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In this report we argue that speech recognition is a two dimension pattern recog-

nition process and that a speech recognizer could possibly benefit from using a two 

dimensional stochastic process such as a Random Markov Field (MRF) instead of 

an HMM. We address the problem of training such fields and present an algorithm 

based on the EM-algorithm. This algorithm is experimentally evaluated for a un-

constrained and a constrained MRF. We find that while the algorithm works well 

in the unconstrained case there are some problems in the constrained version. 
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1 Introduction -the problem 

Stochastic models have become widely used in pattern recognition problems. In speech 

recognition for example, stochastic language models, such as n-gram or stochastic context-

free grammars (SCFGs), or Hidden Markov models (HMMs) as pattern matchers are widely 

used. 

We argued previously [5] that stochastic models cai1 often be represented in the form of a 

graph and that powerful numeric algorithms for decoding and model-parameter estimation 

exist if and only if the graph has a specific graph-theoretical property known as the chorclality. 

Many popular models, such as HMMs, n-grams, fall into this category. However, in more 

complicated models the chorclality condition may not be satisfied. Such cases arise for exam-

ple when one relaxes the Markov assumption in HMMs, considers stochastic dependencies 

among different vector components of the of the obsei'vation sequence, or considers a more 

complicated interaction of different knowledge sources. 

As we noted before [5], non-chordal stochastic models do not allow the efficient decoding 

and parameter estimation algorithms associated with HMMs. Such models are generally 

known as Markov Random Fields (NIRFs). 

Markov Random Fields arise most naturally in two dimensional pattern recognition prob-

lems such as computer vision. Here they have been hsecl by several authors for problems 

such as image restoration or boundary detection. In most such problems the MRF was pa-

rameterizecl with only a handful parameters and plausible values for these parameters were 

chosen by the experimenter. 

There is currently no coherent theory for the estimation of parameters of RMFs. This 

report will describe several possible methods for parameter estimation for special kinds of 

MRFs. 

Before discussing the mathematical details of MRFs we will describe an example in speech 

processing where the application of RMFs would be useful if a workable theory existed. 

1.1 RMFs as acoustic models 

vVe regard speech recognition as a two dimensional pattern recognition process. All com-

monly used low level representations of a speech signal (filter bank, FFT, LPC, autocorrela-

tion, cepstrum) are two dimensional; one dimension in the time the other in the'frequency' 

domain. (For simplic~ty we will refer to the non-temporal domain as the'frequency'domain, 
even though, depenclmg on the representation, it may not really be frequency. Similarly the 

components of one observation vector will be referred to as frequency bins even though they 

may act叫 lyhave arisen from some other transform such as cepstrum.) 

On the other hand I―Iidden Markov models, which are conunonly used as pattern recog-

nizers, are essentially one-dimensional models. Fig. 1(a) makes this clear. Here the nodes 

labeled Oi are observation vectors and the nodes labeled Qt are random variables that range 

over the set of all possible states. The horizontal and vertical lines express the statistical 

dependencies that are implied by the Markov assumption. This representation of a Markov 

model is to be clearly distinguished from the much more coIDil1on one shown in Fig. 1 (b) in 

which the states are thought of as sites to be visited by a stochastic finite state machine. 

We will not use Fig. l(b) and only included it here to avoid confusion. 
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Going back to Fig. l(a) we can therefore regard the HMM as a one dimensional sequence 

of random variables that is matched to a two dimensional array of pixels (frequency bins). 

To perform this matching, a 2D to lD mapping has to be performed at some level. In the 

early days this was achieved by vector quantization (VQ), nowadays this mapping is usually 

performed in a more subtle way using continuous HMMs. Nevertheless a number of modeling 

errors occur as a direct result of this dimensionality mis-match: 

Relationship of neighboring components in the frequency domain: A vector with 

high energy in bin i should be similar to a vector with high energy in bin i + 1, all other bins 
being equal. However the VQ or continuous HMM formulation does not take the ordering 

of frequency bins into account. Any similarity of neighboring components thus has_ to be 

learned from examples during training. This greatly increases the amount of training data 

required to obtain robust models. 

Relationship of neighboring components in the time domain: Even if the neigh-

borhood relationship in the frequency domain can be learned by presenting many examples, 

we loose modeling accuracy in the temporal domain. Suppose we have learned that for a 

given phoneme, say /a/, high energy occurs either in bin i or i + 1. Now, if we observe an 

/ a/ with high energy in bin i in frame t we ought to be able to predict that in frame t + 1 

the high energy also occurs in bin i rather than i + 1. However with current HMMs this 

is impossible, for at the state level of the HMM bins i and i + 1 are essentially'mapped 

together'so discrimination between the two is no longer possible. 

Clearly, a two-dimensional stochastic model that took the stochastic correlations between 

neighbouring bins in both the time and the frequency domain into account would form a 

better stochastic model of this process. 
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2 Random Markov Fields 

Let G be a graph with vertex set V and edge set E. Two vertices a, b are adjacent if 

(a, b) EE. Let兄={b¥(a, b) E E} be the neighbourhood set of a. 

A random field is a set of random variables { X』aE V} indexed by the vertex set of G. 

We say that the random field {Xa¥a EV} is a a Markov random field if 

P(ふ=iiふ；bヂa)=P(ふ=iiふ；b EN砂 (1) 

As was mentioned earlier, a general theory for RMFs is still missing. We will therefore 

narrow our attention to a certain type of graph such as the one shown in figure 2. Here we 
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図 2:

have two types of variables (indicated by x and y). The y's stand for an observed field of 

values (such as the observed time-frequency bins). 
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Parametrization of RMFs 

It follows from the Markov assumption (equation 1) that the probability clistribu tion of 

the stochastic process is a Gibb's distribution (e.g. [1]): 

where 

1 
P(ふ，...ぷ）＝一exp(-U(X)/T)

Zy 

U(X) = I: 叫 X)
C 

(2) 

(3) 

Here uc is a function for each clique C of the graph which is dependent only on the members 

of C. T is a real positive number known as the temperature from a physical analogy and 

幻 isa normalizing constant known as the partition function. 

In our case the cliques of the graph come in three different kinds: Horizontal connections 

between two unobserved nodes) vertical connections between two unobserved nodes and con-

nections between the observed and corresponding unobserved nodes. It follows that we have 

three types of clique functions. Since we assume translational invariance, the parametrization 

of the probability distribution is reduced to three clique functions: 

贔（ふふ）：
Uv(Xi,Xj): 

島 (Xi,°i'i) : 

fortwonoclesconnecteclhorizontally 

fort wonocles conn ectecl vertically 

foroapairofobservecl / uno bserveclnocles atasi te., 

For our case, eq叫 ion2 can therefore be written as: 

P(X1, ... ,Xn, 巧，．．．，乳）＝

三exp(予(L贔（ふぷ）+ L 
（切)ESH (らj)ESv

馴（ふぷ）+ 2t島 (X砂';)))

(4) 

(5) 

where SH (resp. Sv) is a set of pairs of indices that are horizontally (resp. vertically) 

adjacent. 



4 4 Decoding Algorithms 

4 Decoding Algorithms 

So far we have constructed an algebraic framework for a stochastic model that exhibits 

the kind of conditional independence assumptions that we are prepared to make. vVe are 

now faced with tvvo problems: 

1. Given the parameters and an input pattern, what is the most likely state allocation 

(instantiation of the unobserved nodes)? This is called the decoding problem. 

2. Given a set of training patterns, how can we恥 clthe best model parameters. This is 

called the tra.ining problem. 

In the theory of Hidden Markov Models, identical problems exist and the Baum-vVelch 

algorithm is capable of solving both in way which is optimal in a certain sense. Unfortunately 

the efficient Baum-vVelch algorithm cannot be applied to MRFs. Thus we have to look for 

alternative solutions. We will first discuss the decoding problem. 

4.1 Simulated annealing 

Geman and Geman [4] describe an iterative algorithm for this problem. It is based on 

simulated annealing and is guaranteed to converge to the global optimum (i.e. the maximum 

of P(ふ，．．．，ぷ謁...'乳） provided that the cooling schedule is chosen sufficiently slow. 

We will outline the method here. 

Initially a state (perhaps random) is assigned to each unobserved variable. Next a tern-

perature T is chosen and each unobserved varible Xi is visited. The order in which sites are 

visited is not important. For each variable visited the conditional probability distribution 

P(X叶ふ；;'-I-ち巧） = P(X叶ふ；JENゎ只） is calculated. This is easy~ecause only the 
neighbours of Xi need to be considered. Then a new value for Xi is chosen at random from 

this distribution. ふ isset to this value and the next site is visited. After all sites have been 

visited in this way, the temperature is slightly reduced according to a'cooling schedule'and 

all sites are visited again. This is repeated until the temperature falls below a certain value. 

The coolrng schedule proposed by Geman and Geman is T = ゜戸 ， whereC is a 

constant (about 3) and k is the number of iterations so far. 
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4.2 Mean Field Theory 

Zhang [7] applies the mean field theory from statistical physics to obtain a faster (but 

perhaps less accurate) algorithm. The idea is, that instead of chasing a state from the 

probability distribution the probability distribution itself is stored at each site and used in 

the iterative process. 

To summarize the theory (details are described by Chandler [2]), let U(X) be the'energy' 

of a configuration (state allocation) of the unobserved variables. In our case 

U(X) = I: 仰（ふぷ） +~Uv(ふぷ） +~Uo(X砂'i)
四）ESH (i,j)ESv i 

vVe de恥 ea new energy at site i as 

閏(Xi)=U(X)luj=<t•j>,i弄
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and assume it is of the form 

U:(ふ）= Uf'(Xi) + Ri 

where 

Uf'(X』=UI--I(Xi, <入CE>)+U打(<Xw >, Xi)+Uv(入Ci,<XN >)+Uv(< Xs >戸応）+Vo(Xゎ只）

and XE etc. indicates the unobserved vari.able immediatly east of Xi Furthermore the 

remainder term Ri is assumed to be independent of Xi. Then 

くふ> R::! 

亨 exp(二仄＇（ふ））
X; T 

い(.=]_閏（ふ））
X; T 

戸 exp(旱Uf'(ふ）） exp (土）

I:exp ( 
-1 
一切'(Xi))exp (一鳴

X; T T) 
〗ぷ exp(旱U:'(い）
> exp (旱Uf'(ふ））

(6) 

(7) 

(8) 

(9) 

This approximation suggests an efficient algorithm. It is similar to the annealing algorithm 

described above, but at each site the probability distribution P(XilXi; j -f i) (equivalently< 

入Ci> is stored and (re-)calculated. Experiments show that far fewer iterations are necessary 

to achieve a reasonable state allocation even if the temperature is kept fixed [7]. However 

optimality of the solution cannot be guranteed. 

5 The parameter training problem 

The second important problem is that of parameter estimation. In many previous appli-

叫 ionsof MRFs (mainly in problems in vision and image restauration) the parameters were 

kept to a small number which were chosen by hand, thus avoiding the parameter estimation 

problem. 

Previous work in speech recognition has indicated that trainable models such as HMMs 

perform far superiour to non-trainable ones, so that a training algorithm is required if MRFs 

are to be applied to speech recognition problems. 

A complete theory for the parameter estimation problem is still missing. However in 

certain cases of symmetry or restriction in complexity solutions do exist. These will be 

discussed in this section. 

Before turning to individual cases we will briefly describe the EM algorithm and point 

out where the difficulty lie in applying it to MRFs. 
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5.1 The EM  algorithm 

Out of possible parameter estimation algorithms, the EM algorithm [3] is the most 

promissing method for learning the model parameters from training data, because it ex-

plicitely distinguishes between the observed and unobserved data. In short the algorithm 

consists of two steps: 

Expectation step (E-step): Given the current parameter estimates 0 find the expect a-

tion of the unobserved nodes, i.e. calculate 

<XIY>。
where X represent the observed variables, Y the unobserved variables and 8 is the 

parametrization of the Expect叫ionoperator. 

Maximization step (M-step): Treating the expectation of the unobseved variables cal-

culatecl previously as if it was observed, find a new parametrization 8 which maximizes 
the likelihood of the data. 

9
(
 

Thus if all variables could be observed, the E-step would not be necessary. Its function is to 

convert a problem with partially observed data into one with fully observed data. 

Since the E-step is based on the previous parameter estimate, the calculation・of the 

expectation of the uno bservecl variables becomes inaccurate as soon as 0 is replaced by 0. 
For this reason the algorithm needs to be iterated. However it has been shown that the total 

likelihood of the training data always increases and that the algorithm converges to a (local) 

optimum. 

As far as MRFs are concerned, the E-step poses no problem and can in fact be solved by 

the decoding algorithm described in the previous section. The difficulty lies in the M-step 

because the partition function Zy is so difficult to calculate. In the E-step the partition 

function could be ignored because it is a constant in the maximization process. However in 

the M-step the partition function depends crncialy on the independent variabe (0) so that 

a optimization of 0 is difficult. 
(＼ 

5.2 The Baum-Welch algorithm 

If the connectivity of the graph is low enough such that the graph is chordal the Baum-

・welch algorithm may be applied. This is the case in the case of the HMM. A study of this 

problem can be found elsewhere [5]. We consider here non-chordal graphs which form a 

~quare lattice, i.e. each site is surrounded by four neighbours much like a checker-board. 

5.3 Sq uare lattices: Renormahzat1on group theory 

This section describes a method for estimating the parameters, which does not r~quire 
the potential matrices to be symmetric. It is based on ideas taken from the renormalization 

group theory [6], although it does not in itself use this theory. 

Suppose the sites are numbered as in Fig. 2, i.e. such that even and odd numbers form 

a checkerboard pattern. Then by conditioning on the even numbered sites we can use the 
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Niarkov assumption to obtain 

P(X) = P(喜喜．．．）
= P(X鉛ふ， ...)P(ふ，Xあ..,IX2,X、1,...) 

= P(ふ，ふ，...)xP(ふIXふふ）
xP(X仇ふX2,Xs,X叫

xP(X9IXs,X4, ふo,X14) ... 

(10) 

All the even numbered sites form a rectangular lattice (inclined at 45°) of a coarser resolution. 

'¥Ale assume that it is Markov, translationally invariant and can be pa.rameterized by the Gibbs 

distribution 

P(Xeven) = -exp(~ 島（ふぷ） +~ 島 (Xi,Xj)) 
Z' up down 

where the first sum is over all pairs of sites in which Xj is to the north-ea.st of Xi and the 

second sum over all pairs where Xj is to the south-east of Xか

Suppose that we have already managed to obtain parameter estimates for the Uu and 

Uv ma.trices at the coarser resolution. To obtain estimates for Uv and UH we proceed as 

follows: Using the most likely state allocation obtained by the stochastic relaxation algo-

rithm we find the statistic S(k。,hv, kN, kE, ks) describing the total number of times state 

K。occureclsurrounded by the states kw, んCN,k恥 ksat the nearest neighbor sites. From this 

after normalization and suitable smoothing we obtain the quantity Q(k。椅w,ん'cN,kE, ks) de-

scribing the estimated conditional probability of state k。occuringin the given context. vVe 

now choose UH and Uv such that 

exp (U爪袖，ko)+ U打(k。,kE) + Uv(ks, k。)+ Uv(k。，知）
— ½(Uu(kw心）+ Uu(ks-, 転）＋島(kN五）＋島(kwふ）））

~Q(koJkw, 恥，転， ks) (11) 

We now have approximated the conditional probability P(X。IXw,XN,XE,Xs)in terms of 

仰，Uv,Uu and U D• In equation 10 P(X) is expressed as the product of such conditional 

propabilities. Since we made the assumption of shift invariance, we can substitute equation 

11 for each of conditional propabiltiy terms in equation 10. Let us first rewrite equation 10 

in the form 

＂ 

P(X) = P(喜ふ，．．．）
= P(X2, ふ，...) IT P(X。IXw,XN,XE,Xs)

Xo=X1,X3, ... 

(12) 

(13) 

where the product runs over all odd-numbered sites and Xwぶ元XE,Xs are the four nearest 

neighbours of X。.
If we substitute the expression obtained in equation 11 into equation 13 together with 

the Gibbs distribution for the even numbered sites, we will see that all terms involving Uu 

and U D will cancell and we are left with 

P(X) = exp(I: 仰（ふぷ）+ I: 応 (Xi,Xi)) 
hor ver 

i.e. we succeeded in且ndingsuitable UH and Uv parameters. Moreover these are chosen such 

that the partition function is unity. 
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Restricted transitions 

r『hemain problem then is to solve equation 11. This is clif且cultto solve in closed form. 

However a gradient search method may be used to minin廿zethe square of the error. 

¥,Ve have thus reduced the problem of finding Uv and l伍 tothat of恥 dingUu and Un 

at a coarser level. VVe can repeat this procedure and reduce to even coarser grids. At the 

coarsest level that we wish to consider, we have two possibilities to initiate this inductive 

procedure: 

1. If the lattice is so coarse that it constitutes a si1~gly connected line of sites, we may 
use the Baum-vVelch algorithm, as this is a one chmensional model. 

2. Alternatively we may assume that there is no longer any statistical dependence betwe~n 
neighboring sites. Under this assumption all sites are to be treated as independent and 

the pa.rameters of the potential function can easily be found. 

In the experimental work we used the second approach. 

We thus have the following algorithm: 

For all training epochs 

For all training samples 

Calculate state allocation of training data (decoding) 

update statistic Q(k。[kw,kN, kE, ks) at all resolut10ns. 

For all resolutions 

calculate Uv and V打(Uuand Un) based on the estimates at next higher resolution 

6
 

Restricted transitions 

The distributions of states over the input array represents in a way a two dimensional 

labelling of input array. This labelling is to be used in the subsequent recognition process. It 

makes sense to impose restrictions on the transitions between neighouring states. Suppose 

for example that there are N states, i.e. each random variable Xi ranges over the integers 

{l, ... ,N}. Then one could impose the following restrictions: 

• For X1 is a random variable just south of Xj then P(Xi =吐ふ＝叫=0 if町 く 叩

or叫:>Xi+ 1. 

• For Xi is a random variable just west of Xj then P(Xi =叩，Xj= Xj) = 0 if町<Xi-l 

01畜巧 >Xi+1. 

Such restrictions would force the final assignment of states to look something like 

•2}9.5-\· 
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7 .1 Accuracy of equation 11 .9 

For example if the underlying representation is a Fourier transform and even states 

correspond to regions of high energy while odd states correspond to regions of low energy 

then the resulting system can be regarded as a formant tracker, which is based on a maximum 

likelihood principle. 

Another way to look at restricted transitions is to cut the Markov Random field either 

horizontally or vertically to obtain just one (horizontal or vertical) chain of random variables. 

This can then be considered a..s a traditional Hidden Markov Model. The restricted transi-

tions that were mentioned above would give these models the following model topologies: 

叉又又9
'horizontal HMM' 

Unfortunately we can not directly enforce restricted transitions in the same way we do it 

in hidden Markov Models because the probabilities are not directly parameters of the model. 

But we can effectivly enforce them fixing the potential contributions for the horizontal and 

vertical links to very high values for state combinations that we wish to rule out. 

7 Experimental work 

A number of experiments were carried out to test the convergence of the training proce-

clure. 

For the experiments we used 16 cepstral and delta cepstral coefficients of speech data 

at a frame rate of lOOHz as the observed data Y. The'frequency'domain hence consisted 

of 16 vector valued components, each component being a cepstrum and corresponding delta 

cepstrum coefficient. exp(V) was modeled by a 2-variate Gaussians for each state with full 

covariance matrix. 

7.1 Accuracy of equation 11 

(7.1.1) Unconstramed trans1t10ns 

We first investigated how accurately Q could be approximated using the gradient search 

estimation procedure. For this purpose we trained models of the vowel / a/ with 2,3,4,5,6 

states. The average estimation errors for these approximation at various levels of coarseness 

are given below (the coarseness-level is indicated by the Euclidean distance between the 

nearest neighbor sites): 

2 3 4 5 6 

4 15% 9.2% Ll,3% 2.2% 1.2% 

2.82 17% 11% 5.0% 2.7% 1.5% 
') ~ 15% 12% 7.1% Ll,1% 2A% 

1.41 17% 14% 7.7% 4.2% 2.7% 

1 16% 12% 9A% 7.1% 4.6% 
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The numbers suggest that the Q tensor can indeed be accurately approximated using the 

gradient search, if a sufficient number of states is used. Since in real applications more than 

10 states are likely to be used the estimation error should not be significant. 

Convergence of the parameter estimation procedure The EM algorithm is guaran-

teed to converge monotonically. However we are approximating the algorithm in three places: 

(1) use of stochastic relaxation with a finite cooling schedule, (2) estimation of Q tensor, (3) 

boundary effects of MRF. Thus the convergence of the algorithm needs to be checked em-

pirically. The following graph shows a plot of the total Gibbs potential of the training data 

(equivalent to log likelihood) during a training run・with 6 states and 50 parameter up elates. 

5000 

4000 
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2000 

1000 
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10 15 20 25 30 35 40 45 50 

-3571 

Even though convergence is not strictly monotonic, clue to the approximations mentioned 

above, we observe a'fairly monotonic'behavior. 

(7.1.2) 
．． 

Constramed trans1t1011s 

The same experiments were carried out for constrained transitions. To implement the 

constraints we fixed the transtions that were not allowed a weight of -10. Since the uncon-

strained weights usually tend to values around O after training, this means that the disallowed 

transitions occur only with probability e―10. 

In the experiments 6 states were used. Some typical state allocations that were achieved 

after training on real speech patterns are shown in Figs. 3 and 4. 

As can be seen one state dominates most of the random variables. This problem also 

occurs often when training HMM's when the initial conditions are not chosen carefully. In our 
case we tried different initial consitions and also a state splitting mechanism that would split 

the state that are used to frequently. However in each case a state dominance was observed. 

The second problem observable from Figs. 3 is that the state transition constraints were not 

always observed. (We can see little bubbles in the upper right corner and the lower center. 

Even varying the penalty for disallowed transitons did not not lead to better results. 

A further problem became apparent when we studied the estimation error that is incurred 

in equation 11. These are shown in the following table: 
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Such large estimation errors are really not acceptable and they show that equation 11 

can not be justified when using constraints of the form described above. 

8 C onclus1on 

This report described the theory of a two dimensional stochastic model and how it could 

be applied to speech recognition. Such a model has the potential of modelling the variations 

in speech more accurately as it allows a'warped'match in both the time and the frequency 

domain. 

We presented a training method based on ideas from the renormalization group theory for 

Markov Random fields. Our experiments confirm that if the transitions are unconstrained 

then the proposed method converges. and produces reasonable model parameters. 

However to perform speech recognition some state transitions may have to be constrained. 

Although such constraints can in principle be enforced by keeping certain parameters at fixed 

high values, we found that in practise this does not always lead to solutions that observe 

these constraints and more over we appear to be no longer ableof providing a reasonable 

approximation in equation 11. Thus reliable parameter estimation may not be possible 

using this method in this case. 
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