
TR-IT-0116 

Internal Use Only (非公開）

002 

A Speaker Sensitive 

Artificial Neural Network Architechture 

.for Speaker Adaptation 

．． 
Nikko STROM 

1995.5 

The speaker sensitive framework for speaker adaptation is outlined and exempli-

fied by a speaker sensitive artificial neural network. A technique for automatically 

extracting the speaker-characteristics space is introduced and evaluated on a vowel 

discrimination task. The generated speaker-space is analyzed using analysis-by-

synthesis and the shifts found in the Fl /F2-space are consistent with results from 

speech production research. The speaker-space is also compared with, and found to 

be correlated with, the knowledge-based speaker parameters FO and spectral tilt. 
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1. Introduction 
The well known performance-gap between speaker-dependent (SD) and 
speaker-independent (SI) automatic speech recognition (ASR) systems 
(Huang & Lee 1991) as well as knowledge from the field of speech perception 
(Ladefoged & Broadbent 1957, Nearey 1989) suggests that modeling systematic 
speaker variance and adapting the recognition system to the speaker can 
improve recognition accuracy. Indeed, this has also been shown to be the 
case. 

The two most common approaches are 1) to adapt a subset of the 
parameters of the system using the maximum aposteriori (MAP) estimate or a 
vector-field smoothing (VFS) technique (Ferretti & Mazza 1991, Rozzi & Stern 
1991, Ohkura, Sugiyama & Sagayama 1992) and 2) to train a family of 
recognition systems using speaker-clustered training data (Schwarz, Chow & 
Kubala 1987, Kosaka & Sagayama 1994). Another possibility is speaker 
normalization, where the acoustic features are transformed before passed to 
the pattern matching module (Blomberg 1_98~, Cox & Bridle 1989, Furui 1989). 
The distinction between speaker normalization and adaptation relies on the 
arbitrary division of the system into a module for feature extraction and a 
classifier. In the following we will only discuss speaker adaptation which is 
the more general framework. 

Because of properties of the underlying production mechanism, the 
optimal parameters for a particular speaker are normally highly correlated. 
From this point of view, the MAP-estimation technique has ,a serious 
weakness in that it does not treat the correlations between the parameters. 
The VFS-technique has a similar weakness since it treats only correlations 
between parameters in acoustically similar reference vectors. Certainly, the 
speaker variation of speech sounds that are not similar are also correlated. 

The speaker-clustering approach has potential of modeling the 
correlation between parameters, but the discrete nature of the mapping of 
speakers into clusters introduces problems. Note that speaker parameters 
found in speech production theory (Fant 1975, Traunmueller 1981)(vocal-
tract length, FO-range, etc.), are usually continuous-valued. Also, when the 
training data is limited, the amount of training data assigned to each cluster 
is inversely proportional to the number of clusters. Thus, an undesirable 
trade-off is introduced between the need for a large amount of training data 
to train other aspects of the system, such as context-dependency, and the 
need to cluster , the data to get higher resolution in the modeling of the 
speakers. 

The speaker sensitive modeling approach (Strom 1994) differs from the 
above techniques in that an explicit set of parameters, the speaker-
parameters, are defined, describing the speaker in a low-dimensional space, 
the speaker-space. In this framework, the phonetic classification is 
dependent on the speaker-parameters, and speaker adaptation is the 
procedure of finding the optimal speaker-parameters. In contrast to the MAP 
and VFS techniques, it is possible to estimate higher order correlations 
because the speaker-space is of low dimension. For the same reason, it is 
possible to adapt to a new speaker using a small amount of adaptation data 
(Strom 1994). Further, continuous speaker-parameters do not have the 
conceptual and computational problems associated with speaker-clustering. 

A speaker sensitive model has two different types of input -the acoustic 
features and the speaker-parameters. The Artificial Neural Network (ANN) is 
a framework that has the ability to efficiently combine the information from 
inputs of different kinds (Rumelhart, Hinton & Williams 1986). In section 2 

¥

l

 

(
¥
 

／
ー
＼

r
 

11 

r
 ．
 

3
 



and 3 we describe an ANN-architecture suitable for speaker sensitive 
modeling and extend it to automatically extract the speaker space from the 
training data. In section 4 and 5, the model is tested on the task of classifying 
the five Japanese vowels and the automatically extracted speaker-space is 
analyzed. This space is then compared with the so called knowledge-based 
"FO/Spectral-tilt" space in section 6. 

2. The ANN Classifier 
In contrast to the model used in (Strom 1994), the ANN used in this study 
takes speech frames as input. A frame is a short speech segment (typically 10 
ms) and is a standard unit in ASR systems (Lee 19 8 9). It is well known that 
the information in speech signals as short as frames is not sufficient for 
phonetic classification. Thus, the performance is improved if the classifier 
can access information about the surrounding frames. The TDNN 
architecture (Waibel, Hanazawa, Hinton, Shikano & Lang 1987, Hild & Waibel 
1993) gives the classifier direct access to a finite window of frames and can 
be trained using a straight-forward extension of the original back-
propagation algorithm (Rumelhart, Hinton & Williams 1986). Another 
extension of the original framework is to allow recurrent connections in the 
ANN. This type of ANN can be trained by the back-propagation-through-time 
algorithm (BPT) (Robinson & Fallside 1991). Of course, the two concepts can 
be combined and the result is the RTDNN architecture (Strom 1992). 

In an RTDNN, each connection has the following properties: the 
connection weight, the delay (or look-ahead) and indices of the source and 
destination units. The activation of each unit is computed by: 

a1, ~{ I w0,a,0_.,〕,a(x)= atan(x) 
i,k 

where ajt is the activation of unit j at time t and Wijk is the connection 
weight of the connection from unit i to unit j with a time-delay of k frames. 
Connections from a special-purpose bias-unit with the constant activation 
one, provides the bias-term sometimes explicitly written in the sum of the 
formula (Rumelhart, Hinton & Williams 1986, p. 329, footnote). 

A necessary additional restriction is that there must be no backward-
recurrency, i.e. the activation of a unit is not allowed to depend on the 
activation of the same unit at a later time. When this condition is fulfilled, 
the RTDNN, unfolded in time, is a back-propagation network and can be 
trained using the BPT algorithm. 

In addition to the acoustic features of the frames, a speaker-sensitive 
RTDNN also has a set of speaker-parameter input-units. Given a speaker, the 
activities of the speaker-parameter units are constant values defined by the 
mapping from speakers to the speaker-space. This mapping can be 
implemented in various ways. For example, in (Strom 1994) it was computed 
using an analysis-by-synthesis technique by Carlson & Glass (1990) and in 
the next section we give a method for automatically extracting the speaker-
space from training data. 
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Figure 1. General speaker sensitive ANN classifier. The speaker-space units 
are typically a small number of units characterizing the speaker. The 
speaker units are special-purpose units with activation one if the unit's 
speaker is the current speaker and zero otheiwise. 

3. Automatic Extraction of the Speaker-
space 
The literature of speech production (Fant 1975, Traunmueller 1981, Fant, 
Liljenkranz & Lin 1985) and speech perception (Ladefoged & Broadbent 1957, 
Strange 1989, Nearey 1989, Miller 1989) describes a rich multitude of speaker 
characteristics parameters. Although this knowledge provides an important 
background to the speaker adaptation problem, there is no guarantee that so 
called knowledge-based parameters are the optimal speaker parameters for 
ASR. The fact that the optimal speaker-space is dependent on the complete 
system, suggests an algorithm where the speaker-space is learned in a 
unified optimization procedure which includes also the parameters of the 
classifier. 

Assume that there are N speakers in the training data and that there are M 
speaker-parameter units in the RTDNN. Define N special speaker-units such 
that speaker-unit number i takes the value one if speaker number i is the 
current speaker and zero otherwise. Then connect all the speaker-units with 
all the speaker-parameter units so that the speaker-parameter units depend 
on the speaker-units. The resulting RTDNN, including the new connections 
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(see Figure 1), can be trained using the BPT algorithm. This is the sought 
unified optimization procedure. We can also get the position in the speaker-
space for each of the training speakers by simply monitor the values of the 
speaker-parameter units in the trained RTDNN. 

The speaker adaptation problem is to find the optimal values for the M 
speaker-parameter units of a new speaker. In (Strom 1994) we gave an 
unsupervised algorithm for this problem. Here, as the focus is on the 
extraction of the speaker-space, it is simply assumed that the adaptation is 
supervised, i.e. the correct classification of each frame in the adaptation data 
is known. This makes~he adaptation procedure very simple: 

i) Add a speaker-unit for the new speaker and connect it with the speaker-
parameters. 

ii) Train the new connections on the adaptation data using the BPT 
algorithm, keeping all other parameters fixed. 

Only M parameters are updated in this training, suggesting that a relatively 
small amount of adaptation data could be sufficient. 

4. Experimental evaluation 
The algorithm outlined in the previous sections was tested on the task of 
classifying the speech-frames from continuous speech into one the 
following six classes: the five vowels, /a/, /el, Ii/, /ul, lo/ or a broad-class 
containing all other frames. 

The Database 

Testing 
sentences 
12Jspeaker 

Figure 2. The set Xis used for training and the sets A, Band Care used for 
testing. See the main text for details. 
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4.1 The database 

A database containing read continuous Japanese sentences where used. The 
sentences are transcribed with phonetic segmentation. 12 sentences each, 
from 60 different speakers where selected for training. 12 other sentences 
from 15 other speakers where selected for testing. We will denote the latter 
set B. All sentences in these two sets have different wording. In addition, one 
sentence spoken by all speakers, define two more sets. Set A is this sentence 
read by the 60 training speakers and set C is the sentence read by the 15 
testing speakers. Figure 2 visualizes the different data-sets. 

4.2 Acoustic Feature Extraction I Signal Processing 

An FFT with a 25 ms Hamming window, applied to the speech signal every 10 
ms was used to transform the speech signal into the spectrum domain. A 16-
channel Bark-scaled (from 200 to 6000 Hz) filterbank was applied to the FFT-
spectra and the outputs of the channels where normalized by a linear 
transform to the range [-1, 1]. The 16 normalized filter-outputs are the 
acoustical inputs to the RTDNN. 

4.3 The RTDNN Architecture 

A careless choice of RTDNN structure can lead to very big networks and the 
computation time for training and evaluating of an RTDNN is with good 
approximation proportional to the number of connections in the network. 
Therefore, a modular approach where all units are not connected to all units 
in subsequent layers and where the range of the time-delays is different for 
different layers is a practical way to keep the number of connections down 
while maintaining a powerful modeling of relevant features. 

In this study, we chose to assign one sub-network to each vowel. Each 
sub-network is a 4-layer network with the input layer of 16 units, two hidden 
layers with 6 units each, and the output layer with only one unit. The input 
layer is fully connected to the first hidden layer with all time-delays (look-
aheads) between -2 frames and +2 frames. The first hidden layer is connected 
to the second hidden layer with all time-lags between -1 and +1 frames and 
the second hidden layer is connected to the output unit with all time-lags 
between -1 and +1 frames. In addition, there are connections introducing 
recurrency - the two hidden layers are fully connected to themselves with 
time-delay one and two. 

The speaker independent classifier used for reference in the 
classification experiments is simply the union of the five vowel-networks 
described so far. The speaker sensitive RTDNN additionally has two speaker-
parameter units and one speaker unit for each speaker. The speaker-
parameter units are connected to all hidden units. This RTDNN-structure is 
illustrated in Figure 3. 

In summary, we are using a rather complex RTDNN with two hidden 
layers, and time-delay windows varying between three and five frames and 
recurrent connections delayed one and two frames. However, because of the 
modular structure chosen, the total number of connections is quite low (3935 
+ two connections per speaker). 
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The RTDNN structure 

．．． 
Filterbank input units 

゜Vowel sub-network 

Vowel output unit 

2nd hidden layer 

1st hidden layer 

．．． 
Filterbank input units 

00  

Figure 3. The RTDNN structure. There is one sub-network for each vowel. 
Each sub-network has two hidden layers with 6 units each. Note that all 
connections are not drawn in the picture and that there are multiple 
connections between many of the units (with different time-lags). See the 
main text for details. 

4.4 Training Procedu-Fe-and Classification Results 

Both the speaker-independent and the speaker sensitive RTDNN where 
trained using 200 iterations of the BPT-algorithm on the training data. Test-
set A contains sentences not in the training data, but spoken by the training 
speakers. As the training speaker's position in the speaker-space is learned 
in the training, we can perform a comparison between the two networks for 
this set. From Table 1 we see that the error was reduced by about 36% from 
speaker-independent modeling to speaker sensitive. 

The results on set A indicates that the two automatically extracted speaker 
parameters are effectively characterizing the speakers in the training data. 

8
 



To see how well they can characterize new, unseen speakers, we performed a 
series of adaptation experiments. In (Strom 1994) we described an 
unsupervised method to perform the adaptation to the new speakers. Here we 
are using a much simpler, supervised method. 

The two new connections from the new speaker-unit to the speaker-space 
are simply trained using the EFT-algorithm. The algorithm converged in less 
than 10 iterations in all cases. Table 1 shows the performance, both when set 
B (12 sentences/speaker) and set C (one sentence/speaker) was used for 
adaptation. The cut in error-rate compared to the speaker-independent 
RTDNN is the range 25% -35%. We also note that adaptation on one sentence 
only, is enough to estimate the two speaker-parameters (the cut in error-rate 
is in fact greatest when adapting to set C and evaluating on set B). 
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Figure 4. The automatically extracted speaker-space. Upper case letters 
denotes speakers in the training data. Lower case letters denotes the position 
of speakers in the test set as computed by adaptation to one sentence. F -
female. M -male. 
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A
 

B
 

c
 

B
 

c
 

after adaptation 

Speaker sensitive ANN 

Speaker indep. ANN 

85.1 % 

76.6% 64.7 % 62.8% 

77.1 % 72.2 % 

,
l
 

Table 1. Classification results. Frame level classification results for different 
classifier types and different data sets. In the speaker adaptation evaluations 
(the two rightmost columns) the classifier was adapted to the set (of B or C) 
not used for evaluation. See the main text for details. 

5. Analysis of the 
Extracted Speaker-space 

Automatically 

Figure 4 is a scatter-plot of the positions of all training and testing speakers 
in the speaker space. We see that there is a very clear division between male 
and female speakers. However, the speaker-parameters are continuous 
variables and can potentially capture more than just the binary distinction 
male/female. To get a deeper understanding of the automatic speaker-
parameter extraction algorithm, we analyzed the speaker-space by 
comparing it with a few lmowledge-based parameters. 

5.1 Formant-shifts 

The vocal-tract length varies among speakers and this is one of the most 
important factors of speaker difference in the broad-band spectrum (Fant 
1975). An estimate of the vocal-tract length can be computed from the peak-
frequences of the higher formants. However, formant-tracking is certainly 
not a trivial problem and the effective vocal-tract length varies even for the 
same speaker. For example, lip-rounding/spreading alters the effective 
vocal-tract length (Fant 1960, Fry 1979). 

In contrast to a human speaker, a formant synthesizer can be controlled 
to produce an ensemble of vowels with varying Fl and F2 and all higher 
formants fixed. In an analysis-by-synthesis experiment, an all-pole filter 
with the first 8 formants excited by a differentiated LF voice-source pulse 
generator (Fant, Liljenkranz & Lin 1985) was used to produce a controlled 
ensemble of vowels, differing only in the center-frequencies of Fl and F2. 
The other parameters where fixed at the values in Table 2. 

The synthetic vowels where fed as acoustic input to the speaker sensitive 
RTDNN. The vowel-output unit with the highest activity is selected for each 
Fl/F2 combination. This gives the decision regions in the Fl/F2 space for the 
five vowels. Figure 5 shows how the regions are shifted as the speaker-
parameters are changed. We see that Fl and F2 are shifted upwards as we 
move in the speaker space from the area dominated by male speakers to the 
area dominated by female speakers. This is consistent with results from 
speech production theory (Fant 1975). As can easily be seen in Figure 5, the 
effect is much clearer for Fl than for F2. There are many possible 
explanations for this and so far we are not able to point out one single 
dominant factor that causes this difference. 
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Figure 5. Formant-shift in the decision regions of the five vowels, induced by 
changing the speaker parameters. Each point indicates an Fl-F2 combination 
in the ensemble. Decision regions with male-typical parameters (solid line) 
and female-typical parameters (dashed line) are shown. 
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／
ー
＼

fO 

Ra 

Rk 

Rg 

125 Hz 

0.010 

0.50 

0.80 

Fl 

F2 

F3 

F4 

FS 

F6 

F7 

F8 

(varied) 

(varied) 

2500 Hz 

3500 Hz 

4500 Hz 

5500 Hz 

6500 Hz 

7500 Hz 

Bl 

B2 

B3 

B4 

BS 

B6 

B7 

BS 

50 Hz 

100 Hz 

150 Hz 

200 Hz 

257 Hz 

314 Hz 

371 Hz 

428 Hz 

↑
 

Table 2. Control parameters of the formant synthesizer. 
BB are proportional to the respective formant frequency. 

The bandwidths B4-
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5.2 Spectral Tilt 

The spectral tilt is an acoustic measurement, whose primary source of 
variation is the type of fonation, and in particular the speed and 
effectiveness of the glottal closure. It varies with speaking style and for 
stressed/unstressed position (Gauffin & Sundberg 1989, Campbell & Beckman 
199 5). However, it also depends on the physiology of the speaker. 

In this study we use a simple definition of spectral tilt: the sum of the log 
amplitudes of the first five filters in the filterbank, minus the sum of the log 
amplitudes of the remaining eleven filters (the upper cut-frequency of the 
fifth filter is close to 1000 Hz). A similar technique is used by Blomberg 
(1989). For each speaker, the "Tilt speaker-parameter" is defined as the mean 
over all vowel-frames in set A or C. 

Figure 6 shows how the spectral tilt varies for the speakers in the 
automatically extracted speaker space. Interestingly, this parameter varies 
almost orthogonally to the male/female direction in the speaker-space. 

Spectral tilt in the speaker space 
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Figure 6. Spectral tilt of the speakers in the speaker space. See the main text 
for our definition of spectral tilt. The high/low difference is achieved by an 
arbitrary threshold. 
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5.3 Fundamental Frequency 

The fundamental frequency (FO) of the voice-source contains important 
speaker-characteristics information (Traunmueller 1981, Nearey 1989). But 
the signal processing used in this study and in most of today's state of the art 
speech recognition systems, suppresses most of the PO-information. Still, FO 
can be correlated with the position in the speaker-space if it correlates with 
some important feature in the broad-band spectrum. 

For each speaker, the "FO speaker-parameter" is defined as the mean of 
the fundamental frequency in all voiced frames in sets A and C. 

Figure 7 shows how FO varies for the speakers in the automatically 
extracted speaker space. As expected, it is possible to make the male/female 
distinction almost perfectly using only PO. But within the male or the female 
range, the pattern is more complicated. We see that, for the male speakers, FO 
correlates with the "male/female dimension", but for the female speakers, it 
correlates more with the orthogonal dimension. 
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Figure 7. Mean PO over one sentence, for the speakers in the speaker space. 
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6. The "FO/Spectral-tilt" Speaker-space 
The fact that the two relatively simple measurements of FO and spectral tilt 
turned out to be highly correlated with the parameters of the automatically 
extracted speaker space, suggests that effective speaker parameters can be 
computed bottom-up, i.e. we do not need phoneme targets (supervised or 
hypothesized) for the computation. Of course, an adaptation time-lag is still 
unavoidable to get a sufficient number of samples for the computation of the 
means. 

The "FO speaker-parameter" and the "Tilt speaker-parameter" where 
normalized to the range [-1, 1] to get a speaker-space suitable for RTDNN 
computation. An RTDNN with the same structure as in the previous 
experiments, but with this fixed bottom-up speaker-space was trained using 
the BPT-algorithm. The results on the A, B and C sets where in all cases a few 
units less than the results for the automatically generated speaker-space but 
much higher than for the speaker-independent RTDNN (see Table 3). 

A
 

B
 Speaker Independent 

Bottom-Up 

Speaker Sensitive 

76.6% 

82.6% 

85.1 % 

64.8% 

73.5 % 

77.1 % (adapted to C) 

Table 3. Correct frame classification rate. The bottom-up parameter-space of 
PO and spectral tilt evaluated by comparing the classification results with the 
SJ-model and the model with automatically extracted speaker-space. 

7. Summary, Discussion and Conclusions 
We successfully applied the speaker sensitive framework introduced in 
(Strom 1994) to the task of classifying lOms frames (In the previous study, 
the task was to classify vowel-segments with the boundaries determined in 
advance). Because the information in one frame alone is not sufficient for 
phonetic classification, a more complex ANN architecture, the RTDNN, was 
chosen in this study. 

A method for automatically extracting the speaker-space was introduced 
and in a vowel-classification experiment, the speaker sensitive classifier 
performed much better than a speaker independent reference classifier. We 
interpret this as evidence that the extracted speaker-space can effectively 
characterize the speakers. 

The speaker-space was analyzed and compared with various so called 
knowledge based parameters. The male/female distinction is very clear. in 
the space and the position in the space is also correlated with spectral tilt and 
fundamental frequency. In an analysis-by-synthesis experiment, the 
formant-shifts induced by altering the speaker-space parameters where 
analyzed. The shift from typical male parameters to typical female 
parameters resulted in a shift upwards in the Fl/F2 space as predicted by 
speech production theory. 
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The speaker-space used in the vowel-classification experiment is of very 
low dimension (2 parameters), which is an advantage when speaker 
adaptation is to be performed with a small amount of adaptation data. Also, the 
low dimensional space makes it possible to capture higher order correlations 
that are otherwise difficult or impossible to estimate even with a. large 
amount of adaptation data. 

In the speaker sensitive framework, the speaker parameters are supplied 
as extra input-units to the classifier. Adaptation is the procedure of finding 
the optimal speaker parameters. In general, this procedure is performed by 
an optimization that uses both top-down and bottom-up information (Strom 
1994). The supervised adaptation procedure used in this study is an example 
of this type of optimization. However, the analysis of the speaker-space 
indicated that knowledge-based parameters can also be used in a pure 
bottom-up strategy. This was verified in a classification experiment with the 
speaker-space of FO and spectral tilt. 

An important question not treated here is how the speaker-parameters 
and the mechanism to estimate them (the adaptation) can be coupled with 
other modules of a complex man-machine interface. For example, if the 
prosody-module of the system uses such parameters as FO and spectral tilt, it 
could be an advantage to use similar parameters for the speaker adaptation. 
However, any application of the speaker sensitive framework meets the 
important criterion that the dimensionality of the speaker description is low. 
This makes it possible to use the speaker-space as an interface between the 
acoustic/phonetic model and other modules of the system. 
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