
Jvternal use onl'L 

002 

TR-IT-0063 

A Nlarkov Niodel Part of Speech Tagger 

Jared C Saia 
Advanced Telecommunications Research Labs 

2-2 Hikaridai, Seika-cho Soraku-gun, Kyoto 619-02 Jap~n 

saiaccs. stanford. edu 

August 2, 1994 

Abstract 

This paper describes a statistical part of speech tagger. First, equa-
tions for part of speech tagging are derived from the source-channel model. 
Then an implementation is described and finally there is some discussion 
of results and possible improvements. 

1 Introduction 

Recently the use of stochastic models has become increasingly popular in the 
language modeling community. These models allow for more robust and flexible 
analysis than do traditional symbolic methods. The basic idea of these statisti-
cal methods is to use a set of training data to construct a probability model. The 
probability model is then used to calculate the probabilities of various analyses 
and the one with the highest probability can be considered the "correct" anal-
ysis. In this paper a method for stochastically finding parts of speech of words 
in a sentence is described. This method treats human language as a Markov 
process. That is, the assumption is made that the probability of any given word 
is dependent only on the last n words. In addition it is assumed that the proba— 
bility of a part of speech can be determined by looking only at a window of the 
last m parts of speech and words. This assumption is made in order to create a 
reasonably accurate probability model from a finite amount of data. There are 
other statistical methods such as decision trees which can calculate probabili-
ties without making explicit Markov assumptions(see'Black, E. (1992) Decision 

Tree Models Applied to the Labeling of Text with Parts-of-Speech,Speech and 
Natural Language Workshop Proceedings, 117-121.) 
The task of finding parts of speech when given a stream of words can be 
best visualized using the noisy channel paradigm. We imagine that someone 
has sent a message to us which has been corrupted by transmission and that 

we want to recover the original message by considering、vhatwe have heard. In 

ー

cATR Interpreting Telecommunications Research Laboratories 



2
 

our case the message originally sent to us is a stream of parts of speech. This 
message has been corrupted and has reached us as a stream of words. We want 
to recover the stream of tags by considering the stream of words. 
We can use probability theory to determine the most likely message said 
given what we have heard. For example, in the part of speech case, the proba-
bility that a given message was produced and that we heard it is P(W,T) where 
W is the stream of words and T the stream of tags. This probability for any 
W and T is equivalent to the probability that the stream of tags was said at 
the source end of the channel times the probability that the stream of tags was 
received given that the words were said 1.e. 

P(W, T) = P(T)P(W j T) (1) 

（
 

This equation with varying degrees of Markov simplification is the basis for all 
the models described in this paper. 
At this point, using equation 1, we can formally define the tagging prob-
lem. We have a fixed vocabulary of possible words and tags which the random 
variables w and t can take on. We are given a sentence vV which is defined as 
a sequence of N values of the variable w. Given this sequence we attempt to 
find the sequence of tags T which maximizes equation (1). That is we try to find: 

argma巧 P(W,T)

In the simplest case we make the assumption that the probability of each 
tag is independent of the past words and tags and is only dependent on the 
current word. That is to say that the probability of a tag in a sentence is simply 
proportional to the frequency with which that tag appears with the current 
word. 
To get the most likely tag sequence in this case we have 

P(W, T) = P(W)P(T I W) 

i
 （
 

＼
 

9~.9 

using Bayes rule on equation (1). Since we are ma.ximizing over the sequence 
of tags, we can eliminate P(W) in the above eq叫 ionsince it remains constant 
for any tags we may consider. So using the Markov assumption we have 

N 

argmaxt,,N IT P(ti It附）
i:c:l 

(2) 

This is the unigram case. 
In this paper we also consider a more complex Markov model. We assume 
the probability of the tag depends on the last two tags but that the current word 
is still dependent only on the current tag. For the trigram case we can derive an 



3
 

equation from the right side of equation (1) making the following assumptions: 

N 

P(T) = II P(t; I ti-1, ti-2) 
i=l 

and 
N 

P(W IT)= ITP(w; Iむ）
i=l 

which give us : 

N 

argma孔，NITP(t; I t;-1, t;-2)P(w; It;) 
i=l 

2 Implementation 

(3) 

This is the trigram case. 
In order to make this equation work for t1 and t2 we define dummy presentence 
tags t。andL1 to condition on. 

When implementing a model which makes use of the above equations one must 
deal with two main problems. The first problem is to find in a reasonable amount 
of time the one tag sequence out of all possible such sequences which has the 
highest probability. The second problem concerns creating accurate probability 
models given sparse training data. The basic details of implementing Markov 
Model part of speech taggers have been covered before in past literature but since 
the approach to solving these two problems often differentiates implementations, 
the solutions used in this paper's tagger are discussed below. 
The computational time taken to find the most probable tag sequence is 
not large in the unigram case; it takes only O(N) time where N is the number 
of tags in the tag alphabet. To calculate for the trigram case, we can use 
the Viterbi algorithm, a dynamic programming method which will find the 
solution in O(Nx) time for a x-gram grammar. For the trigram case it still 
takes O(N3) but this can be further shortened by pruning during the search 
without much decrease in accuracy. In this implementation we kept for each 
step of the ¥;iterbi algorithm only the top ten highest probability sequences. 
This resulted in significant speed up and resulted less than 1 % reduction in 
accuracy. 
The second problem of creating useful models from sparse data is not so 
easily solved. When we use training data to construct probability models, there 
are often events which do not occur in the training data but may occur in data 
that we later test on. For example, we don't always have a good estimate for 
P(Wi I w;_1, w;_2) since not all possible trigra1ns appear frequently, but we 
must come up with some useful default probability for this case. 

゜

。



4
 

We are faced with two conflicting requirements. First of all we don't want to 
give O probability to unseen events because there is often some small probability 
they may occur. Secondly, we only have a limited amount of probability mass 
to distribute over possible events. The probability of all events must sum to 1 
in order to maintain the model invariant. 
There are many approaches to these conflicting requirements. The one used 
here is linear interpolation. This method involves deriving a smoothed model 
from the weighted sum of other probability models. For example, in the trigram 
case we have: 

昴 Iti-l;t口）＝ふP(tiI ti-11 ti-2) +犀(tiI ti-1) +犀（む）＋心
1 

mimtags 

゜

゜

To smooth P(t I w) for unknown words we have: 

凩tI w) =ふP(tI w) +入2P(t)+入3
1 

numtags 

(P(w I t) is smoothed by rewriting it using Bayes Theorem to incorporate 
P(t I w)) 
As long as the ,¥sin the above models sum to 1 and as long as each term after 
the入isa probability model, the resulting smoothed function is a probability 
model. In addition, there are mathematical techniques which can be used to 
find useful入values.
The technique used in this paper to find useful ,¥s is Hidden Markov Models. 
In this case, we set aside a certain amount of the training data as smoothing 
data. We then treat this data as output from a HMM. The "hidden" states 
in the HMM are thus the probability models. Using the Forward-Backward 
algorithm we can get good estimates of transition probabilities between the 
"hidden" probability models. If we set up the states of the HMM cOJ;rectly then 
the transition probabilities are exactly the same as our入values.Given initial 
入values,the Forward-Backward algorithm is guaranteed to give入swhich will 
increase the likelihood of the smoothing data according to the current models. 
We continue this successive improvement until the likelihood of the smoothing 
data no longer increases. 

3 Results and Discussion 

The tagger implemented in this paper was tested on the Penn Treebank. This 
is a corpus of hand tagged sentences taken from various sources. There are 
less than 50 unique tags used in this corpus. First an attempt was made to 
replicate the 96% accuracy for trigram tagging that is the current state of the 
art(see Weischedel (1992) "Part of Speech Tagging", Association of Computa-
tio叫 Linguistics).



5
 

This degree of accuracy was achieved under the same conditions as Weischedel 
when using equivalent training data(about 990K words). There are some dif-
ferences in Weischedel's implementation and this one however. For example, 
Weischedel uses a backing off smoothing technique for dealing with the sparse 
data problem. Surprisingly, these differences do not seem to have much effect 
on accuracy. 
It is worth remarking however that for the results published by Weischedel 
et. alia, they first randomize the sentences in the Penn Treebank, then split 
the Treebank up into training, smoothing and testing data. In addition, un-
known(previously unseen) words are ignored when reporting results. In the 
tagger血plementedin this paper, testing both on randomized and linear data 
revealed that in the randomized case the accuracy was about 4% higher. 
This difference can be attributed to the fact that the style of sentences from 
the same document are likely to be similar and that if the data is randomized, 
certain trigram patterns and word tag pairs are more likely to be contained in 
both the training and testing data. In the linear case, it is possible to come 
across a style of writing which is poorly represented in the training data. 
When both considering unknown words and using linear data, the accuracy 
drops to 88%. Since when a part of speech tagger is used in a language modeling 
system, we can't'ignore unknown words and will often come across writing styles 
which are not represented in the training data, this 88% accuracy is probably 
closer to the "true" state of the art. 

4 Conclusion 

In this paper, a variation on the standard Markov Model Tagger was created and 
compared with other Markov Model Taggers which have been implemented. The 
accuracy of the tagger compared favourably with results reported by others when 
tested under the same conditions. However when the testing conditions were 
more stringent, the accuracy of the tagger dropped considerably. This suggests 
that there is much room for improvement on the part of speech tagging task. 
In particular better modeling of unknown words and a model which is flexible 
enough to adjust to varied styles should greatly increase the accuracy of the 
tagger. 


	001
	002



