a new state if the allowable splits are in terms of phonetic context or temporal 

structure. By choosing the state to split separately from the split itself, we also lose the guarantee 

of non-decreasing likelihood, although in practice it would be rare to see a decrease in likelihood. 

One attempt to address this problem involved adding a splitting dimension in the speaker 

domain to capture variability such as speaker and gender differences. Contextual and temporal 

splits are tied across speakers so that repeated copies of the HM-Net topology are estimated. Two 

variations of this approach were proposed, referred to as 3D-SSS and SP-SSS, differing in when 

splits in the speaker dimension are allowed [6]. If splits are allowed in the speaker-domain at all 
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a) Original network. 

b) Contextual split. 
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Figure 1: Illustration of topology changes from the original network (a) to a contextual split (b) 

or to a temporal split (c). The states which are "affected" by the split, as defined in the SSS 

implementation, are indicated by shading. 
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points in SSS topology growing, then the algorithm becomes very expensive. Unfortunately, this 

approach did not lead to performance improvements, perhaps because of the large amount of state 

redundancy. 

Here, we propose a different solution to the speaker-independent HM-Net topology training 

problem, which is simply to reorder the steps of finding the best split for a state and picking the 

best state to split. The new algorithm, which we will refer to here as SI-SSS to distinguish it from 

SSS, proceeds as follows: 

Restructured SI-SSS Algorithm 

• Initialization: 

1. Run Baum-Welch (single Gaussian) 

2. Get split info for all states 

• Iterate: 

1. Find best state to split and split 

2. Determine affected states and run Baum-Welch on affected states 

(single Gaussian distribution) 

3. Find the best domain and factor for future split of this and, optionally, affected states 

(l -I(contextual split tests and one temporal split test for I(affected states, depending 

on update options) 

Step 3 in the SSS algorithm as it is implemented, that of finding the initial mixture parameters 

for,the new states, is very similar to finding the best split of phonetic context. Initialization involves 

a VQ design procedure operating on sample means for different contexts, which is similar to the 

partitioning algorithm proposed in Section 4. By modifying this step slightly and saving the gain 

from the best split for later testing, we can effectively eliminate Step 2 and at the same time have 

a more accurate search. A further advantage of the restructured algorithm is that Baum-Welch 

training is on single Gaussian distributions, which runs much faster than training on Gaussian 

mixtures. 

Although the Baum-Welch training step will be much faster in the SI-SSS algorithm than in 

the SSS algorithm, we expect the computational cost of the two approaches will be the same order 

of magnitude. If all affected states are updated, then the number of contextual split tests in both 

algorithms is essentially the same (I(+ 1 for SSS vs. J(for SI-SSS, assuming J(affected states). 

The SI-SSS contextual split test will be somewhat more expensive than the mixture initialization 

step in SSS, since a maximum likelihood clustering criterion is used rather than minimum distance, 

but the difference should be less than a factor of two and this step is a relatively small part of the 

overall SSS computation. The SI-SSS temporal split will also be more costly, as described further 

in Section 5, requiring Baum-Welch training of the two distributions resulting from the state to be 
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split rather than the single forward叫gorithmpass used in the SSS tempor叫 split.In addition, there 

will be potentially K SI-SSS tempor叫 splittests rather than two SSS tempor叫 splittests. However, 

the cost of the temp or叫 splitsis a very sm叫1part of the overall algorithm, since the amount of data 

to process with the forward叫gorithm(or forward-backward in SI-SSS) is small, only that which 

maps to a single state, and since temporal splits are event叫 lydisallowed by maximum state length 

constraints. Therefore, the additional cost of the SI-SSS tempor叫 splitsshould not be problematic. 

In fact, in Section 6, SI-SSS is shown to be faster than SSS for speaker-dependent tr叫ningon 2620 

isolated words. 

Even if computation time of SI-SSS is similar to or slightly faster than SSS, it may still be of 

interest to reduce the HM-Net design cost. For both SSS and SI-SSS, the cost could be reduced by 

only re-initializing parameters (for SSS) or only re-evaluating the best split (for SI-SSS) for a subset 

of the affected states. For example, one might designate three levels of affected states: (1) the two 

new states generated by the splits, (2) all states immediately adjacent to these two states, and (3) 

叫1other affected states. In SSS, it may not be necessary to re-initialize the mixture parameters 

for the states in set (3). In SI-SSS, it may be reasonable to re-estimate fewer parameters of the 

splits for the group (3) states, assuming that the split will change minim叫ly.The possible SI-SSS 

options, in order of increasing computation, include: 

• Keep the same split and update only the means and variances of the split to find the new 

gam. 

• Keep the split dom叫n(e.g. left context), but re-evaluate the best partitioning of contexts 

in that domain, initializing the partitioning叫gorithmwith the previous context for faster 

convergence. 

• Re-evaluate the state entirely. 

Note that the two new states .must be evaluated for all possible splits, and that it is only the other 

affected states that one might not want to re-evaluate entirely. If the affected states are completely 

re-ev叫uated,then the restructured SI-SSS algorithm is guaranteed to give larger increases in the 

likelihood of the training data at any single step than the SSS algorithm starting from the same 

model. In practice, however, good results may be achieved without complete re-evaluation and 

with a significantly lower cost. 

3 State Splitting and Constrained ML  Estimation 

There are three possible general objective functions related to maximum likelihood that one might 

use in split design. The simplest approach, as followed in several other studies [9, 10, 12], is 

to align the tr叫ningdata to states in some pre-specified topology and then cluster the resulting 

state distributions to maximize the joint likelihood of the data and the given state sequence. This 

approach is essentially Viterbi-style training, which has been used successfully in many applications 

but is known to be sub-optimal relative to Baum-Welch tr叫ning.
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A second option is to maximize likelihood of the observations directly, but computing likelihood 

requires running the forward algorithm between fixed points, such as utterance boundaries. Thus a 

direct likelihood criterion is only practical if intermediate fixed points are used, such as the phone 

boundaries in SSS. The likelihood of a split is computed using the forward algorithm over all data 

samples and states within the fixed boundary times that the splittee state falls into. The resulting 

split goodness measure has the advantage that it is a true likelihood, and that it incorporates the 

effect of a split on neighboring states. A disadvantage is that phone boundaries are required, and 

typically SSS has been used with hand-marked boundaries. Viterbi-aligned phone boundaries are 

likely to work almost as well, but this has not been verified in experiment. However, the real 

disadvantage of the likelihood splitting criterion is that it is simply too expensive to be used in 

SI-SSS, where it would be called much more often. 

Our solution to this problem is to maximize the expected log likelihood, rather than likelihood, 

taking advantage of the same Expectation-Maximization (EM) algorithm concepts [13] that are 
behind the standard Baum-Welch training algorithm. The fundamental result behind the EM 

algorithm is that increasing the expected log likelihood of the observed data y『andthe hidden or 

unobserved components s『(e.g.HMM states) 

Q(0l0(P)) = E。(p)[log P(y『,s『IY『,0)] 

at worst gives no change to the likelihood of the observed data L(0) = logP(y『10)

Q(0l0(P))~Q(0(P)10(P)) ===} L(0)~L(0(P)). 

(1) 

(2) 

Because of the conditional independence assumptions in the HMM, the expected log likelihood can 

be written as 

Q(BIB(P)) = E[logP(y『,s『IB)IY『,0叫=LP(s『IY『,e(P))logP(y『,s『10)
s『

＝戸(s『Iv『,B(P)) L [logP(YtlSt, 0A(s)) + logP(stlSt-1, 0B(s))] 
s『

＝区こ叫s)logP(Ytls,0A(s))+ I:: こ ~t(s,s')logP(st = slst-l = s',0B(s)), (3) 
s t s,s1 t 

where 

叫s) = P(st = sly『,0(P)) 

糾s,s') = P(st=S,St-i=s'ly『,0(P)). 

(4) 

(5) 

The form of equation 3 allows for separate maximization of the distribution parameters 0 A(s) and 

transition probabilities 0B(s) for each states. This allows us to estimate the parameters for a single 

state (or two states after splitting) so that the expected likelihood is increased, thereby guaranteeing 

that there is no decrease in likelihood of the observed data. 

More specifically, in designing a split for states*, we maximize Q(0¥0(P)) subject to the constraint 

the ,t(s) and~t(s,s') are fixed for alls ::J s*. If the initial split is chosen appropriately, as will be 
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discussed in Sections 4 and 5, the constrained function Q(0J0(P)) is guaranteed to be non-decreasing 

since the terms depending on s f= s* do not change and the likelihood due to other terms cannot 

decrease. Therefore L(0) is guaranteed to be non-decreasing. The gain in expected log likelihood 

for split S from s* to so and s1 

G(S) =~ ~ 叫s)log P(Yt js, 0 A(s)) -~1t(s*) log P(Ytls*, 0 A(s•)) 
s=so ,s1 t t 

+ L L L(t(s,s')loga55, ―L (t(s*, s*) log a8•8• 
s=so,s1 s'=sa,s1 t t 

= I: 凡(s)logP(Ytls,0A(s))-N心）log P(Ytls*, 0 A(s•)) 
so,s1 

＋こ L N2(s,s')logass'-N心*,s*) log as• s* 
s=so ,s1 s'=so ,s1 

(6) 

(7) 

where ass'= P(St = slst-1 = s', 0B(s)) and 

凡(s) = I: 叫s)
t 

凡 (s,s') = Ltt(s,s'). 

‘
.
,
＇
／
ヽ
~
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The gain due to the observation distribution parameters alone can be expressed as 

Gc(S) =~ 凡(s)logP(Ytls,0A(s))-N1(s*)logP(Ytls*,0A(s)) 
s=s1 ,s2 

= 0.5筐［凡(s*)log吐(s*)-N1(so)log吐(so)-N孔釘）log吐(s1)]
m=l 

-N心')log[1+ N悶喜釘）!, (μm(so;ic: 二(s,))']] (10) 

assuming that the distribution is described by a diagonal covariance and the subscript m indicates 

an element of the M-dimensional vector. This particular form of the gain uses the combined mean 

and covariance likelihood criterion described in [10] (based on a result from [14], Chapter 10.3). 

For contextual splits, where state transition probabilities are held constant, Equation 10 gives the 
total expected gain. For temporal splits, on the other hand, the total expected gain is 

G(S) = Gc(S)-N2(s*,s*)logas•s• 十N2(so,so) log as0 so 

＋的(so,釘）log a81 s。＋凡(sい釘）log asis1 

= Gc(S) -N2(s*, ぶ）log as•s• 十的(so,so) log asoso 

+(N1(so)-N2(so,so))log(l -asos。)+ N2(s1, s1) log a8181 (11) 

Equations 10 and 11 give a criterion by which we can compare different candidate splits within 

and across domains and across states, and choose the split which most increases the expected 

likelihood of the entire training set. Note that equations 10 and 11 do not give the increase in 
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likelihood per se, but rather the increase in expected likelihood, and so maximizing G(S) over S 

only guarantees that likelihood is non-decreasing, not necessarily that we have chosen the split that 

m訟 imallyincreases likelihood. 

Since Equations 10 and 11 measure increase in the expected joint likelihood of the observations 

and states, they take a different form than the test used in SSS for choosing a splitting domain, 

which is based on observation likelihood. In addition, _Equations 10 and 11 take a different form 

from the criterion used in SSS for determining the best node to split (Equation 1 in [1]), but in 

this case the SI-SSS criterion is preferable. The SSS criterion is a measure of the distance between 

the two generic mixture components and not the gain in likelihood relative to having a single state, 

and it cannot be related to an increase in the likelihood of the training data in any way. 

A cost of using the state likelihoods ,t(s) andら(s,s') in split design is an increase in memory 

requirements. To reduce memory requirements, we take advantage of a technique used in SSS, 

which is to use phone boundaries (hand-marked or Viterbi aligned) to restrict the set of states that 

have non-zero probabilities at each time, i.e. to reduce the size of bt(s)}. 

4 Efficient Search of Contextual Splits 

Since SSS is basically a divisive clustering algorithm, it can benefit from advances in addressing 

an analogous problem: decision tree design [15]. In decision tree design, the problem is to design 

a function Y = J(X) to predict Y from X. If Y takes on values y E RM then the function is 

usually called a regression tree, and if y E {1, ... , M} it is called a classification tree. Rather than 

predicting Y directly, the decision tree function f can also be used instead to estimate a probability 

distributionり(ylX)= p(ylf(X)), as in the tree language model used in speech recognition [16]. 
The distribution estimate interpretation corresponds to the use of divisive distribution clustering 

in speech recognition, e.g. [10, 11], and so decision tree design methodology applies here. 

In decision tree design, or divisive clustering in general, the typical approach is a greedy growing 

algorithm, that successively grows the tree taking the split which most improves the objective 

function at each step. This algorithm requires testing all possible current leaves of the tree, all 

possible variables X (an element of X), and all possible ways to split on variable X. Since choosing 

the best split for variable Xis the most frequently called routine, it is important that it be relatively 

fast. For the case where discrete variable X has J values, there are roughly 2J-l possible binary 

splits to test, which is prohibitively expensive. Breiman et al. [15] give a fast solution for the 

case where M = 2. Later, in [17], Chou provides an algorithm for fast split design for the more 

general case where J~2 and M~2. Although Chou's algorithm is only locally optimal for 

many tree design objective functions, it is linear in M and J and therefore much more efficient 

than the previously proposed CART algorithm [15] that is exponential in one or the other of those 

parameters when M > 2. In the HM-Net design problem, using phone models for example, the X 

is comprised of categorical variables that are the possible splitting domains (e.g. temporal, or left, 

right or center phonetic context). For any one of the context domains, the values that X takes on 

are the phone labels (N = 26 phones in Japanese). Thus, the HM-Net problem of state splitting is 
analogous to decision tree categorical question design and can benefit from an algorithm for efficient 
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search of possible splits. 

We begin this section by reviewing the Chou partitioning algorithm [17], and then show how the 

algorithm is applied for the maximum Gaussian log likelihood objective function. We will depart 

from standard decision tree terminology (and notation), using the term "state" rather than "node" 

and "HM-Net" rather than "tree", in order to make the application to HMM design clear. One 

difference from standard decision tree design, is that observations may not be assigned to a single 

node or state, but rather there is a probability distribution describing the likelihood of observations 

being in different states. To simplify the initial discussion, we will assume that observations are 

associated with a unique state, which can be obtained with Viterbi alignment. Then, we will 

show how the result can be extended for use in Baum-Welch-style training. In the appendix, we 

show that the mixture initialization technique used in SSS is very similar to the Chou algorithm 

(using minimum error rather than maximum likelihood) and so there is little additional cost to 

implementing the maximum likelihood search into SSS. 

4.1 General Categorical Split Design Algorithm 

In this section we summarize the partitioning algorithm of Chou [17] for splitting a state s using 

variable X. Say that the values x j that would lead to state s form the set A8. We begin by denning 

£(y, fl) as a loss function that is to be血 nimizedin HM-net (or decision tree) design. The variable 

fJ is a representation of y, which may take on values in the same space as Y (as in quantization, 

regression or direct classification) or it can be a probability distribution that represents Y (as in 

the tree language model and distribution clustering examples above). 

The "impurity" of a state s in the HM-net is the minimum possible expected loss in a state 

given by 

i(s) = E[£(Y,0(s))ls], 

where E[f(Y)ls] is a conditional expectation given S =sand 0(s) is the "centroid" of s 

0(s) = argminE[£(Y,f;)js]. 
y 

(12) 

(13) 

The divergence d(s, fl) is the difference in expected loss from using fl instead of centroid 0(s) as the 

representation for state s: 

d(s,f;) = E[£(Y,fl)ls]-i(s). (14) 

In designing a split for state s, we start with i(s) fixed and 

幻(s)=~P(xjls)i(xj) 
J 

as the minimum possible impurity (also fixed) which is achieved with an J-ary split, where Xj are 

the possible values that the contextual factor X can take on. The impurity of a binary split into 

so and s1 is 

i2(s) =~P(s叶s)i(sk)-
k=0,1 
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Let 

i(s) -iJ(s) = [i(s)一む(s)]+ [砂(s)-iJ(s)]=ふ＋△2・ 

Since i(s) and iJ(s) are fixed, then their difference is fixed, and maximizing△ 1, as is traditional in 

split design with greedy growing, is equivalent to minimizing△ 2・Chou [17] shows that 

ふ=LP(xjls)d(xj,0(a(xj))), 

which means that minimizing今 canbe interpreted as a quantizer design problem, where the goal 

is to design the "encoder" a(xj) and the "decoder" or centroids 0(sk) to minimize the expected di-

vergence. (Note that the encoder can be described in terms of the partition Ak = {xj: a(町）＝緑｝

fork= 0, 1.) A locally optimal solution to this problem can be found using an iterative algorithm 

analogous to the K-means algorithm, or the Linde-Buzo-Gray algorithm for vector quantization 

[18]: iteratively re-estimate a and 0 until convergence (or the relative change in average loss is 

smaller than some threshold). More explicitly, the two steps are: 

1. For each xゎfindnew encoder 

a(町）(p+l) = argmind(xj,0(sdP)) 

which gives for k = 0, 1 

At+i) = {xj: a(町）(p+l) = k} 

2. For k = O, 1, find new decoder 

0(s砂(p+l)= argmin E[£(Y, 0)1s砂=argmin 
0 0 

区 P(xjls砂d(xj,0)

巧EA):'+1)

For the special case of categorical predictions, Chou's iterative partitioning algorithm is similar 

to the iterative algorithm proposed by Nadas et al. [19], with differences in the mechanics of the 
two steps because of the maxふ vs.minふ interpretations.

Chou [17] shows that this algorithm can be used with a variety of loss functions including, for 

example, the weighted squared error for regression (y E RM) and the weighted Gini index and log 

likelihood for classification (yT = [00・ ・ ・010・ ・ ・O] an M-valued class indicator with a 1 in the mth 

row to indicate class m). Here we outline the algorithm specifically for the maximum log likelihood 

objective function, assuming that distributions are characterized by Gaussians. 

4.2 Implementation for Maximum Gaussian Log Likelihood 

For the problem of clustering Gaussians, y E RM corresponds to a cepstral vector in our speech 

recognition application. Each element of X is a possible split domain (e.g. the left context phone 

label), and X is an element of X that takes on a discrete set of J values (e.g. the 26 possible 

Japanese phones). We assume a parametric Gaussian model, P(yls) with meanμ(s) and covariance 

matrix I;(s). A state will then be represented by 0(s) = (μ(s), I;(s)). Recall that the space of 
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possible values of X corresponding to state s is characterized by A8. The goal is to find the best 

split of s into so and s1 where As = A。UA1. 

Referring back to the general algorithm, we need to determine d(s, 0) and the formula for finding 

the optimal decoder, based on some specified£(y, 0). If the objective is maximum likelihood, then 

£(y,0) = -logP(yj0). Under this objective function, equation 13 becomes 

0(s) = argminE[£(Y,0)1s] = argmaxE[logP(YIB)ls] 
0 0 

= argmax L logP(Ytl0) 
゜t:xiEAs 

(15) 

using the empirical distribution since we are training from data and the true P(y Js) is unknown. 

Note that this is the standard maximum likelihood parameter estimate, which gives meanμ(s) and 

covariance~(s). Then the divergence (equation 14) becomes 

d(s, 0) = E[C(Y, 0)ls] -i(s) 

＝一 I:logP(Ytl0) + I: logP(Ytl0(s)) 
t:xtEAs t:xtEAs 

1 . ＝う［凡loglEI+~(y,-µ)炉(y, -μ) 
t:x1EA, 

-N,loglE(s)I -,,~ 予~.(Yt -µ(s)立(s) ― 1伽一 µ(•lll (16) 

where Ns is the number of observations that map to state s and 0 = (μ ぶ）• The superscript t 

indicates vector transpose, and JAi represents the determinant of a matrix A. 

Binary split design at state s for a single J-valued variable proceeds as follows. 
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Maximum Likelihood Split Design Algorithm 

• Initialization (p = 0) Assign initial values to the distribution parameters for the two hy-
pothesized states: 

0(0l(s0) = 0(s) = (μ(s),I;(s)) 

0(0)(s1) = (μ(s)(l + E), I;(s)) 

This particular choice ensures that likelihood will increase since one of the states has the 

original state distribution parameters, analogous to the approach used in vector quantizer 

design. 

• Iterate for p = l, 2, ... 

1. Find new binary partition { A隠A附｝：
For each町，j= 1, ... , J, assign Xj to A位if

L logP(Ytl0(p-l¥so)) 2: L logP(Ytl0(p-l)い）） (17) 
t:xt=Xj t:xt=Xj 

otherwise, assign x j to A屈
2. Find centroids {0(P)(sk) = (μ(P)(sk), 蜘 (sk)): k = 0, 1} using standard maximum 

likelihood parameter estimation. 

μ(P) (Sk) = 1 
I: (18) 

Nk 
Yt 

t:xiEA~) 

匹）(sk) = 1 
ー L L (Yt -μ(P)(録））（初ー μ(P)(Sk))t (19) 
Nk EA(p) t: 工t=町

X J k 

where Nk =冗 (p)的， Njis the number of elements in {t: Xt = Xj}, and N。+N1= 
巧 EAk

Ns・

3. Test for convergence: stop if the partition does not change or if 

L(P) -L(p-1) 

L(p-1) < 1] 

where L(P) = -N。logl~(P)(so)I -N1 log l~(P)(s1)1 (see Appendix A for a derivation), 

and 17 is a heuristically chosen convergence threshold. Note that L(P)~L(p-I). 

For both steps in the algorithm above, we can save computation by using sufficient statistics to 

represent the data rather than accumulating log probabilities for every data point. Specifically, we 

first compute the cumulative statistics that describe the data Yt associated with state s for each 
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value Xj that the variable of interest X might take on. Let Nj represent the number of samples 

(frames) in state s that have X = x j• Define first and second order statistics 

S}(s) ＝ 区 Yt (20) 
t:xt=x 1 ,st=s 

SJ(s) L t (21) ＝ Yt約
t:xt=巧:,st=S

These statistics are computed once for state s in the initialization step and stored together with 

counts Nj. In the paragraphs below, we show how these statistics can be used in the re-partitioning 

test (Equation 17) and parameter re-estimation. An alternative solution, which may be more 

efficient for full covariance distributions, is given in Appendix B for a different set of statistics (also 

sufficient). 

We begin by expanding the re-partitioning test (Equation 17) 

訊 ilog l~(so)I +~(Yt -µ(so)l~(so) —1(Yt -μ(so)) 
t: 工t=巧

s; 2Nj log II;(s1)1 + L (Yt -μ(s1)iI;(sけ―1(yt-μ(s1)), (22) 
t:Xt=Xj 

dropping the superscript (p) indicating iteration number to simplify the notation. The summation 

terms can be simplified to use the statistics given by Equations 20 and 21, as follows, 

L(狛ー μ(so))tI;(sot1伽― μ(so))
t:xt=巧

= L tr [(初ー μ(so))(約ー μ(so)l叫so)―1]
t:xt=巧

= tr [,, 五他―μ(so))(約一 μ(so))'E(so)―']

= tr [~(贔—岬(so)'-µ(so)叫十 µ(s,)µ(so爪(s0)-1]
t:xt=巧

= tr [(SJ -SJμ(sol -μ(so)(SJ)t + Njμ(so)fl(so爪 (so)―1]

where we used the identity ztAz = tr(zztA) and the fact that the trace function tr(•) is a linear 

operator. Combining these results with Equation 22, we get the following test 

訊 logII;(so)I + tr [(SJ-2SJμ(s0)t +知(so)μ(so)芦(so)―1]

:::; 2Nj log II;(s1)1 + tr [csJ-2SJμ(sげ＋知(s1)μ(s1饂 (sサ―1], (23) 

The parameter re-estimation equations using the sufficient statistics are: 

1 1 
μ(sk) = -

Nk 
I: I: Yt =一 I:SJ(s) 
Xj砂 t:xc=xj Nk巧EAk

(24) 
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叫 ）＝上 L L (Yt -μ(sk))(Yt -μ(sk))t 
Nk 

XjEAk t:xt=Xj 

1 
＝一 L L (YtYi -Ytμ(sザー μ(sk)』+μ(sk)μ(sげ）

Nk 
x1 EAk t:xt=Xj 

＝上 L(SJ -SJμ(sザーμ(sk)(Sげ＋知(sk)μ(sげ）• (25) 
Nk 

X;EAk 

Both the likelihood test and the parameter re-estimation equations simplify if we assume diag-

onal covariances. To simplify the cluster likelihood test, note that 

M 

log 図 =~log吐
m=l 

M 

tr(I;, 心云1) = ~ 弓，ml咋，m・

m=l 

(26) 

(27) 

Then the new re-partitioning test becomes 

SJ,m(s) -2SJ,m(s)μm(so) + Njμm(so)2 SJ,m(s) -2SJ,m(s)μm(s1) + Njμm(s1)2 
Co+ I: 

m a~(so) 
:s; C1 + I: 

m 咋(s1)
(28) 

where 

Ck=的log(Il吐（緑））．
m 

Equation 25 also simplifies if covariances are assumed to be diagonal, to 

吐(sk) =上 L(S仁ー 2S},m伽 (sk)+ N五 (sk)り
Nk 

辛 Ak

＝四(sk)2十上 L(SJ,mー 2S},m四 (sk))
Nk 

XjEAk 

(29) 

(30) 

for m = 1, ... , M. 

To extend this algorithm to the case where observations are associated probabilistically with 

states, via the Baum-Welch algorithm rather than via the Viterbi algorithm, one simply weights 

each term inside the sum of equations 20 and 21 by the likelihood that it is in the state that is 

being updated. Specifically, let'Yt(s) correspond to the probability that the state at time t is s. 

Then, the new sufficient statistics are: 
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The ,t(s) terms must be computed using both a forward and backward pass. This information 

is in principle available from the Baum-Welch iteration in SSS and SI-SSS, but there is no data 

structure in SSS that saves all of this information and it needs to be added for SI-SSS. Note that 

the ,t(s) terms are not needed in SSS to find either the best node to split or the best split given 

a node, since the best node to split is chosen from the generic mixture distributions and the best 

split uses the forward algorithm. 

5 Constrained Design of Temporal Splits 

In HM-net design, using the greedy search strategy outlined in Section 2, our goal is to maximally 

increase the likelihood of the training data at each step. In Section 3, we argued for a constrained 

EM approach, where the increase in expected likelihood to the HM-net as a whole is simply the 

difference in expected likelihood for the splittee state vs. the two new states. Constraining the 

forward-backward counts in designing the contextual split is straightforward, since the likelihood 

of two states in parallel sum to give the likelihood of the original state. However, the likelihood of 

two states in sequence is not given by a simple sum. 

In SSS, design of a temporal split involves using the HMM forward algorithm and changing the 

state likelihoods (,t (s), the likelihood that the state is s at time t) of states other than the spli ttee 

state, in which case a larger portion of the network must be evaluated to establish the change in 

likelihood for the HM-net as a whole. In addition to the extra cost of evaluating a possibly large 

subnet, a problem with allowing the likelihoods of other states to change for the temporal split and 

not the contextual split is that there will be a bias towards choosing temporal splits. 

The constrained EM criterion addresses both of these problems in the design of temporal splits, 

with the constraints being that the likelihoods of states other than the splittee state do not change 

in the parameter estimation stage of split design. (Recall that likelihoods of all affected states 

will later be updated in the Baum-Welch re-estimation phase of step 2 of the SI-SSS algorithm, 

after the split is chosen.) To be more explicit, let s* be the splittee state and let q0 and q1 be the 

two states resulting from a temporal split, as illustrated in Figure 2. (We use the notation q for 

the hypothetical new states and s* for the candidate state to be split, to make the relationship 

between these more clear.) The parameters that must be estimated to describe the new state are 

0 = {μ(q0), a(qo), v(qo),μ(q1), a(q1), v(q1)}, whereμ(q) is the mean vector for state q, a(q) is the 

vector of variances, and v(q) is the probability of returning to state q from state q, i.e. the selfloop 

transition probability. In order to insure that only these parameters in the HM-net change and no 

others do, we require the following constraints: 

1t(s*) = 1t(qo) + ,t(小）

~t(s*,s*) =~t(qo,qo)+~t(q1,qo)+~t(q1, 小）

where 

孤i) = p(st = i¥Y) 

lt(i,j) = p(St = i,St-1 = j¥Y) 
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Figure 2: Temporal split of s into q。andq1・
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Figure 3: Illustration of data and states used in computing i't(q) [t(q, q') for a temporal split. The 

zeroes indicate impossible state-observation pairs. 

are the standard terms needed for HMM re-estimation and Y represents the full tr叫ningset. 

These constr叫ntscan be easily satisfied by defining 

全(q)

釘q,q') 

＝ 

＝ 

p(qt = qi St = s*, Y) 

p(qt = q,qt-1 = q'lst = s*,st-1 = s*,Y) 

and using the definition of conditional probability and the redundancy of釘=s* to get 

p(qt = qlY) = p(qt = q, St= s*IY) =令(qht(s*) 

p(qt = q,qt-l = q'IY) = p(qt = q,qt-l = q',st = s*,st-l = s*IY) =叙q,q')lt(s*, s*). 

The terms令(q)and ft(q,q') can be computed using the standard forward-backward algorithm 

using only data where ,t(s*) > 0 and having non-zero state likelihood only for states q。andq1 

so thatうt(qo)+名(qi)=1. To thus constrain the forward-backward algorithm is simply a matter 

of initializing the forward and backward passes appropriately, or passing a subset of the full data 

structure as illustrated by the shaded region in Figure 3. 

Once the terms名(q)and叙q,q') are computed, the parameters 0 are estimated according to 

叫q)

糾q,q') 

＝ 

＝ 

伽 (q) ＝ 
Etうt(q)tt(s*)Yt,m

Et和(qht(s*)
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Note that the forward-backward algorithm that is used to compute令(q)and (t(q,q') cannot be 

used to :find the likelihood of the observations that map to the two new states, so relative change 

in likelihood cannot be used as a stopping criterion for the temporal split retraining. Since the 

split will later be retr叫nedwith the Baum-Welch algorithm, it is reasonable to simply run a fixed 

number of retraining iterations, and four iterations were used here. 

One problem with designing a temporal split is that, unlike the contextual split, there is no 

guarantee of non-decreasing likelihood. Although the SI-SSS temporal split re-estimation procedure 

guarantees non-decreasing likelihood because it is a constr叫nedversion of the EM algorithm, the 

split from one to two states cannot be initialized in such a way as to guarantee no decrease in 

likelihood. (A reasonable initial estimate, which is used in this work, is to use the observation 

distribution of the original state and choose the transition probabilities such that the expected 

duration of the two hypothesized states together is the same as the expected duration of the 

original state.) In practice, decreases in likelihood, though rare, do sometimes occur, in which case 

the temporal split for that state would never be chosen. The SSS temporal splitting algorithm 

suffers from a similar problem, since it chooses the best temporal split for a fixed set of Gaussians 

which may not be well-matched to a temporal dom叫nsplit since they were not designed specifically 

for that type of split. However, the SSS algorithm may not avoid a bad temporal split, since nodes 

are split based on distance between mixture components and irrespective of the actual consequence 

of the split. Of course, the SSS algorithm could potentially achieve a bigger immediate g叫nthan 

the SI-SSS temporal split by allowing state re-alignment in split design, but this difference is 

probably small because SI-SSS allows state re-alignment in the immediately following Baum-Welch 

re-estimation step. Thus, on balance, we feel that the SI-SSS temporal split test represents an 

improvement over the SSS temporal split test. 

6 Experiments 

In this section we describe two series of experiments that represent preliminary work in establishing 

the effectiveness of SI-SSS. After describing the corpora used in the work, we present results for 

speaker-dependent speech recognition on read speech. This experiment represents the most difficult 

test for SI-SSS, because it is the paradigm that SSS was developed under and because the very 

controlled nature of the corpus does not present the type of problems that SI-SSS is叫medat solving. 

Next, we describe experiments on a multi-speaker task, as a preliminary step demonstrating gains 

in a task closer to our goal of speaker-independent recognition. Finally, we discuss results using 

SSS on spontaneous speech under the standard ATR training paradigm, aimed at obtaining the 

best possible SSS baseline which will be the target for SI-SSS to improve on in later experiments. 
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6.1 I- ,digm 

The goal of this work is to develop better speaker-independent models for spontaneous speech, to 

obtain the best possible performance when operating in speaker-independent recognition mode as 

well as to provide a better starting point for speaker adaptation. Since the amount of spontaneous 

speech data available at the time of this study was not sufficient for training with the Baum-Welch 

algorithm, we focused on training an initial model on read speech and adapting that model using 

vector field smoothing on spontaneous speech. 

Several corpora were used in these experiments. A Japanese corpus of isolated read words 

consisting of the most frequent 5240 words (A-set) is used for initial topology training in the 

speaker-independent experiments (1-2 speakers) and for the speaker-dependent experiments (6 

speakers). All sentences in the read speech corpora are hand-transcribed with a phoneme la-

bel sequence, and start and end points for each speech segment, which facilitates SSS training. 

The speech was recorded from professional speakers under low noise conditions. In the speaker-

independent experiments, the prototype models designed on the A-set were then retrained on a 

subset of the speaker-independent read speech database (C-set), consisting of 15 speakers each 

uttering 50 phoneme-balanced sentences three times at different speaking rates. The C-set data 

was recorded with the same type of microphone as the A-set data. Pause units were hand-marked, 

but not phone boundaries. The A-set and C-set corpora are described in [20]. Finally, a corpus of 

spontaneous speech was used for evaluating recognition performance [21]. This corpus was divided 

into training and test sets, as specified in [22]. All spontaneous speech training data is froin a 

set of bi-lingual conversations involving 1 Japanese, 1 English speaker and 2 translators (i.e. the 

onseigengo part). Three different companies collected the data and therefore the quality, e.g. SNR, 

is quite different. Only the non-translator speech is used, and a small number of pause units of 

greater than six seconds in length were omitted from the training set due to memory constraints. 

For the development test data used in speaker-independent experiments, we used both the 

onseigengo and the onsei part of the spontaneous speech corpus, i.e. mono-lingual conversations 

between two Japanese speakers. This data appears more "spontaneous", in the sense that there are 

more filled pauses in these utterances. The test set contains four female speakers (15 conversational 

turns, 9711 phonemes) and three male speakers (16 conversational turns, 11231 phonemes). 

The analysis parameters consisted of sampling rate of 12000 Hz, frame shift of 5 ms, frame 

length of 20 ms, pre-emphasis of 0.98, LPC analysis with order 16 and calculation of 16 cepstral, 

16 delta cepstral, power and delta power values. The length of the triangular regression window 

for the delta cepstral calculation was 9 frames on either side, i.e. a two-sided window of 90 ms. 

Recognition experiments were performed using a one-pass Viterbi algorithm with the phonotactic 

constraints of Japanese language expressed as phoneme-pair grammar [23]. 

6.2 Speaker-Dependent HM-net Experiments 

In order to verify that the SI-SSS algorithm always performs at least as well as the SSS algorithm, 

we conducted initial experiments in speaker-dependent mode. 200 and 400 state single Gaussian 

models and a 3-mixture 400 state model were trained on the even-number words of the A-set for 
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Figure 4: Initial HM-net topology for the speaker-dependent experiments. 

each speaker (2620 words). The initial topology used twenty-six states, one center state for each 

of the 24 phones and a single left and right state shared by all phones, as shown in Figure 4, to 

reduce the initial HMnet training time and guarantee that each phone is identifiable. The models 

were tested on 1310 of the odd-numbered words. After designing the HM-net topology, a maximum 

of 21 iterations of Baum-Welch re-iteration were run to estimate single Gaussian state observation 

distributions. (For the single Gaussian models, usually fewer than 10 iterations were required, 

using a threshold test on the relative likelihood gain.) The results are summarized in Table 1, 

which shows that on average and in almost all cases, results for SI-SSS are slightly better than for 

SSS. The one exception is speaker MHT, which was used in much of the SSS development work. 

Differences are not significant, as expected since the main variability in state distributions for this 

speaker-dependent data is contextual, particularly because the speakers are professional and the 

recordings are high quality. 

In addition, we noticed that SI-SSS distributes multiple allophones across more phones than does 

SSS, particularly for the 200-state topology. SI-SSS results in more allophones for the consonants 

than SSS, as well as a somewhat more uniform distribution of allophones over the vowels. The 

distribution differences are particularly striking for /a/ vs. /u/, where SSS many more allophones 

for /a/ than for /u/ and SI-SSS has similar numbers for the 400 state model and more allophones 

for /u/ in the 200 state model. 

Computation time for SSS and SI-SSS was measured for each successive split. Computation 

time for SI-SSS is significant less than for SSS, particularly after all possible temporal splits have 

been chosen since temporal splits are more costly for SI-SSS. (The number of temporal splits is 

limited here, since the maximum number of states in sequence is limited to four which effectively 

establishes a minimum phone duration constraint of 20 ms.) Figure 5 illustrates the difference in 

computation costs for speaker FTK. On the other hand, SI-SSS requires more memory than SSS 

because the Baum-Welch state likelihoods must be stored for use in split design. For the 2620 

word training set size, the difference in cost is roughly 80MB vs. 50MB. We estimate that speaker-

independent training with 10 speakers and 1000 words per speaker could be run using 100MB main 

memory and swapping the parameter file to disk. 
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Table 1: Speaker-dependent phoneme recognition accuracy for SSS vs. SI-SSS topology design. 

% Accuracy 

200 states 1 mix 400 states 1 mix 400 states 3 mix 

Speaker sss SI-SSS sss SI-SSS sss SI-SSS 

MHT 93.9 92.8 95.4 94.5 96.1 96.0 

MAU 93.6 93.2 95.2 95.2 96.4 96.7 

MXM 91.7 91.9 93.6 93.9 95.3 95.1 

FTK 91.5 91.1 92.9 94.0 94.7 95.0 

FMS 89.7 91.3 91.9 93.2 94.2 94.6 

FYM 90.7 92.4 92.9 93.6 95.1 95.5 

avg 91.9 92.1 93.7 94.1 95.3 95.5 

comparison of cpu time for SSS and SI-SSS 
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Figure 5: Difference in CPU time required to split each state in sequence for SSS vs. SI-SSS, 

designing up to 400 states on speaker FTK. 

21 



g l I鵬瞬sd
89.8 

器

g ~~<O "' 

屡固 苫

器

g 
w ..... ,,,,.,, ..' 

200/1 400/1 400/3 

Figure 6: Phoneme recognition accuracy for SSS vs. SI-SSS for a multi-speaker recognition task. 

6.3 Multi-Speaker HM-net Experiments 

Next we conducted a multi-speaker recognition experiment comparing SSS and SI-SSS. From each 

of the 6 speakers MAU, MHT, MXM, FYM, FMS, FTK we selected randomly 500 words from the 

even numbered words of the 5240 word database [20]. This gives a total of 3000 words, which is 

about the same number as has been used for each of the speaker-dependent experiments. Clearly, 

more training data is needed for a multi-speaker or speaker-dependent model, but the experiment 

was conceived mainly for debugging purposes. The same HM-net design procedures were used as in 

the speaker-dependent experiment, i.e. models were retrained with a single Gaussian (1 mixture) 

for 200 states, and 1 and 3 mixtures for 400 states. For recognition we tested in multi-speaker 

mode, using 100 randomly selected words from each of the above 6 speakers. 

The results are shown in Fig. 6. SI-SSS consistently performs better than SSS, the difference 

being greatest for the higher context resolution model (400 states) using only 1 mixture. Using 

3 mixtures the difference is smaller, which is not surprising since the lack of allophones can be 

compensated for by the introduction of mixtures. 

6.4 Baseline SSS Experiments on Spontaneous Speech 

A series of experiments were conducted with the SSS algorithm, following the paradigm used in 

[24], in order to establish a good SSS baseline for spontaneous speech. The model building strategy, 

which is outlined in Figure 7, progressively adds complexity and data to the training process in 

order to obtain a robust model and avoid problems of local optima. The first step is to train the 

HM-Net on speaker-dependent A-set data (the 2620 even-numbered words); speaker MHT is used 

as the prototype for the male and gender-independent models, and speaker FTK is used for the 

female models. Since the resulting model from SSS has two mixtures per state, the models are then 

retrained on the same data to have a single Gaussian per state, using 20 iterations of Baum-Welch 

re-estimation (or improvement of less than 10-5). Next, a set of 15 speaker-dependent models 

are trained using vector field smoothing (VFS) [25], using representative speakers from the C-set 

data chosen in previous experiments using tree-structured speaker clustering [26]. The VFS step 
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involved first running Baum-Welch re-estimation for both means and variances (variances are only 

allowed to increase) and then smoothing the means with the original parameters using a smoothing 

rate of five and a neighborhood of six. The 15 speaker-adapted models, each with 1 mixture per 

state, were then merged into a 5 mixture model with mixture weights proportional to the number 

of speakers in each of the 5 clusters, as in [27]. The particular choice of speakers differed for 

the speaker-independent and gender-dependent models, but all were at the highest nodes of the 

tree possible depending on the gender constraint. The 5-mixture model is then retrained using 5 

iterations of the Baum-Welch algorithm on the pooled data from the same 15 speakers using 150 

sentences from each. A three-state, ten-mixture silence model was then concatenated with the 5 

mixture HM-net. (The three-state silence model is used here because, in preliminary experiments 

with a different test set of spontaneous speech, we found that the phoneme recognition accuracy 

rate was consistently拍gherfor models using a three-state silence than those using a one-state 

silence model.) Finally, this speaker-independent model is optionally adapted using spontaneous 

speech data with VFS, using the same smoothing procedure as described for speaker adaptation 

above. 

We conducted a series of experiments where we varied: 

• the number of states 

• whether or not power was used as a feature 

• gender-dependent vs. gender-independent 

• whether or not adaptation was used. 

The biggest effects were obtained by doing adaptation and using gender-dependent models, with the 

best results being an average of 76.2% accuracy on the two test subsets combined using a gender-

dependent model with 400 states, power and adaptation to spontaneous speech. The detailed 

results are summarized below. 

Since the recording conditions of the spontaneous speech corpus was so different from the 

recording conditions for the read speech training corpus, we felt that including power as a feature 

might be more harmful than helpful. Figure 8 shows that the difference in performance is not 

significant for士power,particularly when the model is not adapted to spontaneous speech. Since 

there seemed to be a slight overall improvement with the use of power, it was retained in further 

experiments. There is a significant gain in performance due to using adaptation (25% reduction 

in error rate), which is consistent with the results in [24] using the same paradigm but a different 

test set. Note that there is only a small gain in going from 200 to 400 states, which is unexpected 

based on previous experiments on read speech but might be explained by the fact that the HM-net 

topology was designed on read speech from a single speaker. 

Next, we looked at the effect of using gender-dependent models, and found a significant gain 

in performance as illustrated in Figure 9 for models that used power as a feature. Error reduction 

relative to the gender-independent read-speech model is 17-20% for gender-dependent models and 

24-25% for adaptation to spontaneous speech, so adaptation gives a bigger gain of the two factors 
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Figure 8: Average recognition results on spontaneous speech using gender-independent models for 

200 vs. 400 states, 士poweras a feature, and士adaptation.

alone. The combination of the two techniques gives a small additional improvement, 11% error 

reduction for 200 states, but only 5% for 400 states. Again, there is very little gain from increasing 

the number of states from 200 to 400. 

As in most speech recognition experiments, the gains in average recognition performance are 

small relative to the variability across speakers. Figure 10 illustrates this variability for the same 

conditions as shown in Figure 9, with the 200 and 400 state cases connected by lines. Note that the 

variability in performance is much higher for the 400 state model than the 200 state model trained 

only on read speech data, though the average performance of the 400 state model is higher. This 

variance decreases somewhat with gender-dependent modeling and further with adaptation. 

7
 

Discussion 

In summary, in this paper we have proposed a new algorithm for HMM topology design, that is 

both an extension of successive state clustering and a generalization of decision tree distribution 

clustering. SSS is limited in that it cannot handle speaker-independent training data, primarily 

because states are chosen to be split based on variance and not based on the gain that would be 

achieved by a specific split. By choosing the node and the candidate split at the same time, we can 

avoid splitting states that simply reflect speaker variability and therefore achieve better performance 

in a speaker-independent task, hence the name SI-SSS. Using a maximum expected likelihood 
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Figure 9: Average recognition results on spontaneous speech using power as a feature, comparing 

gender-independent vs. gender-dependent models, 200 vs. 400 states, and士adaptation.

criterion, we can also ensure that node splitting always improves the likelihood of the training 

data. By allowing both contextual and temporal splits, SI-SSS also represents a generalization of 

decision tree distribution clustering techniques. 

Experimental results on a speaker-dependent task -the most difficult test -demonstrate that 

SI-SSS performs as well as SSS with lower computational costs. We anticipate that in training 

on speaker-independent data, the advantages of SI-SSS will play a significant role and enable the 

design of robust HMM topologies, particularly for recognition of spontaneous speech. Preliminary 

experiments on a multi-speaker task support this hypothesis, but to fully establish that SI-SSS 

outperforms SSS and achieves the goal of robust speaker-independent training, several experiments 

remain. We hope to continue the work by first running speaker-independent read speech training 

experiments, testing on both read and spontaneous speech, and then finally moving to speaker-

independent spontaneous speech training. 

Being a generalization of decision tree clustering, SI-SSS inherits some of the advantages and 

disadvantages of decision tree clustering. On the positive side, trees provide a robust back-off 

mechanism for unseen contexts, and easily allow for incorporating more general contextual features 

beyond simply triphone context. Thus, it may be interesting to experiment using SI-SSS with 

wider context windows, stress labels, syllable/mora structure and/or other possible conditioning 

factors. On the negative side, the recursive partitioning of training data that is part of the tree 

design process is not an efficient use of data. Nodes that are split on the same question in different 
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parts of the tree cannot benefit from the large amount of training data associated with the two 

nodes together. One means of addressing this problem is merging of nodes, as explored in SSS [29], 

general decision tree design [17], and distribution clustering [12, 28]. Allowing node merging at all 

steps of tree growing is expensive; more practical alternatives include node merging only after a 

maximum size has been reached or after a full tree has been grown. 

Although SI-SSS offers both performance and speed improvements over SSS, it does involve 

the extra cost of higher memory requirements to store the forward-backward counts needed in 

the constrained EM estimation procedure. In this work, which has trained on relatively small 

amounts of data, we have addressed the problem of memory cost by using the hand-marked phone 

boundaries (used in SSS) to constrain the set of non-zero forward-backward counts. To further 

reduce the memory requirements, one might disallow state sharing across phones and train phones 

separately, as in [11]. Another possible approach would be to restrict split gain re-estimation to 

the nodes immediately touching the splittee state, as proposed in Section 2. 

Clearly, there are many avenues for future work that build on the SI-SSS algorithm and the ex-

perimental result reported here. In particular, we anticipate that SI-SSS will represent an important 

tool for advancing the state of the art in spontaneous speech recognition. 

A Maximum Likelihood of Gaussian Data 

This appendix gives a proof of a standard result (e.g. [14]) that the maximum likelihood of a sample 

set of independently and identically distributed Gaussian vectors {Yti t = l, ... , N} is proportional 

to the determinant of the ML covariance estimate: 

where 

e -NM/2 

max ITP(Ytlμ ぶ）＝＾
μぶ t 

tML=~~ 伽ー位）（防一 Pl

(34) 

(35) 

This result is needed to get the simple convergence test used in the maximum likelihood split design 

algorithm in Section 4.2. 

Proof: First, expand out the probability terms: 

max 
μぶ

I: log P(Ytlμ ぶ） = I:logP(YtlP,,t) 
t t 

-1 ＝了 [NMlog(2吋十 Nlogl江 +~(Yt -Plt-1(Yt一μ)] (36) 

Then, using the fact thatがAx= tr(xがA)to reduce the last term: 

~(Yt ー砂t-1(Yt -μ) = ~tr [(Yt -μ)(yt一p,/t-1] (37) 
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= tr [ (L(Yt五）（約ー砂）f;-1 l 
= tr [N鯰—1]=Ntr(I)=NM

for Yt of dimension M. Combining this result with Equation 36 gives 

I: 
-1 

匹 tlogP(Ytlμ ぶ）＝了 [NMlog(21r)十NlogII:I +NM] 

or equivalently the expression in equation 34. 

Combining the likelihood of two clusters, as in Section 4.2, gives 

N。 N1

罠翌苔ogP(叫 o心o)+瓢苔ogP(虹 1ぶ1)

1 
=-『 [NoMlog(2~) + No log位ol+NoM十凡Mlog(2,)+凡logI立l+N叫

= -2 [N Mlog(21r) +NM+ N,。logII:。I+凡 logI立1]

The likelihood test in Section 4.2 uses 

L(P) = -N,。logI砂(P)(so)I-N1 log l~(P)(s1)1 

(38) 

(39) 

since the other terms are constants that depend only on s and do not change with the different 

partitionings of the observations in s. 

B Alternative Statistics in Split Design 

For the case where the observation distributions are assumed to be full covariance Gaussians, it 

may be more convenient to define the first and second order statistics 

μj(s) 

均(s)

1 
= N- I: Yt 

J t:xi=Xj ,si=s 

＝ 上 I: (初ー μj(s))(Yt-μj(s)l 
N・

J t:xi=巧・,si=s

、
~
、

`
j

0

1

 

4

4

 

（

（

 

Again, these statistics are computed once for state s in the initialization step and stored together 

with counts Nj, In this case, we simplify Equation 22 as follows: 

区 (Yt-μ(so)此(so)―1(yt-μ(so)) 
t:Xt=Xj 

= L (Yt-μj(s)+μj(s)-μ(so)料(so)―1(Yt-μj(s) +μj(s) -μ(so)) 
t:xt=巧

= L (Yt一凡(s))宅(so)-1(Yt-μj(s)) + Nj(μj(s) -μ(so)立(so)―1(μj(s)-μ(so)) 
t:xt=巧

= tr(NjI:jI:(sot1) + Nj(μj(s) -μ(so))tI:(so)―1(μj(s) -μ(so)) 
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where in the second step we used the fact that the cross terms sum to zero, and in the third step 

we used the identityがAz= tr(zがA)and the fact that the trace function tr(・) is a linear operator, 

so 

I: (y, 叫(s)料(so)―1(y,-l';(s))~tr [ I; (y, -!';(s))(y, -!';(s))℃ (so)―1] = tr [N; 麟 (so)ー,l . 
t:xt=巧: t: 叫 =xj

Combining these results with Equation 22, we get the following test 

log II;(so)I + tr [謬(so)-1]+ (μj(s) -μ(so)/叩 o)―1伽(s)-μ(so)) 

::; log II;(s1)I + tr [疇（釘）ー1]+ (叫s)-μ(s1)/叫）ー1(μj(s)-μ(s1)). (42) 

The parameter re-estimation equations using the sufficient statistics are: 

1 1 
μ(緑）＝団 L L 狛＝冗 L N心 (s) (43) 

巧EAkt:xt=Xj 町EAk

1 
瓜）＝団 L L (Yt -μ(sk))(Yt -μ(録））t

巧 EAkt: エt=巧

＝嘉 L Nj [均(s)+ (μj(s) -μ(sk))(μj(s) -μ(sk)/] (44) 
巧 EAk

using the same sort of trick as in simplifying the re-partitioning test to get the covariance estimate. 

Both the re-partitioning test and the parameter re-estimation equations again simplify if we 

assume diagonal covariances. For the mean and variance statistics, the re-partitioning test becomes 

0ヲ，m(s)+ (μj,m(s) -μm(so))2 。-J,m(s)+ (μj,m(s) -μm(s1))2 
C。+I: s; C1 + L 

m cr~(so) m 吐（釘）

where 

ck= log(Il O'!(sk)) 
m 

as before. The covariance estimate becomes 

for m = 1, ... , M. 

憂 k)=上こ的［土(s)+ (μj,m(s) -μm(sk))2] 
Nk XjEAk 

C Code Changes 

(45) 

(46) 

Although the new SSS algorithm is in theory a relatively minor change from the baseline alga-

rithm, the actual implementation requires modification of several routines (indicated in italics), as 

summarized below. 
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State data structure changes. In the baseline system, two Gaussians are stored for each state. 

In the SI system, we need to store a single Gaussian for each state, plus some representation of the 

candidate split. At the very least, we must store a description of the split (variable indicating factor 

and list indicating elements if the split is in the context domain). In addition, for choosing the best 

state to split, we must either store the gain associated with that split (a scalar), or the means and 

variances of the resulting states from that split as well as the current mean and variance since all 

are require to calculate the gain. (The gain associated with a split is given by Equation 11.) If 

the means and variances are stored, then they do not need to be recalculated before Baum-Welch 

re-estimation, but this calculation is probably a relatively small cost. The gain from a particular 

split can be calculated in find_splittee_state, or can be calculated in split_stateSI (see below) and 

stored to avoid some (not much) redundant computation in find_splittee_state. 

Other data structure changes. As mentioned above, a new data structure must be added in 

order to save ,t(s) and lt(s, s') for all observation times t, possible states s for that time, and the 

two possible preceding states s1. This results in additional memory requirements proportional to 

the amount of training data. 

train_HMnet. The baseline routine has the following structure (ignoring memory allocation 

steps and "DOMAIN_TC" which is 3D-SSS): 

1. Initialization using training and optionally viterbi (Step 1 [1]) 

2. Find the best state to split {find_splittee_state) (Step 2 [1]) 

3. Find the best split for this state, testing different possible domains (left, right or mid context, 

temporal split AB, and temporal split BA). Within the context split set-up, test different 

factors (phone sets) with split_factor. (Step 3 [1]) 

4. Do the split {load_condition) and log file print outs 

5. Determine states/data affected for limiting Baum-Welch 

6. Initialize mixture parameters for new states with iniLparamO (Step 4 [1]) 

7. Retrain 2-mixture state network using training (Step 5 [1]), and optionally run viterbi. 

Note that viterbi is used only to get missing phone boundaries (where labelers left out a boundary 

because they could not decide) and not to associate data samples with specific states. 

This routine needs to change primarily in the order of these steps, which is facilitated by 

introducing some new and revised subroutines (indicated by "SI" ending): 

1. Initialization using 

(a) training and viterbi 

(b) Find best split factor for each state (spliLstateSI). 
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2. Find the best state to split (find_splittee_stateSI) 

3. Do the split (load_condition) and log file print outs. The new state inherits splittable domains 

from the previous state. 

4. Determine states/ data affected for limiting Baum-Welch 

5. Retrain single Gaussian state network using training, and optionally run viterbi. 

6. Find best split factor for new states and optionally refine split factors for affected states 

(split_stateSI). 

A new subroutine (split_stateSI) is needed which is a combination of step 3 and the subroutine 

(in位paramO)in the old version, and of similar complexity. If optional split factor refining is used, 

then there will be fewer calls to (spliLstateSI) in SI-SSS than to iniLparamO in SSS, decreasing the 

computational cost. 

find_splittee_state. The baseline version of find_splittee_state first computes the divergence be-

tween the mixtures for each state (equation (1) in [1 ], which is equivalent to the likelihood ratio test 

in [10]), and then loops to find the state with the largest divergence that also has a valid domain 

to split. Since all "mixtures" for states in the SI version will be associated with valid splits, then 

this second loop is not needed in find_splittee_stateSI. (The domain checking code may be useful 

in spliLstateSI though.) The specific implementation of the first loop depends on data structure 

choices, i.e. whether the divergence is pre-stored along with the mixture components, but the test 

should be that given in equation 11. 

spliLfactor. This routine is called in train_HMnet to choose the best factor (left, middle or center) 

for splitting in the context dam叫n.The forward algorithm is first called to compute the forward 

(alpha) probability of being in each of the two new states at each possible time. (Note that this 

work is redone for the best context split in caLtotaLprob.) For each factor, these probabilities are 

accumulated to determine which state an element (phone label) is assigned to by the split_element 

routine, and the total probability for the factor is updated accordingly. Then there are various fixes 

in case not enough data is assigned to one or the other of the two states. Parts of this subroutine 

may be useful in the new split_stateSI subroutine, depending on whether Baum-Welch or Viterbi 

clustering is used. The small data "fixes" in this routine will not be needed in SI-SSS since such 

splits will not be allowable in the restructured code. 

spliLstate2. This routine is called in train」fMnetto set up pointers/lists etc. for later evaluating 

a split in the temporal domain. 

iniLparamO. This routine is called in train_HMnet before Baum-Welch training to initialize the 

distribution parameters (means, variances and mixture coefficients) for the new states. The high 

level approach is to design a two codeword vector quantizer, tr叫ningon the means of the different 
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possible phonetic contexts, and then to use the means that are farthest apart. This approach is 

very similar to the Chou partitioning algorithm [17], except that uses Euclidean distance rather 

than a maximum likelihood objective function, and the VQ procedure does not take into account 

the number of observations associated with the different possible contexts. The specific steps of 

iniLparamO include: 1) accumulate first and second order statistics for each possible contextual 

splitting factor (left, right, center phone) and each possible element of that factor (e.g. phone in 

this context associated with the state to be split), 2) run a 2 codeword VQ on the means of each 

element for this factor as if it was data to be quantized, 3a) if there is no factor with enough data to 

split it, then run VQ on the data directly, 3b) else choose the factor that has the largest difference 

between the resulting VQ means, 4) estimate means, variances and mixture weights based on the 

clustering for the best case based on the sufficient statistics computed earlier, and 5) initialize 
transition probabilities to be uniform. This new SI-SSS contextual split routine will be very similar 

to init_paramO, with some changes to the VQ routines to implement the maximum likelihood split 

design algorithm described in Section 4.2. 

vq. This routine is called in init_paramO as described above. It iteratively (1) splits all codewords 

and (2) runs the LBG algorithm with the minimum distortion criterion for this number of code-

words, until the desired number of codewords is reached. In this case, there is only one step since 

the desired number is two. (For larger numbers of codewords thls algorithm is costly -one should 

do all the splitting first and then run the LBG algorithm.) To implement ma泣mumlikelihood 

clustering, the subroutines used in vq need to be changed as follows: 

• distance-ML: rather than including a vector of means as an argument, include two vectors of 

the sufficient statistics SJ and SJ, which are then used to compute the ML distance: 

d(x,μ,a2) = 2log(Il吐）+ I: 碍，m(s)-2Sに(s)四+µ~

m m 咋
(47) 

To save computation, you might pre-compute and pass log Tim知 asan additional argument. 

• caLcent-ML: add as an argument an array with the count for each "data" point, Nj, which 

is needed to compute 

汎＝区 Nj.
如 (xj)=k

Recall that j is the index to the different possible elements (e.g. phone labels). Nk is used 

both in parameter re-estimation and in computing the overall likelihood for the convergence 

test. 

split_stateSI. The new step 3 should have a routine called for each affected state s that imple-

rnents the following steps: 

l. Check that there is more than some minimum number of observations associated with state 

s. If not, assign the splitting gain to be zero (unsplittable) and exit. 
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2. If this is a new state, check that there is a valid domain to split state s. (Might use code 

from find_splittee_state.) If not, assign the splitting gain to be zero (unsplittable) and exit. 

Else, if this is an old, affected state, set allowable domains and factors to test according to 

options outlined in Section 2. 

3. Loop over all allowable domains to test 

(a) Check that this state is splittable in this domain 

(b) If the domain is context then run iniLparamOSI, which should have the following steps: 

i. Accumulate statistics for this state. 

ii. Run the 2-cluster vq-ML routine. If there is a valid split for this domain, it returns 

means and covariances since these are computed in the clustering. 

(c) If the domain is temporal then run new temporal split routine spliLtempSI. Initialize the 

state transition probabilities to have self-loop probability at half of that of the original 

state (to have the same average duration for the two split states together as for the 

original). 

(d) Test for the domain that gives the highest likelihood gain, using L(P) as defined in 

the maximum likelihood split design algorithm for both the context domains and the 

temporal domain. 

(e) Compute G(S) for comparing the temporal and contextual domains, and save for use 

later in determining the best node to split. 

split_tempSI. In the original version of SSS, a temporal split was evaluated by testing the 

two orderings of the mixture components and measuring their likelihood by running the forward 

algorithm on the data associated with the original state in the caUotaLprob routine. In the new 

version, we no longer have pre-defined mixture components to test, which means that we need to 

estimate the distributions but also that we only need to run one test. The new routine to compute 

a temporal split should first copy the original state so that there are two identical states in a row 

(with self-loop probabilities chosen so that the expected duration of the two states together is the 

same as that for the original state), and then run a few iterations of the constrained Baum-Welch 

algorithm outlined in Section 5, to estimate the new distribution parameters. Running four Baum-

Welch iterations is at most four times the cost of the two SSS temporal splits together and should 

be sufficient to assess the goodness of this dom叫n. Since the cost of the current temporal split 

evaluation is a relatively small part of the overall SSS algorithm, this increase should not be a 

problem. Only the distributions of the two new states should be re-estimated, since the overall 

dom珀ntest only considers the g叫nin going from one to two states. 

＂＇ 

D Equation Labels in Source Code 

Below we provide a list of equation numbers and names of these equations used in source code 

documentation. 
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• Equation 10: Contextual split expected likelihood gain 

• Equation 11: Temporal split expected likelihood gain 

• Equation 28: Re-partitioning test 

• Equation 30: Contextual split variance estimate 

• Equation 31: Temporal split mean estimate 

• Equation 32: Temporal split variance estimate 

• Equation 33: Temporal split self loop probability estimate 
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