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Ba.ysia.n Belief Net-works a.re a. pO¥verful tool for combining different knowledge 

sources with various degrees of uncertainty in a mathematical sound and compu-

(1 tationally efficient way. Surprisingly they have not yet found their way into the 

speech processing field, despite the fact that it in this science multiple unreliable 

information sources exists. The present paper provides an introduction to the the-

ory of Bayesian Networks. It also proposes several extensions to the classic theory 

as described by Pearl by clescribi ng mechanisms for dealing with statistical clepen-

clence among daughter nodes (usually assumed to be marginally independent) and 

by providing a learning algorithm based on Lhe EM-algorithm with which the prob-

abilities of link matrices can be learned from example data.. Using these ideas a. 

possible language model for speeclt recognition is constructed. It is evaluated over 

a text data base. 
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1 Introduction -dealing with uncertainties 

Modeling language for speech recognition inevitably involves dealing with uncertainty. 

This is for two reasons. Firstly the very observations made by the speech recognizer a.re of 

probabilistic nature. A speech recognizer rarely outputs just one word candidate with high 

certainty but rather a list of candidates with relative rankings. A language model parsing 

such an output needs to take information contained in the relative rankings and scores into 

account to produce the most likely sequence of words. Secondly language models specified as 

a set of crisp rules not involving probabilities or other kinds of scoring are not very efficient 

in describing the language. Either the coverage is too low, forbidding sentences which are 

commonly uttered or else if the rules are less strict many exceptional and unlikely to occur 

sentences are classed as grammatical. 

For this reason, the use of probabilistic models such as stochastic grammars has been 

proposed. These models replace the grammatical/ungrammatical classification by a graded 

scale. Structurally very simple models such as the bigram/trigram models [2] have been 

observed to be extremely effective, purely on grounds of their stochastic nature. 

Recently a sin叶lartrend from rule-based to probability-based methods has been observed 

in the field of artificial intelligence. A mathematical tool known as Bayesian networks [4] 

has been developed to incorporate probabilities into expert systems and to allow them to 

make plausible deductions on the basis of insufficient information [5]. 

Bayesian networks provide a ma.thematically sound foundation for making plausible in-

ferences under uncertainty. What is more, the calculation scheme implied by these networks 

turns out to be surprisingly simple and computationally efficient. Although a number of 

mathematical problems have to be solved in order to apply these models to expert systems 

and the like, the known properties of Bayesian networks make them far too attractive to be 

overlooked. 

We attempt to show in this paper that Bayesian networks, which were primarily developed 

for use in probabilistic expert systems, can be applied (on a somewhat lower level) to the 

parsing of natural language particularly when uncertainty is involved. 

The paper can roughly be divided into two parts. In the first part we will present some 

key results of the theory of Bayesian networks, working from a simple example.'Ne will 

then generalize the network propagation equation and provide a mechanism for inferring 

the conditional probabilities of the model. This learning algorithm which is based on the 

EM algorithm is computationally efficient and guaranteed to increase the likelihood of the 

observations. In the latter half of this paper we will discuss how syntactic• parse trees of 

a sentence can be viewed as a causal structure describing the'causal'development of this 

sentence and how the Bayesian network propagation techniques developed in the earlier part 

can be used to infer syntactic structure. The learning algorithm can be used to update the 

probabilities of the model in an iterative fashion. In this way grammatical rules can be 

learned purely by observing unlabeled example text. 
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2 Bayesian Belief Propagation 

In this section vve will surrunarize and extend the theory of Bayesian Belief Propaga-

tion. The theory as proposed by Pearl [4] represents knowledge in the form of a qualitative 

graph with probabilities associated to each link. Each node in the graph corresponds to 

an event and a directed link between two nodes indicates a causal relationship between the 

corresponding events. 

We will illustrate Pearl's approach by quoting one of his own examples: 

Example [Pearl]: Mr. Holmes receives a telephone call from his neighbo'l.tr 

Dr. Watson, who states that he hears the sound of a burglar alarm from the 

direction of Nfr. Holmes's house. T1Vliile preparing to rush home, Mr. Holmes 

、recallsthat Dr. liVatson is known to be a tasteless practical joker, and he dec奴les

to first call another neighbour, Mrs. Gibbon, who, despite occasional drinking 

problems is far more reliable. 

A graphical structure representing the causal influences of this story is shown in Figure 1. 

Mr. Holmes receives two possibly different accounts about an alarm sound at his house. He 

tries to infer the probability of a burglary given the above evidence. 

Before discussing this example in detail, let us define some notation. Let H denote the 

random variable describing wh叫1erthere is a burglary, S the one describing the state of the 

alarm system (either ringing or not ringing) and G and vV the ones describing the results of 
Gibbon's and ¥"/1/atson's testimony. H can in fact take two values: Burglary or not Burglary 

which we may denote h1 and h2. The same is true for the other random variables. In general 

however a random variable at a node may take more than two values. 

Further we denote by Pr(SIH) the matrix 

Pr(S'IH) = (Pr(S = s1 IH =柘） Pr(S =直＝加）
Pr(S = s2IH = h1) Pr(S = s2IH =加））

Burglary 
at Holmes' 

Alarm 
sounds 

図 1:

Watson's 
testimony 

(1) 
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Now, according to Pearl's theory, Holmes can reasonably be expected to have at least 

estimates of the matrices Pr(SjH), Pr(GjS) and Pr(HljS) stored in his knowledge base. He 

can also be expected to know the prior probability Pr(H) of there being a burglary on any 

given day of the year without any additional evidence. However he is unlikely to know more 

complicated conditional probabilities such as Pr(Hjlil/, G), the quantity that he is interested 

in. It is therefore argued that Holmes need to compute these probabilities on the fly in order 

to make a decision on whether he should rush back home. 

Fortunately there is a simple computational scheme available which allows one to calcu-

late the Pr(HIHI, G) from the elementary quantities Pr(SjH), Pr(GjS), Pr(HljS) and Pr(H). 

These calculations can be performed on a local scale following the graphical structure of Fig-

ure 1. 

2.1 Belief propagation equations 

The calculating scheme developed by Pearl is simple in that it only involves a few fun-

damental operations. It is also local in the sense that we could assign a simple processor 

to each node in the graphical representation. Each processor communicates with its neigh-

bouring processors by exchanging simple messages via the links of the graph. It performs 

simple operations on its inputs received from the other nodes and mediates the results to its 

neighbours. The propagation equations are true for scenarios, where the graphical structure 

is of the form of a tree, i.e. does not contain any cycles. This is the case in the example 

above. Moreover the graph has the property that every node has at most one parent, i.e. 

at most one cause. This is not required by the theory in general, but in this paper for the 

sake of simplicity we will only consider such graphs. Directed trees in which nodes may have 

more than one parent are known as poly-trees and Pearl discusses such structures. 

To describe the propagation equations we need to define some more notation: The evi-

clence e stands for the total observed information i.e. the two testimonies in the example. 

Further for a node X let (r denote the part of the evidence that is connected to one of the 
descendants of X and e支theremaining evidence. For the graph in Figure 1 we have 

e社=・watson'stestimony 

eる=Gibbon's testimony 

e3 = eH = e 

崎=Gibbon's testimony 

略=vVatson's testimony 

疇＝咋 =0

Furthermore Pearl defines for each node入Yof the diagram two vectors: 

入(X)= Pr(ex IX)= 

Pr(exlX=町）
Pr(exlX=四）

： 

Pr((i IX= Xn) 

叫X)= Pr(Xle支）＝

Pr(X=x1¥e支）
Pr(X=x叶e支）

Pr(X=x叶e1)

(2) 

(3) 

The essence of the belief propagation theory lies in the fact that these quantities can be 

'propagated'through the underlying graph and thereby calculated recursively. It turns out 

that the propagation rules are surprisingly simple. However we need to define two more 

auxiliary vectors: In a general tree, if V is a parent of nodes Uい..., Uk (see Figure 3), we 

define the auxiliary vectors: 
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Conditional probabilities: The derivations in this paper make use of conditional 

probabilities of the form Pr(AIB). vVe will use capital letters A, B, C to indicate 

nodes in the networks. A node A can be thought of as a discrete random variable 

taking values a1, a2, .... If one or more of these node variables enters the argument 

;f the probability function P the resulting expression is to be interpreted as a 

tensor. For example the expression Pr(eu I U) is a vector. It has as many 

components as U can take values. The i'th component is Pr(eu I U =叩） • Similarly 
Pr(eらUI V,X,eいisa tensor of rank :3 whose ij k'th component is Pr(e伝U=

ui IV =Vj,X =xk, e支）．

Important vectors and there definitions: 

入(U) = Pr(eu I U) (evidential support vector) 

1r(U) = Pr(U I e古） (causal support vector) 

BEL(U) = Pr(U I e) (Belief vector) 

Vector products: 

ab 

a-b 

入(U)Pr(U I V) 

componentwise vector product: (ab)i = aふ

familiar clot product: a・b =乙叫）i

vector-matrix product. Vector matrix product of this form 

are performed in the only sensible way, i.e. identifying states 

of the same variable. So if・i indices states of the variable U 

and j indices states of the variable V then入(U)Pr(U[V) = 

(L・i入(U);Pr(U = i[V = j)). In general we will not make 

transpositions of vectors or matrices explicit. 

N ormahzmg constants: When tl 1 tt ・ f  f 1e e er a appears 111 ront o a vector 1t represents 

a real number normalizing that vector. Occasionally a occurs more than once in 

an equation. In this case they usually represent different normalization factors. 

図 2:Notation used in this paper 
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Uー冗

/

ul 

／
 入

Ul U2 Uc 

医 3:

机 (V) = Pr(伍 IV)

叩 (V) = Pr(Vle喜）
(4) 

(5) 

One can now show (for a derivation see Pearl [4) or section 4.1 where we derive more general 

versions of these equations): 

入Ur(V) =入(Ur)Pr(UrlV) (6) 
k 

入(V) = II虹 CV) (7) 
r=l 

厄 (V) =年(V)IT虹(V) (8) 
l か•

7r(Ur) = Pr(U叶V)訊 (V) (9) 

Here the products on the right-hand-side of equation 6 and 9 are familiar vector-matrix 

products. The vector product involved in equations 7 and 8 is the component-wise vector 

product (i.e. vector X vector = vector). The coefficient a in eq叫 ion8 is a scalar chosen 

such that the vector 1rur(V) on the left-hand-side is normalized. 

Using equation 7 and 9 it is thus possible to calculate the入and1r vectors of all nodes in 

the network from the 1r vector of the root node (node H in our example) and the入vectors

of the other leaf nodes. Further at each node U the so called belief vector BEL(U) defined 

as Pr(UJe) can be calculated as a componentwise product of the入and1r vectors: 

BEL(U) = Pr(Ule) = a>-(U)1r(U) = 
入(U)1r(U)

入(U)・1r(U)'
(10) 

where again the scalar a is chosen such as to normalize the resulting vector. The belief of a 

node is sometimes referred to as the posterior distribution of this event. 

Going back to the example, the 7r vector of the root-node H is the prior distribution of 

H, Pr(H), describing the probability of there being a burglary at on any given day which 
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Holmes can be expected to have at least an estimate for. Further if the possible values of 

the variable (node) Gare "Gibbon hears the alarm ringing" versus "Gibbon does not hear 

the alarm ringing", then the入(G)is either equal to (0, 1) 01・(1,0) depending on Gibbon's 

testimony. The same is true for入(W)however depending on Watson's testimony. So from 

equations 7, 9 and 10 Holmes can calculate the belief of any node in the network, based on 

his knowledge of the testimonies, the probabilities Pr(H), Pr(SjH), Pr(G[ S) and Pr(WjS). 

In particular he can calculate the belief of node H, which is the information he is interested 

m. 
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3 Analysis of Bayesian belief 
． 

propagation 

In the previous section we gave a brief introduction to the theory of Bayesian belief 

propagation using one of Pearl's examples. Even though the tree considered was of extreme 

simplicity, it should be clear that the belief propagation equations will hold for a tree of 

arbitrary complexity. Further more since the calculations are local at each node it is clear 

that even complex dependencies can be calculated easily and accurately by following the 

structure of the tree. The theory as described above is only applicable to simple trees, i.e. 

causal structures in which each event can have at most one cause, however a generalization 

to poly-trees, where multiple causes exist for an event, is also available, but not discussed in 

this paper. 

How could an expert system make use of this approach for automated reasoning? Ac-

cording to the ideas put forward in the previous section, the knowledge base of such a system 

would consist of probability matrices of the form Pr(YJX) for events X and Y knovvn or 

observed to be in a causal relationship and prior distributions Pr(X). For a given problem 

it would then be the task of the system to propose a plausible network structure connecting 

the observed events with other unobserved but relevant events. After a network is con-

structed the belief propagation equations can be used to calculate the posterior probability 

distribution of the unobserved nodes of interest. 

Thus the expert system has to cope with two different problems: a qualitative one, 

consisting of the construction of the graphical structure and a quantitative one propagating 

the入andrr vectors through this network. 

Expert systems implementing the quantitative part have already been proposed by Lau-

ritzen and Spiegelhalter [3] and others, however these systems are not able to do solve the 

first problem: the assignment of the graphical structure. Instead this structure is given in 

advance and hence forms part of the knowledge base. 

While the studies on such expert systems are interesting and help to understand propa-

gation mechanism they are of limited use in practise. It is infeasible for an expert system to 

maintain a very large tree connecting all possible (observed and unobserved) events. Such 

a network would connect seemingly unrelated events. Moreover it would require the prop-

agation of the入and1r vectors from parts of the network that are only marginally related 

to the events of interest. It would also be extremely difficult to establish a large network 

connecting all nodes of interest and yet have it loop-free as required by the theory. 

Instead one should look for an approach that constructs a network'on the fly'connecting 

nodes when they become relevant in the light of observed events. This would entail estab-

lishing the relevance of various observed and unobserved events on the basis of the known 

Pr(YJX) matrices and constructing a network which connects the unobserved events of inter-

est to the relevant observed events, possibly creating new (previously unknown) unobserved 

events in the process. To the best of our knowledge we are at the moment at a lack of such 

an algorithm, but it is not infeasible that such an algorithm exists. 

In section 6 of this paper we will use the theory of Belief trees to stochastically parse a 

sentence. In this paradigm the words of the sentence form the observed events. Unobserved 

events are grammatical markers such as "Noun phrase", "Prepositional ph1'ase", etc. It is the 

object of the parser to connect the possible unobserved events to the observed events in the 

'best possible way'. This will create a tree structure (the parse tree). The theory of Bayesian 
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3 Analysis of Bayesian belief propag_ation 

networks will give us the quantitative tool for calculating the beliefs of all unobserved events 

and also the likelihood of the chosen tree structure. 
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4 Extensions to the basic belief propagation equations 

・with regard to section 6.2, we will now present a few extensions to the belief propagation 

equations. We will also provide the necessary derivations of all results. Since the eq叫 ions

quoted in the previous section are special cases of the results developed here, the proof apply 

to the previous section as well. 

4.1 Dependence of daughter nodes 

In the example discussed above, the daughters of a given parent node were assumed to be 

statistically independent. Thus the nature of Gibbon's testimony only depends marginally 

on Watson's testimony or expressed mathematically: 

Pr(G, WIS= s) = Pr(GJS = s) Pr(T1VJS = s), (11) 

for each possibles (state of the alarm syste叫
The belief propagation equations can be modified to apply in situations when equation 

11 does not hold. This will be relevant in the second part of this paper, when we apply the 

theory to language acquisition. 

If there are dependency relations among the daughter nodes, it is not sufficient to specify 

each parent-daughter relation separately, but rather jointly using a tensor of rank :3 or higher. 

This tensor expresses the joint conditional probabilities between daughter nodes U1, ... , V五

and parent V, viz Pr(U1, ... , U』V)instead of separate link matrices Pr(U1 IV), ... , Pr(U叶V).

In the most general case, the daughters of V can be divided into, say, G groups. Nodes within 

one group are regarded as statistically independent from the nodes of any other group, so 

there is no need to specify the parent-daughter relation by one big tensor. However the 

nodes within each group are considered to be statistically dependent and their relation to 

the parent is expressed by a tensor for this group. Thus if the nodes in group g are labelled 

Uf, ... , U9 the overall conditional probability tensor has the form 

G 

Pr(U{, ... , Uぶ，U{,• • •) u~2'• • •) uf, • • • l u~GIV) = II Pr(Uf l uふ．．．，鸞，IV) (12) 
g=l 

Figure 4 displays such a scenario graphically. 

The belief propagation equations can be adopted in a straight forward way to the new 

situation. For convenience we define additional notation. vVe denote the group consisting 

of nodes Uf, ... , U~9 by V9. Further we define the evidence ev9 as the combined evidence 

eug, ... , eug and likewise ev9 as th e remammg evidence e¥ev9, i.e. the entire evidence e less 
"g 

ev9. Furthermore we define 

入（い） = Pr(e119 IV) 

吋Vり=Pr(Vlet9), 

and we write A9 to indicate the tensor for group g, i.e. 

A『,jl,・・・,jng = Pr(Uf=j1, ... , u~g=j叫 [V=i).

(13) 

(14) 

(15) 

To keep the derivation readable we will make a further simplification from now on: We 

will identify a possible value Xi of a random variable X with the index i itself. Thus we 
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入(〗)I n{V) 

nG 

鬼 u2 u2 
1 2 

L---y--..J 

n ー
n2 

図 4:This figure shows a node V with daughters Ul'UI'...'u~l'Uf'...'u~2'...'u:G. The 
daughter nodes are divided into G groups as shown. The groups are regarded as statistically 

independent, but the nodes within each group are dependent. Hence the conditional proba-

bility distribution of the daughters given the parent has the product form shown in equation 

12. 
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will write Pr(X = i) instead of Pr(X =叩） • In fact, in equation 15, we already used this 
simplification. 

4.2 Applicable laws of probability 

In order to derive equations 6 to 9 and their generalizations we require three laws of 

probability theory. These are descibed below: 

(4.2.1) Bayes'law 

Bayes'law states that for events a, b, c we have 

Pr(a I b,c) = 
Pr(b I a,c)Pr(a I c) 

Pr(b I c)・  
(16) 

Now, let U be a random variable corresponding to a node of the network, so that in our 

notation Pr(U I b, c) is a vector. This vector must be normalized. We can then write Bayes' 

law in the following form: 

Pr(U I b,c) = o:Pr(b I U,c)Pr(U I c), (17) 

where a= 1/ Pr(b I c) can be determined simply as a normalizing constant. 

(4.2.2) Cond1honmg 

Let a and b be events and U a random variable that can take a finite number of values 

1, ... , n. The following equation holds: 

Pr(a I b) = I: Pr(a I U, b); Pr(U I b)i (18) 
i 

(4.2.3) Separation 

To illustrate the law of separation consider the probability vector Pr(eu I e古，U).Since 

the graphical structure is assumed to be a tree, the value of et can effect the value of eu 

only via the value of U. We say e古andeu are marginally independent, i.e independent when 

conditioned on the value of U. Hence 

Pr(eu I et, U) = Pr(eu I U). (19) 

vVe also say "U separates e古fromeu". 

4.3 Derivation of the propagation equations 

vVe will begin by proving a generalization of equation 6. The captial letters B, CS and D 

on top of the equal sign (=) indicate applications of Bayes'Law, the laws of Conditioning and 

Separation and a definition respectively. Finally a bracketed numeral indicates an application 

of an earlier equation. 
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Extensions to the basic belief propagation equations 

Now, as for the入swe have: 

入（い）i

入(V)i

D
-
―
 
D
=
 

c
 

s
 

D 

Pr(evg IV =・i) 

Pr(eu『,••• , eu,r;g IV = i) 

-~ Jl ,··•,Jng 
Pr(eu『,•.• , euxg IV= i, u『=j1,... 閃=jng)AL1 , .. ,,jng 

ng 

L II Pr(euz IU% =鐸）Af,i1 , ... ,in9 
五，...,jn9 k==l 

ng 

L II ,\(Uk)jkAf,jl,··•,jng 
i1 ,··•,Jng k==l 

(20) 

(21) 

(22) 

(23) 

(24) 

D

―-
D

 

＝ 

(25) 

(26) 

(27) 

D 

Pr(evlV=i) 

Pr(元，...'e砂IV=i)
G 

II Pr(evglV=i) 
g==l 

G 

II >-(Vりi

g==l 

(28) 

Let us reflect on this result for a moment. Equation 24 expresses the vector入（い） as a 

simple tensor-vector product between the tensor A9 and the A-vectors入(Uf)(k =I, ... , n9). 

Regarding Figure 4 one could say that the vectors入(Uf)enter the triangle (tensor)が from

the bottom. Here the tensor-vector product is formed and the入vectorrepresenting the 

group入（い） is emitted at the top. Equation 28 shows how the入vectorsfrom the various 

groups need to be combined to give the overall入vector:by component-wise vector product. 

One could write these two results in the vector form: 

入（い）

入(V)

Af..i1 , ... ,in9入（胃）・・・入(V;g)
G 

rr入（い），
g=l 

(29) 

(30) 

vvhere the multiplication in equation 29 is a tensor-vector product (like a generalized matrix-

vector product) and the multiplication in equation 30 is a componentwise vector product. 

However since it is di伍cultto distinguish between the two forms of multiplication in this 

notation and it is also not easy to see which indices of the tensor A9 identify with which 

入vectorin equation 29, we will always use the more explicit component-wise description 

shown in equations 24 and 28. 

For the TiS we derive 

1r(Vりi
D

―-
D

―-
B

―-
C

―-
s
 

Pr(V=i[eむ）

Pr(V=i[e古，ev1l""" l f砂 ...'e砂）

o:Pr(V=i,ev1,-•·,1'孔 ...'e砂 [et)

o: Pr(V= i[e古）Pr(V=i, ev1, ... l r,p/, ...) evale古，V=i)

o:Pr(V=i[e古） IT Pr(e~9,[V=i) 
g'=l, ... ,J, …,G 

(31) 

(32) 

(33) 

(34) 

(35) 
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D 
ば (V)i

rr 
入(V八

g'=l, ... , サ，...,G 

1r(Uf)Jk 
D 

D 

Pr(Uf;=jk[e臼）

Pr (胄=j,叶， 9△奇，）

、
＼
ー
ノ
、
ー
、
'
_
ノ

6

7

(

8

 

3

3

3

 

（

（

（

 

c
 ▽

 
i,jJ , ... ,j/, ... ,jn9 

Pr (Uf= j, V=i, (△ ⑰ =j,,) ,eわ，△叫，）

Pr (v=i, k△ ⑰ =j,, eわ，K八叫，）

s~ 
0'.1 ▽

]
 i,jl , ... ,j,j, ... ,jng 

B
 Cl'.1 ▽

]
 i,.i1 , ... ,j/, ... ,Jng 

Pr (U;'~j, v~\△⑰ ~j,,) Pr(V~i) 

Pr Ct, ⑰ ~j,,, et,, k八彎， V=i)

Pr Ct,n, 虞=j,,V=i) 

Pr(V= i) 

Pr (△侭=lk'V=i)

Pr (.0, ⑰ = j,,, et,, k八,"臼， V=i)

39) 

41) 

D土B
0:1 

s
 

i,j, 〗丘， Af,i, 年,Pr(V~i) Pr (eわ，K△伍， K八K喜=j,,,V=i) (42) 

0'.1 L 心，JI,··•,Jng Pr(V = i) Pr(eむIV=i) II Pr (伍g巧=]k1)(43)
k' ·i,j1,••·,J/, ... ,j,,9 k'=l, ... J, ... ,n9 

D 
CY2 ▽

 
i,Jl , ... ,jj, ... ,j,,9 

Ag ・i,j1 , .. ,,Jng . 1r(い）i II 
入(U砂k' (44) 

炉=l,... J, ... ,n9 

Here 1, ... , ... , n9 stands for the integers from 1 to n9 with the exception of k. The 

index k'generally ranges over these integers except in the numerator碩吋uationLll where 

it covers the full range 1, ... , n9. The constants o:1 and o:2 are given by 

1 
0'.1 = 

Pr (尋，'I¥戸叫／）
and 

Pr(e加）
0:2 ='  

Pr (e加，八J...芦叫，）
(45) 

but since these constants are independent of鐸 andsince we know that the vector x(Uf) is 

normalized, they can simply be determined as normalizing constants. 

Thus it is clear that even in the presence of statistical dependence among the daughter 

nodes, the入andJr vectors can be propagated in a fairly straight forward fashion. 
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4.4 Learning the conditional probabilities 

In this section we will discuss a method of how the conditional probabilities stored in the 

matrices can be learned from a set of training samples. A training sample is an instantiation 

of the observed nodes of a network. The training problem is that of choosing the link matrices 

such that the overall probability of the training material (i.e. the product of probabilities 

of each sample given the link matrices) is maximized. We will distinguish two cases: The 

simple case in which all nodes are observed and the more complicated case involving matrices 

between unobserved nodes. 

(4.4.1) Case 1: all nodes are observed 

Suppose we wish to find the link matrix Pr(YIX) between two nodes X and Y. In this 

case we simply instantiate a matrix of counters (C(X, Y);j) which counts the number of 

times node X is in state i and node Y is in state j. After processing the entire training 

data and updating the respective counters, the maximum likelihood estimate of the matrix 

Pr(YIX) is then given by 

Pr(Y = y」_,,y=Xi)= 
C(X,Y)切

Lj'C(X, Y)げ
(46) 

Now consider the slightly more complicated case in which a node V has⑰ daughters struc-

tured in G groups. Ul, Ul, ... , Uぶ，U『, び uc．．．，加）
＇応

. . . that was discussed in section 4.1. 

Here the relationship between the parent V and the daughters Uf_, Uff, ... , U~9 in group g is 

expressed in the tensor shown in equation 15. If the nodes V, U『,U塁，..., U9 are all observed 
we can agam simply instantiate a tensor of counters C(V, Uf, ... , び）n9 ij1・・・Jng・and count the 

number of occurances of each event over the training data. The maximum likelihood estimate 

for A9 is then 

Ag. . = t,Jl , ... ,J,ig 
C(V, Uf, ...'U;).;jl…Jng 

L C(V, Uf, . . . , U<)ij{ ・・j;,g
j{ , ... ,j~g 

(47) 

(4.4.2) Case 2: some nodes are unobserved 

If the nodes involved are unobserved, we can no longer simply count simultaneous oc-

curances. However we can ask for the expected number of simultaneous occurances. For a 

single sample e this expected number equals the probability 

Pr(V=i, U『=Ji,...)胄=]n91e) (48) 

Here again, we split the daughter nodes into different groups according to their dependencies 

and only consider one group as it is independent of all the others. Fortunately, there is an 

easy way to calculate this quantity using intermediate results from the belief propagation. 

We have 

Pr(V=i, Uf= J-1, ... , U~= Jn9 [e) 
B
-
l
D
 

Pr(V=ile) Pr(U『=J1,... , U~=j冗, IV=i, e) 

BEL(V)i Pr(U『=J1,... , U~=Jn9l1f=i, ey9) 

(49) 

(50) 
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(1竺，B . Pr(evgW=i・，胄=J1,... , ui=Jn9) Pr(Uf=J1, ... , U;=JnglV=i) 
叫 (V)二(11)i 51) 

Pr(evglV=i) 

(2翌，D
G 

a IT A(V91戸(V)i
Pr(evglUf=J1,,, ・, u<=JnJALl , .. ,,Jng 

g'=l 入（い）i
(52) 

a II 入(V91)i7r(V)iPr(eu『'...'eu,i;gIUf=J1, ...'U;=Jng)AL1, ... ,Jng (53) 
g'=I, ...』，...,G 

DS  
』-

D 

ng 

年 (VりiII Pr(eu: IUf = j砂AL1,…, Jng 
k==l 
ng 

叫 VりiII A(U%)jkAL1, .. ,, 丘g
k==l 

(54) 

(55) 

Instead of counting joint occurances, we now add the expected number of joint occurances 

in the tensor C(V, Uf, .. ・， U;;9).Hence after processing all samples e in the da.ta we obtain 

C(V, Uf, ... , Ut) =~Pr(V, Uf, ... , U;9le), (56) 

where the sum denotes tensor addition. An estimate for the conditional probability tensor A9 

can now be obtained using equation 4 7. It should be noted that since equation 48 represents 

the expected number of joint occurances for one sample, equation 55 represents the expected 

number of joint occurances over the entire training data.. 

Note however that a previous estimate of A9 is required in equation 55. Hence, unlike 

the'all nodes observed'case the tensors can only be lea.med iteratively.'¥'fvTe therefore have 

the following lea.ming algorithm: 

l. Choose initial (perhaps random) connection tensors. 

2. Process the training data once, accumulating the tensor (Pr(V = i, Uf. = j1, ... , U~= 

Jn91e)) in a'counting'tensor C(V, U『,••• , U,'{), for each parameter tensor in the net-
work. 

3. Normalize the C tensors and obtain the new estimates for the A tensors viz 

Ag- -= i,Jl , ... ,Jng 
C'(V, Uf, ... , U;)ij1・・jng

~C'(V, Uf, ... , U!)ij;. ・j;,g
j; , ... ,j;.g 

4. Go back to step 2 until convergence is achieved. 

(57) 

¥tVe will show in the next section that re-estimating the parameters in this way is guaranteed 

to increase the overall likelihood of the training data. Hence this iterative technique con-

verges. However it may not converge to the maximum likelihood estimate of the parameter 

tensors. Instead it may converge to a'local maximum likelihood'estimator, i.e. a point in 

the parameter space where likelihood is locally maximal 
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5 A theorem about convergence of the iterative tra1n1ng method 

In this section we will show that the previously described method for updating the prob-

ability estimates of the link tensors produces ahvays improves the overall likelihood of the 

training data. In order to state the theorem we need to do some preliminary work: 

Figure 5 shows three causal trees. The nodes of the trees are represented as circles and 

squares. The squares represent evidence nodes, i.e. nodes for which the state can be observed. 

The circles represent unobserved nodes. The triangles represent connection tensors. As can 

be seen, the daughters of a given parent are sometimes assumed to be marginally independent 

(when each link has its own tensor) and sometimes exhibit dependencies (when certain links 

share tensors). The trees are said to model the observed nodes. The parameters of the model 

consist of the components of each of the connection tensors as well as the prior vectors of 

the root nodes (巧，乃 and乃 inFigure 5). 

5.1 Some definitions 

Samples A sample is an assignment values to the evidence nodes in the tree. We consider 

two different kinds of samples: 

Deterministic samples provide a specific value for each of the evidence nodes. 

Non-deterministic samples assign to each evidence node a likelihood vector. This is a. vector 

of non-negative real values describing the likelihood of some event given the value of 

the evidence node. 

Deternlinistic events are a subclass of non-deterministic events, namely those in which each 

likelihood vector has the form (0, ... , 0, 1, 0, ... , 0). 

冗1 

冗3 

．冗2

暑
Tree 1 Tree 2 Tree 3 

図 5:
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Entropy of a sample For a given sample, we can calculate the probability of this sample 

given the model parameters. To do this recall that the ,¥ and 7r vectors at a node X were 

defined 

Thus 

入(X)・1r(X)

入(X)

1r(X) 

Pr((y¥X) 

Pr(X¥e支）

LPr(e計X=i)Pr(X=ile支）
i 

L Pr(exlX=i, e、1)Pr(X=ile支）
i 

Pr(分 le支）

(58) 

(59) 

(60) 

(61) 

(62) 

Line 61 is justified, for the node X separates (i-from e支andso the probability of (i only 
depends on the state of X. At the root node of a tree, e支=0, so入・1r= Pr(e), where e 

stands for the part of the evidence spanned by the tree. When there are multiple trees as in 

Figure 5, the fact that these are not connected implies that they span independent parts of 

the sample. Thus the overall probability of the sample is obtained by multiplying the terms 

入 (R)• 1r(R) over all root nodes R. 

It is usually more convenient however to use the negative logarithm of this quantity. This 

is known as the entropy of the sample. We define the entropy of a tree T with root node R 

as 

E(T) = -log(入(R)・7r(R))

and the entropy of the sample as 

E(T) =— I: log(入(R)・1r(R))
root nodes R 

(63) 

(64) 

Training data The training data is a set of samples. The entropy of the training data 

given the current model is defined as the sum of the entropies of the samples in the training 

data. 

The training problem The training problem is that of finding model parameters such 

that the overall entropy of the training data is minimized. We will show that the iterative 

algorithm developed in the previous section always decreases the entropy of the training 

data. 

5.2 Parameterization of the model 

Figure 6 shows, how the isolated trees of Figure 5 can be converted into a single equivalent 

tree. This is done by introducing a new root node R and connecting the previous root nodes 

as daughters to this node. The new root node represents a random variable that can only 

take one value (thus it is not random at all). The components of the connection matrix 

connecting R to one of the old root nodes凡 areset identical to the components of the prior 

叩 ofR; in Figure 5 (Since R can only take one value the connection matrix is really just a 
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Tree 1 

1 state root node 

／ 

Tree 2 

図 6:

Tree 3 

vector.). We do not need to consider the prior to R, for since R only takes one value this 

prior is always equal to the unit vector (1). 

It should thus be clear that Figure 6 is equivalent to Figure 5. The advantage of this 

transformation is that we only need to consider one tree and that prior vectors are represented 

as connection tensors, so a re-estimation formula for the connection tensors will automatically 

apply to the priors as well. 

The total set of parameters to be estimated thus consists of the components of the various 

connection tensors m Figure 6. 

Weight linkage Since the latter part of this paper makes extensive use of a concept known 

as weight linkage we will introduce this concept here: We may impose additional constraints 

on a model by forcing certain connection tensors to have identical components. Thus if two 

tensors Ax and AY of the model have the same rank (number of indices) and corresponding 

indices have the same dimension we can impose the additional constraint: 

A~- . = A'!!. . 
iJ1…Jn iJ1•••Jn 

for all i,j1,J・2, ... ,Jn (65) 

This reduces the number of free parameters of the model. 

In the following we will consider different models, which although having the same geo-

metrical structure (or topology) differ in the actual parameter values. To differentiate be-

tween two such models we will use the letter 0 to indicate one parameter set and 0 to 

indicate another. Thus the probability of a sample e under model 0 will be written as 

Pr(e¥0) and that of e under model 0 will be written as Pr(e¥0). More specifically 0 is 

defined as the set of all connection tensors of the model and we will write A E 0 to indicate 
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that a given tensor A is part of model 0. Naturally 0 can be partitioned into a set of subsets 

0=LJ凱 (66) 
h 

where each subset 0h contains all tensors that are linked. (Linking of tensors really de恥 es

an equivalence relation on 0 andび arethe equivalence classes.) In slight abuse of notation 

we will also write 

(A: V, U1, ... , 広） E 0h (67) 

to indicate that tensor A, which links the parent node V to the daughter nodes U1 to Un 

belongs to the tensors in邑

We can now state the main result of this section: 

Theorem 1 Let 0 be a parameter set for a model describing samples e of a training data 

set Train. Let Ee be the entropy of the tra切ingdata given the parameter set 0. Then if we 

choose a new parameter set e for the same model such that for any tensor A E eh we have 

A-. 'Jl・・・Jn. = 
C~- . 

り1・・・Jn

LC嘉.j:,'
(68) 

., ., 
J1•··•,Jn 

where 

C贔--in=~
eETrain 

(kV,U, 戸広）ee'Pr (V=i, ハ応=jke,0)
(69) 

and denote E0 the entropy of the training data given 0 we have 

Ee~Ee (70) 

Proof: We will first consider the case, in which the training data Train consists of just one 

sample e. Let N denote the total set of nodes in the model and let 

S:Nf---+N (71) 

be a function that assigns a particular value to each node in the model and let S be the set 

of all such functions. Further for the sample e and a value allocation S'we denote 

Pr(e,Sl0) = Pr (e, u~N U=S(U) 0). (72) 

A moments thought will reveal that 

Pr(e, S10) = II As(V),S(U1), ... ,S(Un) II 入(X)s(X)・(7:3)
(A:V,U1, …，Un)E0 leaf nodes X 

Now for two different sets of parameters 0 and 0 define the function 

1 
Q(8,0) = I:Pr(e,S!8)logPr(e,S!0) 

Pr(e!8) s 
(74) 
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and consider the term Ee -Ee. By the concavity of the log function we have: 

Pr(e¥0) 
(75) Ee -E0 = log Pr(el0) 

log (エPr(e,S10) Pr(e, S10)) (76) 
8 Pr(e¥0) Pr(e, S¥0) 

~ Pr(e,S¥8) 1 Pr(e,S¥0) 
(77) > og 

5 Pr(el0) Pr(e,S10) 

Q(0, 0) -Q(0, 0) (78) 

It follows that a sufficient condition for E0 ::; Ee is that Q(0, 0) 2: Q(0, 0). This latter 

condition is clearly satisfied for a 0 that maximizes Q(0, ・). In fact we have strict inequality: 

E0 < E。 (79) 

unless 0 itself maximizes Q(0, •). We therefore ask for the set of parameters 0 that maxi-

mizes Q(G, ・)fora given 0. From equation 73 we have 

log Pr(e, S¥0) =~log As(V),S(Ui), ... ,S(Un) +~log 入(X)s(X)·(80)
(A:V,U1, ... ,Un)EEJ leaf nodes X 

Substituting this into equation 74 and changing the order of sunm1ation gives: 

Q(0, 0) = L L Cぶ..,in log ふj1・・・in+ L L D(X)i log 入(X)i, (81) 
E)hcE> i, 五，…，J五 leafnodes X i 

where the tensorふ五...jn is the representative tensor of the class f)h and 

C~- . 
'Jl• .. Jn 

n 

区 L I(S(V)=i) II I(S(U砂=]砂
. Pr(e, S10) 

S (A:V,U1, ... ,Un)E0h k=l Pr(el0) 

L L Pr(Sle, 0) 
(A:V,Ui, ... ,Un)E0h SIS(V)=i, 八S(Uk)=jk

L Pr(V=i, 入U,=j,e,0
(kV,U,, .. .,U")E 0'k-1)  

and 

D(X)i I: I(S(X) = i) Pr(Sle, 0) 
s 

Pr(X = ile, 0) 

BELe(X)i. 

The second term in equation 81 is independent of 0 so it remains to maximize 

I: I: C贔--inlog ふi1・・・in
E)hCE) i,j1, .. ,,jn 

、¥
j

、1
,

2

3

 

8

8

 

（
＇
ー
、

(84) 

(85) 

(86) 

(87) 

(88). 

with respect to the components of the representative tensor ふ丘••Jn ofか subjectto the 

constraints 

こふj1... jn = 1 
Jl , ... ,Jn 

(89) 
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It is easy to show (for example by using Lagrangian multipliers) that this maximization is 

in fact solved by: 

A 
Ch .. 

．． 
'Jl・・・Jn

. = iJ1・・・Jn

~c贔...j;,) (90) 

., ・1
Ji,··•,Jn 

This completes the proof of the Theorem for the special case of there being just one 

sample e in the training set. In the case of n samples, we simply create one big sample by 

writing all n samples one after each other. Vle use a model which consists simply of n copies 

of the model for one sample, with the corresponding tensors linked across all copies. This 

big model applied to the big sample is equivalent to the original model applied repeatedly to 

all samples in the training data. Carrying out the same analysis as above for the big model 

leads to equations 68 and 69 as claimed. ■ 
The usefulness of Theorem 1 should be clear. The partial contributions 

Pr (V=i, k0iら=jke,0) (91) 

to the Ch tensor can readily be calculated using eq叫 ion55. After processing the training 

data once, one merely needs to re-normalize the Ch tensors to obtain a new estimate of 

the model parameters. The theorem guarantees that the new set of parameters models the 

training data better than the previous one. 
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6 Learning the hidden structure of language 

In this section we will study whether and how it is possible to employ the above ideas 

in order to learn the structure of natural language. Basically the problem we wish to study 

is this: We are given a stream of symbols (e.g. words), which exemplifies the language we 

wish to study. vVe are seeking an algorithm that will learn a probability distribution that 

most closely describes the observed symbol sequence. 

6.1 Production rules seen as causalities 

We begin with an informal discussion of grammars. Traditionally grammars of a language 

(e.g. the English language) are written in the form of production rules. A typical rule could 

be of the form 

NP→ Art Noun, (92) 

meaning a grammar symbol NP (which stands for noun phrase) can be replaced by an article 

(Art) followed by a noun. Typically a grammar consists of many such rules. The symbols 

involved are either abstract grammatical terms such as "NP," "Art," "Noun" or specific 

words of the language. For instance we might have the additional rules 

Art → the 

Noun → book 

(93) 

(94) 

In linguistic terminology, words of the language such as "the" and "book" are referred to as 

terminal symbols of the grammar and abstract units like "NP", "Noun" are referred to as 

non-terminal symbols, because these units need to be replaced by strings ofter血 nalsymbols 

to make a valid sentence. 

This paper takes the approach that a rule such as 

NP→ Art Noun, (95) 

can be viewed as a causal relation, i.e. we have and abstract cause "NP" that causes the 

creation of two abstract units "Art" and "Noun", which in turn will eventually cause the 

creation of an article and a noun as terminal symbols. 

In the problem of language learning we are thus anticipating a hidden causal structure 

that led to words (or.terminal symbols) we are able to observe. The problem is that of 

discovering this structure (or rather of finding the most suitable structure) and learning the 

probability matrices involved in the productions. 

We are thus faced with two problems: A qualitative one of assigning a causal tree (or in 

the language of grammarians a parse tree) to the string of terminal symbols observed and 

that of finding the probabilities associated with each link in the graph. The former will be 

referred to as the Strncture problem, the latter as the Assignment problem. 

Of these two problems, the Assignment problem can essentially be solved using the 

belief propagation and probability learning equations introduced in sections 2 and 4. The 

Structure problem is however more difficult. A variety of approaches to solve this problem 

will be discussed. 
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non-te汀血alnodes 

pre-tern血 alnodes 

terr血 alnodes 

図 7: 図 8:

6.2 A specific grammar model 

In order to simplify the Structure problem, we will consider a representation of a Gram-

mar in a special form. This imposes constraints on the possible structures that a parse tree 

can take and reduces the search space for finding an appropriate one. The particular form 

adopted is that of a stochastic context-free grammar in Chomsky Normal form. In short 

such a grammar consists of a set of terminal symbols (the words of the language) a set of 

non-ter両 nalsymbols and a set of production rules. The production rules are constrained 

to be of one of two forms: 

a → be 

a → a, 

where a, band care non-terminal symbols and a is a terminal symbol. Thus a non-tern出nal

symbol may either re-write as a string of two non-terminal symbols or as a single terminal 

symbol. It has been shown that any context-free grammar can be written in Chomsky Normal 

form (by increasing the number of non-terminal symbols if necessary), so the Chomsky 

normality constraint does not impose an structural constraints on the languages that can 

be modeled by context-free grammars, but only on the structure of the parse trees. In fact 

the parse trees must be of the form depicted in Figure 7, where each node has two daughter 

nodes except the so-called pre-terminal nodes, the ones leading to terminal symbols, which 

have only one. It also follows that once the number of non-terminal symbols are determined 

the grammar can effectively be represented by three quantities: a tensor of rank 3, a matrix 

and a vector: vVe write 

A.;jk to mean the probability of non-terminal symbol i re-

writing as the two non-terminals j and k 

犀 toindicate the probability of the non-terminal ire-writing 

as the terminal symbol m and 

P; to indicate the prior probability of the first symbol in a 

derivation (the root). 

These three quantities must satisfy the stochastic constraints: 

LAりK十LBim= 1 for all i 
jk m 

(96) 
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and I: Pi = l (97) 

These three quantities specify our knowledge base, or in other words parameterize the lan-

guage model. 

For a given parse tree, such as the one shown in Figure 7 we can now apply the belief 

propagation algorithm. The tensors A and B serve as connection tensors and P provides 

the prior to the root node of the tree. In fact a tree such as the one shown in Figure 7 

will contain many instances of the A and B tensors, one for each terminal and non-terminal 

production respectively, all of which are linked. 

The quantities A and B can be used as the weight matrices for the belief propagation 

algorithm. For example, suppose we observe the two words "the book" in succession in the 

observation sequence and a tree of the form shown in Figure 8 is constructed. Now, remember 

that each non-terminal node represents a random variable that can take a number of discrete 

values. In the case of Mr. Holmes inference about burglary each node could have two values, 

like "alarm sounds" versus "alarm does not sound". In our case, each non-terminal node 

can range over all non-terminal symbols of the grammar. Similarly each terminal node can 

range over all terminal symbols. Thus if the grammar consists of Nnt non-terminal symbols 

and Nt terminal symbols then each non-terminal node represents a random variable which 

can range over Nnt values and each terminal node represents a random variable which can 

range over Nt values. Now in the present example the identity of the terminal symbols is 

known: "the" and "book". This knowledge is expressed by assigning these nodes a入vector

of the form (0, ... , 0, 1, 0, ... , 0). Recall that each component of a入vectorrepresents the 

likelihood of a symbol given the evidence. So the 1 appears at the position corresponding to 

the word in question. 

It should be noted that in some applications the identity of the word may not be known 

with certainty. For example in connection with a speech recognizer only a set of scores for 

different word candidates may be available. Indeed, a speech recognizer based on Hidden 

Markov Models for instance outputs the likelihoods Pr(0¥JVI), the probability of the acoustic 

evidence O having resulted from the Markov model M. This quantity corresponds precisely 

to the definition of the components of the入vectorsfor these are defined as Pr(ex [X), X 

being the terminal symbol (or Markov Model) and ex the underlying evidence. Hence, in 

this case we can use the likelihoods~utput by the recognizer as the components of the A 

vector. It is the naturalness at which uncertainty can be incorporated into the Bayesian 

belief networks which make them so attractive as a language model for speech recognition. 

The instantiated入vectorsat the leaf nodes together with the P vector of equation 97 at 

the root node allow us now the calculation of the belief of each node and also the summands 

of equation 69. This in turn allows us to update the model parameters after a whole set of 

training samples has been processed. 

This clearly works, no matter how large the parse trees involved are. The key question 

that remains to be answered is how the trees may be constructed in the first place. This will 

question will be addressed in the remainder of this section. 
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6.3 The 1r vectors at the leaf nodes -a symbol'predictor' 

The 11 vector of a. leaf node is also a very useful quantity. It describes the probabilities 

of word candidates given the entire context of the word (within the current tree). Therefore 

the quantity -log(入・7f)at a. leaf node measures the amount by which the current symbol 

was expected in the given context. 

Recall that the belief of a leaf node could be calculated as 

BEL(X) = 
入(X)1r(X)

入(X)・1r(X)'
(98) 

where the numerator is the component-wise vector product and the denominator is the 

familiar dot-product. Hence if the入vectorof a leaf node is deterministic (i.e. of the 

form (0, ... , 0, 1, 0, ... , 0)) the belief vector will not be different from this no matter what 

the 1r vector is at this node, but if the ,¥ vector represents likelihoods from an underlying 

acoustic observation, as is the case in a speech recognition task, the belief vector represents 

the posterior probability distribution of the symbol in question, given the entire acoustic 

evidence. 

6.4 Finding the best tree coverage of an observation sequence 

The previous section showed that propagating入and1r vectors through a tree structure 

is a computationally efficient method for calculating beliefs of terminal and non-tern註nal

symbols especially when uncertainty is involved (for instance when several word hypotheses 

are produced by a speech recognizer). We will now address the underlying problem of finding 

a possible parse tree to use for the propagation algorithm. 

(6.4.1) The language umts 

Traditionally, linguistic theory uses the sentence as the basic unit and defines a language 

as a set of (grammatically correct) sentences. In this framework it would be most natural 

to assign a single tree structure to each sentence (the parse tree of this sentence). This 

implies that we need to be told the end points of the sentences in order to process them. 

In written language these end points are usually available, through punctuation, but in the 

spoken language accurate segmentation points may be lacking. 

For this and other reasons, the tree construction algorithms presented below will not 

make use of the sentence unit. Instead trees will be constructed over adjacent segments of 

the observation sequence, where the boundary points are also optimized. The reasons for 

following this approach are described as: 

1. The sentence boundaries may not be known (see above) 

2. The sentence unit may not be the optimal unit. By this is meant that if the training 

data is limited it may be better to learn a "sub-grammar" consisting of smaller-than-

sentence units as opposed to attempting to learn the full grammar. 

Hence we allow the parse trees to span any adjacent sequence of symbols from the ob-

servation sequence that seems to form a suitable unit. Depending on the modeling ability 

of the grammar, these units may be larger or smaller than the actual sentence. Thus the 
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tree boundaries are not a priori aligned to the sentence boundaries. After learning of the 

language they may turn out to be aligned but only if such an alignment is advantageous for 

the reduction of total entropy. We will now consider several tree construction algorithms in 

turn. 

6.5 Tree construction: 
． 

version 1 

Since the grammar model is constraint to be in Chomsky Normal Form the topology 

of the trees are fairly constraint. In particular each tenninal symbol has a unique'pre-

terminal'symbol as its pa.rent. These nodes may be created immediately, as soon as the 

terminal symbol has been observed (Figures 9 and 10). Next the入vector,which has been 

instantiated for the terminal node can be propagated up to the pre-terminal node. The 

general propagation equations were given in section 4 (equations 20 to 28), but in this 

simple case these collapse to a simple matrix-vector multiplication: 

入(U)= B入(X), (99) 

where U is the pre-terminal node and X is the terminal node. The new vector入(U)is 

independent of the shape of the eventual parse tree, so it can be calculated at this stage once 

and for all (Figure 10). 

The newly created pre-terminal node, can be regarded as a tree of size one, and we 

can calculate the entropy of this tree using equation 63. Next, for two neighbouring pre-

tenninal nodes, a non-ter血 nalnode is proposed (Figure 11), having the two pre-terminals as 

daughters. Again, the入vectormay be passed up this new node. The propagation equation 
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固 13: This diagram illustrates the parsing algorithm. When a new symbol is read all 

(newly) possible parse trees are constructed bottom up. This defines a lattice of trees. The 

possible paths through the lattice are traced and pruned such that only the best (i.e. minimal 

entropy) path for each end point is kept. At some earlier point (relative to the symbol just 

read) all these paths converge, identifying a unique sequence of trees. These trees are then 

chosen for the ro a ation and re-estimation al℃ orithm. 

follows again from equations 20 and 28 and in this case read: 

入(V)i= こA丸い(U1い(U砂K

蛉

(100) 

where V is parent node and U1 and U2 are the two daughters. It is not yet clear whether 

this non-tern註nalwill be part of the final tree, but if it is then again the its入vectorwill 

not change as it depends only on its daughters. Again we can calculate the entropy of this 

tree (of size 2) using equation 63. If the entropy calculated is larger than the sum of the 

entropies calculated previously for the two daughter nodes, the new node is rejected and 

removed from memory. Otherwise it is kept as a potential node for the且naltree. The 

process continues now in the same fashion by constructing new non-terminal nodes between 

any pair of existing non-terminal nodes which span adjacent sequences of the observation 

sequence (Figure 12). 

Continuing this procedure leads to a lattice of nodes. Each non-terminal node defines a 

potential tree, but these trees are partially overlapping. To obtain a single coverage of the 

observation sequence, the lattice of trees needs to be pruned. This can be achieved by using 

a dynamic programming technique. One simple selects the path through the lattice which 

minimizes the overall entropy. 

After the trees have been isolated in this way, the rr vectors are passed clown from the 

root-node. At this time the beliefs of each node and the partial contributions to the weight 

re-estimation terms (equation 69) can be calculated. 

At the end of a training epoch the quantities A, Band P may be updated using equation 

68. 

6.6 Convergence of the grammar learning algorithm 

As was pointed out previously, the grammar learning algorithm consists of two parts: 

finding the structure of the parse trees and calculating the belief of the nodes. We will now 
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show that under suitable conditions the algorithm will converge. 

¥i¥Te will consider the case of finite training data. Parameters are updated each time 

the entire training material has been processed. ¥Ne will show that after each update the 

total entropy calculated over the training data will be reduced. Since the entropy is always 

positive it follows that the algorithm converges. 

In general it cannot be assumed that the segmentation of the training data into parse 

trees and the topology of these trees is identical from iteration to iteration. Rather we expect 

that with the changing model parameters the topology of the parse trees will also change. 

However if the topology of the pare trees in one iteration is exactly identical to the topology 

of the previous iteration then Theorem 1 ensures that the overall entropy has been reduced. 

In the general case, the entropy of the training data given the parameter set will still 

monotonically decrease from iteration to iteration, if the tree structures are selected on 

the principle of maximizing this probability with the given parameter set. To make this 

clearer, let T denote a tree structure constructed over the training data and Pr(e[T, 0) the 

probability of the training data given the tree structure and the parameter set 0. Theorem 

1 proves that 

Pr(elT, 0)~Pr(elT, 0), (101) 

if 0 is derived as was explained in the previous section. Now, if we use a new tree structure 

T, a sufficient condition for 

Pr(e[T, 0) 2 Pr(e[T, 0) (102) 

1S 

Pr(elT, 0) 2: Pr(elT, 0). (103) 

This condition is trivially satisfied if we choose the T which maximizes Pr(e『f,0) and hence 

the gra,_mmar learning algorithm will necessarily converge in this case. 

A T which maximizes Pr(e['T, 0) can be found by searching through all possible tree 

structures. This is computationally less expensive as it first seems, because the independence 

of neighbom、ingtrees can be used to discard non-optimal structures at a fairly early stage. 

The algorithm that was proposed in section 6.4 uses heuristic principles to restrict the search 

space. Unfortunately it is not guaranteed to produce the optimal tree coverage. In practice 

this does not pose a problem as the following argument will make clear: 

If the algorithm finds the tree coverage T in one iteration, the change from parameter 

set 0 to 0 will only make it more likely that this structure will be found again and will be 

part of the tree lattice constructed. If the finally selected tree structure T does not eq叫 T,

it must be because this structure lead to a higher probability of the training data. Even if 

T is not optimal, the fact that it is better than T under the new parameter set is sufficient 

to guarantee equation 102 and hence convergence. 

6. 7 Problems with version 1 of the tree construction algorithm 

Section 6.5 introduced a simple algorithm for finding a tree structure suitable for the 

observation sequence. It uses heuristic pruning techniques, based on minimal entropy selec-

tion, to keep the total number of trees to be considered low. However the algorithm, as it 

stands, has a serious deficiency that calls for its modification: It is not capable of learning 

the succession of two non-tenninal symbols unless they occur in the same tree. 
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To ex-plain this point further, let us consider what happens during the early stages of 

training. Initially all rule probabilities are randomized and during the first sweep through 

the training data each tree has size 1 as shown in Figure 14. 

Now, the relationship between any two neighbouring non-tern1inal symbols must be 

learned. However the present algorithm, as it stands, does not do this, for the param-

eter re-estimation algorithm is only applied within .each tree. This means that only the 

parameters of the B matrix are learned, so the resulting grammar is in fact equivalent to a 

um-gram gr amrnar. 

By modifying the tree building algorithm we can however avoid this problem. 

6.8 Tree construction: version 2 

In version 2 of the tree construction algorithm trees are constructed and isolated in the 

same way as in version 1. However, prior to cakulating the partial contributions to the 

weight re-estimation term (equation 56) two neighbouring trees are combined into a big 

tree by hypothesizing a common root node. Figure (6.8.1) illustrates this, during the first 
iteration, when all constructed trees have size 1. After all weight contributions have been 

calculated, the hypothetical root node is removed and the next two trees are combined to a 

new tree (Figure (6.8.1)). (The tree who formed the right branch of the previous construct 

now forms the left branch.) Training is repeated on this new construct. In this way, the 

information about neighbouring trees is learned by virtue of the hypothetical nodes, and 

hence'tree-growth'is possible during training. 

(6.8.1) Allowmg multiple prrors 

Version 2 of the tree building algorithm depends upon the initial symbol distribution 

vector P. An additional reduction in entropy can be achieved, by allowing this vector to 

vary according to size of the tree to which it is applied. 

In this scenario, rather than storing just one vector P, we use an array of vectors prior[s]. 

For a tree of size s (i.e. which spans s symbols of the observation sequence) the vector 

prior[s] is used as the prior for that tree. 

6.9 Tree construction: version 3 

Version 3 of the tree building algorithm is very similar to version 2. To understand it let 

us first consider an extension to the stochastic context free grammar formalism. 

Up to now the grammar was described by three quantities: Bim describing the tenni-

nal productions, A勺kdescribing the non-terminal productions and P; describing the prior 
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probability of the root symbol. We now replace the prior Pi by a matrix of conditional prob-

abilities Dij, describing the value of the current root node given the value of the previous 

root node. To describe this more precisely, if we have a sequence of trees T1, ... spanning 

the observation sequence, with root nodes Rい...then 

Dij = Pr(Rt=j!Rt-1=i). (104) 

One way of looking at this is to say that we provide a bigram grammar for the root nodes of 

the trees. We now no longer have isolated trees, but rather one big structure. The A and 1r 

vectors can be propagated through this structures just as the theory dictates (section Ll.1). 

Each root node has two groups of daughter nodes. One group consists of the two in1IIlediate 

daughters within the same tree. Its relation to the parent is described by the tensor A. The 

other group consists of a single node, the root node of the next tree, and the relation is 

described by the matrix D. 

figure 17 illustrat~s how the入and1r vectors are propagated through the network. 

If this architecture is used for training, the D matrix learns the'root node bigrams'. 

However this knowledge has to be transferred into the A tensor, if the trees are to grow in 

subsequent iterations. Otherwise we are in a situation similar to the one of version 1 of the 

tree construction algorithm. 

In principal this problem can be solved by linking the parameters of the D matrix with 

those of the A tensor. But since they have different dimensions this cannot be achieved in 

quite such a straight forward way. However the entries of the D matrix can be calculated 

from the entries of the A tensor by re-introducing the initial symbol vector P. 

In version 2 of the tree building algorithm we hypothesized a new root node H for any 

pair of adjacent trees with root nodes R1 and R2. Thus the tensor A learns the conditional 

probabilities Pr(R1,R2[H). Since the prior of His given by the initial symbol distribution 
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vector P, we can get the joint distribution of Pr(R1, R2) by multiplying A by P: 

Pr(R1=J, 凡=k)=~Aijk尺

and from this we can calculate the conditional probabilities by simple normalization: 

Pr(R1=jJR三）＝
Pr(R1=JIR2= k) 

~Pr(R1=llJら=k)
j' 

Hence we can calculate D from A by setting 

Djk = 
こiAijkpi 

I:i,j'Aij'kpi 

(105) 

(106) 

(107) 

The tree-building and learning algorithm can now be described as follows: At the begin-

ning of the iteration the D matrix is calculated from the A tensor and the P vector according 

to equation 107 above. Trees are then constructed using version 1 of the tree building algo-

rithm. The root nodes are then linked using the D matrices as shown in Figure 17 and the 

入and1r vectors are propagated through the entire network. When it comes to calculating 

the contributions to the re-estimation terms (equation 48) the D matrices are again repl,aced 

by the A tensors and the入vectorsfrom the two root nodes plus the P vector are used to 

calculate the contribution to the A tensor at this point of the structure. 

6.10 o・ 1scuss10n on tree building algorithms 

In the previous subsections we have presented three closely related algorithms for par・sing 

the observation sequence. Of these version 1 does not work during the training period, 

because the tree are not encouraged to grow. (It is however a useful algorithm once the 

grammar parameters have been learned). The main reason for including it here was its 

simplicity and the fact that it forms the basis for the other two algorithms. 

Version 2 is a simple extension of version 1, that does allow trees to grow from iteration 

to iteration. The drawback of this algorithm is that training is no longer performed on the 

structure exhibiting minimal entropy, but rather on a modification of this structure. The 

fact that the minimal entropy structure has been modified implies that the convergence 

argument given in section 6.6 does no longer strictly apply. So the overall entropy calculated 

over the observation data may no longer be strictly decreasing from iteration to iteration. 

However experiments have confirmed that this is not a problem in practice. 

Version 3 is a neat extension to version 2 that on top of providing a justification for the 

hypothetical root nodes also extends the grammar model by a bigram grammar between 

root nodes, so that the trees are no longer independent of each other. 
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はいもしもし。 えーっとそちら 第 1 回 の 国際会議 の 事務 局 でしょ う

感動詞 感動詞 記号 問投詞代名詞接頭語数詞接尾語格助詞固有名詞格助詞普通名詞普通名詞助動詞助動詞終助詞記号

未然 終止

はいそうです。 えーっとちょっとその 会議 の こと で ねあの一登録 の こと

感動詞副詞助動詞記号問投詞 副詞 問投詞普通名詞格助詞普通名詞格助詞終助詞問投詞普通名詞格助詞普通名詞．．．

図 19:Example sentences from the ATR dialogue database with part of speech labels. 

7 Experimental work 

Some preliminary experiments have been carried out will be described in the remainder 

of this paper. 

7.1 Database 

The experiments were based on the ATR Dialogue database. This is a text database 

consisting of some 8500 sentences of telephone conversations together with their part of 

speech labels [1]. A few example sentences are shown in Fig. 19. The database contains a 

total of about 6500 different words with 51 different parts of speech. The part of speech 

labels were judged as a suitable input unit for the BLI model since their number is limited 

ensuring enough training samples for each part of speech. Ideally words should have been 

used as input unit. 

For the purpose of the experiment the data base was divided into two equal portions, 

one for training and one for testing. 

7.2 Segmentation of the training data 

In HMM training, it is customary to update the HMM probabilities each time the en-

tire training data has been processed. In the experiments reported herein we update more 

frequently. Thus successive training epochs are carried out on different part of the training 

data. This is motivated by the following observation: The grammar inference mechanism 

described here only requires an unlabeled source of symbols to operate. Even though train-

ing is performed on a finite amount of training data for the experiments described herein, 

it is feasible that the algorithm is used on an infinite symbol source such as a news broad-

casting station. At present when the training data is used up the algorithm starts again 

at the beginning of the training data. In the future it could indefinitely make incremental 

improvements to its current weights by continuously processing an infinite source. 

Initially when the model parameters are still random, only trees of size 1 are constructed 

(see experimental section and Fig. 22 below). During this phase essentially the uni-gram 

statistics of the data base are learned. It follows that it is not necessary to have a very long 

update period during this time of learning. As the sizes of the trees increases, the model 

parameters can only be accurately estimated by taking more and more data into account 

during one training epoch. Thus it seems advantageous to start with a relatively small 

update period and increase this gradually. This was done in the experiments, starting with 

a update period of 100 symbols, which was increased by 30 after each update. 
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7.3 P r・ re 1m1nary experiments 

In the first experiment the three parsing algorithms were compared. For this purpose we 

trained models with :30 non-terminal symbols. The results are shown in the following table: 

method tree size train test 

vers10n 1 1.0 4.48 4.46 

version 2 2.81 2.81 2.80 

version 3 2.94 3.88 3.87 

The table shows the average size of the trees constructed by the algorithm and the entropy 

over the test and training data. As was pointed out earlier version 1 of the p紅 singalgorithm 

does not lead to tree growth and was included as a control. 

Somewhat surprisingly version 2 performed significantly better than version 3, despite 

the fact that version 3 provides a bigram type grammar for the root nodes of the trees. 

7.4 Evaluation of the BLI model 

In order to evaluate the performance of the BLI model a model with 50 non-terminal 

symbols were trained. The number 50 was chosen for two reasons: Firstly it roughly agrees 

with the number of non-terminal symbols (51) and secondly it was the largest number that 

could be trained in reasonable time on a work station. Following the results of the previous 

section we used version 2 of the tree building algorithm. Other model parameters were 

chosen as follows: 

number of terniinals (Nt) 51 

number of non-terminals (Nnt) 50 

initial update period 100 

update period increase 30 

maximum tree size 6
 

Fig. 21 shows the development of the entropy when estimated during training and Fig. 22 

shows the average tree size during each training epoch. Initially the entropy was close to 6, 

but dropped sharply to the "unigram-level" of about 4.5 after the first few iterations. During 

this period the tree size was 1. When trees started to be constructed the entropy dropped 

further. Both curves are quite noisy. This is due to the fact that different training epochs 

were carried out on different parts of the training material. 

Training was discontinued after 300,000 symbols had been processed. This took about 

two weeks on a DEC station 5000. The trained model was subsequently evaluated on the test 

data and an entropy of about 2. 7 bits was observed. This was compared to the entropies 

obtained from a bigram or trigram grammar. The overall results are sun1marized in the 

following table 

噴
ー
ー
~

三
trigram 

2.39 

2.76 

BLI 

2.60 

2.70 

As can be seen, the ELI model outperforms the bigram model, but its entropy is si叫 lar

to the trigram entropy. On the training data, the ELI entropy is considerable higher than the 
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図 21:Development of the entropy during 
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図 22:The average tree size during train-

ing 

trigram entropy and much closer the test data entropy. This means that the generalization 

is much higher for the BLI model. In other words the BLI model seems to rely less on 

the coverage between the training and the test data.. This means that the BLI model will 

probably scale better to larger tasks once the problems concerning training time have been 

overcome. 

Fig. 20 shows how the BLI algorithm processed pa.rt of the training material. It shows 

the part of speech sequence that was used as input to the model together with the parse trees 

constructed. The letters labeling the nodes of the trees refer to the non-terminal symbols 

with the highest belief component at that node. The bar chart above the part of speech 

represents the entropy of the terminal node (E(st)). The underlying word sequence was 

included as a reference. 

It is evident that the parse trees roughly correspond to Japanese grammatical units such 

as bunsetsu. Since the sentence end marker (。） is processed just like all other symbols, it 

is also incorporated in the tree structures. For example, since a sentence often starts with a 

filler (間投詞） a tree connecting period (記号） with (間投詞） is constructed. 
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8 Discussion 

In this report we have shown that parse trees may be regarded as Bayesian network. 

This framework enables one to integrate rule probabilities of stochastic grammars and ob-

servational uncertainties (such as acoustic match likelihoods) in a mathematically sound and 

computationally efficient way. Moreover we have shown that the causal and evidential sup-

port vectors that arise as intermediate quantities in the Bayesian formalism may be used, in 

a natural way, to calculate new grammar para.meter estimates. The parameter re-estimation 

is guaranteed to increase the likelihood of the observed data, so long as the parse trees are 

selected on a maximum likelihood principle. 

While the propagation of support vectors has a well-developed theory with many nice 

mathematical properties, the construction of suitable belief networks connecting the observed 

events is a problem for which to elate no fully satisfactory solution exists. For this reason, 

the usage of Bayesian networks in AI has been limited to applications where the network 

structure was恥 eelcould be decided in advance. While this might be adequate in some 

applications there is clearly a need in larger applications with many different and partially 

unrelated nodes to construct Bayesian networks'on the fly'by connecting only the relevant 

nodes. 

In the context of natural language processing that we are concerned here the problem of 

constructing suitable networks describing the observation sequence is well known under the 

name of parsing. A great many parsing algorithms exists, but unfortunately most are not of 

stochastic nature. 

We described three different simple methods for parsing the observation sequence based 

on the CYK parsing algorithm. vVe found that during training an algorithm that simply 

selects the tree structure with the highest likelihood may not work, because neighbouring 

trees may never be combined, so trees do not'grow'from iteration to iteration. Therefore 

there is the need for compromising the maximum likelihood selection principle in order to 

learn the'neighbouring-tree'statistics during training. Two of the algorithm proposed have 

this property and we compared them experimentally. 

Finally we compared the model experimentally with the common bigram and trigram 

model. We showed that on the given task the BLI model did not only perform superior to 

both n-gram models, but also showed better generalization ability. 
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