
Internal use only

002

TR-IT-0071

On the automatic transformation of a
set of EBMT Constituent Boundary

Patterns into a Context-Free Grammar,
and associated bottom-up algorithms

Christian Boitet

1994.9.7

~

EBMT as pursued at A TR uses a set of℃ onstituent Boundary Patterns" to describe the input language.
We show how to automatically conve11 such a set Pinto an equivalent CFG G=T(P), which is not only
weakly (generatively) equivalent, but quasi-structurally equivalent: there is a very simple homomo1-phism
transforming a G-tree into the con-esponding P-tree.

As a result, any classical CFG-based analysis algorithm may be used with G=T(P), and the parse trees
conve11ecl to P-trees. In particular, all bottom-up algo1ithms are applicable. However, due to the layered
character of the set of non-terminals of any such G, it is possible to propose a simple and efficient (non-
cleternnnistic) bottom-up analysis alg01ithm.

Because special "constituent boundary" tags are introduced by a pre-processing phase into the strings
described by P (and hence by G), it is also possible to adapt the idea of "operator precedence parsing" to
G, and perhaps even directly to P.

~

Interpreting Telecommunications Research Laboratories

2-2 Hikari-dai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan

c1994 by A TR Interpreting Telecommunications Research Laboratories and

CNRS (Centre National de la Recherche Scientifique)

. 一'i

On the automatic transformation of a set of EBMT Constituent
Boundary Patterns into a Context-Free Grammar, and

associated bottom-up algorithms

Christian BOITET*
GETA, IMAG (UJF & CNRS)

BP 53, 38041 Grenoble Cedex 9, France
Christian.Boitet@imag.fr

Abstract

EBMT as pursued at A TR uses a set of℃ onstituent Boundary Patterns" to describe the input
language. We show how to automatically conve11 such a set Pinto an equivalent CFG G=T(P), which
is not only weakly (generatively) equivalent, but quasi-structurally equivalent: there is a very simple
hornorno11Jhisrn transforming a G-tree into the corresponding P-tree.

As a result, any classical CFG-based analysis algorithm may be used with G=T(P), and the parse trees
converted to P-trees. In particular, all~ottom-up algorithms are applicable. However, due to the
layered character of the set of non-te1mmals of any such G, it is possible to propose a simple and
efficient (non-deterministic) bottom-up analysis algoiithrn.

Because special "constituent boundary" tags are introduced by a pre-processing phase into the strinos
desciibed by P (and hence by G), it is also possible to adapt the idea of "operator precedence parsing"
to G, and perhaps even directly to P.

1. The ATR-EBMT formalism of "constituent boundary patterns"

In their COLING-94 paper [4], Furuse and Iida present a grammatical formalism using patterns and
levels, which they use for top-down parsing in their EBMT system. Here are typical pattern examples.
The formalism is e・xplained in more detail after the table below .

Level Nan1e Pattern "Next-Priority"
(proper) (rewriting levels)

1 CONF-I_SUPPOSE (?XI <PRO-V> SUPPOSE)

1 CONF-RIGHT (?X RIGHT} (:X 2)

2 SCONJ2-AND (?X AND ?Y) (:Y 4)
...
4 VP-INV-FOR (FOR ?X <N-DET> ?Y) (:X 6 :Y 5)
4 REQ-LET_US (LET US ?X) (:X 5. 3)
5 ．．．

5.1 ...
...

5.4 BE_ING (?X ING+ ?Y) (:Y 5. 3)
...

5.7 ...
...
6 ...
...
7 ．．．

...
8 ...
... ， X_NUMBER (?X <N-N> ?Y) (:X 10) ， <NUM-NUM> (?X <NUM-NUM> ?Y) (:Y 10)

* Visiting researcher at A TR Interpreting Telecommunication Laboratories

Transformation of a set qf EBMT Constituent Bounda, ぅ,Patterns into a CFG and associated bottom-up algorithms

In this example, the level goes from 1 to 9, with some fine-grained levels between 5 and 6 (5.1-5.7).
There is also an implied level of 10, as shown by the "Next-Priority" (rewriting levels) column.

The patterns contain 4 types of elements:

- V血ablessuch as ?X, ?Y, ?Z;

- Class symbols such as NUMBER, which stand for classes of words;

- Constituent Boundary symbols, such as <N-DET>, which are inserted by a pre-processing
(tagging) phase piior to analysis;

-Words, such as "I", "suppose", etc.

Class symbols, Constituent Boundary symbols, and words form the terminal vocabulary, which we
will denote by V.

The vaiiables ?X, ?Y, ... are analogous, but not identical, to auxiliary or non-terminal symbols in
classical context-free grammars.

The language generated by a set of such patterns is obtained by rewriting from the pattern (? X) of
level 1 until a string without variables is obtained. A variable ? X in a pattern of level j may be
rewiitten [4] :

-using any pattern of level k~j if ?X does not appe紅 inthe Next-Piiority field of the pattern;

- or using any pattern of level k~h if : x h appears in the Next-Piiority field of the pattern.

For sho11, we ¥vill call such an a汀angementa "set of constituent-boundary patterns", or CBP-set.

2. Transformation of a CBP-set P into an equivalent CFG G=T(P)

According to the rem紅 kabove, we first normalize the notation by representing all strings of terminals
in the same manner. More specifically, let V be the set of terminals. Each pattern may be represented
as:

where

[1, n, UQ X1 u1 ... Up-1冷 Up, (X1 11) ... {Xp lp}]

-1 is the level of the pattern.

-n is its name.

-x1, ... Xp are the non-terminals ?X, ?Y, ?Z, ... (p::;3 in the examples we have seen),

-uo, up E V* and u1 ... Up-1 E v+. This simply means that two v叩 ables紅e

always separated by at least one terminal, while the leftmost and rightmost elements
may or may not be terminal stiings.

-A pair (Xi li) co1Tesponds to a pair : Xi li in the Next-Priority list.

Algorithm T

Inout: a set P of patterns, in the notation above.

Output: an equivalent CFG G.

Method:

1) Create the set of non-terminals Eo, E1, …EL.

recall that Lis the maximal level.

Eo is the axiom of G.

2) Create the rules:

Eo

E1

-> E1 I E2 .. .

-> E2 .. .
L

L

E

E

E正 1 ―> EL

3) For each pattern [1, n, uo X1 u1 ... Up-1 Xp up, (X1 11)… (Xp lp) l

add the rule:

2

Tran.~formation ()fa set of EBMT Constituent Boundaハ・Patternsinto a CFG and associated bottom-up algorithms

n: E1 -> UQ E11 u1 ... U -1配 u

3. Equivalence

It should be clear from the explanation of the derivation process in a CBP-set that the grammar G
produced generates the same strings, that is, is weakly equivalent to P.

The parse trees produced by G are not identical with those associated with P. Hence, the two
formalisms are not strongly equivalent. But there is a simple homomo11Jhism H transforming a G-tree
into a P-tree.

Algorithm H

InDut: a parse tree for a terminal string w associated with G=T(P).

Output: the associated P-tree.

Method:

1) In the G-tree, rename all non-terminals Eo, E1, ... EL as E.

2) Replace all unary chains of the form

•E

•E by ’’ a unique node• E

•E

3) Replace each subtree of the form

•E

I I
!uo E u1 Up-1 E Up [

•uo•E•u1 •Up-1• E•Up by j_j I I
I I

4) Rename the symbols E as ?X, ?Y, …as in the original pattern
(which name may be kept in the G-tree as the name of the rule
derived from it).

4. Parsing methods

Any CFG-based parsing method can of course be used with G=T(P). In particular, any bottom-up
method can be used.

However, due to the layered character of the set of non-terminals of any such G, the levels i of non-
terminals E辻 neverdecrease while traversing a parse tree from the root to a leaf1. It is thus possible to
propose a simple non-deternlinistic analysis alg01ithm, A.

Algorithm A
..

: non-determ1mst1c bottom-up "layered parsing"

Inout: a terminal string w associated with G=T(P).

Output: a set of parse trees for w associated with G=T(P).

Method:

1) For each level j from L down to Odo

reduce by using Q叫 therules rewriting E・

1~ote that, in the example above, one can go back from level 5.4 to level 5.3, which contradicts what is said in [4]. If this
is the case, we can still define adequate subgrammars, by using the rules rewriting Ej and the rules rewriting all the Ei such
that k年i$;jand恥 appearsin a right hand side of a rule rewriting Ej,

3

Transformation qf a set qf EBMT Constituent Bounda, ぅ， Patternsinto a CFC and associated bottom-up algorithms

2) Output all (or

"best"

the n "best")

accordin to a

trees with

distance[

root

or a

E。 ．
covering

scoreL etc.

w.

Still another possibility may be suggested by the fact that special "constituent boundary" tags are
introduced into the strings to be analyzed, so that two non-terminals are always separated by at least
one terminal in any right hand side of a rule of G.

The idea is to adapt the idea of "operator precedence parsing" to G, and perhaps even directly to P. For
details about operator precedence parsing, see [l]. The good thing about this sort of parsing method is
that it does not distinguish among different non-terminals. This lack of distinction is actually what we
want, at least for each level.

Let us call Gi the subgrammar of G rewriting Eゎthatis, containing the rules with left hand side Ei.

Algorithm B: less non-deterministic, bottom-up, "layered" parsing

, —
i ln℃Uこ：

OutDUt

Method

1)

a

a

terminal string

set

For

of

each

parse

level

compute

if it

trees

ー

use

2) Output

it

precedence table for Gi

conflict, this step

to reduce,the current string

(made of terminals and of dummy
normally pointing to partial parse

"best") trees with

distance,

the

has

w

from

no

associated with

for

L

w

G=T(P).

associated with

down to

。
do

then

accordin

all (or

"best"

is

G=T(P).

deterministic

to a or

＇ non-terminals、
trees) .

covering root Eo w.

a scorel etc.

In normal precedence parsing, a successful pass empties the input and leaves exactly one (dummy)
non-terminal on the stack, pointing to the final parse tree. Here, each pass should also empty the input
string, but the resulting stack may contain terminals as well as (dummy) non-terminals, and is in fact
the input to the next pass.

To adapt this idea to handle P directly simply means that, instead of producing a G-subtree when
performing a reduction, we would produce a P-subtree (see step 3 of al~orithm H above). Note that
operator precedence parsing never produces "unary chains", so that there rs no need for something like
step 2 .of algo1ithm H above.

n・ 1scuss10n and concluswn

What we have shown is that any CBP-set P can be transformed into an equivalent CFG G=T(P), and
that the P-trees can be easily recovered from the G-trees. While any CFG-based parsing algo,ithm may
be applied to G, the layered character of P suggests a layered bottom-up parsing algorithm, which
should be more efficient, essentially because it paiiitions G into as many subgrammars as there are
layers, and uses a different subgra1nmar at each pass.

As a matter of fact, CF-recognition time complexity is at least quadratic in the size of the grammar (for
the Earley algorithm, it is O(IGl2 .lwl3) [3]). Hence, dividing a grammar of size 10.S into 10
subgrammars of size S should decrease the recognition time from 100.S2 lwlk to 10.S2 lwlk, a factor of
10令 whateverthe exact value of k. In the example CB P-set considered above, there are about 16 levels,
so that the gain could be a factor of 16, and so fo1ih.

Still a more efficient class of bottom-up algorithms may be de1ived from the technique of "operator
precedence parsing". Due to the use of statistical techniques to assign exactly one rnorphosyntactic
class to each input word, and to insert non-ambiguous context boundary markers, it can be hoped that

ヽヽthe su bgrammars of G will in practice be operator precedence grammars", that is, that their
precedence tables will show no conflict.

， u

4

Transformation~fa set of EBMT Constituent Boundary Patterns into a CFG and associated bottom-up algorithms

Even if some (or all) of the subg~·ammars are not "operator precedence grammars", this technique
should be more efficient, because 1t does皿 usethe rules directly, but only consults the precedence
table. The drawback -there always is one! -is that this table is quadratic in the size of the terminal
vocabulary IVI. But IVI is necessarily a fraction of the size of the initial CBP-set P itself, because of the
definition of V.

Acknowledgments

Thanks should go to M. Seligman, who prompted me to study this question and revised the successive
drafts of this note, to H. Okuma, who communicated an example CBP-set, and to Y. Sobashima, who
kindly explained the bottom-up method he uses to parse according to a different kind of pattern
sets [5].

-o-o-o-o-o-o-o-o-o-o-

References

[1]

゜

Aho A. & Ullman J., ed. (1972) The Theory of Parsing, Translrition, and Cqmpiling. ・Prentice-
Hall, Englewood-Cliffs_, New-Jersey, 700 p.

[2] Aho A. & Ullman J., ed. (1977) Principles of Compiler Design. Addison-Wesley, Reading,
Massachussetts, 250 p.

[3] Barton G. E. J., Berwick R. C. & Ristad E. S., ed. (1987) Computational Complexity and
Natural Language. MIT Press, Camb1idge, Massachussetts, 335 p.

[4] Furuse 0. & Iida H. (1994) Constituent Boundary Parsing for Example-Based Machine

Translation. Proc. COLING-94, Kyoto, 5-9 Aug. 1994, Kyoto Univ., vol. 1/2, 105-111.

[5] Sobashima Y. & Seligman M. (1994) A Context-Dependent Parsing Method Using Bracketed

Corpora for Spoken Dialogues. Internal report, ATR-ITL, July 1994, 6 p. (submitted to

NewLap-94, UMIST, Manchester, UK).

-o-o-o-o-o-o-o-o-o-o-

。

5

	001
	002
	003

