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Summary

Purpose -

We are aiming at improving Speech Recognition using specific language modeling;
we want to reveal Long Distance Dependencies, which are obvious to humans but
completely ignored by bi- or tri- gram models.

To track LDD automatically, yet to keep them swift and consistent, we propose to
use pre-parsed data.

Study

We propose to

» Reckon the dependencies automatically

» Use them as statistical predictors

» Evaluate their efficiency for the recognition task .

The study is based on the Penn Tree Bank, a corpus of syntactally parsed data. We
define two rules of LDDs, Brother and Parent, and extract them, along with
Bigrams, from a Training set. We studied particularly the ATIS corpus, despite its
small size, for its well aimed quality.

We estimate and compare Perplexities of (Bigrams+LDD) and (Bigrams only)
models, it quantifies how much LDDs relieve the recognition task. We obtain
roughly 8% improvement on Testing set.

Conclusion

Brothers have little influence on Perplexity; though consistent, as shown by their
Weight, they are still too scarce. Parents are more common and their consistency
capture Information thus improving Speech Recognition.
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Résumé

Objectif

Nous cherchons a améliorer la reconnaissance de la parole par une modélisation
spécifique du langage. Nous désirons mettre en évidence des Dépendances Longue
Distance (LDD), dépendances aisément identifiées par I’utilisateur humain, mais
compleétement ignorées par les modeles de bi- et tri- grams.

Afin de détecter les LDD automatiquement, tout en garantissant leur souplesse et
leur cohérence, nous préconisons d’utiliser des données pré-étiquetées.

Etude

Nous nous proposons :

* de comptabiliser les dépendances automatiquement

» de les utiliser en tant que prédicteur stochastiques

» d’évaluer leur performance aux vues de la reconnaissance.

L’étude se fonde sur le Penn Tree Bank, un corpus de textes organisés en
syntagmes. Nous définissons deux reégles de LDD, Fréres et Parents, que nous
extrayons, ainsi que les Bigrams, & partir d’un corps d’apprentissage. Nous avons
particulierement étudi€ le corpus ATIS, en dépit de sa taille restreinte, pour son
contenu trés bien ciblé.

Nous estimons puis comparons les Perplexités des modeles (Bigrams + LDD) et
(Bigrams seuls) , afin de quantifier I’allégement de la reconnaissance du aux LDD.
Nous obtenons environ 8% d’amélioration.

Conclusion

Les Freres influencent peu la Perplexité; quoique cohérents, comme I’indique leur
Poids, ils souffrent trop de rareté. Les Parents eux, sont plus répandus et leur
cohérence capture de I’ Information, améliorant en conséquence la reconnaissance
de la parole.




Les mots sont si vivants, j’ai I'impression parfois qu’il ne
leur manque que la parole.

(bavardage)*

* words are so lively, I feel sometimes they only lack speech.
(chatting)
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1. Introduction
1.1 Project Context

1.1.a) ITL Project

Interpreting Telecommunication chain

The ITL project consists in carrying out a multi modal multi lingual system, oriented
toward meeting and conference planning. The project, conducted in cooperation in several

laboratories across the world, involves the general chain:

speech in foreign tongue -> recognition -> translation -> synthesis -> speech in Japanese

1.1.b) Study

prospective speech recognition

Our aim is to improve the speech recognition stage. The study is conducted on an
English data base its application in ITL project would be on Japanese. Mainly it’s a

prospection trial and evaluation of new means in speech recognition.

1.2 What is speech recognition?

We’ll understand it as the estimation of a word string given an incomplete knowledge
on this string. for example given the spectral wave forms of an acoustic input, or given a
string of phonemes or given neighbor strings etc. ‘
Incompleteness of knowledge, which fosters uncertainty (2, may come from different factors:
* channel noise
* pronunciation
» lexical choice
* syntax
* semantic

Guessing a string while taking in account each of those directions, is the key in
solving the different uncertainties. We will perform our guess by assessing the strings’

probabilities.




1.3 Linguistic approach

We’ll deal with the last 3 factors previously enumerated, i.e. the linguistic freedom, or
we may say information!l], of the speech vector.

The field of these factors is quite close from the aim of recognition, i.e. the words, and if
uncovered, has much prediction power : Listening to a discourse, we have all the more
facility making out the words as we have a clearer knowledge of

+ the tongue

+ the subject

» the context; ,

Of course, we need to know the vocabulary or just can’t “recognize” it, but in a
dynamic way, we’re using all the previous words in the string to deduce the next one. If
humans perform this task very naturally, the recognizer has to learn the ways words work
together and “call each other” in the sentences. We’ll see these intuitive aspect in more detail
as we expose the basics of speech recognition using language models, in part 2.

Now, prediction deduced from previous linguistic information is necessan'ly bounded;
however well we may understand and use words’ interactions, we can’t guess everything that
will be said, that would negate the fact that some information is brought up, by speech.
Ideally we want to recognize only this non redundant information. Thus, our effort is to come
closer from that bound, so that final recognition is alleviated as much as possible. We conduct

our study according to that view which belongs to Information Theory.

1.4 Toward a general model

Inspired by human performances, and to reach a most general yet handy modeling,
We’ll propose a new language model, long distance dependencies. We’ll expose its definition
in part 3, then describe in part 4 an implementation of the model in a recognition task, we’ll
expose its results and evaluation in part 5. We’ll draw conclusions and propose further

developments in part 6.




2. Language Modeling for Speech
Recognition

2.1 Bayes Law

2.1.a) Speech recognition process

We can modelize the speech process from utterance to recognition as follows;

. A words string is uttered WO(w1, w2,..,wn) from a finite vocabulary.

First uncertainty; we don’t know what string is uttered, this is modelized by P(W0)

. It gives rise to an acoustic wave form A

Second uncertainty; we don’t know what wave form is created, given the word string, this is
modelized by P(A/WO0)

. Using pattern recognition, with A as input information, we chose a candidate
W(w’1,..)
P(W)
-;/'///////////////////‘f//f//////f////////'//////////f////////;
7 7
Z %
; 7
SOURCE RECOGNITION
String WO —® —p String W'
%
ACOUSTIC INPUT %
. PAW)

figure 2.1.1
The choice of W’ is uncertain because of the two previous freedom. Let’s ponder more

closely on that choice.

2.1.b) Decision criterion & Baves’ Law

We’re using the most likely candidate, Maximum Likelihood estimate is efficient, consistent,

unbiased and simple. Most likely candidate W’= most likely string to have given rise to A
P(W'|A) = max P(W]A) (2.1.1)

We introduce Bayes law:




P(W)P(W]A)

P(WA)= 2.1.2
(W4)=—"24 (2.12)
Applied on (2.1.3) it entails
P(W)P(W|A
:>P(W"}A)=rnax——~——( P(W]A)

v P(4) (2.1.3)

A is fixed, so that it comes down to:

W’ = argmax P(W)P(A|W)

w (2.1.4)

We can distinguish two terms of quite different essence:
* acoustic matcher [217] term P(A[W) ; this is due to the variability of wave form

according to the string that gives rise to it. This term can be estimated using an acoustic

matcher on a training set, this won’t be the object of our study.
* language model term P(W) ; This is the distribution on the source - RE: Information

theory - in most cases we can’t get directly to that value for the given language, so that
we’ll have to use an estimate instead, which comes down to substituting the language by a

more or less explicited model.

2.1.c) Using language model: history and classes

What do we mean by language model?

c.1) Estimating language distribution

Our aim is to estimate the “language model” term that is to say;

P(W):HP WilWissWisgs s Wy ZHP(WiIh) (2.1.5)
= history =

But the event space of histories and words (h,w) is too large, and no reasonable amount of
data would be sufficient to span it. If we take in account history in its totality, the increase of
parameters 1s exponential, for evident scale problems it is impracticable, even dealing with
very limited vocabulary and string lengths That’s why we need a model, i.e. simplifying

assumptions.

c.2) Clustering

We have recourse to equivalent classes. A mapping S of the event space & is defined:

histories that fall into the same equivalence class are supposed to a same effect on the

probability distribution of the next word w,

P(W)= [:lp(w,.|s[w, ,...,w,._,]) = El[P(w,.jE) (2.1.6)




The idea is to select relevant data from history. Namely, words that have an expected
influence on the next occurrence, are kept, and all other words in the history are discarded.
There are different families of clustering, it may be,

e knowledge based, statistic(2]

+ supervised, unsupervised(!]

« defined, iterative(11105]

 general, adaptative(3] |

Ideally the model should be a mixture of all methods.

c.3) Bigram example

The partition of histories is based on the last word of the history, the underlying

assumption is Markovian;

P(w,.[w‘._l,...,w,._n) = P(w,.lwl._l) (2.1.7)
The model makes profit with such dependencies as
next time
‘d like

loathed enemy
Statistical implementation of Bigrams involves a physical clustering of the training text; A
two-words wide window is put, and then slided, on the text, so as to reckon the concerned
two-words sequence. We collect thus information on the sequence’s probability in order to

build the following model:

generations

figure 2.1.2

where pi of different levels are independent.
For example, we estimate in ATIS corpus that,
P(w, = likelw,_, =’d)=0.62

To use this conditional probability we assume that whatever the words preceding “like”
...if possible I'd like...
...that is why I'd like...




...that is why I'd be...
its probability to occur next is not affected.
It seems reasonable enough. Yet the first example may appear more natural because of the
preceding ‘if’, we sense this relation, but Bigram is blind to it, as would be any N-gram
model, at best sensitive to ‘if possible I’d’ if a 4-gram, but sparseness limits drastically high

level N-grams (cf. 2.3.c).
Then, to what extent is the Bigram assumption correct? Actually, what we’re

interested in is its efficiency in the recognition task’s respect. Information Theory can give us

a clue.

2.2 Information theory

2.2.a) Language as a stochastic source

a.l) what is language?

Our notion of “language” is not reduced here to a tongue or a vocabulary notion, it
includes the frame and use of the speech; ‘an English colleague planning a rendez-vous on
the phone’ or ‘travelers asking for flight schedules in US’ or ‘dada Poetry * .

So we define language as the concordance of
 afinite vocabulary Set V

+ acontext of speech
Given that, a language defines a probability distribution on word sequences.

a.2) Information Source

We can thus consider language as a source of Information and words as its outputs ;
words are put out according to the aforementioned probability distribution. Concept of
Information Source is intuitive enough, it might be added that observing an information
source is the exact equivalent to running a random experiment., so that, from a probabilistic
point of view, information source can be seen as a generator of random experiments.

Owing to probabilities, the user has uncertainty about the identity of the coming word.
This uncertainty is related to the novelty, the information, conveyed by this word; uncovering
a word is all the more difficult, i.e. uncertainty deeper, as its information content is high.
Actually, uncertainty becomes information as soon as the output is discovered by the user,

they are the two faces of the same coin. Let’s define further this uncertainty / information

concept.

10



2.2.b) A definition of information: entropy

How to quantify Uncertainty / Information? We allege it is function of the outputs’

probability distribution, but what function is appropriate?

b.1 )intuitive approach

Given a source § with a set V of L symbols, uncertainty about the next output,
therefore information, is maximal if each of the possible symbols are chosen with equal
probability 1/L and independently of previously chosen symbols.

The information content / amount of uncertainty of such a source is:
H(L)=In(L) (2.2.1)
It is the only form of function to abide by the following four natural proprieties;

i) A measurement of the amount of uncertainty involved in § should be a function f{L) of L.
ii) Since there is no uncertainty when S has one possible outcome, one should have f{1)=0.
ii) In addition, the larger L, the larger the uncertainty involved in S, so that f{L) should be an
increasing function of L.

iv) Let T be another uniform independent information source, and consider the new source
ST putting out joint observations (wswr), with L*G outcomes occurring with the same
probability I/L*G . Assume that S and T are independent. Given those conditions one may
expect that information involved in S and in T add, when measuring information of ST, or

equivalently that uncertainties are summed up;

[LG)=AL)+G)

sl

/§o

—_—

sL.2

sl s1
==

2 times LorL?: twonequally difficult tasks
figure 2.2.1
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In particular, as illustrated in figure 2.2.1., enlarging the vocabulary L up to I’ is equivalent
to expecting pairs of words instead of singles. Intuition tells uncertainty is doubled and not
squared, this aspect is called the branching factor{3],
The only function which satisfies the assumptions (i-iv) above is
F(L)=klIn(L).
for k=1, it gives back (2.2.1) .

b.2) general case

In general cases, probability is not uniform. Let w denote a symbol put out by the
source with probability P(w) , then it can be shown that the proper measure of information /

uncertainty is entropy H :

[EP w)log P(w ] (22.2)

The uniform independent case exposed in b.1) appears as a particular case of this
formula. Moreover, the general source has then as much information content as a uniform
binary source of size

L'=2" (2.2.3)

We will discuss in coming b.4) and ¢) interpretations and consequences of this equivalence.

b.3) calculating Entropy

How can one calculate entropy of a given source?

a way to reach (2.2.2), on a sequence of outputs w; , is,
H ==lim(1/ n)[ Y, P(w,,...,w,)log P(W,,....w,)] (2.2.4)

Then, assunﬁng ergodicity,
H =—~1im(1/ n)log P(w,...,w,)] (2.2.5)

For a very large corpus of speech or text, we consider the sequence’s length as infinite, so that
H=—(1/n)[log P(w,,...,w,)] (2.2.6)

Thus Entropy can be estimated from a long sequence of symbol.

b.4) interpreting Entropy

"+ as an information content ;

According to Shannon’s theorem, any encoding of the source must use at least H bits
per word, on average; this theorem is in accordance with (2.2.3), as the uniform binary source
with the same information content as S requires H bits, and this equivalent source maximizes

information due to its uniform distribution.

12



Said another way, an output will reckon H bits of innovation; those bits can’t be
deduced from the former outputs, whatever the coding the behavior attached to S.. They

figure the non-redundant information of the output.

* as an amount of uncertainty ;
)

2

N
)V \ Entropy
(big? ) plane? 2

X
> D @ @D
< >

Perplexity 4

amount of uncertainty:
‘is it a bird? is it a plane? No it’s Superman’
figure 2.2.2
H is an estimate of the recognition difficulty of speech generated by the same source.

The irreducible H bits stand for the unavoiding H “yes/no” questions to get to the identity of
the output, this is illustrated in figure 2.2.2 This branching of questions lead to L’'=2H word
candidates, whom the Source puts out uniformly, so that the user, how smart he may be at
guessing the source’s behavior, has no choice but to discover the chosen candidate among the
list once put out. The average number of remaining candidates is the source’s intrinsic
Perplexity. ,

PPy =2"| (2.2.7)

intrisic
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2.2.c) Perplexity, an evaluation

c.1) Perplexity of a model; projective view

In real case, expression (2.2.6) is not known exactly because the probability of a word
sequence is not. Hence the approximation by a language model, as already exposed in part
2.1.c). What is calculated then is no longer the Entropy but a projection A expressed as the
Logprob,

H=LP=~(1/n)logP(w,,....,)] (2.2.6)
Why do we call it projection? From the standpoint of original definition (2.2.2), Logprob

stems from across Entropy,

ML
H=—> P(w kgﬂw} (2.2.2)
Lw=]

following the same scheme as in b) , Perplexity of the model is defined, .
PP, .. =2" 2.2.7y

Perplexity is the source’s Perplexity viewed from the language model. This is illustrated in
figure 2.2.4. It can be demonstrated easily(3] that

H<H (2.2.8)
Therefore, following (2.2.7), 2* is an inferior bound of any model’s Perplexity

c.2) Perplexity, difficulty of the recognition task

Following b.4) , Perplexity of a model expresses the average number of unsortable
equiprobable candidates, after the model was applied on the source. Thus it evaluates the
difficulty of the recognition task. If we adopt that view, Perplexity becomes an evaluation of
the model’s efficiency regarding recognition; how well does it capture the source’s behavior -

i.e. regularities - in order to alleviate final recognition ?

“To sum up:

The user assumes a certain behavior for the source; a model. Given those assumptions
and given the previous outputs, he tries to guess the next output. If the source is not
determinist he can’t guess accurately, to complete his guess he still need some information on
the output. This amount of information is entropy H. It is supposed to solve his perplexity

concerning the output, i.e. his remaining hesitation between PP equally possible outcomes.

This requires H= log, PP .

15



* The smartest user on earth has an average perplexity per output,

P‘Pinrri:ic = 2H
L

where H= —»[Z P(w)log P(W)}

w=1
* The user simplex has an average perplexity per output,

PPmodeI = 2H

A~ L ~

where H= ——[Z P(w)log P(w)j'

w=1

A model is all the better than it lessens Perplexity

c.3) application ; the Shannon game

C.E. Shannon invented that game in order to estimate entropy of English. It consists in
measuring perplexity of a human confronted with a text to discover. He tries to guess a letter
and is told about the correctness of his guess. when he has found the right answer, he passes
to the next letter. As in figure 2.2.2 the average number of guess he makes to uncover a letter
equals the entropy per letter of the text, seen from his model. His model is implicitly the way
he conducts his guesses. The experience of Shannon in 1951 resulted in an entropy of 1 per

letter, which means 1 bit is sufficient to code a letter

2.2.d) Joint sources: mutual information

d.1) definition; a loss of entropy

It is very useful to have a measure of information provided by outputs symbols x of a
source S about output symbols y of a related source S’. Typically, y is some extracted
component of S ; whose knowledge is used by the language model, for example, y (i)=x(i-1) ,

output preceding x..
According to the information / uncertainty duality exposed in b)., mutual information

is a loss of uncertainty, i.e. a loss of Entropy. Applying (2.2.2),
1(x|y) = H(X) - H(X]y)

=3 P(x)log P(x)+ 3" P(xy)log P(x)) (22.8)
ey pop P
2 P8 )

Globally, the loss of Entropy achieved on the source S by the knowledge of §” is
I(X;Y)=H(X)- H(X|Y) (2.2.9)

It can be thus calculated,

1(X;Y)= iiP(x,y)logW (2.2.10)
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» Particularly, contribution of a joint occurrence (x,y) can be expressed as,

P(x,y)log—]-%—;—})y(lyj

it can be negative, hence counterproductive, if,
P(x,y) < P(x)P(y)

that is to say, if (x,y) occurrence is an accident. This remark simply means that observing

(2.2.11)

accidental (x,y) is misleading and hampers deduction of X from Y. The more regular the
occurrences, the richer the mutual information. In an extreme case, if the two sources
have similar behavior, the Mutual Information is sufficient to uncover S; it is then equal to
Entropy. '

o It is symmetric in X and Y as suggested by the denomination “mutual”; The amount of
information provided by S’ on S is the same as provided by S on S’, it reflects the way S
and S’ are correlated.

d.2) application; predictive power
The user assumes some information on the source as known ; for example some
preceding outputs. The model defines which information are considered and how they are
used to guess the next output. Therefore, it is quite useful to assess the potential prediction of
different information sources, as bigrams (the latest output), trigrams (the latest two outputs),
or the latest but one output , or the latest function word etc.
Mutual Information provides an atomic view of this potentiality, through expressions like

(2.2.11);
P(x=1y=would)

P(x=1)P(y = would)
If S is supposed to generate the latest word, then (2.2.12) may equal a high value (note that if

I(x=Ly=would)=P(x=Ly= Would)log (2.2.12)

S’ is supposed to generate the two but latest word, (2.2.12) may very well be negative).
Mutual Information stands as a first approach of the modeling power.

Summing up global mutual information on the vocabulary, actually estimations on
long strings of words, yields a possible lessening of entropy. Yet the lessening is widely
overestimated because is doesn’t take in account cross correlations between words, just

adding blindly.

2.2.e) N-gram example

e.l) language as a Markov chain

The Source is supposed to generate a chain of state, whose transitions depends from
the departing state only. A transition puts out a symbol. Thus the Source’s behavior can be

reduced to a state’s behavior. Assume that state S; is the collection (wj.; ,..,wj.N) it expresses

17



that the next output depends from the preceding N outputs. This is the equivalent of the

Markovian assumption referred to, about classifying and clusters in § 2.7.¢.3) .

a

P(a/aa)

V=(a,b)

(" tvigramDiogram )

trigrams: four states of a binary source
figure 2.2.3

e.2) mutual information of neighbors

To assess the validity of the model, we estimate such expression as (2.2.12) for
bigrams, or replacing y by y;..yn.; . Of course we have only estimates of such expression, as
well as global Mutual Information. estimates calculated on a training set. Doing so, we

estimate the amount of information involved by neighborhood occurrences of words.

e.3) remaining entropy

The “neighbors’ information” applied on a text, achieves a projection of the text on the
model structure - here the Markov chain. The projection leaves a remaining component;
consisting in what can’t fit in the model. It is the innovation of speech -or text- regarding the
model, i.e. entropy viewed by the model, as illustrated in figure 2.2.4
As repeated much now, this entropy can’t be curbed under the intrinsic entropy H which is

unknown . Yet there is strong assumption that models currently used fall far off from the ideal
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model. An hint is given by the Shannon game, exposed in c¢.3), and which consists in
comparing human unconscious model and trigram models or as such.

An assessing of this “remaining component™ is given by entropy, or by perplexity; the
difficulty of a recognition based on the N-gram model.
Now, there are two limitations to this information;
 the intrinsic innovation of the text.

» the information included in further remote outputs. -

2.3 Automatic modeling

Now we discussed the need and use and assessing of language models let’s expose

briefly ways to spawn such a model.

2.3.a) Using expert knowledge

The model is asserted by linguist expert, for example defining syntactic or semantic rules.

a.1l) good points:
» Straight forward; the model is given, o iterative computing is needed
* Global; features retained by linguists are generally invariant for a given language so that it

fits lots of context
* Gain of time and parameters; it is not so parametrical dependent as automatic or

unsupervised methods.

a.2) drawbacks:

* Only discreet criteria; the knowledge is generally a yes/no answer or a ranking, not a

distribution.
* Insufficient expert knowledge; experts’ model are still too raw or to general to be efficient

directly on a recognition task
* Variability of language in time and space; expert knowledge is bound to change,

according to time periods, and most evidently according to tongues.
a.3) Example ; Tagging
A common expert knowledge used in speech recognition is the tagging i.e. a

classifying of words or word groups under a label. the Label may be syntactic, or a grammar

tag, or more generally a Part of Speech; noun, verb...
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2.3.b) Using statistics

b.1) why statistics ?
Using statistics in Speech recognition is very natural, we could them emerging
because of uncertainties in the speech recognition chain in § 2.1.
They allow a continuous recognition, yielding probabilities instead of discreet choice.
Moreover they can be used on data for training hence the better adequacy and robustness of

the recognition.
b.2) context of statistic modeling ; training and testing sets

Parameters are extracted from a statistic analysis of a corpus. The parameters
characterize a model. In some case the model is assumed and parameters just fit in, in other
cases, the model along with the statistic analysis, yet it as some original form.

© The training data has to be large enough
+ to achieve the ergodic assumption, and if not really, at least the following
conditions, )
* to be a truthful image of the model
«  to collect maximum cases and occurrences

The model is conditioned to work on data that have the same behavior as the training

data ; The stochastic source we want to guess must be the same as the one who gave rise to

the training data.
To evaluate the model, we run it on a testing set which abides by the preceding

constraint.
Now, a model is never built only from expert knowledge, statistics are used to
complete and adapt the linguistic assumption. Nor is it only made from statistical data, or

what parameters are we looking for? A merging of the two approach is needed. .

2.3.¢) N-gram example

Once the Markovian assumption is adopted, the parameters of the model are deduced
statistically from a training corpus.
c.1) number of parameters ; first limitations
Given a vocabulary of L, let us figure out what scale reach an N-gram modeling. For

example et L=100 words; this is quite a restricted vocabulary, so we’re in a very optimistic

hypothesis.
« there are 1002 =10 000 possible bigrams. Even assuming lots of them don’t occur;

- the number of resulting parameters is still around 10 000
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- a very large training corpus is required to meet at least once the occurring bigrams

« there are 1003 =1,000 000 possible trigrams, the preceding scale problem is much
worsened, mainly, no amount of data can collect all existent trigrams, not even a
reasonable rate of the existent trigrams. This problem is called sparseness, it is due to the
basic inadequation of a parametric model ; our statistic estimation, to a non parametric
phenomenon ; speech generation. 7

- there are 1004 =100,000 000 possible 4-grams, at this stage the sparseness is so bad we
can’t reach reliable estimates of 4-grams probabilities. Moreover, even if we had this
knowledge, the number of parameters to handle would be too much of a burden. As a
result performance of 4-grams can be only slightly superior to trigram-grams, and at a
very high cost.

At this rate we don’t need going on with 5-grams or higher level-grams. Sparseness and

handling conditions doom any N-gram over bi- or tri-grams.

c.2) structural bound ; second limitation

» segmental problem
As described in 2.1.c¢.3), N-grams are collected by sliding an N-wide window on the text (or
speech transcription) , this method segments artificially the data and raises problems of non
contiguity, even on a local scale;

for example the sequences
booking return ticket

and booking ticket
have nothing to do with one another according to the N-gram window.
Some refinement can be proposed as the search of a head word[!)[2], but it

- is not very robust - notion of head word is not so regular - yet there are both
unsupervised and expert method to track them. |

- involves a heavy additional processing, but after all that is any statistical approach’s
lot)

- entails a rewriting of the probability distribution and an armful of new parameters,
this aspect can be rather positive, thinking of it as a new, more adequate language model.
So, it may be worth it, but note that it’s already a modification of N-gram model to go beyond
their particular limitations.
Now, the sequential feature of N-grams fundamentally ignores non-contiguous information,

as symmetries, repetitions and alike.
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* narrow scope

A characteristic of N-grams, actually the essence of the Markovian assumption that gives rise
to them, is the oblivion of any event except for a very short term memory ; it was just pointed
outin c¢.7) that N doesn’t excess 4.

Even short length syntactic or semantic regularities are necessarily ignored by the model, let
alone farther away information ; obviously lexical information contained in the past is

incorporated only weakly in the model.

The question is now how can we go beyond the N-grams limitations we just exposed ?
Improved Markovian modeling is developed through the non-linear Hidden Markov Models,
which figure an alternative way to clustering and “explicit” modeling as exposed in 2.1 . Still
assuming the source as a Markov process, states are considered now as outputs, so that an
extra-layer is laid on the model. Needless to say the model includes a lot of parameters
-because of this extra-layer which is positively “hidden”- whose estimation requires some
expensive computation and algorithm.

In the field of linear language modeling, we can however imagine more general models that

would take in account the lacking aspects of N-gram.
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3. An Other History

3.1 Long Distance Dependencies

3.1.a) Intuition of LDD

a.l) toward an adequate and general model
Recalling formula (2.1.6) in we’re looking for a adequate classifying on histories.
-adequate?
As close as possible td the ultimate model which yields only intrinsic perplexity when

performing recognition by prediction. A more general modeling taking in account more

regularities of the source should achieve a lessening of perplexity.
* general?

A model able to capture information both local and global 14] .
An efficient model to capture local constraints exists ; the bi- (or tri-) gram model.

Let us find now a model able to capture long distance constraints, ignored by bigrams.

a.2) learning from humans : Shannon type Game

The original Shannon game was exposed in 2.2.c¢.3), variations on that game were
imagined, and experimented at IBM, for assessing models potentials. This time the user is
given an additional source of information while guessing the text, for example bigrams, or
trigrams. The comparison with the unassisted recognition provides a lower bound of the
source’s information. Actually; as human tends to be smarter than known modeling, it’s
rather an upper bound of the models performances with that source. It was observed during
those experiment some clue about human’s outsmarting models; mainly, the human user
shows a better understanding and using of global context, lexical, syntactic, semantic. So it
seems, what models need is a better approach to far relations between words. Hence our

research on long distance dependencies.

3.1.b) Alternatives

b.1) existing models

* fixed distance
Obviously , fixing the distance a priori is inadequate (R. Rosenfeld(?]’s experiment on
hysteresis bigrams is eloquent). Now some learning may produce some “characteristic

distance” attached to a word, but it reduces the dependence to a lone distant gram.
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. triggers
As exposed in his thesis by R. Rosenfeld[2]; this time, not characteristic distance, but
characteristic words are extracted, based on an Entropy minimization. But it involves a large
amount of data and computations to be relevant.

* Multigrams
As exposed by Frederic Bimbot [3], it consists in adapting N-gram’s degree to the context, it
achieves a significant fall down of parameters and allows some distant information to be
taken in account. Yet it still involves contiguity.

* function & content words

As exposed by Ryosuke Isotanil4); since words can be classified in Japanese into those two
classes (function words often act like post-positions), the model takes in account the last
function and last content words, this allows to capture separately semantic and syntactic

dependencies, yet the scope is still limited - and the model doesn’t transpose easily to another

tongue.

b.2) charges

* distance free

To remain as general as possible and to be able to adapt to the context.

* stochastic
For a continuous recognition, and to follow the idea of adaptivity.
* yet computationally light
Because time is a key in speech recognition, all the more true when coupled with

telecommunication.
A way to respect those constraints is to introduce an exterior knowledge into statistic

analysis, to guide the analysis in a straight forward manner.

3.1.c) Choice of linguistics

c.1) a knowledge
We can use classifying, ordering and interpreting borrowed to semantic, syntax, grammars
etc. This knowledge is supposed to contend information -if the expert is not totally wrong. It

is thus a potential lessening of the text Entropy.

c.2) a dimension

Linguistic knowledge can be viewed as a additional axis in the text representation, whereas

raw text is a linear sequence of strings. Of course, the “raw text” is not a monodimensionnal
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space, since it is embedded in information and correlations, but that sort of dimensions are
implicit and revealed only by repeated experiments and statistics.

Linguistic axis is explicit and easy to interpret. It guides us for searching relations between
words independently from the distance. It is all the more obvious than the linguistic

knowledge wields classes and hierarchy in words sequences.

¢.3) a consistency?

We said linguistic knowledge is easily interpreted, if our search is based on that knowledge
we suspect interpretation could follow somewhat naturally, as if inherited.
Now “easily interpreted” doesn’t mean “consistent”. Only experiment can find consistency.

But interpretation might be a good a priori approach of consistency.

3.2 Definition : parsed corpus & rules

3.2.a) Parsed corpus : three types of information

(S @®NP %)
(VP Show
(NP me)
(NP (NP all
the nonstop flights)
(PP (PP from
(NP Dallas))
(PP to
(NP Denver)))
(ADJP early
(PP in
(NP the moming)))))
y
)

a sentence from the parsed corpus - ATIS file
figure (3.1.1)

The parsed corpus we’re working with is extracted from the Penn Tree Bank, a data
base originated in a Pennsylvania university project. This corpus is interesting for his tree
structure quality. It is an explicit illustration of the above mentioned dimension point of
linguistic knowledge.

Let’s explore the components of this structure.

a.l) tags

ADIJP, PP, NP, VP...
(Adjective Phrase, Prepositional Phrase, Nominal Phrase, Verbal Phrase...)

There are 14 different tags, including a “unknown category” tag.
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They are derived from the “Part Of Speech” labels. The latter are a mapping of words on the
grammatical field - hence a potential projection of entropy. Now, the tags are not usual POS
but a limited set; and they are no longer attached to a word but to a phrase.. A phrase is a

syntactic whole ; a branch of the syntactic tree as déveloped inal3).
a.2) words entities

* general aspect ; instanciates
They are the basic information, the parsing is done out of the words data. Once done, words
appear as instanciates of the syntactic skeleton. It can be observed then they appear at the
ends of syntactic derivations.

* particularities ; null elements and word clusters

Some null elements were added in the parsing to keep the phrase’s structure as general as
possible. For example, ‘*’ means stands for the understood subject of infinitive or imperative.
How shall we treat the null elements? As we’re interested in the skeleton of the sentence, we
will keep those null elements, though artificial, in the model.

Some word clusters remain, €.g. ‘return ticket’ or ‘one-way flight'’, due to the removing of
some phrasal nodes, found both problematic and inconsistent for the tree parsing.

How shall we treat the clusters? ‘ticket’ and ‘flight’ are also occurring as lone words, and they
may share features with their clustered version. Moreover, considering those clusters as
wholes, we would generate scarce, thus ill-modeled, entities, while depriving the lone words
from statistical confirmation. So we’ll read all the word component of a cluster. and consider

only the head word of the cluster when looking for dependencies in through the tree.
a.3) tree structure

* visualization

S
NP VP
N show NP NP
I-I;;E NP PP ADIJP
all tht-"_:—t—'lights PP PP early PP
fron NP to NP in NP
Da_liias De_r;;'er the m-(—)—rning

tree development of a sentence
figure 3.1.2
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* definition
the tree is made of;
* nodes =tags
* leaves = words entities
* phrases = syntactic branches, with nodes and leaves.

The structure is a recursion of branches; a branch is called either a proposition, or a phrase.
* building
There are two main steps to get to the tree;

* assigning tags to the text

* bracketing the tagged text
they won’t be exposed here in detail, cf. [15], but the dominant feature is the succession of

automatic parsing and human corrections..
Though this project is young and bound for further studies and improvements, there is little
hope to achieve an entirely automatic parsing. This is a point to ponder on if needing it
directly for speech recognition .
* proprieties
The tree offers a multi-dimensional structure.
-> different navigations
Apart from the linear reading of words, there are all kind of recursive navigation on the
branches i.e. phrases.
-> enable distance free relations
For example, jump between brother phrases, or from a parent phrase toward its ramifications.

This is exactly the propriety we need for our LDDs.

3.2.b) Formalism

To define LDDs, we’re using formal relations in the tree, let us define briefly the vocabulary

and tools involved.
b.1) objects
* phrase

This is a proposition, i.e. a branch of the tree. It is either a simple word, or a complex phrase,

in the latter case the first element is a tag giving rise to a sub-phrase.
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* tag-entity
This is one of the 14 different labels of the tagset. A tag-entity in a phrase entails a node in
the tree. Yet it is basically treated the same way as a word-entity, i.e. an instanciate of the tree
structure.

* word-entity
It designates any leaf of the tree, including regular words, word clusters, null elements. A
word entity is a ultimate - or degenerated- phrase.

* word

(regular)

This stands only for items of the vocabulary - typically, the dictionary -, it excludes clusters,
but we decided to keep null elements. Besides, some words are replaced by a class, such as
<place>, <day>, <month>, <number>, because of the particularity of ATIS. This is developed

in chapter 4.3 on sparseness. Classes are enumerated in program index.h, annex III.
b.2) relations

* tree-parent
Applies to phrases, a phrase A begets a phrase B if A contains B. By vocabulary abuse, we
apply this to entities, either tag or word. entity A is tree-parent of entity B if A is father of B
in the tree. An entity has one, and one only, tree-parent, except for the root of the tree. Note
that word-entities are never tree-parents.

* free-brother
Two phrases are brother if they have the same parent. idem for entities. An entity may have
one brother or several or none.

* ldd-brother

(also called brother)

Basically, it applies to words. It can be define on word entities and then use the function
“Head-Word” yields secular words. More than that it will be generally defined on phrases,
thus including the word-entity case.
* ldd-parent
(also called parent)

we apply the same rule as above.

b.3) functions

* Parent-Tag (entity) = tag

The tag which gave rise to the word-entity or tag-entity, i.e. which is at the preceding node.
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» Head-Word (word-entity) = word

On a regular word it’s identity. On a words cluster, it is the head of the cluster. We will
simply define it as the last word of the cluster. Yet this definition is somewhat crude.
Moreover it should be highly dependent of the tongue. In our English data though, it works
pretty well.

3.2.c) Brother connection

c.1) intuition
the idea of relating entities on the same level presents ; parallelism, symmetry, repetition.
These criteria are obvious in the tree, common to perceive, maybe common in thinking and in
speaking?
c.2) definition
Before settling on a final version a first definition was explored.
* first definition

entities are brothers if their parent-tags are identical and brothers in the tree

A ldd-brotherl B<=> parent-tag(A) tree-brother parent-tag(B)

parent-tag(A) = parent-tag(B)
Definition I
(... (PP from

(NP Dallas))
(PP to

(NP Denver)))

‘from’ --Brother--> ‘to’
We look for the relation between (A,B) in Im(Head-Word), i.e. in case of a cluster we
consider its head word only.
* limitations

- It ignores brotherhood across propositions, for example :
((... (PP from

(NP Dallas))

(PP to
(NP Denver)))

‘Dallas’ --NOT Brother--> ‘Denver’
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- It distinguish the structural roles of the objects word and proposition which goes against the
tree recursive spirit.

* generalization
We derive naturally an extended relation from the recursion of the tree, replacing “word-
entity” by “phrase”. And this comes down to introducing relation between parent-tags;
entities are general brothers if their parent-tags are brothers , according to first definition
or according to generalization , the definition is recursive, just as the tree is.
A ldd-brother B <=> parent-tag(A) ldd-brother parent-tag(B)

Definition II -

this time the relation may be applied to tags too
((... (P from
(NP Dallas))
(PP to
(NP Denver)))

‘NP’ --g& Brother--> ‘NP’
‘Dallas’ -—gal Brother--> ‘Denver’

It accepts “cousin” words like ‘Dallas’ - ‘Denver’ thus longer dependencies.

S
NP VP
N show NP NP
me NP PP ADJP
all thej—f—lights PP PP early PP
from NP to NP ;;1_ _______ i\ﬁ’
Dz;iias De;;'er the m-(;_rning

Does it jeopardize consistency? Not with the strong constraint on Tags identity, which

prevents ‘Dallas’ and ‘Denver’ to be brothers of ‘the morning’.
c.3) note

* transitivity potential
Notion of brotherhood naturally suggests transitivity ; brothers of brothers are brothers. This
fact is verified if several words occur as brothers in the same phrase. So we are tempted to

“merge” brotherhood. This could be a mean to deal with sparseness ; arguing that the
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resulting unseen brothers deserved to occur, had data been only larger. Yet it would raise
some statistical problems, as to what probability they should be granted, and it might generate
misleading if unseen brothers outnumber seen brothers. So, if this idea is applied it need some
refinement first.
* assoclativity potential

How should the model deal with successions of brothers in a phrase? The relation is so
selective, it would be a waste not to use all found brothers. Yet is the brother n-gram
relevant? taking coocurrences in account will probably result statistically in sparse data and
unreliable estimates. Just as transitivity, associativity potential could be developed, under

certain conditions, but first of all, let us evaluate the worth of simple brotherhood

dependency.

3.2.d) Parent connection

d.1) intuition

» looking for contents dependencies and word associations ; for example, ‘flight’ may
induce ‘book’ , ‘book’ may induce ‘ticket’, ‘from’ may induce a place name.

» suspecting importance of the node ; the word occurring at a node may be the head of the
coming branches / phrases, for example, in figure 3.1.1 and 3.1.2, ‘the nonstop flight’
would be head of the phrases ‘from Dallas to Denver’ and ‘early in the morning’.

e The second natural tree relation; fatherhood

d.2) definition

A ldd-parentl B <=> parent-tag(A) tree-parent parent-tag(B)
Definition I

(PP from
(NP  Dallas))

‘from’ --Parent--> ‘Dallas’

as we did for the brothers, we can draw a generalization :

A ldd-parent B <=> parent-tag(A)ldd-parent parent-tag(B)
Definition II

yet this might not be as clear as in the brother case;
* ajump is already performed by definition
» applying the generalization add all the elder ldd-parents to the list of ldd-parents.

The adopted view is to keep the closest parent.
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S
NP ) VP
* show NP NP
é;c_ NP PP PtISJP
all the“f_lights —51—3_"”““"—1;; early PP
~from NP IQ -“I_\i) 11_'1— _______ ;Ii’
D;l_ias De_r;/er the rr;;)—ming
sons of ‘show’
d.3) note

* tree point of view:
this relation is at the root of the tree structure: it should inherit the consistency of creating a
node there.
* linguistic point of view:
the parent is assumed the head of the following proposition. It is natural enough in English, it
may need adjustment according to the tongue (German...)
s transitivity
In a different way as brothers, parents have also a transitive quality ;
‘arriving’ induces ‘after’
‘after’ induces ‘o’clock’.
It is verified that ‘arriving’ induces ‘o’clock’.

Now using that kind of propriety requires some caution, as previously explained.

3.3 First glance : Mutual Information

3.3.a) Coilecting : tables and vectors

a.l) table of dependency

A table for a given dependency lists the following data; For each item of the Vocabulary
(regular word), a list of the items which depends on him, says the training data. For each

couple thus listed we store its occurrence count.
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‘from’
--> ‘to’ 371
--> ‘on’ 4
--> ‘into’ 3
--> ‘back’ 2
--> ‘after’ 1
--> ‘at’ 1
-> ‘from’ 1

‘leaving’ .
-> ‘arriving’ 20
--> ‘returning’ 9
> ‘departing’ 1
--> ‘going’ 1

someentries in the Brother table

figure 3.3.1
‘after’
-—> <mixed number> 121
-> ‘o’clock’ 35
-—> ‘day’ 4
‘arriving’
> ‘at’ 13
-> ‘before’ 9
--> ‘approximately’ 3
-—> ‘into’ 1

someentries in the Parent table

figure 3.3.2
a.2) dependency vector
A vector is defined as follows;
FORMAL TRAINING RECOGNITION
*  word ‘to’ <?>
past information: I l
* Bigram <PLACE> <PLACE>
 LDD I(Brother) ‘from’ “from’
* LDD II (Parent) ‘flights’ ‘flights’
dependency vectors
figure 3.3.3

The past information stored in the vector is the source that will help us uncovering outputs.

The behavior of this backing source is deduced from the tables described in a./) .
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3.3.b) Consistency : mutual information

assessing their adequation to recognition?

Before going any further in the recognition process let us have a look at the collected tables of
brothers and parents. As seen previously, mutual information gives us some clue on the
information stored in a dependency. It can tell whether the couple covers an actual correlation
in the source’s outputs or is rather an accident, if not a misleading track. |

for example, let us look at some brothers of ‘from’ :

Brother Mutual Count - Mutual Info
1073
“from’
->  ‘to’ 371 10 000
-> ‘on’ 4 -40
> ‘into’ 3 60
-->  ‘back’ 2 40
-> C‘after’ 1 -2
> ‘at’ 1 -8
->  ‘from’ 1 -20

mutual info of ‘from’ as a brother
figure 3.3.4 '
The higher the probabilities of words, the higher the risk to be mislead by accidental
occurrences. On the whole in this case, mutual informations add to a positive value. ‘from’, as

an output of the “brother source” succeeds in uncovering information about the source to

recognize.

b.1) Brothers

* sparseness

Compared with the amount of data, there are few brother occurrences. A sensible amount of

occurrences are isolated (singletons). Yet observing them, most make sense from a simple
“Interpretative” point of view.
* function words

Some trends can be observed. Mainly, links between “function words” are common ;

‘from’-->‘to’
‘before’-->"‘after’
‘on’-->‘on’

more semantic information appears sometimes,
‘leaving’-->‘arriving’
<place> --> <place>
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But not so commonly. This is due to the low complexity of the sentences, which can be

accounted for by their limited length.

b.2) Parents

* trash occurrences
A Jot of couples occur only once. If high probability words are involved, then we can draw a
conclusion, they have little chance to be parent and sons, but if low probability words are
involved, we cannot really conclude, resulting Mutual Information may be positive, even
high, yet who can tell if the dependency is reliable?
Besides, conjunction words like ‘and’, ‘then’, end up with so numerous sons, that it doesn’t
express much information , typically, mutual information will be negative for such words.
Now the table reckons a lot of couples, much more than the brothers table, and apart

from the trash occurrences, still a lot of couples capture a positive mutual information.

* solve the contiguity problem

Particular cases of parents are bigrams, but the main feature of those dependencies is their
ability to jump over contiguity ; even if they only dealt with very local relations, they could

be a good improvement to bigrams. We find such dependencies as
‘book’--> ‘flight’, ‘book’-->‘seat’
‘show--> ‘list’
‘arriving’-->‘0’clock’
‘flights’-->‘from’, ‘flights’--> ‘to’
So, it is time to use those dependencies effectively and see how much they will help

recognition.
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4. The Recognition Task

definition-optimization

4.1 Context & Hypothesis

4.1.a) Structure : ideal case

a.1) from text

We are staying apart from acoustic domain, as exposed in § 2./ the language term is our sole
preoccupation. therefore we conduct our recognition experiment on text. We will recognize

“regular” words, in the sense defined in § 3.2, i.e. an isolated word or one of the few generic

classes.

a.2) known previous words
The guess is made with the help of preceding words. In real case, there is no way to check if
previous guesses were right. But to evaluate the potential worth of this source, we are using

the correct preceding words.

a.3) known skeleton

The joint sources we’re using to guess outputs from text source, are the bigram source, the
brother source, the parent source. Which means that for each output we supposedly know its
bigram, its brother and its parent. Now, to have such elements as brother and parent we need

to know the tree structure of the string we are guessing.
We are actually uncovering word component of a blind syntactic tree, in other words, we

know the skeleton of the sentences.

4.1.b) Data : Atis or WSJ ?

b.1) alternative : Wall Street Journal

up to now, we quoted results on ATIS, but we dispose of another corpus, parsed the same
way as ATIS, the WSJ corpus; abstracts from the Wall Street Journal.

Here is a parsed sentence from WSJ :
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(S NP (NP  Pierre Vinken)
7(NP (NP 61 years)

(ADJP old))
y
will
(VP join
(NP  the board)
(PP as

(NP  anonexecutive director))
(ADVP (NP Nov. 29))))

parsed sentence from WSJ
figure 4.1.1

b.2) advantages and drawbacks

* scale
WSJ corpus is way wider than ATIS corpus. There are 1,300 parsed sentences in ATIS, and
more than 10,000 in WSJ. This is a major point dealing with statistics, where sparseness and

unreliability are no slight worries.

* vocabulary
On the other hand, ATIS’ vocabulary is much more reasonable than WSJ’s one. On a 1,000
sentences base, ATIS has a vocabulary of ~300 words and WSJ of ~5,000 words, and this
figure can still increase much on total WSJ data. ATIS context is very limited : questions on

flights and travels in US, compared to the scope of financial articles.

* structure
Now, sentences of WSJ tends to be much longer and more complex than usual interrogations
found in ATIS. This accounts in part for the vocabulary increase, mainly it stands as an asset

concerning the search of parents and brothers through the tree.
b.3) choice criterion ; mutual information

Ideally, we would have the ATIS limited vocabulary with the WSJ amount of data and
syntactic wealth. As this 1s but a dream, we have to compromise. To settle a choice, we
looked at dependency tables and mutual information figures. Too many singleton and non

consistent dependencies were occurring with WSJ. We will run our evalution on ATIS.
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4.1.c) Task : prediction

c.1) without acoustic evidence
Since we are using language mode] only, our evaluation is on the potential predictions of next
words, i.e. the potential loss of perplexity.

c.2) from several predictors

We are using different information sources :

* Bigram
* Brother
+ Parent

Each involves a model of ATIS source, we will unify the model to use it a coherent

information source.

4.»2 Processing -> stochastic / knowledge

4.2.a) Problematic

Here is some description of the way to collect, store and use the dependencies we have

defined, on both knowledge based data and stochastic data, on both linear and

multidirnensional data.

4.2.b) Architecture:

b.1) source

[text]
->parsing->
[parsed text]
-> dependencies detection->

[vectorial text]

In further operations we will use vectorial text:
words are replaced by Dependencies Vectors.
b.2) training set

[vectorial text]
->parameter estimation->
[tables of dependencies]
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b.3) adapting set

[vectorial text]
->factor converging->

[adapted factors]
b.4) testing set

[vectorial text]
->recognition (evaluation) ->
[word probabilities]

4.2 .c) Proprieties

¢.1) modular attempt
This architecture distinguish
» information used to track dependencies
-> operations on an information rich corpus; the parsed text.
* information used to recognize outputs

-> operation on essential data; the dependency vectors
c.2) limitation

Yet we must not ignore that the gap is somewhat artificial; as long as we’re using the

corpus to determine the dependencies hence the vectors, it is part of every step.

4.3 Sparseness problem -> smoothing

Sparseness of data is an inherent propriety of any real text, and it is a problem that one
always encounters while collecting frequency statistics on words and word sequences (N-
grams, long distance couples...) from a text of finite size. This means that even for a very
large data collection, the maximum likelihood estimation method (MLE) does not allow us to
estimate probabilities of rare but nevertheless possible word sequences-many sequences occur
just once (singletons), many more do not occur at all. '

- For unseen sequences maximum likelihood estimator yields a null probability, which entails
infinite uncertainty. It is not acceptable for a recognizer. Moreover, for limited data
collections, not only are unseen sequences more numerous, but a lot of sequences will occur
as sin‘gletons; occurrences are more loosely related to the actual distribution of the language
source; estimating the probability of sequences requires another statistic than MLE.

The ATIS corpus we’re using raises acute sparseness problem, we expose them and some

remedies.
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4.3.a) Sparseness: the figures

a.1) Context

The file consists in 1382 sentences, of 16,273 words. We chose the following partition
- we’ll discuss that choice further -,
*  3/4 of the file, i.e. 1151 sentences, are for training purpose
* 1/4 of the file, i.e. 231 sentences, serves the testing.
In the training set, sequences of words (Bigrams and LDDs) are reckoned, those are the
sequences that allow prediction in target texts, assuming it has the training text behavior.
Now, two questions arise: do target sequences behave as their training homonyms? and more
confusing, does the training homonym exist? In the testing set, we reckoned the actual

sequences, to compare with the training sequences.

a.2) Figures
For each target sequence, we asked ; was this sequence seen in the training ?

We apply the poll to Bigrams, to Parents and to Brother.

Bigrams Parents Brothers

unseen unseen unseen
20% 30% 18%

seen
80% 70% 83%

unseen proportion for bigrams, parents, brothers
figure 4.3.1

For Bigrams, as for Brothers, 1 sequence out of 5 was not encountered in the training
set. For Parents it’s even worse, 1 sequence out of 3; it’s obviously unrealistic to classify
those unseen Parent-Son sequences as irrelevant compared to the seen ones, Something has to
be done for those lively “phantoms”.

Furthermore, as shown by figure 4.3.2 , Brothers and Parents appear to be quite
scarce,

* compared to Bigrams
Whereas any word can be associated with a bigram, even first words which are associated

with the <start> state, only few seem to be related to a parent and much fewer to a brother,
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this stands for a first limitation of LDDs, but it is the price to pay for selective model, and it
shall be kept in mind that LDDs are alone in their category, and deal with quite different -

information as bigrams.

Sparse Sequences

@ unseen

D seen

Occurences

a u p
£ 5 2

=
0 & ©
—1&_(t—4
m M

unseen occurrences of bigrams, parents, brothers
figure 4.3.2
* in absolute
Regarding statistical need for consistency, Results aren’t so reliable dealing with as scarce
occurrences as brothers, even if the figures are faithful to the intrinsic quality of the Brother
model. On top of that it can be suspected that sparse data artificially emphasize scarceness of
selective models. So, we’re not experimenting in the best conditions, but it is a first approach,

it is interesting to see what it can tell.

4.3.b) Structural remedies

word classes

Classes of words are defined, so that probabilities are computed not on words but on
their classes. Besides lowering the task complexity, they act as generalization factor and
consistency accelerators, provided that they are well chosen. For example, correlation
between ‘from’ and ‘New York’ may be the same as between ‘from’ and ‘Dallas’, therefore
the correlation will be more effectively taken in account statistically, if seen between ‘from’
and the class ‘<place>", it is all the more true than the data is sparse.

That kind of clustering can be done in a unsupervised way, by statistical iterations
now, thanks to particularities of ATIS, éorne classes are very naturally defined, such as place,

day, month, number ..., whose elements, we can assume, play the same role.

(1)

This clustering was performed even before getting to the results shown above.
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4.3.c) Essential remedy : smoothin

c.1) smoothed estimation

Facing sparseness and inadequacy of MLE, an other statistic is applied. The main idea
1s to reduce unreliable probability estimates given by the observed frequencies and
redistribute the “freed” probability “mass” among sequences which never occurred in the text.
The redistribution may be uniform - affect the same probability to all unseen sequences- or
follow some criterion according to the unseen sequence.
As a result recognition of the training set is not so good as performed with the MLE, which is
the best estimator, but applied on a test text it gives better results; it helps going beyond the

limitations of a training set.

c.2) Katz’s estimate

We applied a smoothed estimate for bigrams as proposed by Slava M. Katz. The
reduction of unreliable probability is achieved by Turing’s like estimates.

Let N be a sample text size and let n, be the number of words (m-grams) which occurred in

N = Zm,
r (4.3.1)

Turing’s estimate Pr for a probability of a word (m-gram) which occurred in the sample r

the text exactly r times, so that

times is

p=l
N | (4.3.2)

where
r=(r+ I)E’fi.
n, (4.3.3)
A procedure of replacing a count r with a modified count r* is defined as “discounting” and a

ratio r’/r as a discount coefficient d,. When r’ = r* we have Turing’s discounting. An m-gram
is denoted as w;" and the number of times it occurred as c(wl"'). Then the Turing

W w,
estimate is
¢ lw
P = (N‘ ) (4.3.3")
n
where ¢ (x) = (c(x)+ 1), (4.3.2)
" ,
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How can we interpret this replacing?
(c+1)n

The discount coefficient is d = el
cn

c

. _ contribution(classe ¢ + /)

1.e. T
contribution(classe ¢)

It smoothes the hectic repartitions between different classes, most of all, the edge effect of
singletons, figure 4.3.4. displays the repartitions of classes for bigrams, brothers and parents

relations. The smoothing forces cn=(c+1)(n+1)

bigrams brothers parents
cn c.n c.n
1000 100 400
sook\_\ 50%\’\’\/\ 200M
O+—~—+—+—+—+—+—c R T e A S Y 0+—4—+—+—+—+—F-c
123456738 12345678 12345678

classes contributions
figure 4.3.4
It follows that the total probability estimate for the set of sequences that actually occurred in

the sample is

(4.3.4)

This in turn, leads to the estimate for the probability of observing some previously unseen m-

gram as a fraction n,/N of singletons in the text:

,'(Zfr(w,"‘) == (#3:9)
wiiclwit =0
d, is defined as;

8 ey = o (W7 ) = B (w7") (4.3.6)

Where Py, is the maximum likelihood estimate. As maximum likelihood estimates sum up to

1 on the sample’s sequences, and given the previous sigmas ;

4
o = | 4.3.7)
w,'":c(wl'")>0 ( : ) N
5:(»"") can be interpreted as the contribution of an m-gram " with a count <(wr) to the
probability of “unseen” m-grams. Explicitly ;
§,=——=(1-d)=.
N N N (4.3.8)

An analogous contribution is defined for conditional probabilities
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cond __ _ C(Wlm)
sy =[1 dc(wr)jc(wr-l J 39

An estimate is derived from 55‘("ﬁ)The sum of all contributions is then distributed on the

unseen m-grams proportionally with the estimate of the (m-7°gram, so that the definition is

recursive. Let’s focus our interest toward the bigram case (or the LDD case, both involving

pairs of words), for existing sequence the estirnate is

P.\'(WZle) = dc(w,.w,) "CLML)
2c(w) (4.3.10)

B3 is defined as the sum of the contributions of existing bigrams starting with w, ;

Blw,)= Z 560:7 =1 ZP(WZIWI)

wyic(wy Wy )>0 watc(w,,w,)>0 (4311)
This gives an estimate of the sum of conditional probabilities of all words w, which never

followed w, .8 is distributed among unseen w, according to their probability estimate

B (w,w,) = o (w,) (4.3.12)
where « is a normalizing constant,
1- P(w ]w
afw,) = Blm)  _ “lE*Wﬂ’(" ) (4.3.13)
: > P(w,) 1— ZP (w,)
waic{wy,wy )=0 c(wy,wy)>0

c.3) resolving edges’ problems

* superior edge
A modified version is proposed which doesn’t discount high values of count c>k,
considering them as reliable, yet leaves intact the estimate n,;/N for the probability of all

unseen m-grams. 1he coefficient d, of this new discounting is calculated to abide by those

constraints;
forr>k, d =1
_r_: (k+1n,,,
4.3.14
for1<r<k, d =-- bm ( )
1 . (k + l)nk+l
l.m,
In fact, newly defined contributions (r/N—r'/N)are proportional to the Turing’s contributions
(r/N-r*/N)

As for the value of the parameter k, k=5 Is recommended, though the model is not very

sensitive to that.




* inferior edge
Now, it might very well happen that for several r class r(w) is inexistent, i.e. no sequence
occurs exactly r times in the sample text. To prevent ill disappearances and transferees, we

added the following rule;

rr#0,r'=r'= (rtlm
n
y 4.3.15)
+1+ Pyge, 20 (
r‘:O,r'Z(r p)nr+l+p ’p:p>1’{ I+p
r r+tp =0
This doesn’t affect the preceding result as, owing to (4.3.2)
r=0& N,y =0
and N=Ym=>m, (4.3.1)
r rin, >0
For example, the first sum formerly calculated (4.3.4) is now

rl

P'(w/")= n,—

w:r(zw;>0 ( : ) r:r>Oz,r;r >0 N

1 7}+lnr»
— _znr i+1
N n,
n’r
=11

N 4.3.4%)

which is the same as (4.3.4), provided that there are singletons, i.e. 7 =1 Our rule is a mere
re-ordering of the classes but keeps everything else even, it makes sure that counts’ sliding
are operated only between existent classes. It makes sense since classes set in the sample text
englobe any further word or sequence ; if the sequence occurred in the sample text, it belongs
to its occurrence’s class, if it didn’t occur, it belongs to the “occurrence 0 class, i.e. the class

of unseen sequences .

¢.4) what to smooth ?

The method was originally made up for bigrams. Adapted and efficient, it settles the
problem of unseen bigrams. What about brothers and parents? As they are combined with
bigrams, the necessity of smoothing is no longer so urgent; if they yield null result, the
bigram’s conditional probability will just take over.

Yet null probability is always a severe loss, moreover, the sparseness figures (cf. former §
figure 4.3.1) shows LDDs suffer from unseen occurrences as much as bigrams. Therefore it is
logical to think ML estimate is no more adequate for them as it was for bigrams. The graph in

figure 4.3.3 compares perplexities of the testing set, whether LDDs are smoothed or not.
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smoothed =r, not smoothed = g, (training = b)
50 N T T T T T T
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smoothing LDDs
figure 4.3.3

Though slightly better, the smoothing of LDDs is not so helpful as could be expected, several
reasons may account for it:

« ascale effect ‘

Bigrams are much more numerous and used than brother or parent, who are “optional”, so
that some changes on the statistics of the latter don’t achieve much improvement, this point
will be discussed in more detail later.

/* anunadapted smoothing

Now, “ill conditioned” doesn’t mean the statistics of LDDs are inconsistent, neither does it
find their sparseness desperate, it simply suggests this smoothing is not adequate. Specific
smoothing for LDDs could be explore, either purely statistic, or somewhat structural, as

deriving new brotherhood transitively from existent ones.
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4.4 Correlation question-> combining

4.4.a) Back to history

A word is granted a history vector by the model,
h= Wi W Wi | (4.4.1)
Probability given history (cf. § 2.1) is expressed according to the model as
P(wi[wi_l,..,wl) = P(w,.‘l;,.)

(Wilwi—l s Whro,» wpar‘») (4.4.2)

P
f(wi’wi—l’wbmi’wpal;-)
What is the explicit form of /7

Calculating f exactly, entails knowing the correlation between all pairs of elements in the
history vector. Getting those correlations statistically, using crude samples’ counts, is out of
the question; introduction of parameters in this non-parametric question is not justified here.
cross counts will be too scarce. On the other hand, Getting them mathematically requires
some circumvolutions and additional hypothesis;basically our hypothesis is that strong
correlations exist between W, <> l;,.
nothing was assumed concerning the cross correlations in .

It is not necessary to look for an exact calculation of f , we can reach a satisfying

estimate not bothering explicit correlations; by linear interpolation and stochastic converging

4.4.b) Linear combining

b.1) expression
We have estimates of each conditional probabilities, we want to combine them
linearly. A general expression is,
P(Wlwag,wbmvaar) = alP(wlwb,.g) + azP(wlwbm) + aBP(w‘ww) (4.4.3)
o+ 0, + 0y =1
That way the estimate keeps evidently the statistic propriety to sum up to 1.
b.2) application ; context cases

We will handle several cases, and apply the following distributions:
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bigram brother parent — distribution P(wlfz)

x () P (W,Wb%)

x x (2) (1= 24 )P(wwyg )+ 2, Py,

x x  (3) (1= 20 )P(]wig ) + Ao P[]

x XX (4) (1= A = Ag)P(wwig )+ As P(Ws ) + e P(WWpar )

It can be assumed that some proprieties of cases (2) and (3) are held in case (4). Intuitively, if
Brother Model and Parent Model are orthogonal, their weights relatively to Bigram Model
should be blind to case (4);

2'3 —_— ;LI
1-As—4; 1-A
Ay A
1-A4—43 1-4, 4.4.4)
b= 7;1 —xxixz
PN _ —71»1732 (4.4.4")
1=,

If they are not orthogonal it can be pointed out that our formulas can’t really take their
correlation in account. In order to take advantage from their virtual correlation we should pick
combined information from the training text and inject it in the distributions. This would
magnify the sparseness problem and complicate excessively the probability estimates. In the
end, computing A,,A,is a compromised approach to Brother / Parent correlation, which
allows us not to get burdened by more parameters. |

Now how do we estimate the linear weights A ?

b.2) interpretation

Linear combination of probabilities might appear unnatural -compared to products- yet
this reflects an intuitive concept of distributions mixture(3.
Applying figure 4.4.1 scheme to LDD context : three possible distributions Dy;,D 0,0 par aT€
chosen with respective probability ¢, «,,a; , (standing for statistics T1, T2, T3) to spawn

the observed word w (standing for observed output Y) .
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possible
source / model

random variable observed output

combining models linearly
figure 4.4.1

4.4.c) EM aleorithm

c.1) Intuitive aspect

Such a mixture emerges most naturally dealing with Gaussian statistics (red and white
blood cells, speech and silence...), and the Gaussian case allows simple and elegant estimation
as we’ll expose next.

Generally speaking, let N4 and Np be two distributions whose sets of parameters are
0,,0,.they are chosen respectively with probability A,,4,, the parameter we will have to

estimate is
0=[0,,0,1,,,;]

In our combining case, we don’t have to compute ©,,0, which are implicitly estimated from

the training set, but we have to estimate A,,4,. - the EM algorithm is more powerful than

needed, anyway let us expose it generally.
The probabilities of observations (y ; ) are
F(2:)= AN (5,) + 2 5N5(5,) (4.4.5)

If it were known when A was used and when B was used in generating observations, then ML
estimates could be used for 4445 (multinomial) on the one hand, and for ©,,0, on the
other hand. Since that information is hidden, the solution is to assume some parameter © ,
compute that way when and how often each distribution is expected to be used given the
observed data; the expected statistics help to compute new estimates of parameters. Then start

with the new estimate and iterate.
The probability that A was used, given that y, was observed is
Fy (X; = A:)’;)
Pe(Xi :A’yi)+P6(Xi :B:)’i) (4.4.6)

Py(X, = Aly)=
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given f formula (4.4.5),

- — Ay ()’f> 4
By(X, = Ay,) = WA ISR ATIE (447

The expected number of times A and B were used are

Tou= zn‘,Pe (Xi = Ab’i)
i=1

Top = ipe(Xi = BI}’i)
i=1

To4 1s a “statistic of order 0”.

Applying Maximum Likelihood estimate for multinomials,

/{A _Tos T
o Tog T - (4.4.8)
1. =—tos _Zop
’ Toa+1p5 n
therefore
- n A . '
i,=<% AY) (4.4.9)
nia A’ANA(yi)_}_A’BNB(yi)

A similar approach can be applied on higher statistics (means, covariance, ..)

¢.2) Theoretical aspect
It can be demonstrated that the algorithm “Expectation-Maximization”, which consists

in

1. Choosing an initial set of statistics ©

2. Computing Expectation E, (log P, (x, y)[y)

3. Maximizing it for ©

4. Setting ©=6

5. Going back to 2. until convergence is enough

converges toward 7, (y).

An interesting form is found for exponential distribution
fo(y)=h(0)™*

with parameter 0= [61 yeos Gn]
and function () =[5 ). L))
The EM comes down to solving the equation:
E,[T(x.5)] = Eo[T(x.)ly] (4.4.10)

where x stands for the used distribution, y for the observation, and @.for the new estimate.
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c.3) Application to dependencies combining

Let’s deal with a case where two dependencies are combined. For example Bigram

Model and Brother Model.

P(w‘ﬁ ) = AP(wiw,,, )+ (1= 1)P (Wlwag) (4.4.5%)

The statistic we would like to have to estimate A is the number of time the Brother Model

was used,
T= 2 5(x,., Bigram_ Model)

Since we can’t count this statistic we will use its expected value (i.e. use EM algorithm)
1. Start with an initial guess of A (e.g. 0.5)
2. Solve E[T(xy)]= E[T(xy)] (4.4.10")
3. Reestimate A =14
4. Go back to step 2., until convergence criteria is satisfied.
Solving equation of step 2. we find eventually,
A= le—i P,(X, = BroMly) (4.4.8)
i=]

7 u . .=
as in (446), A= iz PBroM (y,)P(X, BrOM) .
N 45 Py (y:)P(X; = BroM )+ PBigM(yi)P(Xi = BigM )

) P(y,bro,)A
so that /1=%2 Lifora) (4.4.9°)

- P(yl.lbrol.);t + P(yi'big,.)(l - 1)

This result is exactly the intuitive one found formerly (4.4.9). Acan be seen as an optimal

weight of the Brother Model, compared with the Bigram Model.

c.4) Entropy’s tale

The EM algorithm acts as an Entropy minimizer; the Logprob decreases at each step,
as expectation of Log(P) is maximized.

» Weights as consistency measures
From the above cited point of view, weights can be seen as adapted to Information extraction;
if a model succeeds in capturing Information from the source, it will be granted a high weight,
whereas an unadapted model is granted a very low one. Actually, weight measures the
Information consistency of a model, as far as the target text is concerned.

* Comparing to Dichotomy

The above remark also suggests other convergence algorithms of, minimizing Entropy - or

Perplexity - though any algorithm is not assured to converge stochastically toward A.
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Actually, it can be demonstrated![3] that Entropy is convex varying with 4. As a control and
out of curiosity, we implemented a simple Dichotomy algorithm. Roughly, the minimal
Entropy found by both algorithm are the same, yet not exactly so. Now values of weights can

vary to some extent. Mostly EM appears ways much quicker for a given precision.

Iterations Perplexity
Brother Parent Brother Parent
Dichotomy 20 20 0,501 0,276 20,43
EM Algorithm 5 6 0,462 0,311 20,52
Dichotomy / EM
figure 4.4.2

Obviously, we should not seek high precision for weights; if Dichotomy is reliable, it seems
we can’t assess weights with a precision superior to 10%, This point is confirmed in other

articlest!1[2], as is the very slow variation of Perplexity with those parameters.
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5. Results
5.1 Prediction Ability

The task affects probabilities, computed from the described model, to each word of the
target text. They finger out the ability of the model to predict those correct words. Here are

the result of the different model on a test sentence.

QOutputs Probability (%)
START -> Bigram | Brother Parent | Combine

I 9 - - 9
would 21 - - 21
like 64 - 66 64

* 56 - 58 56

to 16 - 59 39
book 8 - - 8
a 30 - - 30
one-way 7 - - 7
flight 23 - - 23
from 7 - 13 10
<place> 73 - - 73
to 25 71 12 43
<place> 54 - 55 54
on 4 - 27 17
month 19 - 20 19
<numberth> 56 - 15 33
number 31 18 16 21
END 32 - - 32

prediction scores of models
figure 5.1.1
In this case, we can see that
+ bigrams are very efficient, so that parents and brothers don’t add much.
« parents achieve quite a good job though.

Now, those features are actual trends, and we will see them again through other results.

5.2 Linear Weights

5.2.a) the last weights

» A, for brothers combined with bigrams

. A, for parents combined with bigrams
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e A, A, for brothers and parents combined with bigrams

Now, the A4;,4, turn out to converge very closely to their estimates from A, and A, exposed

in §4.4, using equation (4.4.4’) . So that we don’t need to compute them.

A

5.2.b) Brothers vs. Parents

Here are the values of A, and A, for different amount of training.

Brother, lambdai/lambda3

1 { ! !
0.75 0.8 0.85 0.9 0.95
train rate
Parent, lambda2/lambda4
04 T i I
{ 1 | T
0.75 0.8 0.85 0.9 0.95
train rate
Brother o/ Parent +
—t
1 ! i J
0.75 0.8 0.85 0.9 0.95
train rate
Lambdas
figure 5.2.1
On the whole, it can be contended that A,~0.5
A,~0.3
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This means that brothers and parents are as consistent to give rise to the text as bigrams ; their

distributions have very close probabilities to be chosen and foster the next output.

5.3 Perplexity

Perplexity is estimated according to the Logprob. The Logprob takes in account
probabilities of correct words as shown above. The “Perplexity of the model” is the perplexity

obtained on a test set. Yetitis interesting to cast a glance to perplexities computed on training

and converging sets.

5.3.a) test Perplexity and amount of training

We divide the corpus into three sets ; training, converging, testing.
What amount of training should be used and what amount of testing ?
As we don’t have a large corpus, using to much for training will yield a testing set reduced to

irrelevancy.

Combined Models

>
=
2
=
O
a ¥
13 t t t {
5% 80% 85% 90% 95%

train ratio

test perplexity / training amount
figure 5.3.1
The dramatic decrease after 85% / 90% is due less to good training estimates than to
unreliable testing estimates.
The observed perplexity, around 17, means that ATIS requires only a 17 items vocabulary to
generate all sentences ! Truly enough, some fixed constructions are used, with little

variations. Theoretically, one has just to guess the type of construction and the type of

variation.
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5.3.b) Compared sets

Let us consider Perplexity of the different sets ;

training set ; this one is clear, it estimates the perplexity of the model

converging set ; this is less clear, as the factors are adapted on the set to minimize its
perplexity. Difference between training and adapting perplexities can tell the reliability of
adapted factors ; their generalization abilityP] .

training set ; this perplexity has no immediate interpretation, as all statistics were taken
from the set. Yet, Difference with training perplexity tells the model’s generalization
ability. Applying is different from training, whatever the cases, so that too well adapted

models are no good besides training.

Sets Perplexities / training ratio

120
100 +

— @ ——testing

~——O——converging

perplexity
(o)
[}

40

——&—{raining

Ol I 1 i
9% 39% 69% 99%

train ratio

figure 5.3.3

Surprisingly enough converging perplexity is sometimes higher than testing perplexity. The
converging set must have a real higher perplexity. As the set is very small (100 phrases) it can
be accounted for by mere misfortune. More precise figures would be achieved by shifting

systematically the sets.

5.4 Comparison

5.4.a) LDDs improve Bigrams

This Comparison is the gist of our experimentation ; are LDDs worth being added to

Bigrams? We compare Bigrams performances with (LDD & Bigrams)‘s ones.
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In accordance with former observations, the reasonable training window is set between 80%

and 90%. In those conditions the improving is pretty stable and amounts to 8%.

LDD’s Improving

21
8% lessened ——&—— combined
g 19 models
=
2
g —L—— bigram
a 17 g
8
15 -
13 } } 4 {
R = = I R
y (@] ) o 1'e)
~ oo oo (@2 (@2}
train ratio
figure 5.4.1

5.4.b) Parents better than Brother ?

Parents and Brothers don’t have the same part in the improving. We isolated two models;
(Bigrams & Parents) and (Bigrams & Brothers), it appears, on the different sets, that Parents

have more influence than Brothers.

Sets Perplexities / Models

18 —

_ 16 % —8—— (esting
g 1441
= ——O—— converging
£ 124
" 10 . ——® waining

8 T T 1

bigram bigram & bigram & all

' brother parent combined
Model

figure 5.4.2
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Parents vs Brothers

23 T
2| combined
= del
.g models
% 1 bigram
[&F
8 ——— bigram &
parent
——O—— bigram &
brother

5% 80% 85% 90%  95%

train ratio

‘ » figure 5.4.3
Those figures lead to the conclusion that parents are at the improving factors, hence Parents

contain Information.

5.5 Confrontation with weights

We drew conclusions from the perplexities What about the weight values? To some extent

they indicates consistency.

5.5.a) about LDDs improvement

The weights found for Brothers and Parents seemed to show them as equally efficient
as Bigrams in “explaining” outputs identity. From that point of view, the 8% improvement
are poor.

Now, it should be kept in mind that we measured only the extra-performance on Bigrams, the
poor improvement is due to redundancy or collisions in predictions ; LDD well predicted

words tend to be also Bigram well predicted words.

5.5.b) about Brother / Parent comparison

Brothers weight was slightly higher than Parents’, which means brothers relations
were found more consistent than parents’. Thus is Brothers perplexity quite disappointing.
But this poor achievement can be accounted for by scarcity of brothers, compared to parents
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(and worse, to bigrams) each relation is consistent enough, but there are too few to have a real

impact on global recognition.
This suggests however, that corpora with longer sentences would suit brothers better, if
vocabulary increase can be mastered, as long sentences are more likely to develop repetitive

and symmetric structures.

5.6 Branching out

5.6.a) around those LDDs

We performed a raw experiment on brothers and parents, but some points can be developed

about those very dependencies :

* incorporating transitivity and associativity potentials

+ applying a context dependent combining

 using layers of word classes (grammatical, semantic etc.) in the predicting

* determining LDD without pre-parsed data
The latter point is required for an actual application of LDDs in a speech recognition
experiment. Two approaches may be figured out ;
- real time parsing; that is quite complex, even a posteriori parsing is not automatic, yet
on limited vocabulary experiments some simple structures as (NP, VP, PP) are recognize
along with the uttering.
- direct vectors’ estimation; is it possible to predict next brother or parent ? Some
structural recognition may be involved. The basic idea is that we are not using all

information contained in the parsed structure, so there may be some avoiding of building

it entirely.

5.6.b) adding other LDDs

Other kind of Long Distance Dependencies can be defined.
» without linguistic structure; some alternatives were exposed in §3.7 .
* with linguistic structure; more information can be used from parsed sentences to define

new rules, attached with extra parameters if need be, or operating on classes, for example

level conscious relations or tag attached relations.
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6. Conclusion

6.1 conclusion of the study

This study was a first approach to and evaluation of two particular language models,
the Brother dependency and the Parent dependency. It lead to the conclusion that Parent
Model certainly captures Information, while Brother model is not adapted to the studied
context.

Now, all along the study several notions and methods were exposed. They are more than mere
tools to get to the result, they reflect general points of views and directions. We present here

the features we found dominant.

6.2 lesson of entropy

The Entropy approach is no doubt very promising. Basically, it stems from the idea
that recognition should by ruled by information contents. On the one hand it is related to an
optimal coding, on the other hand it is a very natural process of human recognition ; adapting
to the expected information, put in another way “when to expect the unexpected?”.
recognition and, generally speaking, communications, heavily depend on Information stakes.

Furthermore, it is a simple an efficient way to characterize outputs, models and performance.

6.3 toward more collaboration of linguistics and statistics ?

Statistics are a powerful mean for speech processing, but there is no avoiding
problems of reliability, sparseness, computation cost etc. Besides it cannot reach some bounds
with no exterior hints and knowledge to guide it.

Using statistics jointly with linguistics might be an answer to statistical heaviness, in any case
‘it seems to be the only way to break present limits of language modeling.
Now, the scope is still wide for language features to be tracked combining linguistic

knowledge and statistics.
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[ AIM OF THE STUDY ]

Improving speech recognition
with language modeling

</ sheech recognition using language

hy? ot
models? .l
how? g(gtatistical approach) /

% N\ =
word history : 0 / e ol
classical models " grd? " — anps
</ another history... pypohese \...,.z
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implement dependencies

combining

</ Improving?

‘F'J:i‘\"l}w-l
evaluate (Information Theory \/
& ! results :
discuss

Ariane Halber, ATR Interpreting Telecommunications Research Lab.
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[ language modeling for speech recognition
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@ why?
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source acous P recognition
Gl C
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Wm
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P(W) | !

LerdrT AT

P et b Ane e

— W' = argmax P(W) P(AW)

Ariane Halber, ATR Interpreting Teleconumunications Research Lab
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( language modeling for speech recognition }/\éz_ i
why? E?"" '

Statistical apprdach

most likely String §* = (w,,w,,..,w ) given acoustic evidence A : P(WI| A)= m“'flx P(VVI A)
P(W) P(AW)
P(A)

Bayes’ Fromula : P(VV' A) =

P(W) P(AW)
P(A

=  PWlA)= max

Ariane Halber, ATR Interpreting Telecommunications Research Lab. il
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( language modeling for speech recognition
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Statistical approach
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language ———l

model < '
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String w

Ariane Halber, ATR Interpreting Telecommunications Research Lab.
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( language modeling for speech recognition

208
ki R

g Language model : histories classes
n X
P(W) = HP(wil.S'[wl,..,wi_J) bigram
i=1

model
&;‘> class caracterisation = kept "information"

N_Grams : histories are caracterized by their last N words

how? %?"W”"‘
word's history ~ classical models
General form: history 1
PW) = [ PGwlw ;) i DL
- @ = .
G — & 1
Problem : exponential L o @ L

Ariane Halber, ATR Interpreting Telecommunications Research L@]i
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[ language modeling for speech recognition E/é:%
\:d.
how? %“W*"‘

N_Grams and their limits

n
Issue: computing P(VV) = HP(wifwi_l,..,wi_N)
i=1

training corpus = (w1 ,w2,,,WN) exponential

g huge number of parameter —_
' N=1 or 2
== problem of sparseness —

&5 constaint of contiguity 4—/

efficient model but : heavy, doesn't take context in account, nor longer memory

0

03

Ariane Halber, ATR Interpreting Telecommunications Research Lab.
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hypothesis: information from distant word has predictiv power

reaching far connections between words:
\——-» fixed distance (restrictiv / hypothesis possibilities)

computed distance (for one couple then)

¥> dist. independant, automatic organizing (computationnaly

heavy)

dist. mdependant adapted to context

& using context information swiftly, introducing another knowledge

Ariane Halber, ATR Interpreting Telecommunications Research Lab.




linguistic knowledge:
the parsed corpus

bidimensional:
tree structure: Tags as Nodes

Words as leaves

syntactic

a set of 15 Tags , not so much thanks to
the structural information

clustered

( (S(NP*)
(VP Show
(NP me)
(NP (NP all)
the nonstop flights
(PP (PP from
(NP Dallas))
(PP to
(NP Denver)))
(ADJP early
(PP in
(NP the morning)))))

Ariane Halber, ATR Interpreting Telecommunications Research Lab.




dependency rules

' ( (S(NP¥)
directly steming from the tree structure: (VP Show
(NP me)
(NP (NP all)
TAG brothers the nonstop:
recursive relation (PP (PF from
(NP Dallas))
(PI"to ‘
. : (NP Denver)))
Proposttion Father (ADJP early
a word who triggers a Node : - (PPin

(NP the mormning)))))

Ariane Halber, ATR Interpreting Telecommunications Research Lab.
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Brother

97 [can]
--> [does]

99 [capacity]

--> [weight]

Parents

108 [cheapest]

--> [available]

110 [city]
--> [PLACE ]

29 [after]

-—> [days]

> [p.m]

--> [eight]

> [o'clock] Now how to assess the worth
> [five] of a dependency ?

--> [noon]
--> [a.m]

--> [p.m.]
--> [NUMmix]

what about its potentality?

its optimal use?

221  [from]
> [back]
--> [after]
--> [into]

--> [to]

32 [again]
--> [NUMth ]

283 [leaving]
--> [arriving]
--> [returning]

--> [going]

> [MONTH ] \
- the recogniton task

65 [arriving]

--> [noon] |

> [o'clock] 3. capturing

--> [twelve] Information...
--> [approximately]

--> [before]

--> [into]

--> [at]
Ariane Halber, ATR Interpreting Telecommunications Research Lab.




we want to evaluate 1dd's potentialities

N '{);"Xﬁ)‘..:"'
\—> Structure = ideal case

knowing bigram, brother, parent, ie

having a sentence squeletton ' .......... ——

\-» Data = "Atis", specialized but sparse

making up for sparseness by smoothing statistics

\-—-> Prediction = combining the 3 informations consistently:

linear interpolation ; EM algorithm

Ariane Halber, ATR Interpreting Telecommunications Research Lab.
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[ recognition task ]

problem : sparseness

atis file

1382 sentences .
e found bigrams : 2172
B (16 273 words) new bigrams : 537
B 1151 sentences for training found parents: 647
' new parents : 277
231 sentences for testing found brothers : 99
new brothers : 21

M 3/4 for training —# still 1 bigram out of 5 is unknown \ thi bi
— - Smoothing bigrams

B same problem for brothers and parents \
——» smoothing too? same method?

B could 1dd rather mislead recognition because of their rarity?
' ' \ problem of combining

Ariane Halber, ATR Interpreting Telecommunications Research Lab.
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[ | recognition task ]

'smoothing

training data

maximum likelihood estimate: Pmi=0 for unseen sequences, ie existing strings are said impossible.

r+ln, ., . .
:$ other statistic : Turing estimate , P.(W) = d P, (W), d, = —=L discounting ratio
r n

manyfold r=C(W),n = card {WlC(W) = r}

—discounts probabilities of existant sequences in training data

— affects proba to unseen sequences p=y uniformely

33 or according to a certain criterium

eg. we did according to the probability (estimate) of the lower level

— keep unaffected the high frequency sequences (they're less "fantomatic")

( —» if need be adjust with normalizing factor, make sure it is still a statistic)

Ariane Halber, ATR Interpreting Telecommunications Research Lab.
m
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[ recognition task j

combining

Pbig (W‘blg) ) Pbro (“’{ bTO) ) Ppar(wi paT) l@ ::17

correlation between different distributions?

linear interpolation (1= A, = A,) P, (w|big) + A Pbm(wlbro> + 2, Ppar(w] par)

hig

according to the model :

X

>.

3 statistics of use of brother', parent' or
bigram's Distribution.

A A, A

maximize E, (Iog Pé(X, }’1 }’>

assuming initial value let P, (x y)= e’
maximizing Expectation

. L P.(v.
intuitively : converges toward its relativ weight; 3, =— . A ‘Qj‘)
=1 )\1P1(yi>+ Asz(y,.)

\—-——» converge iteratively with EM algorithm:
= maximize E, [T(x, )]

Ariane Halber, ATR Interpreting Telecommunications Research Lab.

—



— R—_—

RESULTS

brothers
Litinng Rttt \PIUNUT Vs v e vy .
—> [from]  mutualcount= 1 mutualinfo= -0.00025C dependenCIes & mutual
--> [back] mutualcount= 2 mutualinfo= 0.000414 . .
--> [after] mutualcount= 1 mutualinfo=-0.00002C |nf0rmat|0n
--> [into] mutualcount= 3 mutualinfo= 0.000653
--> [on] mutualcount= 4 mutualinfo= -0.000433
--> [at] mutualcount= 1 . mutualinfo= -0.000085 ‘

the consistent and

--> [to]mutualcount= 371 mutualinfo= 0.090197 the misleading

[leave] count=20 (proba=0.001227)
--> [are] mutualcount= 1 mutualinfo= 0.000184
--> [arrive] mutualcount= 5 mutualinfo= 0.002273 power of discrete dependencies?
-> [come] mutualcount= 1 mutualinfo= 0.000593
training 85%
[leaves] count=10 (proba=0.000614)
--> [arrives]  mutualcount= 3 mutualinfo= 0.001780 potentlz{l division of lelSlOf} of bigrams
perplexity perplexity
[leaving] count=70 (proba=0.004296)
--> [going]  mutualcount= 1 mutualinfo= 0.000249 bigrams 13.2 1
--> [departing] mutualcount= 1 mutualinfo= 0.000184
--> [arriving] mutualcount= 20 mutualinfo= 0.008469 brothers 12 1.02
--> [returning] mutualcount= 9 mutualinfo= 0.003439 3.7 1.1

parents

Ariane Halber, ATR Interpreting Telecommunications Research Lab.




Brother, lambdai/lambda3

ot
0.5 e : L //,—/“”'/w.”/
I e il _
t I i i ]
0.75 0.8 0.85 0.9 0.95
train rate
Parent, lambda2/lambda4
04 i T I
..... b
o T S
0.3F T - .
e
i 1 | T
0.75 0.8 0.85 0.9 0.95
train rate
Brother o/ Parent +
{ ' 1 1 j
0.75 0.8 0.85 0.9 0.95

train rate

70



AR

L=
testing, big= r, bro=g, par=m, all=b T =
25 { T 1 . T [ T I T = I
20
151
10 J
5r |
L i | 1 1 1 1 1 1
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Ariane Halber, ATR Interpreting Telecommunications Research Lab. '




—AR

smoothed = r, not smoothed = g, (training = b) /ii
50 T T 1 T T T - ,né;’ii
K -
45 1Nng %WM
40+ ] \
35} i
230F -
=
()
=
825 - 7
20 g
15F — .
10+ \ )
5 t 1 i i 1 L I} ]
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
train rate
Ariane Halber, ATR Interpreting Telecommunications Research Lab.
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train rate-
testing
150 :
> 100+
%
Q
1))
Q. 50 A
O N
0 0.5
train rate

()]
o

perplexity
.Y
o

20

150

perplexity

(o]
o

train rate

together
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[
o

o
o

0.5
train rate

Ariane Halber, ATR Interpreting Telecommunications Research Lab.

81



Annex II

some brother dependencies




oct 26 15:48 1994 dependencies_rescarch/v3i/textl2.bro Page 1

1 [NUM 1

count=535 {proba=0.0362137)
--> {bwi} count= 7 mutualinfo= 0.000134
--> [NUM ] count= 535 wutualinfo= -0.000444
--> [noon} count= 36 mutualinfo= -0.000026
--> [fare) count= 132 mutuwalinfo= -0.000153
--> (PLACE 1} counk= 1416 . mutuwalinfo= -0.000634
--> [MONTH ] count= 190 mutualinfo= -0.000189
--> {time] count= 19 mutualinfo= 0,000036

1 [PLACE )

count=1416 {proba=0.095909)
--> [d.c] count= 1 mutuvalinfo= 0.000229
--> {fare) count= 132 mutwalinfo= -0.000361
--> [worth) count= 37 mutualinfo= -0.000124
--> [NUMth ) count= 191 mutualinfo= -0.000284
--> [NUM ] count= 535 mutuvalinfo= -0.000385
--> |PLACE ] count= 1416 wutualinfo= -0.002549

5 [MONTH ]

count=190 (proba=0.012869)
--> {number) count= 9@ mutualinfo= -0.000014
--> [seats) count= 21 mutualinfo= 0.000128
--> {the} count= 641 mutuwalinfo= (,000439
--> [NUMth ) count= 191 mutuvalinfo= 0,000190
--> [NUM ] count= 535 nutuvalinfo= 0.006343

6 {oay ]

count=29 {(proba=0.001964)
--> [the] count= 641 mutuwalinfo= 0.000090
--> [NUM ] count= 535 mutualinfo= -0.000005
--> [MONTH ] count= 190 mutualinfo= 0.000927

17 [*]

count=700 (proba=0.047413)
--> [describe) count= 12 mutualinfo= 0.000055
--> [ *] count= 700 mutualinfo= -0.000342
--> [NUM ] count= 535 mutualinfo= -0.000316

18 [*pseudo-attach+)

count=41 (proba=0.002777y
--> [for] count= 215 mutualinfo= 0.000236
--> [*pscudo-attach+]) count= 41 mutualinfo= 0.002324
23 {abbreviation)

count=12 (proha=0.000813)
--> {r) count= ¢ matuvalinfo= 0.000520
--> [1) count= 6 mutualinfo= 0.000520
--> [a} count= 216 mutualinfo= 0.000170

36 [after])
count=38 {proba=0.002574)
--> [with]) count= 29 mutualinfo= 0.000643
--> [from} count= 467 mutualinfo= -0.000018
--> [on]. count= 377 mutualinfo= 0.000554
37 lafternoon]
count=10 (proba=0.000677})
--> faround] count= 5 mutualinfo= 0.000556
47 {airline)
count=28 {proba=0.001897)
~-> {us]) count= 13 .mutualinfo= 0.000362
--> {col count= 10 mutualinfo= 0.000387
48 fairlines)
count=86 {proba=0.005825)
~-> [day] count= 12 mutualinfo= 0.000260
-=> {MONTH } count= 190 mutualinfo= -0.000010
--> [class]) count= 153 mutualinfo= 0.000011
--> [NUM ] count= 535 mutualinfo= 0.001814
51 [airport]
count=60 {proba=0.004064)
--> [bwi] count= 7 mutualinfo= 0.000348
--2> {den} count= 1 mutualinfo= 0.000538
--> {city] count= 6 mutualinfo= 0.000861
54 (all]
count=115 (proba=0.007789)
--> [description) ) count= 5 mutualinfo= 0.000317
58 (american]
count=41 (proba=0.002777)
--> [hunber] count= 90 mutualinfo= 0.001464
--> [NUM ] count= 535 mutualinfo= -0.000039
70 [are]
count=97 (proba=0.006570)
-~> lare} count= 97 mutualinfo= 0.000044
{arrangcments]
count=10 (proba=0.000677)
--> [*pseudo-attach*] count= 41 mutualinfo= 0.000350
--> [airlines] count= 86 mntualinfo= 0.000278
79 {arriving]
count=39 (proba=0,002642)

--> {flying] count= 10 mutualinfo= 0.000355
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81 [at]

count=77 (proba=0.005215)
-+> [ from} count= 467
--> [before} count= 32
--> [at) count= 77

R

count=15 (proba=0.001016)
- (y] count= 17

e

count=6 (proba=0.000406)

--> {on} count= 377
22 qeeterar
count=32 (proba=0.002167)

--> {on} count= 377

~+> [ from) count= 467
w2 peeery
counlL=138 (proba=0.009347)

-=> [leaving]} count= 65
ne ey T
count=16 {proba=0.001084)

--> [from] count= 467
1 ey T

--> [PLACE ] count= 1416

135S {class]

counkt=153 (proba=0.010363)
st [y) count= 17
“-> 1g] counts= 8
--> {qw] count= 10
“-> [MONTH ] count= 190
--> [also] count= 16
--> [service) cotint= 19

136 (classes}

count=24 {(Proba=0.001626)
--> [and) count= 177

138 {coj

count=10 (proba=0.000677)
== [number) count= 90

140 [code]

mutualinfo=
mutualinfo=
mutualinfo=

mutualinfo=

mutualinfo=

mutualinfo=
mutualinfo=

mutualinfo=

mutualinfo=

mutualinfo=

mutual info=
mutualinfow=
mutualinfo=
mutualinfo=
mutuvalinfo=
mutuwalinfo=

mutualinfo=

mutualinfo=

-0.000087
0.000175
0.000089

0.000397

04.000103

0.000020
-0.000001

0.000049

0.000269

0.000243

0.000170
0.000243
0.000222
-0.000066
0.000176
0.000159

0.000122

0.000273

count=43 (proba=0.002912)
==> [NUM ] count= 535
-=> [gx] count= 13
-=> [1] count= 6
-->» [a) count= 216
157 . {continental)

count=5 (proba=0,000339)

--> [NuM } count= 535

{proba=0.000677)

) count= 190

(proba=0.000813)

1 count= 535

175 {dc9)

count=1 (proba=0.000068)

--> [NUM 1 count= 535

178 {deltal

count=06 (proba=0.005825)
--> [number] count= 90
--> [us} count= 13
-=> [NUM 1 count= 535
-+=> [delta] count= 86
181 {departing)

count=29 (proba=0.001964)
--> {arriving) count= 39

183 {departs])

count=4 (proba=0.000271)

--> [arrives] count= 6

mutualinfos=
mutualinfo=
mutualinfo=
mutualinfo=

mutualinfo=

mutualinfo=

mutualinfo=

mutualinfo=

mutualinfo=

mutualinfo=
mutualinfo=
mutualinfo=
mutualinfo=

mutualinfox-

mutualinfo=

==> [NUMmix] count= 45 mutualinfo=
20 it
count=132 {proba=0.008941)

--> [*psendo-attach+) connt= 41

-0.000043
0.
0.
0.

0

0

0.

o000

0.

0.

000320
000395
000045

.000167

.000200

000566

.000667

.000324

.000262
.000252
.000231
.000221

002042

000628

.000566

mutualinfo= 0.000098
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244 {field]

count=3 (proba=0.000203)

--> [day] count= 12 mutualinfo= 0.000588
249 [flight)
count=419 (proba=0.0208380)
=-> [number] count= 90 mutualinfo= 0.000501
=-> [PLACE ] count= 1416 mutualinfo= -0.000361
--> (fare) count= 132 mutualinfo= -0.000129
--> {NUM ] count= 535 mutualinfo= -0.000544
--> [and) count= 177 mutualinfo= -0.000158
-+> [afternoon] . count= 10 mutualinfo= 0.000123
--> |[class] count= 153 mutuvalinfo= -0.000152
--> [person] count= 22 mutualinfo= 0.000046
250 {flights])
count=304 {proba=0.020591)
--> (flights] count= 304 mutualinfo= -0.000179
--> [fares] count= 58 mutualinfo= -0.000017
--> {fare] count= 132 mutualinfo= -0.000098
256 [ for)
count=215 (proba=0.014562)
--> fat) count= 77 mutualinfo= 0.000113
--> [for} count= 215 mutualinfo= -0.000088
--> [*pseudo-attach*) count= 41 mutualinfo= 0.000050
--> {to] count= 686 mutualinfo= -0.000225
~-> [from] count= 467 mutualinfo= -0.000240
--> [between] count= 22 mutualinfo= 0.000111
--> {on) count= 377 mutualinfo= 0.000586
261 [ from]
count=467 {proba=0.031631)
--> [back] count= 6 mutuvalinfo= 0.000460
--> {after] count= 38 mutualinfo= -0.000018
--> [into] count= B multualinfo~ 0.000404
--> lon) count= 377 mutualinfo= -0.000427
--> [in} count= 123 mutualinfo= -0.000076
--> [*pseudo-attach*] count= 41 mutuwalinfo= -0.000025
--> lat] count= 77 mutualinfo= -0.000087
--> [to] count= 686 mutualinfo= 0,046579
269 {give]
count=73 (proba=0.004944)
--> [show] count= 254 mutualinfo= -0.000022
270 {go]
count=8 (proba=0.000542)
--> [make]) count= 41 mutualinfo= 0.000372
--> [put] count= 1 mutualinfo= 0.000735
271 [going]
count=14 (proba=0.000948)
--> [and) count= 177 mutualinfo= 0.000174

296 [i]

count=243 (proba=0.016459)
--> [*] count= 7
--> i} count= 2

298 {in]

count=123 (proba=0.008331})
--> (to] count= 6
--> [at] count= 7
--> [by] count= 1
-->» [after] count= 3
--> [*pseudo-attach*]
--> {on]) count= 3
301 [information]

count=60 (proba=0.004064)
--> [PLACE ] count= 1
304 [inguiry}

count=6 (proba=0.000406)
--> {flight} count= 4
309 {into}

count=8 (proba=0.000542)
--> {on] count= 3
-->» {at) count= 7
--> [by] count= 1
311 fit}

count=26 (proba=0.001761)
--> {1i) count= 2
--> it} count= 2
332 [leave]

count=20 {proba=0,001355)
--> {come] count= 1
--> larrive} count= 2
333 [leaves]

count=8 (proba=0.000542)
--> [gets] count= 2
--> larrives] count= 6
334 {leaving]

count=65 (proba=0.004403)
-+> {golng] count= 1
-+> {departing]
-+> [arriving) count= 3
--> [returning])

344 [list])

00
43

mutualinfo= -0.000239
mutualinfo= 0.000000

BG mutualinfo= -0.000170

7 mutualinfo= 0.000043

6 mutualinfo= 0.001330

8 mutualinfo= 0.000112

count= 41 mutualinfo= 0.000105

77 mutualinfo= -0.000112

416 mutualinfo= -0.000191

19 mutualinfo= 0.000173

77 mutualinfo= 0.000155

7 mutualinfo= 0.000310

6 mutualinfo= 0.001714

43 mutualinfo= 0.000003

G mutualinfo= 0.000301
mutualinfo= 0.000645

4 mutualinfo= 0.001326
mutaalinfo= 0.000667
mutualinfo= 0.002001

4 mutualinfo= 0.000680

count= 29 mutualinfo= 0.000201

9 mutualinfo= 0.009298

count= 24 mitualinfo= 0.002368
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count=53 (proba=0.003590)
-=> [show) count= 254 mutualinfo= 0.000009
--> {list} count= 53 mutualinfo= 0.000809
361 [max])

count=2 (proba=0.000135)

--> [min] count= 4 mutualinfo= 0.000735

366 [me]

count=287 (proba=0.,019439)
--> fcodes) count= 22 mutualinfo= 0.000083
--> |[NUM ] count= 535 mutualinfo= -0.000364
--> {the] count= 641 nmutualinfo= -0.000446
--> [capacity} count= 7 mutualinfo= 0.001321
--> [description] count= 5 mutualinfo= 0.
--> {performance) count= 1 mutualinfo= 0.
--> [price] count= 15 mutualinfo= 0,000683
--> [help] count= 4 nutualinfo= 0.001540
~-> [only) count= 12 mutualinfo= 0.000142
--> [departing]) ’ count= 29 mutualinfo= 0.
--> [charges} count= 2 mutuwalinfo= 0,000317
--> [PLACE ) count= 1416 mutualinfo= -0.000512
--> [transportation) count= 73 mutualinfo= 0.
--> |cost] counts= 32 mutualinfo= 0.000727
--> [reservations] count= 29 mutualinfo= 0.
--> [availability) count= 2 mutualinfo= 0.
--> [type] count= 21 mutualinfo= 0.000088
--> [list} count= 53 mutualinfo= 0.001033
--> [airlines) count= 86 mutualinfo= -0.000050
--> [space] count= 1 mutualinfo= 0.000385
--> lall} count= 115 mnutualinfo= 0.001970
=-> {flights] count= 304 mutualinfo= 0,003287
--> [listing] count= 15 mutuvalinfo= 0.000120
=->» {fares] count= 58 mutualinfo= 0.000495
--> [number] count= 90 mutualinfo= -0.000055
--> {costs] count= 6 mutualinfo= 0.000210
--> [numbers] count= 4 mutualinfo= 0.000250
--> {and] count= 177 mutualinfo= -0.000121
--> [such} count= 1 mutualinfo= 0.000385
~-> {fare] count= 132 mutualinfo= -0.000049
--> [service] count= 19 mutualinfo= 0,000097
--> [information] count= 60 mutualinfo= Q.

377 [midnight]

count=1 (proba=0.000068)
--> [four) count= 5 mutualinfo= 0.000781

401 [nonstop]}

count=39 {proba=0.002642)
-~> [first] count= 53 mutualinfo= 0.000520

406 [number}

countc=90 (proba=0.006096)
--> f{airlines} count= 86 mutualinfo= 0.000262
--> [class] count= 153 mutualinfo= (¢.000149
--> [number} count= 90 mutualinfo= 0.001402

409 {fof}

000228
000385

000056

000405

000056
000317

004451

count=191 (proba=0.012937)
--> [to]) count= G686
--> jon} count= 377
--> [for]} count= 215
415 {okay]}

--> [fine]} count= 1 mutualinfo= 0.
416 fon)
count=377 {proba=0.025535)
==> [under] count= 24 mutualinfo= Q.
--> [*pseudo-attachx] count= 41
--> [from] count= 467 mutualinfo= -0.000425
~-> [with] count= 29 mutualinfo= 0.
--> [for] count= 215 mutualinfo= 0.
--> {on] count= 377 mutualinfo= 0.
417 [one}
count=43 {proba=0,002912)
-=-> [NUM ] count= 535 mutualinfo= -0.000043
==> [*] count= 700 mutualinfo= -0.000070
429 fout)

.==> [to] . count= 686
a3 lpexson)
count=22 (proba=0.001490)

«-> {class]} count= 153
454 possiblyl

count=1 (proba=0.000068)

mutualinfo= -0.000291
mutualinfo= -0.000155
mutualinfo= -0.000100

mutualinfo= 0.

mutvalinfo= 0.

-~> {on] count= 377 mutualinfo= 0.
w8 e
count=10Q {proba=0.000677)

--> {gx] count= 13 mutualinfo= 0.
69 [
count=13 (proba=0.000881)

--> [y} count= 17 mutualinfo= 0.
495 [reservation]
count=31 (proba=0.002100)

--> [class} count= 153 mutualinfo= 0.

--> [*psendo-attach+} count= 41

--> [but] count= 2 mutualinfo= 0.

487 [reserve]

000723

000048

mutualinfo= 0.000127

000029
000435
000143

000329

000144

000358

000462

000411

000357

mutualinfo= 0.000240

000535
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count=23 (proba=0.001558)
--> {reserve} counlt= 23

491 [restriction]

count=28 (proba=0.001897)
--> [vu] count= 13

508 [scats)

count=21 (proba=0.001422)
--> [fare} count= 132
--> [MONTH ) count= 190
--> [NUM ] count= 535
--> {flight] count= 419

509 [second]

count=2 (proba=0.000135)

mutualinfo= 0.000325

mutualinfo= 0.000362

mutualinfo= 0.000163
mutualinfo= 0.000391
mutualinfo= 0.000027
mutualinfo= 0.001685

--> [*pseudo-attach*] count= 41 mutualinfo=
516 (servies)
count=19 {proba=0.001287)

--> [PLACE ] count= 1416 mutualinfo= -0.00005

558 {symbol]

count=2 (proba=0.000135)

=-> [vu] count= 13 mutualinfo= 0.000620
--> {and] count= 177 mutualinfo= 0.000365
560 it]
count=357 (proba=0.024180)
--> [or] count= 16 mutualinfo= 0.000093
573 {that)
count=79 (proba={.005351)
--> [fare} count= 132 mutualinfo= 0.000034
--> %] count= 700 mutnalinfo= -0.00012
574 [the)
count=641 (proba=0.043416)
--> {DAY ] count= 29 mutualinfo= -0.00002
578 [there]
count=43 (proba=0.002912)
--> [layovers] count= 3 mutualinfo= (.001062
--> [flights] count= 304 mutualinfo= 0.000012
--> [rgservation] count= 31 mutualinfo=
--> lairlines) count= 86 mutualinfo= 0.000135
--> fany) count= 28 mutualinfo= 0.000245
--> [ground} count= (9 mutualinfo= 0.000449
--> [transportation] count= 73 mukualinfo=
-=> [a] count= 216 mittualinfo= 0.000045

5

0.000507

9

9

3

0.000235

0.004729

--> [restrictions} colint=
--> (conditions)

583

count=31 {probha=0.002100)
--> [price] count= 15

588 [ticket])

count=22 (proba=0.001490)
<-> [NUM ] coint= 535
--> {PLACE ] count= 1416

589 [tickets])

count=6 (proba=0.000406)
--> [PLACE ) count= 1416

590 [time]

count=19 {proba=0.001287)
--> {number] count= 90

592 {to]

count=686 (proba=0.046464)
~=> [with] count= 29
--> [by] count= 16
--> [after] count= 38
--> [for] count= 215
--> (in] count= 123
--> {fromj] count= 467
s> (1) count= 243
--> [on] count= 1377
--> [at] count= 77

593 {tomorrow]

count=1 (proba=0.000068)
--> f{the) count= 641

606 {u]

count=1 (proba=0.000068)
--> [NUM ] count= 535

608 [under]

count=24 (proba=0.001626)
--> {in] count= 123

615 [us]

count=13 {proba=0.000881)
--> [NUM I count= 535
--> [airlines) count= 86

616 {usair]

count=19 (proba=0.001287)

20
counts=

mutnalinfo= 0.000278
mutualinfo= 0,000571

mutualinfo= 0.000338

mutualinfo= 0.
mutualinfo= -0

mutualinfo= Q.

mutualinfo= 0.

000022
.000073

000054

000211

mutualinfo= -0.000029

mutunalinfo= 0.
mutualinfo= 0.
mutualinfo= -0
mutualinfo= 0.
mutualinfo= -0
mutualinfo= -0
mutuwalinfo= -0

000193
000509
.000225
000139
.000301
.000237
.000379

mutualinfo= -0.000114

mutualinfo= 0.

mutualinfo= 0.

mutualinfo= 0.

mutualinfo= 0.
mutualinfo= 0.

000307

000324

000450

000074
000252

T
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--> [coach]
-~> [number)

dependencies_research/v3/textl2.bro Page 6

count= 73 mutualinfo= 0.000231
count= 90 mutualinfo= 0.000211

count=2 (proba=0.000135)

-=> fu] count= 1

mutualinfo=

0.000870
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wsj_011.hro
.« oaw

L Y

1 [NUM 1

count=261 (proba=0.025261)
--> [ *rrbx] count= 18
--> [that] count= 92
--> [onej count= 27
--> [NUM 1 count= 2061

6 {DAY ]

~+> [NUM 1 count= 261
w T
count=225 (proba=0.021777)
--> [liquidity]} count= 4
--> [traders]} count= 29
--> [he} count= 28
--> [veto] count= 10
<-> ] counts= 225
% @ T
counlt=185 (proba=0,017906)
--> {hutchinson) count=
w7 tabour)
count=16 (proba=0.001549)
--> [FREE ] count= 0
2 lateer)
count=11 (proba=0.001065)
--> [for] count= 98
e (amengr

count=8 (proba=0.000774)

--> [for) count= 98
157 {appropriations]
count=22 (proba=0.002129)

--> {limitation] count=
161 {ambitragel
count=18 (proba=0.001742)

--> [the} count= 630

--> [form) count= 2

163 tares T

mutualinfo= 0.000790
mutualinfo= -0.000118
mutualinfo= 0.000053
mutualinfo= -0.000330

mutualinfo= 0,000417

mutualinfo= 0.000341

mutualinfo= 0.000064
mutualinfo= 0.000069
mutualinfo= 0.000213
mutualinfo= -0.000222

mutualinfo= 0.000562

mutualinfo= Infinity

miutualinfo= 0.000316

mutualinfo= 0.000360

mutualinfo= 0.000859

mitualinfo= -0.000013
mutualinfo= 0.000790

count=1 (proba~0.000097)

--> [they] count= 38
180 as)
count=61 {proba=0.005904)
--> [in] count= 184
--> [because] count= 16
190 {association]

count=1 (proba=0.000097)

--> [mae] count= 1
=-> [*1lrb+] count~ 15
12
count=40 (proba=0.003871)
--> {for) count= 98
225 (banks]
counk=16 (proba=0.001549)
> it} count= 57
235 (bactlel

counk=7 (proba=0.000678)

--> [traditionalists] count=

263 [bernstein]
count=8 (proba=0.000774)

--> [performance} counts=
--> [president] count=

{big]
count=27 (proba=0.002613)
--> {institutional) count=
ns (broker]

counk=2 (proba=0.000194})

> {inc.} count= 6

3le {brooks]

count=1 (proba=0.000097)

--> [a.} count= 3

325 wesnl

count=10 (proba=0.000968)
--> [it] count= 57
--> [he] count= 28

A3z [buyers)

mutualinfo= 0.000783

mutualinfo= -0.000012
mutualinfo= 0.000329.

mutnalinfo= 0.001291
mutnalinfo= 0,000912

mutualinfo= 0.000135

mittnalinfo= 0.000339

1 mutualinfo= 0.
5 mutualinfo= 0.
44 mutualinfo= 0.
3 mutualinfo= 0.

mutualinfo= 0.000944

mutvalinfo= 0.001137

mutnalinfo= 0.000405
mutualinfo= 0.000504

001019

000776
000472

000677

0

8
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count=9 (proba=0.000871)

--> [specialist]} count= 3
Ba ey T
count=53 {proba=0.005130}

--> [against] count= 10

395 fcheetham)
count=1 (proba=0.000097)

--> [head] count= 3
417 Eclient;]
count=7 (proba=0.000678)

--> [traders) count= 29
a9 qeleexy
count=1 (proba=0.000097)

--> [recorder] count= 1
28 feolline)
count=2 (proba=0.000194)

--> [analyst] count= 2

434 [commissions)

count=4 (proba=0.000387)

~-> [performancel} count= 5

439 {companies])

count=8 (proba=0.000774)

--> [dealers} count= 3

--> {[shops] count= 1
41 (company)
count=20 (proba=0.001936)

--> [it) count= 57
443 {compares)

count=3 (proba=0,000290)
--> [making] count= 6

4549 [computers]

count=6 (proba=0.000581)

--> {we) count= 8
168 lcongress)
count=26 (proba=0.002516)

--2 |bush]} count= 10

mutuvalinfo= 0.000830

mutualinfo= 0.

mutualinfo= 0.

mutualinfo= 0.

mutualinfo= 0.

mutualinfo= Q.

mutualinfo= 0.000872

mutualinfo= 0.
mitualinfo= 0,

mutualinfo= 0.

mutualinfo= 0.

mutualinfo= 0.

mutualinfo= 0.

000415

001137

000549

001291

001097

000847
001000

000308

aoo0887

00750

000514

502 {control}

count=3 (proba=0.000290)

count=4 (proba=0.000387)

--> {mac} - count=
--> {yields} count=
565 [danzig]

count=1 (proba=0.000097)

--> fand] counts=
006 (departure]
count=2 (proba=0.000194)

--> [that] count=
621 (deterioration]
count=1 (proba=0.000097)

--> {industry] count=
650 (discussing]
count=1 (proba=0.000097)

--> lattempting]

707 leditor]
count=3 (proba=0.000290)

~-> [bellows] coun€=
111 (eawaras]
count=2 (proba=0.000194)

--> (d.] count=
726 lemasculate)
count=1 (proba=0.000097)

--> [swallow) count=
131 (employerl
count=1 (proba=0.000097)

--> [peabody] count=

10

1

170

92

5

count= 1

1

3

3

mutualinfo= 0.000514

mutuwalinfo= 0.001137

mutualinfo~ 0.001137

mutualinfo= 0.001097
mutualinfo= 0.000944

mutualinfo= 0.000574

mutualinfo= 0.000562

mutualinfo= 0.001066

mutualinfo= 0.001291

mutualinfo= 0.001137

mutualinfo=;0.001040
:

3

mutualinfo= 0.001291

mutnalinfo=30.001137

90
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countl=2 (proba=0.000194)
--> [mehta] count= 2

771 [examiner}

count=3 (proba=0.000290)

A B | count= 225
777 lexchangel
count=10 {proba=0.000968)

--> [futures]) count= 22
797 (expenses)

count=4 (proba=0.000387)

--> [payments] count= 14
sed ey
count=13 (proba=0.001258)

--> [commissions]) count= 4
862 (fimancially] :

count=1 (proba=0.000097)

--> [editorially] count= 2

875 {flirted])

count=1 (proba=0.000097)

--> [executed] count= 2
I
count=98 (proba=0.009485)

--> [in) count= 184

--> [for] count= 98
890 (forces]

count=4 (proba=0.000387)

--> {guard) connk= 10
914 { from)
count=35 {broba=0.003388)
--> [in} count= 184
--> [from] count= 35
-+> [but) count= 33
915 [fec)

count=5 (proba=0.000484}

--> [department} count= 11

930 [ funds]

mutuvalinfo= 0.001097

mutualinfo= 0.000381

mutualinfo= 0.001269

mutuvalinfo= 0.000729

mutualinfo= 0.000739

mutualinfo= 0,001194

mutualinfo= 0.001194

mutuwalinfo= -0.000078
mutualinfo= 0.000010

mutualinfo= 0.000776

mutualinfo= 0.000066
mutualinfo= 0.000298
mutualinfo= 0.000306

mutualinfo= 0.001656

count=12 (proba=0.001161)
--> [funds} counkt= 12
935 (tatures)

count=22 (proba=0.002129)
--> [markets] count= 19

952 [gilts]

count=1 (proba=0.000097)

--> [bonds} count= 1
970 (government]
count=10 (proba=0.000968)
{watchdogs] count= 1
1004 (harder]

count=3 (proba=0,000290)

--> [harder] count= 3
w13 mer
count=28 (proba=0.002710)

--> [he] counlt= 28

--> {she} count= 4
w1 mers T

count=3 (proba=0,000290)

<> {paper] count= 13
1032 heralal
count=13 (proba=0.001258)

--> [paper] count= 13
1057 (house)
count=14 {proba=0.001355)

-~> {the] count= 630
wes i T

--> i) count= 9
wn o
count=23 (proba=0.002226)

--> [in]} count= 184
1076 (illineis]

count=1 (proba=0,000097)

--> [nebraska] count= 1

mutitalinfo= 0.000597

mutualinfo= 0.000448

mutualinfo= 0.001291

mutualinfo= 0.000969

mutualinfo=

mutualinfo=
mutualinfo=

mutuwalinfo=

mutualinfos=

mutualinfo=

mutualinfo=

mutualinfo=

mutualinfo=

0.

0.
.000632

000984

000360

.000779

.000574

.000022

.000677

.000125

.001291

91
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count= 2

count= 22

1089 [in}]
count=184 (proba=0.017809)
~-> [1if} count= 23
--> {to} count= 285
--> {in] count= 184
--> {on] count= 67
--> [at) count= 40
--> [by] count= 53
--> [from]} count= 35
--> [with} count= 54
1091 {inc.]
count~=6 (proba=0.000581)
{inc) count= 4
[included}
count=3 (proba=0.000290)
--> f[are] count= 47
1107 {indiana}
count=1 (proba=0.000097)
--> {illinois} count= 1
1109 {indications])
count=1 (proba=0.000097)
--> [lending} count= 1
1143 [into}
count=13 (proba=0.001258)
--> [with] count= 54
1154 [investor)
count=13 (proba=0.001258)
--> [he] count= 28
--> [and] count= 170
1155 [investors]
count=16 (proba=0.001549)
--> [swings] count= 3
1161 [iowa]
count=3 (proba=0.000290)
--> {minnesota]
1166 [it)
count=57 (proba=0.005517)
--> [congress) count= 26
--> [appropriations])
--> lit) count= 57

mutualinfo=
mutualinfo=
mutualinfo=
mutualinfo=
mutualinfo=
mutualinfo=
mutuvalinfo=
mutualinfo=

mutualinfo=

mutualinfo=

mutualinfo=

mutualinfo=

mutualinfo=

mutuvalinfo=
mutualinfo=

mutualinfo=

mutualinfo= 0.001040

mutualinfo=

mutualinfo=

mutualinfo=

bro page 4

0.000125

-0.000227
-0,000166
-0.000025
0.000047
0.000008
0.000066
0.000005

0.000847
0.000600
0.001291
0.001291
0.000375

0.000467
0.000215

0.000750

0.000271

0.000162

0.000294

1180 [johnson]
count=1 (proba=0.000097)

--> |editor] count=
193 (keeps
count=4 (proba=0.000387)

--> {beat] count=
194 (xeepingl
count=1 (proba=0.000097)

~~> [trying] count=
1200 (kidder)
count=4 (proba=0.000387)

--> f[unit] count=
1229 (lawyers]
count=2 (proba=0.000194)
[officials]

1278 (lobbies)
count=1 (proba=0.000097)
1302 (letter]
count=1 (proba=0.000097)
--> [funds] count=

1309 {lynch}

count=3 (proba=0.000290)

3

4

4

3

count= 6

count= 1

12

[inc.] count= 6

w2 maker
count=25 {proba=0,002420)

--> [cxceed] count= 2

1331 (managers]
count=12 (proba=0.001161)

-e> 1] count= 78

143 imarkets]
count=19 (proba=0.001839)

--> f{themselves) count= 3

1347 [mason]

count=2 (proba=0.000194)

mutualinfo= 0.001137

mutualinfo= 0.000903

mutualinfo= 0.001097

mutualinfo= 0.000944

mutualinfo= 0.000944

mutualinfo= 0.001291

mutualinfo= 0.000944

mutualinfo= 0.000887

muitnalinfo= 0.000744

mutualinfo= 0.000335

mutualinfo= 0.000726

932
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<-> [chairman} counte 7

1355 [mcecabe}
count=1 (proba=0.000097)
--> [officer) count= 1

1365 {mehta]

count=2 (proba=0.000194)

mitualinfo= 0,000922

mutualinfo= .001291

--> [president) count= 44 mutuwalinfo= 0.000665
w0 fmeneyr
count=20 (proba=0.001936)

--> [FREE ] counts= Q mutuvalinfo= Infinity

1407 [morrison}

count=1 (proba=0.000097)

--> [olson} count= 1
122 e
count=11 (proba=0.001065)

--> {potentially]) count= 1
1426 (marrayl

count=3 (proba=0.000290)

--> [securities] count=

~-> [chairman] count= 7

1446 [nebraskal
count=1 (proba=0.000097)

--> [dakotas] count= 1
1456 (newverger]
count=2 (proba=0.000194)

-+> {berman] count= 2

1471 [noble]

count=2 (proba=0.000194)

--> [media] count= 1
1502 [of}
count=272 (proba=0.026326)
-=> {on] count= 67
--> {for) cotint= 98
--> lafter] count= 11
--> [in} count= 184
1526 fon]
count=67 (proba=0.006485)

mutualinfo= 0.001291

mutualinfo= 0.000956

mutualinfo= 0.001137
mutualinfo= 0.000866

mutualinfo= 0.001291

mutualinfo= 0.002388

mutualinfo= 0.001194

mutuwalinfo= -0.000079
mutualinfo= 0.000063
mutualinfo= 0.000540
mutualinfo= -0.000247

--> [to] counlt= 285
==> {on] counk= 647
--> {by} count= 53
1528 {one}
count=27 (proba=0.002613)
--> [himself] count= 1
1581 [parent])

count=1 (proba=0.000097)

--> [corp.} count= 7

1587 [partisans]
count=1 (proba=0.000097)

--> [so] count= 18
1590 (pasadena)
count=1 (proba=0.000097)

--> [beach]} count= 2

1597 {peabody])

count=3 (proba=0.000290)

-=> [lynch]} count= 3
1656 power]l
count=14 (proba=0.001355)

--> lappropriations] count=
1664 [prebonl

count=1 (proba=0.000097})

--> fu.s.a} count= 1
1675 [president]
count=44 (proba=0.004259)

--> {manager] count= 3
1722 (programs]

count=5 (proba=0.000484})

--> {you] count= 10
var | qpeslicy
count=5 (proba=0.000484)

-+> [they] count= 38
weo fratey
count=9 (proba=0.000871)

--> {FREE } caount= 0

22

mutualinfo=
mutualinfo=
mutualinfo=

mutualinfo=

mutualinfo=

mutualinfo=

mutualinfo=

mutualinfo=

mutualinfo=

mutualinfo=

mittualinfo=

mutnalinfo=

mutualinfo=

-0.000086
0.000116
0.000149

0.000830

0.001019

0.000887

0.001194

0.000984

mutualinfo= 0.000491

0.001291

0.000609

0.000744

0.000558

Infinity
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1701 ratess
connt=11 (proba=0.001065)

--> [municipalities)

1055 (reporter]
count=1 (proba=0.000097)

-+> [furillo] count= 1
1061 (request)
count=4 (proba=0.000387)

~-> [about] count= 1
1903 (riesel
counk=3 (proba=0.000290})

~-> [express} count= 1
1920 qeatingl
count=5 (proba=0.000484)

--> [it] count= 5
2000 qshopsl
count=1 (proba=0.000097)

--> [companies)

2018 (signorel
count=1 (proba=0.000097)

--> [trader] count= 3
2007 emieny
count=1 (proba=0.000097)

--» {d.] count= 3

2054 [source]}

count=4 (proba=0.000387)

=->» finc) count= 4
=-> [*1lrb+) count= 1
2058 [soybeans])

count=1 (proba=0.000097)

--> [comnodities)

2000 [speculators]
count=1 (proba=0.000097)

--> {risk} count= 3

N~
research/v3/wsj_011.bro pPagc 6
connt= 3 mutualinfo= 0.000802
mutualinfo= 0.001291
6 mutuvalinfo= 0.000710
7 mutwalinfo= 0.000742
7 mutualinfo= 0.000501
count= 8 mutualinfo= 0,001000
nutualinfo= 0,.001137
mutualinfo= 0.001137
mutualinfo= 0.002001
5 mutualinfOf 0.000719
count= 3 mutualinfo= 0.001137

mutualinfo= 0.001137

N
count=2 (proba=0.000194)
--> [movements] count= 2 mutualinfo= 0.001097
2007 Istates)
count=1 (proba=0.000097
--> [enforcement} counk= 5 mitualinfoe= 0.,001066
2095 (stanley)
count=1 (proba=0.000097)
--> [peabody) count= 3 mutuwalinfo= 0.001137
a0 qstayl
count=3 (proba=0.000290)
--> [work] count= 3 mutualinfo= 0.000984
15 qsterny
count=2 (proba=0.000194)
--> [authority] count= 3 mutualinfo= 0.001040
2121 lstreet;
count=14 (proba=0,001355)
--> [and] count= 170 mutualinfo= 0.000205
;l;;--- -[su;;essé;i -----
count=4 (proba=0.600387)
--> [dolan] count= 1 mutualinfo= 0.001097
2174 [sweatshirts]
count=1 (proba=0.000097)
--> [sparkplugs]) count= 1 mutualinfo= 0.001291
2100 qrainy
count=1 (proba=0.000097)
--> {energetic] count= 1 mutualinfo= 0.001291
2200 fewel
count=630 {proba=0,060976)
--> f{trading} count= 51 mutualinfo= -0.000158
2213 [then-speaker]
count=1 (proba=0.000097)
--> {wright] count= 1 mutualinfo= 0.001291

2214 [there}
count=9 (proba=0.000871)

--> [there]} count= 9 mutualinfo= 0.000677
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2216 [they] i
count=38 (proba=0.003678)
--> {they]} count= 30 mutualinfo= 0.000275
2242 [ro)
count=285 (proba=0.027584)
--> {in] count= 184 ¢ mutualinfo= -0.000227
--> [from] -count= 35 : mutualinfo= 0.000005
--> [for} count= 98 < mutualinfo= -0.000084
2250 (top) ;

--> [program-trading} count= 8 mutualinfo= 0.000776
2262 (trading]
count=531 (proba=0.004936)
--> {computers] count= 6 mutuvalinfo= 0.000491
--> litself} count= 1 mutuvalinfo= 0.000742
2200 (truse]

count=2 (proba=0.000194)

--> |PREE ) counl= mutualinfo= Infinity
2206 (ual)
count=2 (proba=0.000194)

--> [shares) count= 2 mutualinfo= 0.,001097
2299 {uncertainty]
count=1l (proba=0.000097)

--> [deeds] count= 1 mutualinfo= 0.001291

2319 [unneeded]
count=1 (proba=0.000097)
--> [even] count= 11 mutualinfo= 0.000956

2375 {waited]

count=1 (proba=0.000097)

--> [sneaked] count= 1 mutualinfo= 0.001291

2382 was)
count=25 (proba=0.002420)

--> laccording) count= 4 mutualinfo= 0.000648
212 (widget)

count=7 (proba=0.000678)

--> [price] count= 8 mutualinfo= 0.000729
2023 (eiem
count=54% (proba=0.005226)
--> {f{or) count= 98 mutnalinfo= 0.000093
2427 [wizards) -~
count=1 (proba=0.000097) [
- [clicnts} . count= 7 mutualinfo= 0.001019
210e (yeari
count.=23 (proba=0.002420)
--> [sales) count= 8 mutualinfo= 0.000551-



Annex III

some C programs from the study

96



global.c

/*

* NAME global.c

* CREATED September 27. 1994
* CHANGED : December 1. 1994
sk

* global variables

sk

#include "1dd.h"
#define GLOBAL_-C

WORD
Dico[MAXWORD],
TabTag[TAGSNB]

"o, n o non

{"xx", "x", "adj", "adjp

advp",

"whadvp", "whnp", "whpp"};

COUNT

TabCount{MAXWORDY];

TABDEPENDENCE
BrosDependence,
SonDependence,
BigramDependence;

CARDINAL
WordCard ,
BrosCard ,
SonCard
BigramCard,

TABLE
Brothers
Parents
Bigrams

DEPEND
Depend

int;
WordNb
QccurenceNb
SentenceLength
MaxCount
BigramsRetrouves
BigramsNouveaux
BrothersRetrouves
BrothersNouveaux
ParentsRetrouves
ParentsNouveaux

float
Transfact

SENTENCES
LINEARSENTENCES
FLOATINGDEP

int
NbSentence
Start
Stop
Pas

[¥** varigbles ***/

" moon "non non "won "o v

intj", "np", "ord", "pp", "s", "sbar", "sbarq", "sinv", "sq", "vp",
/* occurence count r */

/*(w1,w2) -> mutual count ¢ */

/#Card { w

: count=r} */
/* Card {(w2 bros wl) :

count=c} */

= { "BROTHERS", & BrosDependence , & BrosCard },
= { "PARENTS" , & SonDependence & SonCard  },
= { "BIGRAMS" , & BigramDependence, & BigramCard};

= { & Brothers, & Parents, & Bigrams };

:0’

=0, /* OccurenceNb >= WordNb */
=2, /* max length */
=MAXCOUNT,

=0,

=0,

=0,

=0,

=07

=0;

=1;

Sentences;
LinearSentences;

DataDepSentences [MAXSENTENCE];

=0,
=],
=MAXSENTENCE,
=1;



global.c 2

float
MinInfo =0.0,
MinProba =1.0/10000,
Lambdal =0.6,
Lambda2 =0.5,
Lambda3 =0.3,
Lambda4 =0.3;

/*** functions ***/

nt
Index (WORD, enum FLAGS),
New_Line (LINE*, int* __cursor, FILE*),
void .
Text (WORD, INDEX, enum FLAGS),
AddinDico (WORD),
Open_File (char* FILE**);
void
Init_Transitiv (TABDEPENDENCE),
Transfere (TABDEPENDENCE),
‘Write_Tab (TABDEPENDENCE, FILE*),
Zero_Liste (TABDEPENDENCE),

Display_ZXinfo (TABDEPENDENCE),
Init_Proba (TABDEPENDENCE),
Init_Cardinal_Dico (void),
Display_Cardinal (CARDINAL),
Zero_Cardinal (CARDINAL),
Init_Cardinal (TABLE %),

Zero_Dep (TABLE *);
int
Max_Count (CARDINAL),
‘Word_Size (DEPSENTENCES),
Show_Set (DEPSENTENCES);
float
Mutual_Info (int __cl,int __c2,int __cl_2),
XlInfo (TABDEPENDENCE , INDEX);
float

Bigram_Perplexity (LINEARPHRASE*,int* __length),
All_Perplexity (PHRASE*,int* __length,float _ Lambdal,float _ lambda?2, float __Lambda3,float
__Lambdad4);

float
Bigram_Proba_S (int__index1 ,int __index2), /*P~(index2 [index1)*/
Cond_Proba (int __index1 ,int __index2, TABLE), ‘

Cond_Proba_Sm (int __index], int __index2, TABLE),

All_Cond_Proba (int__bigram,int __ parent,int __ bro,int __word,float __Lambdal,float __Iambda2,
float __Lambda3,float __ILambda4),

Weight (int __indWord,int __indBigram,int ___indDep, TABLE ,float __lambda),

Brother_Weight (WORDDEDP, float __lambdal,float __lambda?2, float _Lambdzﬁ,ﬂo‘at __Lambda4),
Parent_Weight (WORDDEP, float __lambdal, float _ lambda2, float ___ILambda3 float _ L ambda4),

Proba (WORDDEP, float __lambdal,float __lambda?2, float __Tambda3,float _ Lambda4),
ProbaBig (WORDDEP, float __lambdal,float _ lambda2, float __Lambda3, float _Lambda4),
LogProba (WORDDEP, float __lambdal,float _ lambda2, float __Lambda3,float __Lambda4),
LogProbaBig (WORDDEP, float __lambdal,float ___lambda2, float __Lambda3,float _ Lambda4),
ProbaDep (WORDDERP, float __lambdal,float __lambda?2, float __Lambda3,float _ Lambda4),

O



global.¢

Perp_Dep (FLOATINGDERP, int* __Length, float __lambdal,float __lambda2, float
__Lambda3,float __Lambda4),
Compute_Dep (FLOATINGDERP, float (*)(WORDDERP,float,float,float,float), int*

__Length, float __lambdal,float __lambdaZ, float _ Lambda3,float _ Lambda4),
Perplexity_Big (DEPSENTENCES ),

Perplexity (DEPSENTENCES, float __lambdal, float __lambda2, float __Lambda3, float
__ Lambdad);
void ,

Open_Dico (STRG), o e e —— s

Read_Sentence (STRG),
Create_Linear (STRG),

Display_Tree L  (PHRASE¥*), /*left*/
Display_Tree (PHRASE¥*), [¥right*/
All_Search (PHRASE¥*),

Search_Bros2 (PHRASE*),
Search_Son (PHRASE™*),
Search_Bigram (LINEARPHRASE *),

Search_Tri (FLOATINGDEP *, PHRASE®*),

New_Dep (FLOATINGDEP,int __pos,int __dep,INDEX __indexDep,INDEX __indexWord),
Init_Dep (FLOATINGDEP *),

Add_Dep (FLOATINGDEP),

Display_Dep (FLOATINGDEP),
Display_Fonc (DEPSENTENCES, float(*)(WORDDEDP,float,float,float,float),float
_ lambdal,float _ lambda2, float __Lambda3,float _ Lambda4),
Display_Prob (FLOATINGDEP,float __lambdal,float _ lambda2, float _ Lambda3 float
__Lambda4),
EMConvergence (DEPSENTENCES, float *__lambda0,float __epsilon, int __dep),
Dichotomy (DEPSENTENCES, float *__lambda0, float __epsilon, char __dep);
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e
* NAME : types.h
* CREE : 28 Septembre 94

* CHANGE : 19 Octobre 84

*/
#ifndef TYPES H
#define TYPES_ H

tdefine MAXWORD 10000
sdefine MAXSENTENCE 5000
#define MAXCOQUNT 2000 /* max occurence of a bigram */
sdefine MAXLEN 40
sdefine LINESIZE 80
#define MAXDEPEND 4 /* sons | brothers | bigrams [trigrams [ ...*/
/***ywords. .. %%/
typedef char STRG [MAXLEN] ;
typedef STRG WORD ;
typedef int COUNT; /* occurence count */
typedef float PROBA;
typedef int INDEX; /% word index in the dictionary */
typedef char LINE[LINESIZE];
typedef struct nextword /*(wordl --> list of word2s)*/
{
INDEX Index2;
COUNT Count; /* count (wordl, word2) */
PROBA Proba; /% I(word2 , wordl) */
struct nextword *Next;
} NEXTWORD;
typedef NEXTWORD *TABDEPENDENCE [MAXWORD] ;
typedef int CARDINAL [MAXCOQUNT] ;
typedef struct table
{
STRG Title;
TABDEPENDENCE *Liste;
CARDINAL *Cardinal;
] TABLE;
typedef TABLE *DEPEND [ MAXDEPEND] ;
/***sentences...**%/
enum FLAGS { PTAG , FWORD };
typedef struct phrase
enum FLAGS Flag; /* Key will be either a TAGx or a WORDx */
int Key;
struct phrase *Son; . o
struct phrase *Bros; /* Brothers: Phrases on the same verticalx/
} PHRASE;
typedef PHRASE *SENTENCES {MAXSENTENCE] ;
sendif
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# NAME : index.h
* CREE : Septembre 94
*# CHANGE : 3 Octobre 94

o®

* constant tables = eqguivalent classes

%ifndef INDEX_H
#define INDEX H

#include "global.h"

tdefine PLACESNB 16
2define MONTHSNB 11
tdefine DAYSNB 7
#define ORDISNB 4
#define TAGSNB 15

enum TAGS

{
X, ADJP, ADVP, INTJ, NP, PP, S, SBAR, SBARQ, SINV, SQ, VP, WHADVP, WHNP, WHPP

}i

WORD TabTag [ TAGSNB] =

"X", IIade", ”advp"/ llintjﬂ, "np", ”pp"/ "S", "Sbar", "sbarq", "Sin‘]"/ qull, vall, T
whadvp n , "whnp" , "Whpp t

}:
WORD TabPlace [PLACESNB] =

"pittsburgh", "denver", "philadelphia", "atlanta","altanta", “washington”, "boston", "san"
,"francisco", "baltimore", *dallas", "dc", "oakland","texas", "maryland", "stapleton"

}:

/** "may" is not in TabMonth because of its verb homonyme *+*/

WORD TabMonth [MONTHSNB] =
{
"januarv", "february", "march","april", *june", "july", "august", "september®, "october", "n
ovember", "december"
}i
WORD TabDay [DAYSNB] =

"monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday"

}s

WORD TabOrdinal {ORDISNB] =
Ilth“’ "I'd", "St", llnd"
1

#endif




* NAME : ldd.c

* CREATED : September 1994
* CHANGED : Decembre 5 1994
*

*

#include "global.h®
int select (DEPSENTENCES*,DEPSENTENCES*,DEPSENTENCES, int, int);

DEPSENTENCES
DepSentences,
TrainSentences,
ConvSentences,
TTestSentences,
TestSentences;

int
amount;

float
epsilon=1E-3,
mul,
muz;

/*************-k**********************************************/

int select (Setl,Set2,Main,n,m)
DEPSENTENCES *Setl, *Set2, Main;

int n,m;
{
int i, sl, s2;
sl = s2 =1 = 0;
while ( Main[++i])
if ( (1%m) < n)
(*Setl) [++sl] = Main[i];
else
(*Set2) [++s2] = Main[i];

return(sl);

}

/***********************:k************************************/

void Opening(filename)
STRG filename;
{

STRG file_par, file_dic;
int i;
printf( ———————— OPENING—--=~—-—-——— \n");
strcpy(flle_par fllename)

strcat (file_par, .par");

strcpy{file_dic, fllename)

strcat (file_dic, .dic");

printf (" %s %s\n", file_par, file_dic);
/****/

printf (" OPENING DICO \n");

Open_Dico(file_dic);

printf ("Words : %d\n", WordNb) ;

printf ("Words Occurences : %d\n", OccurencelNb);

Init_Cardinal_Dico ();

MaxCount = Max_Count (WordCard) ;

MinProba = 1.0 / (MaxCount*WordNb) ; /* will be minimum conditionnal proba *
printf{"Max LogProba -~ %f\n", - log(MinProba) / log(2));
/***

for (i=0; i<=WordNb; i++)
printf ("%d\t%s\t%d\n",i,Dico[i],TabCount{i]); 102



/***
Display_Cardinal (WordCard);
/***/
/*****/
printf (" CREATING TREE \n');
Read_Sentence(file_par);
amount = NbSentence-Start+l;

printf ("Sentences : %$d\n", amount);
printf("Sentence Length : %d\n", SentenceLength);
/***

printf (" DISPLAYING \n");

for (i1=Start; (i<=Stop)&&(i<=NbSentence); 1i++) e U
{
printf ("\nSentence sd\n",1);
Display_ Tree(Sentences[i], 0);
printf("\n");

/***/
/************************************************************/

volid Creating()

{

int i;

printf("-—---—-—- CREATING VECTORS=====——-— \n");
for (i=Start; (i<=Stop)&&(i<=NbSentence); i++)
{
DepSentences[i] = & DataDepSentences[i];
Init_Dep( DepSentences{i] );
Search_Tri ( DepSentences{i] , Sentences{il]};
}
3************************************************************/
void Dividing(n_train, m_train, n_conv, m_conv)
int n_train, m_train, n_conv, m_conv;
{
float ratio_train, ratio_conv;
int
amount_train, amount_dep, amount_conv, amount_test;

printf("--——-——-——- DIVIDING DATA---————~— \n");

ratio_train = 1.0 * n_train / m_train;

ratio_conv 1.0 * n_conv / m_conv;

printf("ratio_train = %f\n",ratio_train);

printf('ratio_conv = %$f\n",ratio_conv);

amount_train = select(& TrainSentences, & TTestSentences, DepSentences, n_tre
n, m_train);

amount_conv

select (& ConvSentences, & TestSentences, TTestSentences, n_cor

., m_conv) ;
" amount_test = amount - amount_train - amount_conv ;
/**/
printf("%d sentences ‘\An"-,~ amountj --
printf ("\t%d sentences for training \n", amount_train);
printf("\t%d sentences for converging\n", amount_conv);
printf ("\t%d sentences for testing \n", amount_test);
/**
printf("total size : %d words\n", Word_Size(DepSentences));
printf("training si;e : %d words\n", Word_Size(TrainSentences)) ;
printf("converging size : %d words\n", Word_Size(ConvSentences));
( )i

printf("testing size : %d words\n", Word_Size(TestSentences)
/**/
} .
/*************************************************************/

void LostFound()
{

printf("found-brothers %d ",BrothersRetrouves);
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}

printf("/ new-brothers %d\n",BrothersNouveaux) ;
printf (" found-parents %$d ",ParentsRetrouves);
printf("/ new-parents %d\n", ParentsNouveaux) ;
printf (" found-bigrams %d ",BigramsRetrouves);
printf(*/ new-bigrams $d\n",BigramsNouveaux) ;

/************************************************************/

float Testing(Set)

{

DEPSENTENCES Set; A
float perplexity;

perplexity = Perplexity_BRig(Set);

printf ("PERPLEXITY bigrams only and not smoothed : %$f\n",perplexity);
perplexity = Perplexity(Set,0 ,0 ,0 ,0);

printf ("PERPLEXITY bigrams only ' : %3f\n",perplexity);
perplexity = Perplexity(Set, Lambdal, 0, Lambdal, 0);

printf ("PERPLEXITY bigram / brother : %f\n",perplexity);
perplexity = Perplexity(Set, 0, Lambda2, O, Lambda2)

printf ("PERPLEXITY bigram / parents : $f\n",perplexity);
perplexity = Perplexity(Set, Lambdal, Lambda2, Lambda3, Lambdad);

printf ("PERPLEXITY brothers + parents + bigrams : of\n",perplexity);

printf (" (%f) (%f£) (%f) (%£)\n", Lambdal,Lambda2, Lambda3, Lambda4) ; )
LostFound () ; {

return(perplexity) ;

/***-k********************************************************/

float Searching(TrainSentences)

{

DEPSENTENCES TrainSentences;

int 1i=0;
float perplexity;

for (1=0; i<=2; i++)
Zero_Dep (Depend[i]);

while (* TrainSentences[++1])
Add_Dep (* TrainSentences[i]);

for (i=0; i<=2; i++) )

{

Init_Proba(*Depend[i]->Liste); :
Init_Cardinal (Depend[i]);

/-k-k*

Display_Cardinal (*Depend[i]->Cardinal);

/***

Transfere(*Depend[i] ->Liste); e
/-k-k* -
printf("\n XINFO \n");
Display_Xinfo (*Depend[i]->Liste);
/***/
}

/***
printf{("\n Brothers Transitivity\n"); =
printf(*transitivity factor : "); ‘
scanf ("%$f",&Transfact);

if (Transfact) _ N
{

Init_Transitiv{(BrosDependence) ;

/**

Transfere (BrosDependence) ;
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}

/** train-set perplexity **/
return{Testing (TrainSentences) ) ;

/***********‘k**‘k*********************************************/

float Converging (ConvSentences)
DEPSENTENCES ConvSentences;
{
int i, size;
float perplexity;

printf(" ———————— CONVERGING-——~---~— \n"y;

/**

Dichotomy (ConvSentences, &mul, epsilon, 1);
printf(">mul = %f\n",mul);

perplexity = Perplexity (ConvSentences, mul, 0 );
Dichotomy (ConvSentences, &mu2, epsilon, 2);

printf (">mu2 = %f\n",mu2);

perplexity = Perplexity (ConvSentences, 0, mu2 );
/**/

EMConvergence (ConvSentences, &Lambdal, epsilon, 1);
printf (*Brother >Lambdal = %$f\n",Lambdal);
EMConvergence (ConvSentences, &Lambda2, epsilon, 2);
printf ("Parent >Lambdaz = %$f\n',Lambda2);
Lambda4 = LambdaZ2;

Lambda3 = Lambdal;

/**/ .
EMConvergence (ConvSentences, &Lambdal, epsilon, 3);
printf (" (with Parent (+brother) >%f)\n",Lambda4d);

printf (" Brother (+parent) >%f\n",Lambda3l);

/**

EMConvergence (ConvSentences, &Lambdad4, .1, 4);

printf (" Parent (+brother) >%f£\n",Lambdad);

/**

EMConvergence? (ConvSentences, &Lambda3, &Lambdad, epsilon);

printf ("Brother&Parent >Lambda3 = %f , Lambdad4 = %f\n",Lambda3, Lambda4d);
/**/

return(Testing (ConvSentences) ) ;

/*************************************************************/

void main(argc,argv) /**file. **/

int argc;
char *argv(];

STRG file_par, file_dic;

int 1=0;

int n_train, m_train, n_conv, m_conv;
float max_train = .8;

int onl, on2;

float Sperp, Cperp, Tperp, Bigperp;

float perp, nperp;
printf(" \nbegin************ %S **************\nu’argv[l] ) ;

perp = nperp = Sperp = Cperp = Tperp = 1.0 * MaxCount;
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Opening(argv[1l]);

Creating();

n_train = 4; m_train = 5;

n_conv = 1; m_conv = 2;
Dividing(n_train, m_train, n_conv, m_conv);
Sperp = Searching(TrainSentences);

/**/

Stop = 5;

printf(”"\n\n 100 * Proba | Big+Par\n");
Display_Fonc (TrainSentences, Proba, 0, Lambda2, 0, Lambda4) ;
Stop = NbSentence;

VARV

Cperp = Converging(ConvSentences);

printf("--———--—- TESTING-—-~=~—=~—= \n");

Tperp = Testing(TestSentences);
/-k**/

printf ("\n*******x M TRAIN\n");

onl = 1;

while (onl)
{
Dividing(n_train, m_train, n_conv, m_conv);
Sperp = Searching(TrainSentences); '
Cperp = Converging(ConvSentences) ;
printf('--———-—-- TESTING~--———~—— \n");
Tperp = Testing(TestSentences); )
if ( (nperp - Tperp>= 0) && (n_train/m_train < max_train) )
{
m_train = m_train + 2;
n_train++;
nperp = Tperp;
}
else
{ .
onl = 0;
m_train = m_train - 2;
n_train--;
Tperp = nperp;
}
printf ("\n*¥****x**\n"});
}
/'k**/
printf (" \n****x**x* M CONV\n");
m_conv++;
onz = 1;
while (on2)
{
Dividing(n_train, m_train, n_conv, m_conv);
Sperp = Searching(TrainSentences);
Cperp = Converging (ConvSentences) ;

printf("————-——- TESTING-=~=~——~ \n");
Tperp = Testing(TestSentences);
if ( (nperp - Tperp>= 0) && (n_train/m_train < max_train) )

{

m_conv++;
nperp = Tperp;

else
{
onz = 0;
m _conv--;
Tperp = nperp;
}
printf ("\n****x*x*x\n) .
}
printf(u\n*******\nu); IJ)B



/**
printf ("\nBrother >Lambdal = %f\n",Lambdal) ;
printf{“"Parent >Lambda2 = %f\n",Lambda2);

printf ("Brother&Parent >%f , %f\n",Lambdal3, Lambdad) ;
/**

Bigperp = Perplexity_Big(TestSentences) ;

printf ("\nbigrams only : %f\n",Bigperp) ;
printf("parents + brothers + bigrams : %f\n", Tperp);
LostFound () ;

/**

printf ("\nN_TRAIN %d\t/ M_TRAIN %d\n", n_train, m_train);
printf ("N_CONV 1 \t/ M_CONV %d\n", m_conv) ;

/**

printf("Train Set:\n%d\n", Show_Set (TrainSentences));

printf ("Test Set:\n%d\n",Show_Set (TestSentences));

/**

Stop = §;

printf("\n 100 * Proba | Bigram\n");
Display_ Fonc (TestSentences, ProbaBig,0,0,0,0);

/**

printf("\n\n 100 * Proba | All\n");

Display_Fonc (TestSentences, Proba, Lambdal, Lambda2, Lambda3, Lambdad)

/**

printf("\n\n 100 * Proba | Brother\n");
Display_Fonc (TestSentences, ProbaDep, 1, 0, 1, 0);
printf("\n\n 100 * Proba | Parent\n");
Display_Fonc (TestSentences, ProbaDep, 0, 1, 0, 1);
Stop = NbSentence;

/**

printf("\n") ;

while (*TestSentences[++1] && 1 < 5)

Display_Dep ( *TestSentences(i] );

/**/

printf("\n***************** %S **************end\nn ,argV[l] ) ;



makefile

#
# Makefile for Idd -
#
#

'EXTHDRS

CcC
CFLAGS
LINKER
LDFLAGS
LIBS

DEST
MAKEFILE
HDRS

SRCS

September 28. 1994
November 15. 1994

=  /usr/include/ansi_compat.h \
/usr/include/stdio.h \
fusr/include/stdlib.h \
fusr/include/math.h \
/usr/include/string.h

= gcc
= -c-g

= gcc

= -8

= DEFS = -DDEBUG
= ${HOME}/bin

=  Makefile

=  types.h\
1dd.h \
global.h\
opendico.h \
readsentence.h \
search.h \
index.h

= ldd.c\
global.c\
opendico.c \
readsentence.c \
createlinear.c \
displaytree.c \
allsearch.c \
searchbigram.c \
allperplexity.c \
newsearch.c\
floatingdep.c \:
convergence.c \
conditionnalproba.c \
mutualinfo.c \
xinfo.c \
initcounts.c \
addcouple.c \
lookflag.c \
index.c \
openfile.c\
read.c

S ,42



makefile

OBIJS = 1dd.o\
global.o \
opendico.0 \
readsentence.o \
createlinear.o \
displaytree.o \
allsearch.o\
searchbigram.o \
allperplexity.o \
newsearch.o \
floatingdep.o \
convergence.o \
conditionnalproba.o \
mutualinfo.o \

xinfo.o \
initcounts.o \
addcouple.o \
lookflag.o\
index.o\
openfile.o\
read.o
PROGRAM = Idd
PRINT = pr
all: ‘ $(PROGRAM)
.C.0: k
$(CC) $(CFLAGS) $(DEFES) $<
$(PROGRAM):  $(OBIS) $(LIBS)
$(LINKER) $(LDFLAGS) $(OBJS) $(LIBS) -Im -0
$(PROGRAM)
clean: m -f $(OBIS)
install: $(PROGRAM)
install -s $(PROGRAM) $(DEST)
program: $(PROGRAM)
update: $(DEST)/S(PROGRAM)

$(DEST)/$(PROGRAM):  $(SRCS) $(LIBS) $(HDRS) $(EXTHDRS)
@make -f $(MMAKEFILE) DEST=$(DEST) install

HA
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