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Baysian Belief Networks are a powerful tool for combining different knowledge
sources with various degrees of uncertainty in a mathematical sound and compu-
tationally efficient way. Surprisingly they have not yet found their way into the
speech processing field, despite the fact that it in this science multiple unreliable
information sources exists. The present paper provides an introduction to the the-
ory of Bayesian Networks. It also proposes several extensions to the classic theory
as described by Pearl by describing mechanisms for dealing with statistical depen-
dence among daughter nodes (usually assumed to be marginally independent) and
by providing a learning algorithm based on the EM-algorithm with which the prob-
abilities of link matrices can be learned from example data. Using these ideas a
possible language model for speech recognition is constructed. It is evaluated over

a text data base.
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1 Introduction — dealing with uncertainties

Modeling language for speech recognition inevitably involves dealing with uncertainty.
This 1s for two reasons. Firstly the very observations made by the speech recognizer are of
probabilistic nature. A speech recognizer rarely outputs just one word candidate with high
certainty but rather a list of candidates with relative rankings. A language model parsing
such an output needs to take information contained in the relative rankings and scores into
account to produce the most likely sequence of words. Secondly language models specified as
a set of crisp rules not involving probabilities or other kinds of scoring are not very efficient
in describing the language. Either the coverage is too low, forbidding sentences which are
commonly uttered or else if the rules are less strict many exceptional and unlikely to occur
sentences are classed as grammatical.

For this reason, the use of probabilistic models such as stochastic grammars has been
proposed. These models replace the grammatical/ungrammatical classification by a graded
scale. Structurally very simple models such as the bigram/trigram models [2] have been
observed to be extremely effective, purely on grounds of their stochastic nature.

Recently a similar trend from rule-based to probability-based methods has been observed
in the field of artificial intelligence. A mathematical tool known as Bayesian networks [4]
has been developed to incorporate probabilities into expert systems and to allow them to
make plausible deductions on the basis of insufficient information [5].

Bayesian networks provide a mathematically sound foundation for making plausible in-
ferences under uncertainty. What is more, the calculation scheme implied by these networks
turns out to be surprisingly simple and computationally efficient. Although a number of
mathematical problems have to be solved in order to apply these models to expert systems
and the like, the known properties of Bayesian networks make them far too attractive to be
overlooked.

We attempt to show in this paper that Bayesian networks, which were primarily developed
for use in probabilistic expert systems, can be applied (on a somewhat lower level) to the
parsing of natural language particularly when uncertainty is involved.

The paper can roughly be divided into two parts. In the first part we will present some
key results of the theory of Bayesian networks, working from a simple example. We will
then generalize the network propagation equation and provide a mechanism for inferring
the conditional probabilities of the model. This learning algorithm which is based on the
EM algorithm is computationally efficient and guaranteed to increase the likelihood of the
observations. In the latter half of this paper we will discuss how syntactic’ parse trees of
a sentence can be viewed as a causal structure describing the ‘causal’” development of this
sentence and how the Bayesian network propagation techniques developed in the earlier part
can be used to infer syntactic structure. The learning algorithm can be used to update the
probabilities of the model in an iterative fashion. In this way grammatical rules can be

learned purely by observing unlabeled example text.
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2 Bayesian Belief Propagation

In this section we will summarize and extend the theory of Bayesian Belief Propaga-
tion. The theory as proposed by Pearl [4] represents knowledge in the form of a qualitative
graph with probabilities associated to each link. Each node in the graph corresponds to
an event and a directed link between two nodes indicates a causal relationship between the

corresponding events.
We will illustrate Pearl’s approach by quoting one of his own examples:

Example [Pearl]: Mr. Holmes receives a telephone call from his neighbour
Dr. Watson, who states that he hears the sound of a burglar alarm from the
direction of Mr. Holmes’s house. While preparing to rush home, Mr. Holmes
recalls that Dr. Watson s known to be a tasteless practical joker, and he decides
to first call another neighbour, Mrs. Gibbon, who, despite occasional drinking

problems ts far more reliable.

A graphical structure representing the causal influences of this story is shown in Figure 1.
Mz. Holmes receives two possibly different accounts about an alarm sound at his house. He
tries to infer the probability of a burglary given the above evidence.

Before discussing this example in detail, let us define some notation. Let H denote the
random variable describing whether there is a burglary, S the one describing the state of the
alarm system (either ringing or not ringing) and G and W the ones describing the results of
Gibbon’s and Watson’s testimony. H can in fact take two values: Burglary or not Burglary
which we may denote h; and hy. The same is true for the other random variables. In general
however a random variable at a node may take more than two values.

Further we denote by Pr(S|H) the matrix

i (Pr(S=syH =hy) Pr(S=s|H = hy)
Pr(51d) = ( Pr(S = 85| H = hy) Pr(S = 52| H = hy) ) (1)

Gibbon’s
testimony

Alarm
sounds

Burglary
at Holmes’

Watson’s
testimony
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Now, according to Pearl’s theory, Holmes can reasonably be expected to have at least
estimates of the matrices Pr(S|H), Pr(G|S) and Pr(W|S) stored in his knowledge base. He
can also be expected to know the prior probability Pr(H) of there being a burglary on any
given day of the year without any additional evidence. However he is unlikely to know more
complicated conditional probabilities such as Pr( H|W, (), the quantity that he is interested
in. It is therefore argued that Holmes need to compute these probabilities on the fly in order
to make a decision on whether he should rush back home.

Fortunately there is a simple computational scheme available which allows one to calcu-
late the Pr(H|W, G) from the elementary quantities Pr(S|H), Pr(G|S), Pr(W|S) and Pr(H).
These calculations can be performed on a local scale following the graphical structure of Fig-

ure 1.

2.1 Belief propagation equations

The calculating scheme developed by Pearl is simple in that it only involves a few fun-
damental operations. It is also local in the sense that we could assign a simple processor
to each node in the graphical representation. Each processor communicates with its neigh-
bouring processors by exchanging simple messages via the links of the graph. It performs
simple operations on its inputs received from the other nodes and mediates the results to its
neighbours. The propagation equations are true for scenarios, where the graphical structure
is of the form of a tree, i.e. does not contain any cycles. This is the case in the example
above. Moreover the graph has the property that every node has at most one parent, i.e.
at most one cause. This is not required by the theory in general, but in this paper for the
sake of simplicity we will only consider such graphs. Directed trees in which nodes may have
more than one parent are known as poly-trees and Pearl discusses such structures.

To describe the propagation equations we need to define some more notation: The evi-
dence e stands for the total observed information i.e. the two testimonies in the example.
Further for a node X let e} denote the part of the evidence that is connected to one of the
descendants of X and e} the remaining evidence. For the graph in Figure 1 we have

ey = Watson’s testimony ey = Gibbon’s testimony

ez = Gibbon’s testimony el = Watson’s testimony (2)
€s = ég =¢€ el =¢h =10

Furthermore Pear] defines for each node X of the diagram two vectors:

Prlex|X==) Pr(X=zek)

Priex|X==z Pr(X=uz,|ek
AMX) = Pr(ex|X) = (ex : ?) m(X) = Pr(X|e}) = ( : 2/ek)

Prex|X=z,) Pr(X=z,lek)

(3)
The essence of the belief propagation theory lies in the fact that these quantities can be
‘propagated’ through the underlying graph and thereby calculated recursively. It turns out
that the propagation rules are surprisingly simple. However we need to define two more
auxiliary vectors: In a general tree, if V is a parent of nodes Uy,..., Uy (see Figure 3), we
define the auxiliary vectors: :
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Conditional probabilities: The derivations in this paper make use of conditional
probabilities of the form Pr(A|B). We will use capital letters 4, B, C to indicate
nodes in the networks. A node A can be thought of as a discrete random variable
taking values ay, as, . ... If one or more of these node variables enters the argument
of the probability function P the resulting expression is to be interpreted as a
tensor. For example the expression Pr(eg | U) is a vector. It has as many
components as U can take values. The¢’th component is Pr(eg; | U =u;). Similarly
Pr(e;,U | V, X,ek) is a tensor of rank 3 whose 7jk’th component is Pr(ef;,U =
w | V=v;, X =g, ek).

Important vectors and there definitions:

AU) = Pr(e;; | U) (evidential support vector)

7(U) = Pr(U | ¢f;) (causal support vector)

BEL(U) =Pr(U|e) (Belief vector)

Vector products:

ab componentwise vector product: (ab); = a;b;

a-b familiar dot product: a-b=3"; a;b;

AU)Pr(U | V) vector-matrix product. Vector matrix product of this form
are performed in the only sensible way, 1.e. identifying states
of the same variable. So if 7 indices states of the variable U
and j indices states of the variable V then A(U)Pr(U|V) =
(MUY Pr(U = 2|V = j7)). In general we will not make
transpositions of vectors or matrices explicit.

Normalizing constants: When the letter a appears in front of a vector it represents
a real number normalizing that vector. Occasionally o occurs more than once in
an equation. In this case they usually represent different normalization factors.

2: Notation used in this paper
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(V)
B 3:
Ao (V) = Pr(eg,|V) (4)
w0, (V) = Pr(Vlef,) (5)

One can now show (for a derivation see Pearl [4] or section 4.1 where we derive more general
versions of these equations):

Ao (V) = AU)PH(IV) (6
V) = Tw) @
w.(V) = a_;w)lmym )
(U,) = Pl-(U,.[xfwar(Xf) (9)

Here the products on the right-hand-side of equation 6 and 9 are familiar vector-matrix
products. The vector product involved in equations 7 and 8 is the component-wise vector
product (i.e. vector x vector = vector). The coefficient « in equation 8 is a scalar chosen
such that the vector 7y, (V') on the left-hand-side is normalized.

Using equation 7 and 9 it is thus possible to calculate the A and 7 vectors of all nodes in
the network from the = vector of the root node (node H in our example) and the A vectors
of the other leaf nodes. Further at each node U the so called belief vector BEL(U) defined
as Pr(Ule) can be calculated as a componentwise product of the A and 7 vectors:

MU= (U)

where again the scalar « is chosen such as to normalize the resulting vector. The belief of a
node is sometimes referred to as the posterior distribution of this event.

Going back to the example, the 7 vector of the root-node H is the prior distribution of
H, Pr(H), describing the probability of there being a burglary at on any given day which
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Holmes can be expected to have at least an estimate for. Further if the possible values of
the variable (node) G are “Gibbon hears the alarm ringing” versus “Gibbon does not hear
the alarm ringing”, then the A(G) is either equal to (0,1) or (1,0) depending on Gibbon’s
testimony. The same is true for A(W) however depending on Watson’s testimony. So from
equations 7, 9 and 10 Holmes can calculate the belief of any node in the network, based on
- his knowledge of the testimonies, the probabilities Pr(H), Pr(S|H),Pr(G|S) and Pr(W]S).
In particular he can calculate the belief of node H, which 1s the information he is interested

111.
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3 Analysis of Bayesian belief propagation

In the previous section we gave a brief introduction to the theory of Bayesian belief
propagation using one of Pearl’s examples. Even though the tree considered was of extreme
simplicity, it should be clear that the belief propagation equations will hold for a tree of
arbitrary complexity. Further more since the calculations are local at each node it is clear
that even complex dependencies can be calculated easily and accurately by following the
structure of the tree. The theory as described above is only applicable to simple trees, i.e.
causal structures in which each event can have at most one cause, however a generalization
to poly-trees, where multiple causes exist for an event, is also available, but not discussed in
this paper.

How could an expert system make use of this approach for automated reasoning? Ac-
cording to the ideas put forward in the previous section, the knowledge base of such a system
would consist of probability matrices of the form Pr(Y|X) for events X and ¥ known or
observed to be in a causal relationship and prior distributions Pr(X). For a given problem
it would then be the task of the system to propose a plausible network structure connecting
the observed events with other unobserved but relevant events. After a network is con-
structed the belief propagation equations can be used to calculate the posterior probability
distribution of the unobserved nodes of interest.

Thus the expert system has to cope with two different problems: a qualitative one,
consisting of the construction of the graphical structure and a quantitative one propagating
the A and 7 vectors through this network.

Expert systems implementing the quantitative part have already been proposed by Lau-
ritzen and Spiegelhalter [3] and others, however these systems are not able to do solve the
first problem: the assignment of the graphical structure. Instead this structure is given in
advance and hence forms part of the knowledge base.

While the studies on such expert systems are interesting and help to understand propa-
gation mechanism they are of limited use in practise. It is infeasible for an expert system to
maintain a very large tree connecting all possible (observed and unobserved) events. Such
a network would connect seemingly unrelated events. Moreover 1t would require the prop-
agation of the A and 7 vectors from parts of the network that are only marginally related
to the events of interest. It would also be extremely difficult to establish a large network
connecting all nodes of interest and yet have it loop-free as required by the theory.

Instead one should look for an approach that constructs a network ‘on the fly’ connecting
nodes when they become relevant in the light of observed events. This would entail estab-
lishing the relevance of various observed and unobserved events on the basis of the known
Pr(Y|X) matrices and constructing a network which connects the unobserved events of inter-
est to the relevant observed events, possibly creating new (previously unknown) unobserved
events in the process. To the best of our knowledge we are at the moment at a lack of such
an algorithm, but it is not infeasible that such an algorithm exists.

In section 6 of this paper we will use the theory of Belief trees to stochastically parse a
sentence. In this paracdigm the words of the sentence form the observed events. Unobserved
events are grammatical markers such as “Noun phrase”, “Prepositional phrase”, etc. It is the
object of the parser to connect the possible unobserved events to the observed events in the
‘best possible way’. This will create a tree structure (the parse tree). The theory of Bayesian
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networks will give us the quantitative tool for calculating the beliefs of all unobserved events
and also the likelihood of the chosen tree structure.
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4 Extensions to the basic belief propagation equations

With regard to section 6.2, we will now present a few extensions to the belief propagation
equations. We will also provide the necessary derivations of all results. Since the equations
quoted in the previous section are special cases of the results developed here, the proof apply

to the previous section as well.

4.1 Dependence of daughter nodes

In the example discussed above, the daughters of a given parent node were assumed to be
statistically independent. Thus the nature of Gibbon’s testimony only depends marginally
on Watson’s testimony or expressed mathematically:

Pr(G,W|S =s) = Pr(G|S = s) Pr(W|S = s), (11)

for each possible s (state of the alarm system).

The belief propagation equations can be modified to apply in situations when equation

11 does not hold. This will be relevant in the second part of this paper, when we apply the
theory to language acquisition.

If there are dependency relations among the daughter nodes, it is not sufficient to specify
each parent-daughter relation separately, but rather jointly using a tensor of rank 3 or higher.
This tensor expresses the joint conditional probabilities between daughter nodes Uy, ..., U,
and parent V, viz Pr(Uy, ..., U,|V) instead of separate link matrices Pr(U;|V),. .., Pr(U,|V).
In the most general case, the daughters of V can be divided into, say, G groups. Nodes within
one group are regarded as statistically independent from the nodes of any other group, so
there is no need to specify the parent-daughter relation by one big tensor. However the
nodes within each group are considered to be statistically dependent and their relation to
the parent is expressed by a tensor for this group. Thus if the nodes in group g are labelled
U{,...,Us the overall conditional probability tensor has the form

Pr(U},..., U}

ny?

Ui ... U2

nal

G
S US LU V) = T Pe(UF, VS, .. US|V (12)
g=1

Figure 4 displays such a scenario graphically. _

The belief propagation equations can be adopted in a straight forward way to the new
situation. For convenience we define additional notation. We denote the group consisting
of nodes Uf,..., U by V9. Further we define the evidence ey, as the combined evidence
ey e{]gg and likewise ef;, as the remaining evidence e\ey,, i.e. the entire evidence e less

eyy. Furthermore we define
AV?) = Pr(ey,|V) (13)
w(V1) = Pr(Vieh), (14)

and we write A9 to indicate the tensor for group g, 1.e.

A

Zvjly'“yjng

= Pr(Uf=j1,..., UL =jn, [V=1). (15)

To keep the derivation readable we will make a further simplification from now on: We
will identify a possible value z; of a random variable X with the index 2 itself. Thus we
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X(Ul) /

n(Ul)

() C () O O O O
U} U) Unll U’ Ug“

- N

1y iy

4: This figure shows a node V with daughters U}, U, ..., U} UL, ..., UL ;.. ,U,LGG. The
daughter nodes are divided into G groups as shown. The groups are regmded as statistically
independent, but the nodes within each group are dependent. Hence the conditional proba-
bility distribution of the daughters given the parent has the product form shown in equation

12.
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will write Pr(X = ¢) instead of Pr(X = z;). In fact, in equation 15, we already used this

simplification.

4.2 Applicable laws of probability

In order to derive equations 6 to 9 and their generalizations we require three laws of
probability theory. These are descibed below:

(4.2.1) Bayes’ law

Bayes’ law states that for events a, b, ¢ we have

Pr(b | a,c)Pr(a | c).

Pr(a|b,c) = 2o <)

(16)

Now, let U be a random variable corresponding to a node of the network, so that in our
notation Pr(U | b,¢) is a vector. This vector must be normalized. We can then write Bayes’
law in the following form:

Pr(U | b,¢) = aPr(b| U,c) Pr(U | ¢), (17)
where @ = 1/ Pr(b | ¢) can be determined simply as a normalizing constant.

(4.2.2) Conditioning

Let @ and b be events and U a random variable that can take a finite number of values
1,...,n. The following equation holds:

Pr(a | b) = ZPr(a | U,b); Pr(U | b), (18)

(4.2.3) Separation

To illustrate the law of separation consider the probability vector Pr(e;; | eff, U). Since
the graphical structure is assumed to be a tree, the value of ef; can effect the value of ef;
only via the value of U. We say e} and ej; are marginally independent, i.e independent when
conditioned on the value of U. Hence

Pr(eg | efr, U) = Pr(ey | U). (19)

We also say “U separates ef; from ef;”.

4.3 Derivation of the propagation equations

We will begin by proving a generalization of equation 6. The captial letters B, C' S and D
on top of the equal sign (=) indicate applications of Bayes’ Law, the laws of Conditioning and
Separation and a definition respectively. Finally a bracketed numeral indicates an application

of an earlier equation.



12 4 Extensions to the basic belief propagation equations

Now, as for the As we have:

AV, 2 Pr(ep,|V = 1) (20)
2 Prieje, ... eqs [V =1) (21)
£ Prleger ey V=6,Us=j1, - UL =5 )AL, i, (22)
]1,...,jng 9
L3 TIPeplUt=in) AL, i, | (23)
jl!"'vj'ng k=1
D - g g '
= > I AU ik A1, ening (24)
71 ,...,jng k=1
MV) 2 Pr(ep|v=i) 25)
2 Prleps, ..., ep6|V=1) (26)
G
= HPr(e{,g]V:i) (27)
g=1

o

1:[ A(VE); | (28)

Let us reflect on this result for a moment. Equation 24 expresses the vector A(V7) as a
simple tensor-vector product between the tensor A9 and the A-vectors A(Uf) (k= 1,...,ny).
Regarding Figure 4 one could say that the vectors A(U}) enter the triangle (tensor) A? from
the bottom. Here the tensor-vector product is formed and the A vector representing the
group A(VY) is emitted at the top. Equation 28 shows how the A vectors from the various
groups need to be combined to give the overall A vector: by component-wise vector product.

One could write these two results in the vector form:

MV?) = AL V) A(VE) )
\v) = TIAv), (30)

where the multiplication in equation 29 is a tensor-vector product (like a generalized matrix-
vector product) and the multiplication in equation 30 is a componentwise vector product.
However since it is difficult to distinguish between the two forms of multiplication in this
notation and it is also not easy to see which indices of the tensor A9 identify with which
A vector in equation 29, we will always use the more explicit component-wise description
shown in equations 24 and 28.

For the ws we derive

m(V9); Pr(V=1lef,) (31)
Pr(V=iley,epn,. - ¢84---spa) (32)
aPr(V=1i,ep1,..., ¢34, .., epaled) (33)
aPr(V=iled) Pr(V=1,ep1, ..., ¢4, - .-, €pcled, V=1) (34)
aPr(V=iled) ] Pr(e,,|V=1) (35)

g'=1,..,4,..,G

e o llw |Io llv
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2 oar (v II MV (36)
g'=1,..4,....G
D : . ' m
U 2 Pe(Uf=jiledy) (37)
2 Pr Ug:jk 6_‘59, /\ eavg (38)
Btk F
Pl'( =k V=1, ( A Uif=j’“’) Vo /\ )
c Z Ktk k' 39)
i vblning Pr V=i, \ V=i e )\ e
k'£k ptk ¥
Pr <Uf:jk V=1, /\ Uf,:jk:) Pr(V=q)
5, B ! 1
Bt fdiing Pr| A Ul=iw, e, A eys, V:i)
k'#£k Kk J
Pr ( /\ Ul= g V:i)
k'=1,..,ng PI‘(V:’L)
B . . '
= o > Pr{ N\ Ul=ju|V=i 41)
i:jlv--:/ﬁ!)”'vjﬂg k’?’:k
Pr|{ A Ui=ji.ebs, )\ ege| V=1
k'#k kigh *
D,B L - . .
=y A, Pr(V=a)br (8% A\ egs | N\ Uf?,:]k,,v.—:z> (42)
'ivjl1~--y/[{y---7.7"ng A‘-/#k k’#k
- > A-?,jl,.‘.,jng Pr(V=1)Pr(ef |[V=1) ][] Pr (61—1;’, Ui,:jkz>(43)
'iyjlv-':/l{:---yjng k’:l,...,}é,...,ng
D
w2 Al e T MU (44)
iyjly---,/L!y-nyjng k':l,,..,k,...,ng

Here 1,... ..., n, stands for the integers from 1 to n, with the exception of k. The
index k" generally ranges over these integers except in the numerator of equation 41 where

it covers the full range 1,...,n,. The constants «; and s are given by

1 Pr(ed;
and oy = (evs)
Pr (6397 JAVRy 6&;:) Pr (6;59, Nerssx 8&:/)

, (45)

[

but since these constants are independent of j; and since we know that the vector 7(UZ) 1s
normalized, they can simply be determined as normalizing constants.

Thus it is clear that even in the presence of statistical dependence among the daughter
nodes, the A and 7 vectors can be propagated in a fairly straight forward fashion.
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4.4 Learning the conditional probabilities

In this section we will discuss a method of how the conditional probabilities stored in the
matrices can be learned from a set of training samples. A training sample is an instantiation
of the observed nodes of a network. The training problem is that of choosing the link matrices
such that the overall probability of the training material (i.e. the product of probabilities
of each sample given the link matrices) is maximized. We will distinguish two cases: The
simple case in which all nodes are observed and the more complicated case involving matrices

between unobserved nodes.

(4.4.1) Case 1: all nodes are observed

Suppose we wish to find the link matrix Pr(Y|X) between two nodes X and Y. In this
case we simply instantiate a matrix of counters (C(X,Y");;) which counts the number of
times node X is in state ¢ and node Y is in state j. After processing the entire training
data and updating the respective counters, the maximum likelihood estimate of the matrix
Pr(Y|X) is then given by

C(X,Y )y

S CO0Y ) (46)

Now consider the slightly more complicated case in which a node V has n daughters struc-
tured in G groups. U}, Us,..., UL UL, ... U2, ..., US. that was discussed in section 4.1.
Here the relationship between the parent V and the daughtels ui,us, ..., Ug, mn group g 1s
expressed in the tensor shown in equation 15. If the nodes V, U7, 29, ..., Ug are all observed
we can again simply instantiate a tensor of counters C(V, U7, ..., Uﬁg)ijl...jng and count the
number of occurances of each event over the training data. The maximum likelihood estimate
for A is then v 7o),

A?,jl,..,,j”g = Z C’ ;"Ug ;1 )Jng (47)

1o Yn)ig]ih,

.7 1.]11.9

(4.4.2) Case 2: some nodes are unobserved

If the nodes involved are unobserved, we can no longer simply count simultaneous oc-
curances. However we can ask for the expected number of simultaneous occurances. For a

single sample e this expected number equals the probability
Pr(V=1,Ui=71,..., Ul=Jn,le) (48)

Here again, we split the daughter nodes into different groups according to their dependencies
and only consider one group as it is independent of all the others. Fortunately, there is an
easy way to calculate this quantity using intermediate results from the belief propagation.

We have
Pr(V=14,U{=jy,...,U=7, |e)
EZ Pe(V=ile) Pr(Uf=11,. .., Us=7, |V=1,¢) (49)
£ BEL(V), Pr(Uf=jy,...,Ul=7n |V=1,¢7,) : (50)
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Pr(ey, V=0, Uf=7y,. .., Us=ju,) Pr(Uf=11, ..., Us=j,,|V'=1)

(10),B , ;
= AV i V : 1
aA(V)im(V) Pr(ey,|V=1) +51)
G iy 9.4 9— 4 g
(28),D r(ewlUl =J1y e Un—]ng)A, 1 peenrdn
= AV im(V . = 2
o IT MV¥)in(V), s (52)
g =
= « f{j MV m(V); Pr(e; €59, ...,ea.gg]Uf:j],...,Ug:jng)Af’ﬂ ny (53)
g'=1,..4,..G
D,s i
2 m(V9); T] Px( eUg|Uk TAL G4 i, (54)
k=1
D
= ’T(Vg)i H )\(Ug Ai?]l) ,Jng (55)
k=1
Instead of counting joint occurances, we now add the expected number of joint occurances
in the tensor C(V,U{,...,U{ ). Hence after processing all samples e in the data we obtain
cV,Uf,...,U8) :ZPl'(V,Uf,...,Uﬁg]e), (56)

where the sum denotes tensor addition. An estimate for the conditional probability tensor A9
can now be obtained using equation 47. It should be noted that since equation 48 represents
the expected number of joint occurances for one sample, equation 55 represents the expected
number of joint occurances over the entire training data.

Note however that a previous estimate of AY is required in equation 55. Hence, unlike
the ‘all nodes observed’ case the tensors can only be learned iteratively. We therefore have

the following learning algorithm:
1. Choose initial (perhaps random) connection tensors.

2. Process the training data once, accumulating the tensor (Pr(V=1,0{=7,...,Ui=
Jngl€)) in a ‘counting’ tensor C(V,U7,...,Uf), for each parameter tensor in the net-

worlk.
3. Normalize the C tensors and obtain the new estimates for the A tensors viz

OV UL,y Uiy i
Afjl . ( 1 )] Ing (57)
T reemndng Z C’ V, 1]157...,U )ul Thg

4. Go back to step 2 until convergence is achieved.

We will show in the next section that re-estimating the parameters in this way is guaranteed
to increase the overall likelihood of the training data. Hence this iterative technique con-
verges. However it may not converge to the maximum likelihood estimate of the parameter
tensors. Instead it may converge to a ‘local maximum likelihood’ estimator, i.e. a point in

the parameter space where likelihood is locally maximal.
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5 A theorem about convergence of the iterative training method

In this section we will show that the previously described method for updating the prob-
ability estimates of the link tensors produces always improves the overall likelihood of the
training data. In order to state the theorem we need to do some preliminary work:

Figure 5 shows three causal trees. The nodes of the trees are represented as circles and
squares. The squares represent evidence nodes, i.e. nodes for which the state can be observed.
The circles represent unobserved nodes. The triangles represent connection tensors. As can
be seen, the daughters of a given parent are sometimes assumed to be marginally independent
(when each link has its own tensor) and sometimes exhibit dependencies (when certain links
share tensors). The trees are said to model the observed nodes. The parameters of the model
consist of the components of each of the connection tensors as well as the prior vectors of

the root nodes (my, w3 and 73 in Figure 5).

5.1 Some definitions

Samples A sample is an assignment values to the evidence nodes in the tree. We consider

two different kinds of samples:

Deterministic samples provide a specific value for each of the evidence nodes.

Non-deterministic samples assign to each evidence node a likelihood vector. This is a vector

of non-negative real values describing the likelihood of some event given the value of

the evidence node.

Deterministic events are a subclass of non-deterministic events, namely those in which each
likelihood vector has the form (0,...,0,1,0,...,0).

Tree 1 Tree 2 Tree 3

5 5:
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Entropy of a sample For a given sample, we can calculate the probability of this sample
given the model parameters. To do this recall that the A and 7 vectors at a node X were

defined

AX) = Pr(ezlX) (55)
R(X) = Pr(X|e) (59)
Thus
A - 7(X) = 30 Pr(ex|X=i) Pr(X=ile}) (60)
= 3 Pr(ezlX=i,ef) Pr(X=ile]) (61)
~ Piexled) (52)

Line 61 is justified, for the node X separates ex from e} and so the probability of e} only
depends on the state of X. At the root node of a tree, ef = 0, so A - 7 = Pr(e), where e
stands for the part of the evidence spanned by the tree. When there are multiple trees as in
Figure 5, the fact that these are not connected implies that they span independent parts of
the sample. Thus the overall probability of the sample is obtained by multiplying the terms
AMR) - w(R) over all root nodes R.

It is usually more convenient however to use the negative logarithm of this quantity. This
is known as the entropy of the sample. We define the entropy of a tree 7" with root node R
as

E(T) = —log(A(R) - () (63)

and the entropy of the sample as

E(T)=- > log(\(R) =(R) (64)

root nodes R

Training data The training data is a set of samples. The entropy of the training data
given the current model is defined as the sum of the entropies of the samples in the training

data.

The training problem The training problem is that of finding model parameters such
that the overall entropy of the training data is minimized. We will show that the iterative
algorithm developed in the previous section always decreases the entropy of the training
data.

5.2 Parameterization of the model

Figure 6 shows, how the isolated trees of Figure 5 can be converted into a single equivalent
tree. This is done by introducing a new root node R and connecting the previous root nodes
as daughters to this node. The new root node represents a random variable that can only
take one value (thus it is not random at all). The components of the connection matrix
connecting R to one of the old root nodes R; are set identical to the components of the prior
m; of B; in Figure 5 (Since R can only take one value the connection matrix is really just a
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1 state root node

/

=

Tree 1 | Tree 2 Tree 3

X 6:

vector.). We do not need to consider the prior to R, for since R only takes one value this
prior is always equal to the unit vector (1).

It should thus be clear that Figure 6 is equivalent to Figure 5. The advantage of this
transformation is that we only need to consider one tree and that prior vectors are represented
as connection tensors, so a re-estimation formula for the connection tensors will automatically
apply to the priors as well.

The total set of parameters to be estimated thus consists of the components of the various
connection tensors in Figure 6.

Weight linkage Since the latter part of this paper makes extensive use of a concept known
as weight linkage we will introduce this concept here: We may impose additional constraints
on a model by forcing certain connection tensors to have identical components. Thus if two
tensors A® and AY of the model have the same rank (number of indices) and corresponding
indices have the same dimension we can impose the additional constraint:

AL o= AL for all ¢, 1,72, -, Jn (65)
This reduces the number of free parameters of the model.

In the following we will consider different models, which although having the same geo-
metrical structure (or topology) differ in the actual parameter values. To differentiate be-
tween two such models we will use the letter © to indicate one parameter set and © to
indicate another. Thus the probability of a sample e under model ©® will be written as

Pr(e|®) and that of e under model © will be written as Pr(e|@). More specifically © is
defined as the set of all connection tensors of the model and we will write A € © to indicate
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that a given tensor A is part of model ©. Naturally © can be partitioned into a set of subsets
o =Jo", (66)
h

where each subset ©* contains all tensors that are linked. (Linking of tensors really defines
an equivalence relation on © and ©" are the equivalence classes.) In slight abuse of notation

we will also write

(A:V,Uy,...,U,) € 6" (67)

to indicate that tensor A, which links the parent node V to the daughter nodes U; to U,
belongs to the tensors in ©".
We can now state the main result of this section:

‘Theorem 1 Let © be a parameter set for a model describing samples e of a training data
set Train. Let FEg be the entropy of the training data given the parameter set ©. Then if we
choose a new parameter set © for the same model such that for any tensor A € OF we have

- Ch
A s o= Jiaedn (63)

i51-dn )
T G

.717 win

where

.0) (69)

Chin= ¥ pe(V=i AU

e€Train  (A:VU4,...,Un)€OR

and denote Eg the entropy of the training data given © we have
Es < Fo (70)

Proof: We will first consider the case, in which the training data Train consists of just one
sample e. Let A denote the total set of nodes in the model and let

SN N (71)

be a function that assigns a particular value to each node in the model and let S be the set
of all such functions. Further for the sample e and a value allocation S we denote

Pr(e, 5|0) = < A U=5( ! ) (72)

UeN

A moments thought will reveal that

Pr(e, 5|0) = II Aswy,s)aswy 11 MX)sex- (73)

(A:VUh,...,Un)E@ leaf nodes X

Now for two different sets of parameters © and © define the function

Q(0,0) = ZPr e, 5|0)log Pr(e, 5|O) (74)

Pr( Pr(e|O)
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and consider the term Eg — Eg. By the concavity of the log function we have:

. Pr(e]|®)

& Pr(e|®)
Pr(e, S|0©) Pr(e, S]0)

N )
Pr(e,S|©) . Pr(e,S|O)
= Br(e]0) %€ Br(e. 5|0

S

- Q(®7 (:)) - Q(®7®)

Ee — Fg

(75)
(76)

(77)

(78)

It follows that a sufficient condition for Fg < Eg is that Q(©,0) > Q(0,0). This latter
condition is clearly satisfied for a © that maximizes Q(0,-). In fact we have strict inequality:

E@<E@

(79)

unless © itself maximizes Q(©,-). We therefore ask for the set of parameters © that maxi-

mizes Q(0, ) for a given ©. From equation 73 we have

log Pr(e, 5|0) = > log As(v),sn),mswn) + 2. log MX)s(x)-
(A:V,U1,..,Un)€® - leaf nodes X
Substituting this into equation 74 and changing the order of summation gives:

Q(0,0)= > > Ci}}l,,,jnlogﬁijl.‘.jn"[‘ Y. Y. D(X)ilog M(X);,

OhCcO®  Hf1rendn leaf nodes X 1
where the tensor A;j, ;. is the representative tensor of the class O" and

h _ =1 - —q w
Cz'jl...jn = Z Z I(S(V)—~ )HI(S(Uk) .71:) Pl‘(@[@)

S (A:V,Uy,...,.Un)e0h k=1

= 3 S Pi(S|e,0)

(AVU,. Un)EO™  51S(V)=i, A, S(Uk)=jk
e, @)

= > Pr (Vzi, A U= gk
Jeo?

(AVUy yersUn k=1
and
D(X); = >, I(S(X)=1)Pr(Sle,0)
= PSr(X =1ile, ©)
= BELe(X);.

The second term in equation 81 is independent of © so it remains to maximize

Z Z C‘len ]‘Og A’L]l]ﬂ

C:)hCC:) i!jlv"'yjn

(80)

(81)

(82)

(83)

(84)

(88).

with respect to the components of the representative tensor A;;, ;, of ©" subject to the

constraints

3o Ayg.=1

jl 7~"7jﬂ

(89)
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It is easy to show (for example by using Lagrangian multipliers) that this maximization is
in fact solved by: .
- Ch .
Aijy. g = ——=sr—, (90)
.,Z' Cijr..gn
G il
This completes the proof of the Theorem for the special case of there being just one
sample e in the training set. In the case of n samples, we simply create one big sample by
writing all n samples one after each other. We use a model which consists simply of n copies
of the model for one sample, with the corresponding tensors linked across all copies. This
big model applied to the big sample is equivalent to the original model applied repeatedly to
all samples in the training data. Carrying out the same analysis as above for the big model
leads to equations 68 and 69 as claimed. |
The usefulness of Theorem 1 should be clear. The partial contributions
Pr <V:i, N U= e,@) (91)

k=1

to the C'* tensor can readily be calculated using equation 55. After processing the training
data once, one merely needs to re-normalize the C* tensors to obtain a new estimate of
the model parameters. The theorem guarantees that the new set of parameters models the
training data better than the previous one.
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6 Learning the hidden structure of language

In this section we will study whether and how it is possible to employ the above ideas
in order to learn the structure of natural language. Basically the problem we wish to study
is this: We are given a stream of symbols (e.g. words), which exemplifies the language we
wish to study. We are seeking an algorithm that will learn a probability distribution that

most closely describes the observed symbol sequence.

6.1 Production rules seen as causalities

We begin with an informal discussion of grammars. Traditionally grammars of a language
(e.g. the English language) are written in the form of production rules. A typical rule could
be of the form"

NP — Art Noun, (92)

meaning a grammar symbol NP (which stands for noun phrase) can be replaced by an article
(Art) followed by a noun. Typically a grammar consists of many such rules. The symbols
involved are either abstract grammatical terms such as “NP,” “Art,” “Noun” or specific
words of the language. For instance we might have the additional rules

Art — the (93)
Noun — book (94)

In linguistic terminology, words of the language such as “the” and “book” are referred to as
terminal symbols of the grammar and abstract units like “NP”, “Noun” are referred to as
non-terminal stbols, because these units need to be replaced by strings of terminal symbols
to make a valid sentence.

This paper takes the approach that a rule such as

NP — Art Noun, (95)

can be viewed as a causal relation, i.e. we have and abstract cause “NP” that causes the
creation of two abstract units “Art” and “Noun”, which in turn will eventually cause the
creation of an article and a noun as terminal symbols.

In the problem of language learning we are thus anticipating a hidden causal structure
that led to words (or terminal symbols) we are able to observe. The problem is that of
discovering this structure (or rather of finding the most suitable structure) and learning the
probability matrices involved in the productions.

We are thus faced with two problems: A qualitative one of assigning a causal tree (or in
the language of grammarians a parse tree) to the string of terminal symbols observed and
that of finding the probabilities associated with each link in the graph. The former will be
referred to as the Structure problem, the latter as the Assignment problem.

Of these two problems, the Assignment problem can essentially be solved using the
belief propagation and probability learning equations introduced in sections 2 and 4. The
Structure problem is however more difficult. A variety of approaches to solve this problem

will be discussed.
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6.2 A specific grammar model

In order to simplify the Structure problem, we will consider a representation of a Gram-
mar in a special form. This imposes constraints on the possible structures that a parse tree
can take and reduces the search space for finding an appropriate one. The particular form
adopted is that of a stochastic context-free grammar in Chomsky Normal form. In short
such a grammar consists of a set of terminal symbols (the words of the language) a set of
non-terminal symbols and a set of production rules. The production rules are constrained
to be of one of two forms:

a — be

a —

where a, b and ¢ are non-terminal symbols and « is a terminal symbol. Thus a non-terminal
symbol may either re-write as a string of two non-terminal symbols or as a single terminal
symbol. It has been shown that any context-free grammar can be written in Chomsky Normal
form (by increasing the number of non-terminal symbols if necessary), so the Chomsky
normality constraint does not impose an structural constraints on the langnages that can
be modeled by context-free grammars, but only on the structure of the parse trees. In fact
the parse trees must be of the form depicted in Figure 7, where each node has two daughter
nodes except the so-called pre-terminal nodes, the ones leading to terminal symbols, which
have only one. It also follows that once the number of non-terminal symbols are determined
the grammar can effectively be represented by three quantities: a tensor of rank 3, a matrix

and a vector: We write

A to mean the probability of non-terminal symbol 7 re-
writing as the two non-terminals 7 and &

B, toindicate the probability of the non-terminal : re-writing
as the terminal symbol m and

P, to indicate the prior probability of the first symbol in a
derivation (the root).

These three quantities must satisfy the stochastic constraints:

S Ak +Y B = 1 foralli (96)
ik m '
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and ZPZ = 1 (97)

These three quantities specify our knowledge base, or in other words parameterize the lan-

guage model.

For a given parse tree, such as the one shown in Figure 7 we can now apply the belief
propagation algorithm. The tensors A and B serve as connection tensors and P provides
the prior to the root node of the tree. In fact a tree such as the one shown in Figure 7
will contain many instances of the A and B tensors, one for each terminal and non-terminal

production respectively, all of which are linked.

The quantities A and B can be used as the weight matrices for the belief propagation
algorithm. For example, suppose we observe the two words “the book” in succession in the
observation sequence and a tree of the form shown in Figure 8 is constructed. Now, remember
that each non-terminal node represents a random variable that can take a number of discrete
values. In the case of Mr. Holmes inference about burglary each node could have two values,
like “alarm sounds” versus “alarm does not sound”. In our case, each non-terminal node
can range over all non-terminal symbols of the grammar. Similarly each terminal node can
range over all terminal symbols. Thus if the grammar consists of N,;; non-terminal symbols
and /N; terminal symbols then each non-terminal node represents a random variable which
can range over [V,; values and each terminal node represents a random variable which can
range over N; values. Now in the present example the identity of the terminal symbols is
known: “the” and “book”. This knowledge is expressed by assigning these nodes a A vector
of the form (0,...,0,1,0,...,0). Recall that each component of a A vector represents the
likelihood of a symbol given the evidence. So the 1 appears at the position corresponding to

the word in question.

It should be noted that in some applications the identity of the word may not be known
with certainty. For example in connection with a speech recognizer only a set of scores for
different word candidates may be available. Indeed, a speech recognizer based on Hidden
Markov Models for instance outputs the likelihoods Pr(O|M), the probability of the acoustic
evidence O having resulted from the Markov model M. This quantity corresponds precisely
to the definition of the components of the A vectors for these are defined as Pr(ex[X), X
being the terminal symbol (or Markov Model) and ey the underlying evidence. Hence, in
this case we can use the likelihoods output by the recognizer as the components of the A
vector. It is the naturalness at which uncertainty can be incorporated into the Bayesian
belief networks which make them so attractive as a language model for speech recognition.

The instantiated A vectors at the leaf nodes together with the P vector of equation 97 at
the root node allow us now the calculation of the belief of each node and also the summands
of equation 69. This in turn allows us to update the model parameters after a whole set of

training samples has been processed.

This clearly works, no matter how large the parse trees involved are. The key question
that remains to be answered is how the trees may be constructed in the first place. This will
question will be addressed in the remainder of this section.
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6.3 The 7 vectors at the leaf nodes — a symbol ‘predictor’

The 7 vector of a leaf node is also a very useful quantity. It describes the probabilities
of word candidates given the entire context of the word (within the current tree). Therefore
the quantity —log(A - 7) at a leaf node measures the amount by which the current symbol
was expected 1n the given context.

Recall that the belietf of a leat node could be calculated as

AX)r(X)

BEL(X) = {5y 7k (98)

where the numerator is the component-wise vector product and the denominator is the
familiar dot-product. Hence if the A vector of a leaf node is deterministic (i.e. of the
form (0,...,0,1,0,...,0)) the belief vector will not be different from this no matter what
the 7 vector is at this node, but if the A vector represents likelihoods from an underlying
acoustic observation, as is the case in a speech recognition task, the belief vector represents
the posterior probability distribution of the symbol in question, given the entire acoustic

evidence.

6.4 Finding the best tree coverage of an observation sequence

The previous section showed that propagating A and 7 vectors through a tree structure
is a computationally efficient method for calculating beliefs of terminal and non-terminal
symbols especially when uncertainty is involved (for instance when several word hypotheses
are produced by a speech recognizer). We will now address the underlying problem of finding
a possible parse tree to use for the propagation algorithm.

(6.4.1) The language units

Traditionally, linguistic theory uses the sentence as the basic unit and defines a language
as a set of (grammatically correct) sentences. In this framework it would be most natural
to assign a single tree structure to each sentence (the parse tree of this sentence). This
implies that we need to be told the end points of the sentences in order to process them.
In written language these end points are usually available, through punctuation, but in the
spoken language accurate segmentation points may be lacking.

For this and other reasons, the tree construction algorithms presented below will not
make use of the sentence unit. Instead trees will be constructed over adjacent segments of
the observation sequence, where the boundary points are also optimized. The reasons for

following this approach are described as:
1. The sentence boundaries may not be known (see above)

2. The sentence unit may not be the optimal unit. By this is meant that if the training
data is limited it may be better to learn a “sub-grammar” consisting of smaller-than-
sentence units as opposed to attempting to learn the full grammar.

Hence we allow the parse trees to span any adjacent sequence of symbols from the ob-
servation sequence that seems to form a suitable unit. Depending on the modeling ability
of the grammar, these units may be larger or smaller than the actual sentence. Thus the
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tree boundaries are not a priori aligned to the sentence boundaries. After learning of the
language they may turn out to be aligned but only if such an alignment is advantageous for
the reduction of total entropy. We will now consider several tree construction algorithms in

turn.

6.5 Tree construction: version 1

Since the grammar model is constraint to be in Chomsky Normal Form the topology
of the trees are fairly constraint. In particular each terminal symbol has a unique ‘pre-
terminal’ symbol as its parent. These nodes may be created immediately, as soon as the
terminal symbol has been observed (Figures 9 and 10). Next the A vector, which has been
instantiated for the terminal node can be propagated up to the pre-terminal node. The
general propagation equations were given in section 4 (equations 20 to 28), but in this
simple case these collapse to a simple matrix-vector multiplication:

MU) = BAX), (99)

where U is the pre-terminal node and X is the terminal node. The new vector A(U) is
independent of the shape of the eventual parse tree, so it can be calculated at this stage once
and for all (Figure 10).

The newly created pre-terminal node, can be regarded as a tree of size one, and we
can calculate the entropy of this tree using equation 63. Next, for two neighbouring pre-
terminal nodes, a non-terminal node is proposed (Figure 11), having the two pre-terminals as
daughters. Again, the A vector may be passed up this new node. The propagation equation
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13: This diagram illustrates the parsing algorithm. When a new symbol is read all
(newly) possible parse trees are constructed bottom up. This defines a lattice of trees. The
possible paths through the lattice are traced and pruned such that only the best (i.e. minimal
entropy) path for each end point is kept. At some earlier point (relative to the symbol just
read) all these paths converge, identifying a unique sequence of trees. These trees are then
chosen for the propagation and re-estimation algorithm.

follows again from equations 20 and 28 and in this case read:

AV )i =2 A MU AUn)s (100)
ik

where V' is parent node and U; and U, are the two daughters. It is not yet clear whether
this non-terminal will be part of the final tree, but if it is then again the its A vector will
not change as it depends only on its daughters. Again we can calculate the entropy of this
tree (of size 2) using equation 63. If the entropy calculated is larger than the sum of the
entropies calculated previously for the two daughter nodes, the new node is rejected and
removed from memory. Otherwise it is kept as a potential node for the final tree. The
process continues now in the same fashion by constructing new non-terminal nodes between
any pair of existing non-terminal nodes which span adjacent sequences of the observation
sequence (Figure 12).

Continuing this procedure leads to a lattice of nodes. Each non-terminal node defines a
potential tree, but these trees are partially overlapping. To obtain a single coverage of the
observation sequence, the lattice of trees needs to be pruned. This can be achieved by using
a dynamic programming technique. One simple selects the path through the lattice which
minimizes the overall entropy.

After the trees have been isolated in this way, the = vectors are passed down from the
root-node. At this time the beliefs of each node and the partial contributions to the weight
re-estimation terms (equation 69) can be calculated.

At the end of a training epoch the quantities A, B and P may be updated using equation
68.

6.6 Convergence of the grammar learning algorithm

As was pointed out previously, the grammar learning algorithm consists of two parts:
finding the structure of the parse trees and calculating the belief of the nodes. We will now
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show that under suitable conditions the algorithm will converge.

We will consider the case of finite training data. Parameters are updated each time
the entire training material has been processed. We will show that after each update the
total entropy calculated over the training data will be reduced. Since the entropy is always
positive 1t follows that the algorithm converges.

In general it cannot be assumed that the segmentation of the training data into parse
trees and the topology of these trees is identical from iteration to iteration. Rather we expect
that with the changing model parameters the topology of the parse trees will also change.
However if the topology of the pare trees in one iteration is exactly identical to the topology
of the previous iteration then Theorem 1 ensures that the overall entropy has been reduced.

In the general case, the entropy of the training data given the parameter set will still
monotonically decrease from iteration to iteration, if the tree structures are selected on
the principle of maximizing this probability with the given parameter set. To make this
clearer, let 7 denote a tree structure constructed over the training data and Pr(e|7, ©) the
probability of the training data given the tree structure and the parameter set ©. Theorem

1 proves that
Pr(e|T,0) > Pr(e|T, 0), (101)

if © is derived as was explained in the previous section. Now, if we use a new tree structure

7, a sufficient condition for

Pr(e|7,0) > Pr(e|T,0) (102)
18

Pr(e|T,0) > Pr(e|7,0). (103)
This condition is trivially satisfied if we choose the 7 which maximizes Pr(e|7, ®) and hence
the grammar learning algorithm will necessarily converge in this case.

A T which maximizes Pr(e|7,®) can be found by searching through all possible tree
structures. This is computationally less expensive as it first seems, because the independence
of neighbouring trees can be used to discard non-optimal structures at a fairly early stage.
The algorithm that was proposed in section 6.4 uses heuristic principles to restrict the search
space. Unfortunately it is not guaranteed to produce the optimal tree coverage. In practice
this does not pose a problem as the following argument will make clear: |

If the algorithm finds the tree coverage 7 in one iteration, the change from parameter
set © to © will only make it more likely that this structure will be found again and will be
part of the tree lattice constructed. If the finally selected tree structure 7 does not equal 7,
1t must be because this structure lead to a higher probability of the training data. Even if
7 is not optimal, the fact that it is better than 7 under the new parameter set is sufficient

to guarantee equation 102 and hence convergence.

6.7 Problems with version 1 of the tree construction algorithm

Section 6.5 introduced a simple algorithm for finding a tree structure suitable for the
observation sequence. It uses heuristic pruning techniques, based on minimal entropy selec-
tion, to keep the total number of trees to be considered low. However the algorithm, as it
stands, has a serious deficiency that calls for its modification: It is not capable of learning

the succession of two non-terminal symbols unless they occur in the same tree.
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To explain this point further, let us consider what happens during the early stages of

training. Initially all rule probabilities are randomized and during the first sweep through
the training data each tree has size 1 as shown in Figure 14.

Now, the relationship between any two neighbouring non-terminal symbols must be
learned. However the present algorithm, as it stands, does not do this, for the param-
eter re-estimation algorithm is only applied within each tree. This means that only the
parameters of the B matrix are learned, so the resulting grammar is in fact equivalent to a
uni-gram gramrmmar.

By modifying the tree building algorithm we can however avoid this problem.

6.8 'Tree construction: version 2

In version 2 of the tree construction algorithm trees are coustructed and isolated in the
same way as in version 1. However, prior to calculating the partial contributions to the
weight re-estimation term (equation 56) two neighbouring trees are combined into a big
tree by hypothesizing a common root node. Figure (6.8.1) illustrates this, during the first
iteration, when all constructed trees have size 1. After all weight contributions have been
calculated, the hypothetical root node is removed and the next two trees are combined to a
new tree (Figure (6.8.1)). (The tree who formed the right branch of the previous construct
now forms the left branch.) Training is repeated on this new construct. In this way, the
information about neighbouring trees is learned by virtue of the hypothetical nodes, and

hence ‘tree-growth’ is possible during training.

(6.8.1) Allowing multiple priors

Version 2 of the tree building algorithm depends upon the initial symbol distribution
vector P. An additional reduction in entropy can be achieved, by allowing this vector to
vary according to size of the tree to which it is applied.

In this scenario, rather than storing just one vector P, we use an array of vectors prior[s].
For a tree of size s (i.e. which spans s symbols of the observation sequence) the vector

prior[s] is used as the prior for that tree.

6.9 Tree construction: version 3

Version 3 of the tree building algorithm is very similar to version 2. To understand it let
us first consider an extension to the stochastic context free grammar formalism.

Up to now the grammar was described by three quantities: 5;,, describing the termi-
nal productions, A;;; describing the non-terminal productions and P, describing the prior
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probability of the root symbol. We now replace the prior P; by a matrix of conditional prob-
abilities D;;, describing the value of the current root node given the value of the previous

root node. To describe this more precisely, if we have a sequence of trees T, ... spanning
the observation sequence, with root nodes £y,-.. then
D;; = Pl‘(Rt:let—lzi)- (104)

One way of looking at this is to say that we provide a bigram grammar for the root nodes of
the trees. We now no longer have isolated trees, but rather one big structure. The A and 7
vectors can be propagated through this structures just as the theory dictates (section 4.1).
Each root node has two groups of daughter nodes. One group consists of the two immediate
daughters within the same tree. Its relation to the parent is described by the tensor A. The
other group consists of a single node, the root node of the next tree, and the relation is
described by the matrix D.

Figure 17 illustrates how the A and 7 vectors are propagated through the network.

If this architecture is used for training, the D matrix learns the ‘root node bigrams’.
However this knowledge has to be transferred into the A tensor, if the trees are to grow in
subsequent iterations. Otherwise we are in a situation similar to the one of version 1 of the
tree construction algorithm.

In principal this problem can be solved by linking the parameters of the D matrix with
those of the A tensor. But since they have different dimensions this cannot be achieved in
quite such a straight forward way. However the entries of the D matrix can be calculated
from the entries of the A tensor by re-introducing the initial symbol vector P.

In version 2 of the tree building algorithm we hypothesized a new root node A for any
pair of adjacent trees with root nodes R; and R,. Thus the tensor A learns the conditional
probabilities Pr(R,, Ry[H). Since the prior of H is given by the initial symbol distribution
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vector P, we can get the joint distribution of Pr(R,, Ry) by multiplying A by P:

PI(R]Z_]., R2: k‘) = Z AijkPi (105)

and from this we can calculate the conditional probabilities by simple normalization:

Pr(Ry=j|Ry=k)

Pr(Ry=j|R=k) = 106
(fo=71Ra=F) > Pr(Ri=j'|Ro=k) (106)
]'/
Hence we can calculate D from A by setting
: A P
Dy = i fiirds (107)

T g AP

The tree-building and learning algorithm can now be described as follows: At the begin-
ning of the iteration the D matrix is calculated from the A tensor and the P vector according
to equation 107 above. Trees are then constructed using version 1 of the tree building algo-
rithm. The root nodes are then linked using the D matrices as shown in Figure 17 and the
A and 7 vectors are propagated through the entire network. When it comes to calculating
the contributions to the re-estimation terms (equation 48) the D matrices are again replaced
by the A tensors and the A vectors from the two root nodes plus the P vector are used to

calculate the contribution to the A tensor at this point of the structure.

6.10 Discussion on tree building algorithms

In the previous subsections we have presented three closely related algorithms for parsing
the observation sequence. Of these version 1 does not work during the training period,
because the tree are not encouraged to grow. (It is however a useful algorithm once the
grammar parameters have been learned). The main reason for including it here was its
simplicity and the fact that it forms the basis for the other two algorithms.

Version 2 is a simple extension of version 1, that does allow trees to grow from iteration
to iteration. The drawback of this algorithm is that training is no longer performed on the
structure exhibiting minimal entropy, but rather on a modification of this structure. The
fact that the minimal entropy structure has been modified implies that the convergence
argument given in section 6.6 does no longer strictly apply. So the overall entropy calculated
over the observation data may no longer be strictly decreasing from iteration to iteration.
However experiments have confirmed that this is not a problem in practice.

Version 3 is a neat extension to version 2 that on top of providing a justification for the
hypothetical root nodes also extends the grammar model by a bigram grammar between

root nodes, so that the trees are no longer independent of each other.
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19: Example sentences from the ATR dialogue database with part of speech labels.

7 Experimental work

Some preliminary experiments have been carried out will be described in the remainder

of this paper.

7.1 Database

The experiments were based on the ATR Dialogue database. This is a text database
consisting of some 8500 sentences of telephone conversations together with their part of
speech labels [1]. A few example sentences are shown in Fig. 19. The database contains a
total of about 6500 different words with 51 different parts of speech. The part of speech
labels were judged as a suitable input unit for the BLI model since their number is limited
ensuring enough training samples for each part of speech. Ideally words should have been
used as input unit.

For the purpose of the experiment the data base was divided into two equal portions,

one for training and one for testing.

7.2 Segmentation of the training data

In HMM training, it is customary to update the HMM probabilities each time the en-
tire training data has been processed. In the experiments reported herein we update more
frequently. Thus successive training epochs are carried out on different part of the training
data. This is motivated by the following observation: The grammar inference mechanism
described here only requires an unlabeled source of symbols to operate. Even though train-
ing is performed on a finite amount of training data for the experiments described herein,
it is feasible that the algorithm is used on an infinite symbol source such as a news broad-
casting station. At present when the training data is used up the algorithm starts again
at the beginning of the training data. In the future it could indefinitely make incremental
improvements to its current weights by continuously processing an infinite source.

Initially when the model parameters are still random, only trees of size 1 are constructed
(see experimental section and Fig. 22 below). During this phase essentially the uni-gram
statistics of the data base are learned. It follows that it is not necessary to have a very long
update period during this time of learning. As the sizes of the trees increases, the model
parameters can only be accurately estimated by taking more and more data into account
during one training epoch. Thus it seems advantageous to start with a relatively small
update period and increase this gradually. This was done in the experiments, starting with
a update period of 100 symbols, which was increased by 30 after each update.
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7.3 Preliminary experiments

In the first experiment the three parsing algorithms were compared. For this purpose we
trained models with 30 non-terminal symbols. The results are shown in the following table:

method | tree size | train | test
version 1 | 1.0 448 | 4.46
version 2 | 2.81 2.81 | 2.80
version 3 | 2.94 3.88 | 3.87

The table shows the average size of the trees constructed by the algorithm and the entropy
over the test and training data. As was pointed out earlier version 1 of the parsing algorithm
does not lead to tree growth and was included as a control.

Somewhat surprisingly version 2 performed significantly better than version 3, despite
the fact that version 3 provides a bigram type grammar for the root nodes of the trees.

7.4 Evaluation of the BLI model

In order to evaluate the performance of the BLI model a model with 50 non-terminal
symbols were trained. The number 50 was chosen for two reasons: Firstly it roughly agrees
with the number of non-terminal symbols (51) and secondly it was the largest number that
could be trained in reasonable time on a work station. Following the results of the previous
section we used version 2 of the tree building algorithm. Other model parameters were

chosen as follows:

number of terminals (V) 51
number of non-terminals (N,;) | 50
initial update period 100
update period increase 30
maximum tree size 6

Fig. 21 shows the development of the entropy when estimated during training and Fig. 22
shows the average tree size during each training epoch. Initially the entropy was close to 6,
but dropped sharply to the “unigram-level” of about 4.5 after the first few iterations. During
this period the tree size was 1. When trees started to be constructed the entropy dropped
further. Both curves are quite noisy. This is due to the fact that different training epochs
were carried out on different parts of the training material.

Training was discontinued after 300,000 symbols had been processed. This took about
two weeks on a DEC station 5000. The trained model was subsequently evaluated on the test
data and an entropy of about 2.7 bits was observed. This was compared to the entropies
obtained from a bigram or trigram grammar. The overall results are summarized in the

following table

model entropy | bigram | trigram | BLI
training data | 2.83 2.39 2.60
test data 2.84 2.76 2.70

As can be seen, the BLI model outperforms the bigram model, but its entropy is similar
to the trigram entropy. On the training data, the BLI entropy is considerable higher than the
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trigram entropy and much closer the test data entropy. This means that the generalization
1s much higher for the BLI model. In other words the BLI model seems to rely less on
the coverage between the training and the test data. This means that the BLI model will
probably scale better to larger tasks once the problems concerning training time have been
overcome.

Fig. 20 shows how the BLI algorithm processed part of the training material. It shows
the part of speech sequence that was used as input to the model together with the parse trees
constructed. The letters labeling the nodes of the trées refer to the non-terminal symbols
with the highest belief component at that node. The bar chart above the part of speech
represents the entropy of the terminal node (E(s;)). The underlying word sequence was
included as a reference.

It 15 evident that the parse trees roughly correspond to Japanese grammatical units such
as bunsetsu. Since the sentence end marker (o ) is processed just like all other symbols, it
1s also incorporated in the tree structures. For example, since a sentence often starts with a

filler (F#E) a tree connecting period (2% ) with (FE#%%) is constructed.
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8 Discussion

In this report we have shown that parse trees may be regarded as Bayesian network.
This framework enables one to integrate rule probabilities of stochastic grammars and ob-
servational uncertainties (such as acoustic match likelihoods) in a mathematically sound and
computationally efficient way. Moreover we have shown that the causal and evidential sup-
port vectors that arise as intermediate quantities in the Bayesian formalism may be used, in
a natural way, to calculate new grammar parameter estimates. The parameter re-estimation
is guaranteed to increase the likelihood of the observed data, so long as the parse trees are
selected on a maximum likelihood principle.

While the propagation of support vectors has a well-developed theory with many nice
mathematical properties, the construction of suitable belief networks connecting the observed
events is a problem for which to date no fully satisfactory solution exists. For this reason,
the usage of Bayesian networks in Al has been limited to applications where the network
structure was fixed could be decided in advance. While this might be adequate in some
applications there is clearly a need in larger applications with many different and partially
unrelated nodes to construct Bayesian networks ‘on the fly’ by connecting only the relevant
nodes.

In the context of natural language processing that we are concerned here the problem of
constructing suitable networks describing the observation sequence is well known under the
name of parsing. A great many parsing algorithms exists, but unfortunately most are not of
stochastic nature.

We described three different simple methods for parsing the observation sequence based
on the CYK parsing algorithm. We found that during training an algorithm that simply
selects the tree structure with the highest likelihood may not work, because neighbouring
trees may never be combined, so trees do not ‘grow’ from iteration to iteration. Therefore
there is the need for compromising the maximum likelihood selection principle in order to
learn the ‘neighbouring-tree’ statistics during training. Two of the algorithm proposed have
this property and we compared them experimentally.

Finally we compared the model experimentally with the common bigram and trigram
model. We showed that on the given task the BLI model did not ouly perform superior to

both n-gram models, but also showed better generalization ability.
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