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A novel acoustic modeling algorithm that generates non-uniform unit HMMs to
effectively cope with spectral variations in fluent speech is proposed. The algorithm
is devised for the automatic iterative generation of long-span units for non-uniform
modeling. This generation algorithm is based on an entropy reduction criterion
using text data and a maximum likelihood criterion using speech data. The effec-
tiveness of the non-uniform unit models is confirmed by comparing likelihood values
between long-span unit HMMs and conventional phoneme-unit HMMs. Results of
classification tests showed that the non-uniform unit HMMs provide more precise
representation than do conventional phoneme-unit HMMs, and preliminary phrase
recognition tests suggest that non-uniform unit HMMs achieve higher performance
than phoneme-unit HMMs.
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2 NON-UNIFORM UNIT MODELING 3

get speech. Aiming toward a target-speech-
dependent model, these characteristics are

1 INTRODUCTION

Our objective is to recognize continuous speech  incorporated in the acoustic model when
for speech translation, in which there is a the unit-sized free model is to be generated.
high degree of co-articulation and many speech To realize these solutions, we propose an
variations such as similation, elision and filled  acoustic modeling algorithm which gener-
pauses. ates non-uniform unit (unit-sized free) HMMs.

We believe that there are two funda-
mental problems in continuous speech recog-

nition. The first is the limitations of phoneme-

sized models. An important technique for
achieving higher recognition is to generate a

precise acoustic model. The context-dependent

phoneme hidden Markov model (HMM) is
widely used as an acoustic model because
phoneme variations are highly dependent
on the phonetic context (Schwartz, 1985;
Moor, 1993; Takami and Sagayama, 1992).
However, if the model’s length is fixed as a
phoneme, the context-dependent phoneme

HMM cannot sufficiently represent long-distance
contextual influences. Accordingly, it is more

appropriate to model these typical varia-
tions as long-span units than to represent
them as a concatenation of uniform context-
dependent phoneme models, as done in the
conventional approach.

The other problem is the difficulty of

target-set-independent modeling for high recog-

nition performance; for example, a task in-

dependent model, a speaking style indepen-

dent model, and so on. It is important to

cover the major allophonic variations ex-

pected to be contained in the target speech

by using a small quantity of training or adap-
tation speech data.

This work mainly concerns the first prob-
lem, but a solution is proposed for each
problem. The first solution involves using a
unit-sized free model, which is longer than
a phoneme-sized model, to represent highly
co-articulated speech. The model’s unit size
depends on the context. That is, if the
acoustic co-articulation of a context is high,
the context is modeled as a long-unit-sized
model to represent the co-articulation.

The other proposed solution is a mod-
eling that takes into account the linguis-
tic and acoustic characteristics of the tar-

The non-uniform unit HMMs include long-
span units and phoneme units to cope with

spectral variations having longer periods than

the phonemes.

2 NON-UNIFORM UNIT

MODELING

The algorithm is based on an entropy re-
duction criterion using text data to select a
long-unit as a candidate for the non-uniform
unit HMM and a maximum likelihood cri-
terion using retraining speech data to train
each long-unit HMM and check whether the
HMM is appropriate as a non-uniform unit
HMM.

Both text and speech data are target
data of the same type, from the viewpoint
of task and speaking style. Accordingly,
models generated by this algorithm with
these data can represent the characteristics
of the target data.

In automatic generation, the long-units
must be properly chosen because it 1s fu-
tile to generate long-units not entirely con-
tained in the target speech. Furthermore,

since the amount of training data is restricted,

the longer a unit is, the less training data
there is. This sometimes reduces recogni-
tion performance. Therefore, the long-unit
model must be trained robustly; the follow-
ing strategy can be used to generate the
non-uniform unit IMMs.

If there is sufficient data to train the

long-unit HMM and as well as the neces-
sary contextual variations to recognize the
target speech, the long-unit HMM is gen-
erated as a non-uniform unit HMM. Other-
wise, then the long-unit HMM need not be
a non-uniform unit HMM. A block diagram
of the algorithm is shown in Figure 1.
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- Figure 1: Block diagram of non-uniform
unit generation

The non-uniform unit generation algo-
rithm uses text data expressed in phoneme
symbols to choose long-unit HMM candi-
dates and three kinds of speech data: train-
ing speech data for initial phoneme mod-
eling, retraining speech data for long-unit
models and phoneme models and develop-
ment speech data for selecting the long-unit
HMM as a non-uniform unit HMM. Text
data, training data, retraining data and de-
velopment data all differ but concern the
same task, that is, conference registration.

2.1 Long-unit Candidate Se-
lection

A statistical approach to selecting the long-
unit candidates is to choose the phoneme
sequence that minimizes the entropy of the
training text data (Tamoto, 1992). A heuris-
tic approach is to choose the phoneme se-
quence that most frequently appears in the
text data, thus reducing the entropy. In
this research, we adopt the latter approach
because it requires less computation.

Long-unit candidate selection pro-
cedure

The candidates for the long-unit HMM
using text data were selected as follows ((A)

in [Figure 1). First, the frequency of all
combinations of two neighboring phonemes
n the text data were calculated. The ph-
oneme (sequence) pair that had the high-
est frequency was selected as a long-unit
candidate. If the candidate satisfied the
acoustical conditions described in Section
2.2, this procedure was re-executed to get
a new candidate on the condition that this
newly selected phoneme sequence had to be
regarded as a newly defined phoneme unit.
If the conditions were not satisfied, the pho-
neme sequence was not selected as a candi-
date, and the phoneme (sequence) pair with
the second highest frequency was selected
instead.

2.2 Selection of Non-uniform
Unit HMMs

Each long-unit HMM chosen from the text
data was retrained and checked by using the
following procedures to determine whether
or not it was acceptable as a non-uniform
unit IMM.

Retraining procedure

The initial long-unit model was obtained
by concatenating the phoneme HMMs al-
ready given. The long-unit HMMs were re-
trained by using the Baum-Welch algorithm
with retraining speech data appearing to
have the same phonetic characteristics as
the target speech data ((B) in Figure 1).
The original phoneme HMMs were also re-
trained by using the same retraining speech
((C) in Figure 1).

Next, the long-unit HMM was checked
by using the development speech data to
verify whether it could be used as a non-
uniform unit HMM as follows.

Verification procedure

First, the likelihood using the long-unit
HMM was calculated for the development
data. Another likelihood was then calcu-
lated using the concatenated phoneme HMMs.

These two likelihood values were then
compared, and if the likelihood for the long-
unit HMM was higher, the long-unit HMM
was used as the non-uniform unit HMM. If
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not, the long-unit HMM was rejected, and
the phoneme models were used for recogni-
~tion ((D) in Figure 1).

These three procedures were iteratively
executed to get all of the non-uniform mod-
els.

3 Database

As mentioned before, we used one text
data and three acoustic data to generate
the non-uniform unit HMM. The text data
consisted of 93,136 Japanese phrases rep-
resented in phoneme symbols. As for the
acoustic data, the training data used to train
the initial phoneme HMMs consisted of a la-
beled Japanese database of 2,620 common
words. Second, labeled Japanese continu-
ous speech database for a conference regis-
tration task was divided into independent
sets: adaptation data, development data,
and test data; these data sets consisted of
749, 354 and 276 phrases, respectively. We
used two speakers’ utterances (MHT and
MAU).

4 Context-independent Non-

uniform Unit HMM

To confirm the capacity of the long-unit
generated by using the proposed algorithm,

classification tests and tests using non-uniform

unit HMMs were carried out.

In the retraining procedure, the training
section was restricted to getting a higher
performance with manually given phoneme
boundaries (Ariki, 1994).

A context-independent phoneme HMM,
constructed by three states and 3 diagonally
Gaussian mixtures, was used as the initial
HMM. The feature was a 34-dimensional
vector consisting of 16 cepstral coefficients,
16 Acepstral coefhicients, logarithmic power
and Alogarithmic power. The analysis con-
ditions are listed in Table 1.

Table 1: Analysis conditions

pre-emphasis 1-0.9827}
sampling frequency 12kHz
window length 20.0ms (Hamming window)
window shift S5ms
LPC analysis order 16
LPR cepstral order 16

Forty-eight (MHT) and 61 (MAU) long
units were generated by repeating the algo-
rithm 100 times. The averaged unit lengths
of the long-unit AMMs were 3.0 (MHT) and
2.8 (MAU) phonemes.

The average sample numbers of retrained
long-unit HMMs for the long-unit retrain-
ing procedure are listed in Table 2.

Table 2: Average retraining sample num-
bers (context-independent non-uniform

unit HMMs)

speaker | accept | reject
MHT b5.4 | 20.8
MAU 74.5 20.3

“Accept” means the average retraining
I

sample number of accepted long-unit HMMs,

or in other words the likelihood of the long-
unit HMM is higher than the concatenated
phoneme HMMs’; “reject” means the av-
erage retraining sample number of rejected
long-unit HMMs, or in other words the like-
lihood of the long-unit HMM is lower than
the concatenated phoneme HMMs’. Table
2 shows that the long-unit correlates closely
with the number of retraining samples.

Next, the long-unit classification test was
carried out on the test data sections where
long-units were applicable. The error rates
are listed in Table 3.

by
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Table 3:  Error rates of classification
test (context-independent non-uniform unit

HIMMs)

speaker | concatenate | non-uniform | multi
MHT 5.63% 6.54% 5.17%
MAU 5.51% 4.26% 3.38%

“Concatenate” means a concatenated ph-
oneme model retrained using the same data
that was used in retraining long-units; “non-
uniform” means the non-uniform unit HMM.
“Multi” means a multi-model containing both
non-uniform unit HMMs and concatenated
phoneme HMMs.

In classification the likelihood of each
HMM is calculated. For example, the likeli-
hood of all non-uniform unit HMMs “masu,
de, kai, ...” and that of all concatenated ph-
oneme HMMs “m-a-s-u, d-e, k-a-i, ...” were
both calculated at the “masu” section of the
test data. The HMM (either “masu” or “m-
a-s-u”) achieving the higher likelihood was
recognized as correctly classified.

Table 3 shows that the error rate of “multi”
was lower than those of “concatenate” and
“non-uniform?”.

To evaluate the performance of the long-
unit models, we checked the ratio of the
number of correctly classified sections where
the long-units achieved their highest likeli-
hood to the number of correctly classified
section where the phoneme HMMs did. The
results in Table 4 show that the long-unit
HMMSs accounted for about 80% of all sec-

tions recognized correctly.

Table 4: Ratio of correctly classified
sections (context-independent non-uniform

unit HMMs)

sp caker accept | reject
MHT | 774% | 22.6%
MAU | 79.5% | 20.5%

This shows that long-unit HMMs ex-

pected to represent the long-span spectral
characteristics can be generated by this al-
gorithm.

Next, preliminary phrase recognition tests
using HMM-LR (Singer, Takami and Mat-
sunaga, 1994) were carried out. In this test
we used long-unit HMMs that were applied
to intra-word phoneme sequences. Accord-
ingly, 24 (MHT) and 27 (MAU) long-unit
HMMs were used as non-uniform unit HMMs.

The number of model parameters of the
phoneme HMMs and the non-uniform unit
HMMs (long-unit HMMs + phoneme HMMs)
are listed in Table 5.

Table 5: The number of model parame-
ters (context-independent non-uniform unit

HMM:s)

speaker | phoneme | non-uniform unit
MHT 390 1170
MAU 390 1260

The error rates are listed in Table 6.

Table 6: Error rates of phrase recognition
test (context-independent non-uniform unit

FIMMs)

speaker | concatenate | non-uniform |
MHT 8.7% 6.2%
MAU 8.7% 7.2%

average 8.7% 6.7%

Table 6 shows that the error rate of the
non-uniform unit HMMs was lower than that
of the concatenated phoneme HMMs. It .
also shows that the non-uniform umt HMMs
achieved a 23% error reduction over the ph-

oneme HNMMs.

5 Context-dependent Non-
uniform Unit HMM

We generated context dependent non-uniform

unit HMMs. A 600-state 1-mixture HMunet




5 Context-dependent Non-uniform Unit HMM 7

was used as the initial HMM. This HMnet is
a context-dependent phoneme HMM gener-
ated by the Successive State Split algorithm
(Takami and Sagayama, 1992). HMnet is a
highly generalized form of the HMM and in-
corporates context-dependent variations of
phones and state sharing among different
allophones.

In the long-unit candidate selection pro-
cedure, the candidate phoneme sequence in-
cluded the preceding/succeeding context sets
having the same expressions as those in the
HMnet.

In the retraining procedure, the initial
long-unit model was obtained by concate-
nating the state sequences of the HMnet so

as to take account of the preceding/succeeding

phoneme contexts. For retraining, the Baum-
Welch algorithm was applied. Because the
amount of retraining data is known to be
sparse in generating context-dependent non-

uniform unit HMMs, the Vector Field Smooth-

ing (VFS) algorithm (Ohkura, Sugiyama and
Sagayama, 1992) was also used.

The VEFS algorithm is a speaker adap-.
tation algorithm for handling sparse adap-
tation data, and the algorithm estimates
the vector field, by considering the corre-
spondence between feature parameters be-
fore and after adaptation, with both inter-
polation and smoothing processes.

The number of generated long-unit HMMs

15 listed in Table 7.

Table 7: The number of generated context-

dependent non-uniform unit HMMs

speaker | Baum-Welch | VIS
MHT. 46 47
MAU 62 71

Figure 2 shows the average retraining
sample data of the accepted or rejected long-
unit HMMs under each condition.
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Figure 2: The average number of re-
training samples (context-dependent non-

uniform unit HMMs)

MHT and MAU denote the speaker in-
dices. “-B” means the Baum-Welch algo-
rithm and “V” means VFS algorithm in
the retraining procedure. In Figure 2 the
accepted long-unit HMM has more retrain-
ing sample data than the rejected HMM.

Next, long-unit classification tests were
carried out in the same way as in Section
4. Ifigure 3 shows the error rate for each
condition.

concatenate

non -uniom

mu]ii

12

enormate &% )

MHTB MHTV MAUB MAUWV

Figure 3: FError rates of classification
tests (context-dependent non-uniform unit

HMDMs)
Except for MHT-V, the error rate in us-
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6 Conclusion S

ing a non-uniform unit IMM is lower than
the case of using concatenated phoneme HMMs.
We can see that the error rate using Baum-
Welch is lower than that using VI'S.

FFigure 4 illustrates the ratio of the num-
ber of correctly classified sections where the
long-units achieved a highest likelihood to
the number of the correctly classified sec-
tion where the phoneme HMMs did.

B nonnibm

phonen e

=t & )

MHTB MHT-v MAUB MAU-V

Tigure 4: Ratio of correctly classified sec-
tions (context-dependent non-uniform unit

TIVIMs)

As the figure shows, more non-uniform
unit HMMs than concatenated phoneme HMMs
were used in the correctly classified sections.
This shows that non-uniform unit HMMs
provide more precise modeling than phon-
eme HMMs.

Next, preliminary phrase recognition tests
using HMM-LR were carried out with context-
dependent non-uniform unit HMMs and an
HMnet retrained by the VIS algorithm. Long-
unit HMMs applied to intra-word phoneme
sequences were used in the same way as in
Section 4. Accordingly, 49 (MHT) and 96
(MAU) long-unit HMMs were used as non-
unit HMMs.

The number of model parameters of the
HMnet and non-uniform unit HMMs are
listed in Table 8.

Table 8: The number of model parame-
ters (context-dependent non-uniform unit

HMDMs)

speaker | phoneme | non-uniform unit
MHT 600 1112
MAU 600 1588

The error rate results are listed in Table

Table 9: Error rates of phrase recognition
test (context-dependent non-uniform unit

HMMs)

speaker | concatenate | non-uniform
MHT 8.7% 7.3%
MAU 9.4% 7.3%

average 9.1% 7.3%

Table 9 shows that the error rate of non-
uniform unit HMMs is lower than that of
HMnet. The non-uniform unit HMMs achieved
a 19.8% error reduction over the HMnet.

6 Conclusion

In this paper we proposed a non-uniform
unit MM that represents highly co-articulated
speech and linguistic/acoustic characteris-
tics of the target speech.

A non-uniform modeling algorithm that
automatically generates long-unit models us-
ing text and speech data was introduced
for model selection, taking into account the
robustness of the unit and the amount of
speech data.

In tests, long-unit models generated with
the proposed algorithm showed higher po-
tential than the conventional phoneme mod-
els. However, in preliminary phrase recog-
nition tests the number of model param-
eters of the non-uniform unit HMM was
larger than that of phoneme HMMs (Ta-
ble 5 and Table 8). Accordingly, an inves-
tigation is needed on an evaluation method
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able to cope with changes in the number of
model parameters.
After comparing results of phrase recog-

nition tests on context-independent and context-

dependent non-uniform HMMs, the former
was found to achieve higher recognition per-
formance than the latter. There are vari-
ous reasons for this. First in LR-parsing,
the search space of context-dependent non-
uniform unit HMMs grows larger than that
of context-independent non-uniform HMMs.
In these tests however, the same beam width
was used. Another reason is the use of a
different retraining algorithm in these tests.
The Baum-Welch algorithm and the restricted
training section method were used for context-
independent non-uniform unit HMMs. On
the other hand, the VI'S algorithm was used
to retrain the context-dependent non-uniform
HMMs.

In the future, investigates are necessary
on appropriate retraining algorithms for the
non-uniform unit HMMs generation.

Finally, in this recognition system (HIMM-
LR), it was found that if the model’s unit
size is changed, we must manually rewrite
grammars to adapt to the new unit size.
Therefore, we must also investigate an algo-
rithm for automatic grammar modification.
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