
Internal Use Only

TR-IT-0114

Massively Parallel Text Retrieval

Ali M. AlHaj Eiichiro Sumita Hitoshi Iida

1995.5

Abstract

Text retrieval systems are computer-based systems the function of which is

locate user-requested documents in text databases. The requested documents
which are commonly stored in electronic form may include news articles, tech-
nical abstracts, office memos, electronic mail messages, among many others.
In fact, the recent widespread of such electronic documents has greatly en-
hanced the importance of text retrieval systems and made them vital com-
ponents in modern information systems. A wide variety of operational text
retrieval systems already exit, however, these systems are mostly implemented

on sequential computers which lack both the storage capacity and the retrieval
speed that are needed for large on-line information systems. The research
reported here is based on the argument that parallel computers represent a
potential tool to cope with the increasing computational and storage demands

of modern text retrieval systems. In this report we describe an efficient imple-
mentation of an experimental parallel text retrieval system using an MIMD
parallel computer. The system is intended to be the first step towards achiev-
ing the ultimate goal of developing an effective and efficient retrieval system
to support the on-going massively parallel example-based spoken language

translation project at ATR Interpreting Telecommunications Research Labo-
ratories.

ATR Interpreting Telecommunications Research Laboratories

◎ 1995 by ATR Interpreting Telecommunications Research Laboratories

002

1 Introduction

';

Text retrieval systems are computer-based systems the function of which is locate user-requested
documents in text databases. The requested documents which are commonly stored in elec-
tronic form may include news articles, technical abstracts, office memos, electronic mail mes-
sages, among many others. In fact, the recent widespread of such electronic documents has
~reatly enhanced the importance of text retrieval systems and made them vital components
m modern information systems. A wide variety of operational text retrieval systems already
exit, however, their performance vary significantly with respect to retrieval effectiveness and
retrieval speed.

Most commercial text retrieval systems are based on the inverted index & Boolean query
text retrieval algorithm [l]. The inverted file consists of a list of keywords and pointers to the
documents in which they occur, and the Boolean query si_1pplied by the user consists of search
words interrelated by the Boolean operators (and, oT, not). The retrieval operation returns to
the user pointers to the documents which have matched the query. As far as performance is
concerned, Boolean systems are ineffective as they exhibit poor retrieval quality, and inefficient
with respect to retrieval speed as they are usually implemented using sequential computers.

With the advances in computer technology and text retrieval algorithms, document-ranking
retrieval systems are emerging as alternatives to the conventional Boolean systems. These sys-
tems are based on the vector processing retrieval algorithm in which documents and user queries
are modeled as weighted vectors. The retrieval operation consists of scoring documents vectors
as to how well they match the query vector, and then returning the top ranked documents to
the user. The retrieval effectiveness of these systems is usually high by virtue of using weighted
vectors and ranking. Furthermore, these systems can be implemented to yield fast retrieval
speed as they are amenable to parallel implementations usin~large-scale computers, where a
large number of vectors can be accommodated and processed m parallel.

A parallel implementation of the vector processing text retrieval algorithm has been car-
ried out on the Connection Machine [2]. The implementation was based on a bit-string
representation of the documents, where a binary data structure, called signature, was pre-
pared for each document by superimposing the hashed bit representation of all its words.
Obviously, this implementation avoided the weighted word vector representation of the docu-
ments since the memory units attached to the Connection Machine's small processing units are
too small to accommodate word weights. Although retrieval speed gains have been obtained[3],
the level of retrieval effectiveness was not satisfactory due to the fact that the binary vector
representation did not support document word weighting [4].

In this paper, we describe a parallel vector processing text retrieval system. Unlike the SIMD
type Connection Machine system, however, this system is implemented on the KSR parallel
computer; a MIMD multiprocessor machine which has large memory units capable of accom-
modating sophisticated document and query word weights. An overview of the system is given
in section 2, and a detailed description of its implementation is given in sections 3 and 4. Per-

ー

formance of the system with respect to retrieval effectiveness and retrieval speed is evaluated
in section 5, and concluding remarks and future work direction are given in section 6. Finally,
a brief description of future research projects is given in section 7.

2 System Overview

An overview of the system is shown in the block diagram of Figure 1. It consists of four compo-
nents; text database, weighted vectors generator, weighted vectors database, and parallel query
processor. The vectors generator and the text database are implemented on the system's host
(a SUN Sparc workstation), and the weighted vectors database and the parallel query processor
are implemented on the KSR parallel machine.

Ì
ー

,.¥:/:/:¥:¥:/忍：/:/:/忘：：：翌翌：：
, ・::::::::::.:::::::::::::::::::::::::::. 13¢.~t
: :r>.:i.f t.itba.:s.:e. , ,,.,,,,,,. ., , .. , ,,,., , ., , ... , , .. , ...
... ● ● ● ● ,

・::::::::::::::::::::::::::::::、・::::::::

Weighted

Vectors Generator

"''"''"''"''"''''"''"'
'""'"""'ヽ "'""""""''"'"'"'"""'"""、，"、,'''''''""''"'''''"''''''
"''"''''''"''"''''"'''''

:：)¥¢.~gljt叫
'''"''''"'''''''''"''''、,
"'""""、"'""""'

1: 忍：:¥:¢¢t9.f.:$忍：：：，’
'""'"'"''''""''"'"" '''"''""''"'''''"''''''
"''"''""""''"''"'""

／
ー
＼

Parallel

Query Processor

Figure 1: Block diagram of the system.

The database contains the texts of the documents or articles to be searched. It also contains
a set of example queries and a file contationg their corresponding relevant documents which
are needed for the operation of the relevance feedback method. The generator operates directly
on the text database to produce a much smaller weighted vectors database. The parallel query
processor operates directly on the weighted vectors database by performing a parallel match
operation between a given query vector and all document vectors. It also runs the relevance
feedback operation by formulating a new relevance feedback query depending on the query's
relevance information.

（＇

The KSR parallel machine is an MIMD highly scalable parallel computing system [5]. It com-
bines the shared-memory architecture of traditional supercomputers and mainframe systems
with the scalability of highly parallel systems. Unlike the typical shared-memory architecture
which has large pools of main memory and small caches, all KSR main memory consists of
large, communicating local caches each of which physically adjacent to a processor. Communi-
cation between the caches is implemented using a slotted, pipelined, rotating ring. A parallel
叩plicationcan be easily implemented on the KSR computer by breaking it down into several
pieces of work, and assigning each one to a pthreacl. A pthread is a sequential flow of control
within a process that cooperates with other pthreads to solve the application problem. Pthread
parallel programming is clone using an extended version of the standard C language. Figure
2 shows the・architecture of a KSR model (KSR-2) which consists of 2.5 processing elements
connected to a distributed shared memory of 800 MB (0.8 GB).

n'

・ ＼

2

Distributed Shared Memory
-------ー…----⇔ ---一-------一．．

Allcache Engine

• • • • •

Processor
(1)

• • • • •
Processor
(25)

Figure 2: Architecture of the KSR Computer.

3 Weighted Vectors Generator

The weighted vectors generator consists of three main components; stop list words filter, suffix
stripping stemmer, and word weights assignment function [6]. A block diagram of the generator
is shown in Figure 3, and a brief description of each of its components is given below:

Text
Database
(D, Q)

,.，

Filter Stemmer Weighter

Figure 3: Components of the Weighted Vectors Generator.

• The stop list filter removes from the text of each document or query the most frequently
occuring words in English such as (and, of, or, but, the, etc, …） • These words are poor dis-
criminatories, and their removal would have no effect on the retrieval effectiveness. More-
over, the filtering process reduces storage requirements and increases query processing
speed. The filter was applied using a stop list consisting of 425 words derived from the
Brown Corpus [7].

• The suffix stripping stemmer replaces the words preserved by the stop list filter to their
stem forms. For example, the stemmer replaces a variety of different forms such as
analysis} analyz切g}analyzes} and analyzed by a common word stem analy. The stem-
ming operation reduces storage requirements since many words are replaced by a single

3

stem word. Furthermore, it might increase the retrieval effectiveness since the stem word
has a higher frequency of occurrence than that of the words replaced. In this system we
used the well-known Porter stemming algorithm [8].

• The weight assignment function assigns a real-number weight to each word stem produced
by the stemmer. The weight distinguishes the degree of importance of the word in the
document (query), and thus leads to improved retrieval effectiveness. Moreover, it adds
user-friendliness to the system as it facilitates ranking of the retrieved documents. In this
system, we used the following weight assignment function for both the documents and the

queries [9].

'I.Vi=
(0.,5 + 0.5土）.log息
E冒 ((0.5+ 0.5~)2.(log忍）り

(
¥

where,
叫： weight of word i in the document (query).
Ji: frequency of occurrence of word i in the document (query).
ni: number of documents(queries) to which word i is attached.
N: number of documents (queries) in the database.
vV: total number of words in the document (query).

The denominator of the function above is a weight normalization component which en-
sures that the lengths of document (query) vectors are equal. The function assigns weights
varying between O and 1, where O represents a word that is absent from the vector, and 1
represents a fully weighted word.

Given below is an example of the weighted vector generation process. The weighted
vector of the short document" Photographic and Computer Systems in Biomedical Infor-
mation.1s generated as shown in Tabel 1. The weights are assigned arbitrary since only
one document has been considered.

／
ー
＼

l_Q~ 叫 nent'sWords I Filter
Photographic Photographic Photograph .365
and
Computer Computer Comput .126
Systems systems System .100
111

Biomedical Biomedical Biomecl .409
Information Information Inform .051

I stemmer _ I Weighter I

.,,
,'

Table 1: weighted Vector Generation Example.
川
着

4

4 Parallel Query Processor

The parallel query processor scores documents vectors as to how well they match a given query

vector, and then returns a ranked list of pointers to the top scored documents. It also executes
the computation-intensive relevance feedback method which is applied to improve retrieval

effectiveness. The operation of the query processor is shown in Figure 4, and is described

below:

Formulate Relevance
Feedback Query

Weighted Vectors

↓ Read weighted vectors into
mammemory

Distribute processing of the
Query vector match
operation on all processors

Perform the query vector
match operation
in parallel

Rank Documnets scores.
Make relevanc jugement
on the top (n) documents

Yes

三Figure 4: Parallel Query Processing Algorithm.

i. Read into the main memory of KSR the weighted vectors of all documents and the weighted

vector of one example query. Each weighted vector is read and stored as a three-member

structure; a variable of type integer to hold the size of the vector, an array of character

strings to hold the words of the vector, and a corresponding array of type float to hold the

weights of the words.

ii. Distribute the processing of the query vector matching operation on all KSR processing

elements by assigning different document vectors to different processing elements. The

document vectors assignment is made in such a way that each processing element Px is
assigned to process the query vector with Dの documentvectors, where Dx is determined

according to the following assignment function:

Dぉ={ floor(D/X) if x > D mod X
ceil(D / X) otherwise

5

D corresponds to the total number of document vectors and X to the total number of pro-
cessing elements in KSR. This assignment attempts to achieve evenly-balanced processing
so as to assure high utilization of the parallel machine resources.

iii. Perform in parallel the query vector matching operation. This corresponds to having each
processing element Px execute an inner product operation between the query vector and
each document vector in Dx, Every inner product operation produces a real-number score
which corresponds to the similarity between the document vector and the query vector.

iv. Rank the documents in decreasing order of their similarity scores, and retrieve the top n
documents to judge for their relevance to the example query. This experimental system
runs in a batch mode operation, and thus the relevance judgment is made automatically
be referring to a relevance information file which contains names of the example query's
relevant documents. In an interactive mode of operation, however, the relevance judgment
is made by the user, see Figure 5. Upon making the judgment, if all (or sufficient) relevant
documents have been retrieved, exit the retrieval operation and refer to the relevant docu- (
men ts full text in the disk且leof the host machine. Otherwise, move on to the next step to
retrieve more (or the remaining) relevant documents by applying the relevance feedback
method.

processor P 1 processor Px

~ ·-~ Inner Prodcut

ED」 ． ． ． r, D」・a
（

similarity next similarity
scores D vector scores

•••
Rank

Similarity Scores

Make
Relevance Judgment

Figure 5: Parallel Similarity Computation and Ranking.

9

9

 ,‘̀

6

v. Reformulate the query vector by expanding and re-weighting its elements according to the

following Ide clec-hi relevance feedback method [10]:

Qi+1 = Qi +~All rel.docs Top nonrel.cloc

Qi+1 is the new query vector which is obtained by (1) adding to the previous query vector
Qi all words and corresponding weights of all relevant documents vectors, and (2) sub-
tracting from the new query vector all words and corresponding weights found in the top
ranked non-relevant document vector. Query reformulation using the Ide dec-hi method
has proved to be superior to many other relevance feedback methods [11]. The above
operation is illustrated in the following simple example:

• Q1 =〈 Text1.00, Retrieval 1.00〉

• Dl.rel =〈 Text0.81, Retrieval 0.65)

• D3.rel =〈 Text0.25, Processing 0.7〉

• D2.nonrel =〈 Parallel0.90, Processing 0.3)

• Q2〈Text2.06, Retrieval 1.65, Processing 0.4〉

vi. Repeat steps (iii -v) until all (or sufficient) relevant documents have been retrieved.

5 System Performance

We evaluated the performance of the system using six experimental document collections cover-
ing various subject areas [12]. Due to space limitation, however, the performance data reported
in this section are those obtained using two collections only; the LISA library science collection
which consists of 6004 documents and 35 example queries, and the ADI information science
collection, which consists of 82 documents and 35 example queries, see Table 2. We conducted
a series of retrieval experiments, in each of which the weighted vector generator produced the
documents weighted vectors and the weighted vector of the query which has the largest num-
ber of relevant documents. The weighted vectors were then read and processed in parallel
by the KSR computer. vVe evaluated performance of the system with respect to its retrieval

effectiveness and retrieval time.

Collection Subject Number of Number of
Name Area Documents Queries

ADI Information Science 82 35
MED Medicine 1033 30
CRAN Aeronautics 1400 225

CISI Library Science 1460 112

CACM Computer Science 3204 64
LISA Library Science 6004 35

Table 2: The Virginia Disc One Test Collections.

7

5.1 Retrieval Effectiveness

Retrieval effectiveness of text retrieval systems is normally evaluated using the recall and pre-
cision measures. Recall is defined as the proportion of relevant documents that are retrieved
from the document collection, and precision is defined as the proportion of retrieved docu-
ments that are relevant. vVe conducted several retrieval experiments as described above using
the LISA collection, and tabulated the recall and precision ratios ih Table 3. All ratios given
in the table were computed under the assumption that the top 20 documents retrieved in
each search iteration were judged for relevance, and the weighted words contained in all the rel-
evant documents and the top non-relevant document were used to reformulate the query vector.

Iteration
Number

Query
Words
Recall
Ratio
Precision
Ratio

0
1
2
3
4
5
6
7

18
477
609
823
969
1228
1268
1396

0.264
0.358
0.509
0.584
0.716
0.735
0.811
0.849

0.700
0.475
0.450
0.387
0.380
0.325
0.307
0.281

（

Table 3: Retrieval effectiveness performance of the System.

Referring to the figures in Table 3, the O iteration corresponds to the processing of the initial
query, and the successive iterations correspond to the processing of the queries formulated by
relevance feedback. Although the number of feedback iterations can be set before hand, in our
experiments it was determined clynan廿callyby allowing a new feedback iteration only when
the previous iteration produced at least one relevant document. That is, the relevance feed-
back operation was suspended automatically when the top retrieved documents were judged to
include no relevant documents. Naturally, increasing or decreasing the number of documents
retrieved in each search iteration would change the number of feedback iterations, i.e, more
retrieved documents leads to less feedback iterations.

（＼

The recall ratios in Table 3 show that the retrieval quality improved as more feedback it-
erations were executed. However, to evaluate the trne effectiveness of the relevance feedback
process, it was also necessary to compare the performance of the feedback iterations search with
the results of the initial search performed with the original query vector, i.e, iteration 0. To
perform such measurement, the frequently used residual collection method [11] was applied. In
this method all documents previously retrieved were simply removed from the collection, and
the subsequent searches were evaluated using the reduced collection only. The improvement
in the recall measure achieved by applying the relevance feedback method is demonstrated in
Figure 6.

r

ふ
’
~
L

'

8

250

$
6
)
1
U
臼
u
g
A
O
J
d
U
I
Inu~g'8:

200

150

100

50

゜゚
ー 2

3 4
Iteration Number

5

6

7

Figure 6: Improvement in the recall measure as a function of relevance feedback iterations.

5.2 Retrieval Time

We studied retrieval time performance of the system as a function of the number of words in
the queries formulated by the relevance feedback, and as a function of the number of documents
in the collection. In both cases, the measured retrieval time corresponded to the time spent by
KSR to match the query vector against all the document vectors plus the time spent to rank

the similarity scores in decreasing order.

It is clearly evident from the query words entry of Table 3 that the number of words in the
四ewlyformulated queries increased as more relevance feedback iterations were executed. This
mcrease in query size would naturally lead to a proportional increase in the retrieval time.
Based on our measurement, it took about 0.23 m-secs to process the initial query vector which
consisted of 18 words, and 13.93 m-secs to process the last query vector which consisted of 1396
words. vVe plotted the retrieval time as a function of the number of words in the query vector

in Figure 7 along with the retrieval times obtained when the same retrieval experiment was
conducted using a single processor. On the average, a speedup ratio (S) of 22 was achieved,
where (S) was computed as Time(lPE)/Time(25PE). Dividing (S) by the total number of
processors, we get an approximate system utilization ratio of 0.88.

To measure the retrieval time of the system as a function of the number of documents, we
compared the speedup performance of the LISA collection with the speedup performance of
the much smaller ADI collection. The average speedup and utilization ratios obtained for the
two collections are given in Table 4. As shown in the table, the LISA collection achieved a
better utilization of KSR resources, and thus a higher speedup ratio. This訊1ggeststhat the
performance of the system is particularly efficient when the size of text database is large. It
is therefore quite possible to assume that by virtue of the high scalability of the KSR system,
large and practical text databases can be efficiently searched using KSR by simply adding more
processing elements to the system.

，

350

300

＾ 包 250

.__, 虐
200

>
150

>塁 100

50

゜゚

"lPE" -— "25PE" -+----

―------―--+--------+-―-—い一------—+—+-------­------------------+-------

200 400 600 800 1000 1200 1400
Query Words

Figure 7: Relevance feedback query size vs. parallel and sequential retrieval times.

Collection

Name

ADI

LISA

Documents

Number

82

6004

Maximum

Query Size

860

1396

Speedup

Ratio

14.03

22.68

Utilization

Ratio

0.60

0.88

Table 4: Performance comparison between the LISA and ADI documents collections.

6 Conclusions

-（

(
＼

Efficient implementations of the vector processing text retrieval algorithm could produce effec-
tive and efficient text retrieval systems. In this paper, we described an efficient implementation

of a parallel vector processing text retrieval system, and confirmed its effectiveness and effi-
ciency in the context of the computational demands of the relevance feedback method and the

size of the text database.

7 Future Work

Future work consists of investigating the performance of parallel implementations of several

text retrieval systems. These systems include:

• A Parallel Interactive Text Retrieval System,

• An SIMD Parallel Text Retrieval System.

• A Parallel Boolean Text Retrieval System.
1t1

10

7.1 A Parallel Interactive Text Retrieval System

The system which has been described in this report is a parallel batch text retrieval system.
An interactive system can based on this system provided that interesting document collections

are selected and a friendly interactive environment is developed. Pre-processing and query pro-

cessing are basically the same as the already developed for the batch system. Implementation

:flowchart of a KSR-based parallel interactive system is shown and described below.

User

User

User's
Query

Read to KSR main memory

Parallel Inner Product

Parallel Ranking

Show Top 20 Documents
(Exclude Previously Shown Docs)

YES

Make
New Query

Specify Relevant and
Non-relevant documents User

Figure 8: Implementation flowchart of a parallel interactive text retrieval system.

11

7 .1.1 Documents Pre-Processing

The documents can be selected from the collections described below, and then filtered, stemmed
and weighted as described in section 3.

• Virginia Disc One: These collections can be selected as a starting point. However, the
relevance feedback should be implemented by applying the relevance information from the
command line and not from the relevance information file as was done in the batch system.

• Clarinet News: Several interesting groups can be selected as. documents collections.

• The TIPSTER documents collections: these collections contain news form different sources
and are found under the following directories.

7.1.2 Real-Time Query Pre-Processing

Each query supplied by the system user is filtered and stemmed, and weight of LOO is given to
each term. If there is a set of queries prepared in advance by analyzing the documents collection
or gathered from previous users, then the user-supplied query is filtered and stemmed by itself,
and the its weights are determined using the documents weighting function the weights of all
queries in the queries set.

（

7.1.3 Parallel Query Processing

• Read into the main memory of KSR the weighted vectors of all documents and the weighted
vector of the user's query. Each weighted vector is read and stored as a three-member
structure; a variable of type integer to hold the size of the vector, an array of character
strings to hold the words of the vector, and a corresponding array of type float to hold the
weights of the words.

• Distribute the processing of the query vector matching operation on all KSR processing
elements by assigning different document vectors to different processing elements. The ¥
document vectors assignment is determined according to the assignment function described
in section 4.

• Perform in parallel the query vector matching operation. This corresponds to having each
processing element Px execute an inner product operation between the query vector and
each document vector in Dの.Every inner product operation produces a real-number score
which corresponds to the similarity between the document vector and the query vector.

• The resultant scores are returned ranked with their corresponding documents numbers(names).

• The user is asked to see if the top (10-20) retrieved documents satisfies his needs or not. If
he is satisfied, then the operation is stopped, otherwise he is asked to check the documents
and mark those relevant and non-relevant to his query.

• The relevance feedback is activated to add all terms from the user-marked relevant clocu-
ments to the original query, and subtract the top non-relevant document in order to make
a new query. The score and rank process is repeated until the user is satisfied. ーIIi

12

7.2 An SIMD Parallel Text Retrieval System

A MasPar-based parallel text retrieval system does not have to be designed from scratch. Pre-
processing and relevance feedback query formulation are the same as described in sections 3,

and 4. Implementation flowchart of a MasPar-based parallel text retrieval system is shown and

described below.

Documents and Queries Pre-processing
, ・・

Parallel Inner Product

Parallel Ranking

Decide the Top 20 Documents
(Exclude Previously Shown Docs)

YES

Make
New Query ←置

・・・-'

Figure 9: Implementation flowchart of an SIMD parallel text retrieval system.

13

7.2.1 Pre-Processing

• Same as with the KSR system implementation described in section 3. The weighted vec-
tors for both the documents and queries can be used as they are with no modification if
they do not require a storage capacity larger than the maximum storage capacity of the
processing elements.

9
'
9

...

• There are cases when the weighted vectors are too large to be stored in the local memories
of the processing elements. In such cases some sort of coding must be employed.

7.2.2 Query Processing Algorithm

• All documents vectors are loaded into the Parallel Array. Each PE stores the weighted
vector of one document weighted vector. However, if the number of documents is 1りrger
than the number of processing elements, then some sort of virtual mapping is reqmred.
In such a case, each processing element would be assigned more than one document. The (
partitioning scheme described in section 4 can be applied, however, a more efficient scheme
might be necessary.

• After deciding on how many documents a processor element can store, the documents vec-
tors are loaded sequentially from the SUN file system into the processors; one processor at
a time. However there is a possibility to load the documents vectors into maspar parallel
disc and keep them there. Later when the program is executed, all vectors can be read
into the processing elements in parallel. All is required by the program is the name of the
collection to be loaded from the parallel disc,

• The initial query weighted vector is read form the SUN file system into the main memory
of the front encl machine. It is then broaclcastecl to all processing elements simultaneously.

• An inner product operation is performed in each processor using query and documents
vectors stored in its local memory. Every inner product operation produces a real-number
score which corresponds to the similarity between the document vector and the query
vector.

• A parallel rank operation is performed on all scores computed in the previous step.

• The scores and their corresponding ranks are returned to the front encl machine in order
to evaluate the performance.

• At the front end machine, generate the new relevance feedback query and repeat the above
steps. The new query generation and quality computation performed by the front machine
are exactly the same as used in the KSR system implementation.

(‘

ー

↓

14

7.3 A Parallel Boolean Text Retrieval System

The implementation process of the system consists of preprocessing the documents collection
to generate the the inverted index, and Parallel search and Boolean manipulation of the doc-

uments. Implementation flowchart of a parallel Boolean text retrieval system is shown and

described below.

Documents and Queries Pre-processing

璽言

Parallel Index Search

Parallel Boolean Operation

Parallel Ranking

Decide the Top 20 Documents
(Exclude Previously Shown Docs)

Find Relevant and
Non-relevant Documents

YES

Make
New Query

'・・・

Figure 10: Implementation flowchart of a parallel boolean text retrieval system.

15

7.3.1 Pre-Processing and Inverted Index construction

• pre-process all documents in the collection by applying the operations; filtering, stemming
and weighting. All Virginia Disc document collections have been pre-processed already,
and thus they can be readily used as they are.

• Construct a weighted inverted index from all the weighted words of all documents. A
simple example of a weighted inverted index is shown below, where w associated with each
document is the weight of the index entry in the that particular document.

・
ー
＼
i

ー

3

~
Text
Retrieval

Parallel
Computer

I Documents(weights) I
Dl(w): D2(w), D3(w)

Dl(w): D3(w), D9(w)
Dtl(w): D7(w), DS(w)

Dl(w): D4(w), D5(w)

Table 5: weighted Inverted Index Example. （
＼

7.3.2 Boolean Query processing

• Processing a boolean query usua.lly takes two steps:

-find from the index the documents and corresponding weights for each term in the
example boolean query.(a set of boolean queries is provided with each collection in
the Virginia disc)

-Perform Boolean operations (and, or , not) on the results. As an example, if the
above inverted index is to given the boolean query: Text n Retrieval, then the
corresponding processing is as follows:
(Dl, D2, D3) n (Dl, D3, D9) = Dl, D:3.

• The above query processing should be implemented sequentially on the SUN machine as
a starting point, and on later on the KSR machine. The parallel implementation should
consider two things:

-developing a parallel search algorithm which can distributes the inverted index entries
equally on all processing elements so that the search for a given query terms can be
done in parallel.

-developing a parallel algorithm to execute the boolean operations (and, or, not).

• Applying the Relevance Feedback: The relevance feedback is usually used with the vector
processing text retrieval algorithm. Some literature is available on using the relevance
feedback method with the Boolean text retrieval algorithm[ll].

/
’
,
¥

.I~IL 9‘

16

Acknowledgment

The authors would like to express their gratitude and appreciation to Mr. Hitoshi Nishimura
and Mr. Masayoshi Sato for the their continuous technical support.

,
.
J

i

!

口

し~，

References

[1] Salton, G. and McGill, M., Introduction to !vlodern Information Retrieval, McGraw Hill,
New York, 1983.

［ ｀
2] Stanfill, C. and Kahle, B., "Parallel Free-Text Search on the Connection Machine," in
Communications of the AC!vl, 29(12), pp. 1229-1239, December 1988.

[3] Waltz, D., "Applications of the Connection Machine," in Computer1 20(1), pp. 58-79,
January 1988.

[4] Salton, G. and Buckley, C., "Parallel Text Search Methods," in Communications of the
AC!vl1 31(2), pp. 202-215, February 1988.

[5] Kendall Square Research Corporation., Technical Manuals, MA, USA, 1994.

[6] Frakes, vV. and Baeza-Yates, R., Information Retrieval Data Structures秒Algoirthms,
Prentice Hall, New Jersey, 1992.

[7] Fracis, W. and Kucera, H., Frequency Analysis of English Usage1 Houghton Mifflin, New
York, 1982.

[8] Porter, C., "An Algorithm for Suffix Stripping," in Program, 24(3), pp. 56-61, 1980.

[9] Salton, G. and Buckley, C.,-''Term weighting approaches in automatic text retrieval," in
Information Processing and Managemenも24,pp. 513-523, 1988.

[10] Ide, E., "New Experiments in Relevance Feedback," in The SMART Retrieval System1
ed. Salton, G., pp. 337-354, Prentice Hall, New Jersey, 1971.

[11] Salton, G. and Buckley, C., "Improving Retrieval performance by Relevance Feedback,"
in Journal of the American Society for Information Science, 24, pp. 288-297, 1990.

[12] Fox, E., ed., Virginia Disk One, Virginia Polytechnic and State University, Blacksburg,
1990.

[13] Oi, K., Sumita, E., Furuse, 0., Iida, H., and Kitano, H., "Toward Massively Parallel
Spoken Language Translation," in Proc. of the 2nd Workshop on Parallel Processing for
Artificial Intelligence, IJICAI-93, pp. 36-39, France, August 1993.

17

	001
	002
	003

