
゜

TR-IT-0012

Integration of Heterogeneous
Components for Speech Translation:
the "Whiteboard" Architecture and an

Architectural Prototype

Christian Boitet

1993.8.30

Internal use onlv

002

A new software architecture for Speech Translation systems, based on the use of a "whiteboard", is
presented. Unlike a blackboard, the "whiteboard" is accessed only by a "coordinator", and not by the
"components'': such as speech recognizer or syntatic analyzer. The main advantage of this architecture is
to allow easy mte~ration of existing or new components, without having to modify them in any way.
Graphic examination of the state of the entire system can also be provided by the coordinator. An
"architectural" prototype is under construction ans should be presented at the A TR workshop and the
Waseda Symposium on Spoken Dialogue next November.

This report is an extensi_on of a recent communication co-authored with M. Seligman [I]. Extensions
concern essentially the rationalization of the kind of data structure proposed for the whiteboard, for
which diagrams and examples from [2] have been used.

[I] Seligman, M. & Boitet, Ch. (1993) A "Whiteboard" Architecture for Auto111atic Speeclr
しTranslation.Proc. International Symposium on Spoken Dialogue, Waseda University, Tokyo, 10-12

1November 1993, to appear.

[2] Boitet. Ch. (1988): Representation and Co111putation of Units of Translation for Machine
Interpretation of Spoken Texts. TR-I-0035 ATR, Osaka, 41 p.

The research repo1ted here was conducted while I was staying at ATR Interpreting Telephony Research
Laboratories, and then at A TR Interpreting Telecommunications Research Laboratories, as visiting
researcher from GET A, TMAG, UJF&CNRS, France. I would like to heaitly thank ATR for its constant
supp01t and very favorable research environment; and its members, from President through supervisors
through researchers through secretaries to security personal, for all the personal help which they
extended to me in so many ways at so many occasions.

Interpreting Telecommunications Research Laboratories

2-2 Hikari-dai, Seika-cho, Soraku-gun, Kyoto 619-02, Japan

c199? by ATR Interpreting Telecommunications Research Laboratories

I ..

I

'

Integration of Heterogeneous Components for ST: the "Whiteboard" Architecture and an Architectural Protoハpe

Contents

Abstract

Introduction

I. Whiteboard architecture: Guidelines

1 . Record overall progress of components in a whiteboard

1.1 Problems of the sequential and blackboard approaches
Sequential approach
Pure blackboard approach
Layered blackboard approach

The "whiteboard" approach
Rationale for the proposed time-aligned, layered lattice

Charts, Q-graphs, lattices
Why a lattice?

c. Degrees of detail: white, grey and black nodes

2. Let a coordinator schedule the work of components

3 . Encapsulate components in managers

4. Use managers to simulate Incremental Processing

II. KASUGA prototype: external level

1 . The coordinator and the components

2 . What it does

3. Whiteboard

III. KASUGA prototype: internal level

1 . Communication Mechanism

2. Impo1i and Expo1i of Objects

3 . More on Intetfaces

Discussion

Conclusion

Acknowledgments

Bibliography

a.

b.

C.

1.2

1.3

a.

b.

3

3

5
5

5
5

5

6

7

7

8 ，
11

13

13

14

15

15

16

16

16

16

17

18

18

19

19

19

2

Integration of Heterogeneous Components for ST: the "Whiteboard" Architecture and cm Architectural Protoハpe

Abstract

In the design of speech translation systems, there is room between highly. complex
blackboard architectures, where all component processes access the same umque data
structure, and overly simple sequential architectures. We propose to allow component
processes complete freedom of implementation, while at the same time integrating them
under a coordinator, maintaining in a whiteboard an image of the input and output data
structures of each component, at an approp1iate level of detail.

Four main guidelines for building such systems are presented: (1) record overall progress
of components in a whiteboard; (2) let a coordinator schedule the work of components;
(3) encapsulate components in managers; and (4) use the managers to simulate incremental
processing. Then, KASUGA a rudimentary architectural prototype, is described. Its
coordinator is written in KEE,'an object-oriented expe1i system shell, and integrates only
three components. It should be stressed that KASUGA is a feasibility study and
demonstration, not an operational system.

Keywords: Speech Translation, Whiteboard, Incremental Processing in Translation.

Introduction

拿
f、`
｀

Speech translation systems must integrate heterogeneous components handling speech recognition,

machine translation and speech synthesis. More components may be added in the future, for task

understanding, multimodal interaction, etc.

If components are simply concatenated, as in ATR's AS URA speech translation system [12, 13], it is

difficult for system components to share partial results. As a result, information is lost at subsystem

interfaces and work has to be duplicated.

For example, ASURA uses context-free LR syntactic parsing to d11ve speech recognition; but syntactic

structures found during the recognition parse are discarded when recognition candidates are passed to

machine translation. Complete reparsing is thus needed.

Communication difficulties between subsystems may also damage robustness. During reparsing for MT

in ASURA, if no well-formed sentences are found, paiiial syntactic structures are discarded before

semantic analysis; thus there is no chance to translate partially, or to use semantic information to

complete the parse.

On the other hand, experiments with blackboard architectures [8, 15, 24], in which each component

directly manipulates the common blackboard, have not been encouraging. There are problems in

controlling concurrent access; communication overloads (if components run on different machines);

efficiency problems, due to the unspecialized character of the blackboai・d; and debugging problems, due

to the complexity of w11ting each component.

＇，

＼
＇

3

Integration of Heterogeneous Components for ST: the "Whiteboard" Architecture and wz Architectural Proror:,pe

Another possibility is to integrate heterogeneous component processes under a coordinator. Components

may be written in vaiious programming languages, may use their own data structures and algo1ithms,

and may run on different machines. They are still logically arranged in a sequential order (or in a

hierarchy if there are several input modalities), but the coordinator may send them input in an

incremental way, so that they may actually run in parallel.

In such an architecture, the coordinator maintains in a whiteboard an image of the input and output data

structures of each component, at a suitable level of detail. This global record fosters reuse of partial

results and avoids wasteful recomputation. Further, the use of a unique object language for declaring,

inspecting and manipulating all parts of the whiteboard permits transparent examination and should

greatly aid experimention with, and integration of, future components, whatever they may be.

Each component process (e.g., Speech Recognition) is encapsulated in a manager, which transforms it

into a server, conmrnnicating with external clients (including the coordinator) via a system of mailboxes.

Managers handle the conversions between internal (server) and external (client) data formats. This

protocol enhances modulaiity and clatity, especially if component developers are asked to explicitly and

completely declare the appearance of their partial results on the whiteboard. Managers may also make

batch components appear as incremental components by delivedng outputs in a piecewise fashion, thus

taking a first step towards systems simulating simultaneous translation.

In a first concrete exploration of these ideas, we (M. Seligman and myself) have produced a

rudimentary architectural prototype, KASUGA. The coordinator is written in KEE, a powerful object-

oriented expe11 system shell with very good graphic capabilities. With the tlu・ee modules integrated so

far, it is possible to demonstrate the above ideas.

In the first section, our four main guidelines are detailed: (1) record overall progress of components in a

whiteboard; (2) let a coordinator schedule the work of components; (3) encapsulate components in

managers; and (4) use the managers to simulate Incremental Processing.

In the second, some high-level aspects of the KASUGA prototype are described: its coordinator and its

components; what it does in this preliminary state (a simple demonstration is discussed, in which

incremental speech translation is simulated); and what kind of whiteboard it uses.

In the third, lower-level details are given on some internal aspects: the communication mechanism; the

import and export of objects into the common object language; and the interface's present state and

future possibilities.

4

Integration of Heterogeneous Components for ST: the "Whiteboard" Architecture and an Architectural Protor:,pe

I. Whiteboard architecture: Guidelines

1. Record overall progress of components in a whiteboard

The whiteboard architecture is of course inspired by the ch紅 tarchitecture of the MIND system [l OJ and

later systems or formalisms for NLP [l, 7), as well as by the blackboard architecture, first introduced in

HEARSAY-II [8, 15] for speech recognition. However, there is a significant difference: the components

do not access the whiteboard directly, and need not even know of its existence.

1. 1 Problems of the sequential and blackboard approaches

a. Sequential approach

There are two main problems with the sequential approach.

• Pl: loss of information

As the interface between two successive components is usually relatively poor,
information is lost and work has to be duplicated. For example, A TR's A SURA
speech translation system [12, 13) uses context-free LR syntactic parsing to d1ive
speech recognition; but syntactic structures found dudng the recognition parse are
discarded when recognition candidates are passed to machine translation. Complete
reparsing is thus needed.

• P2: lack of robustness

Communication difficulties between subsystems may also damage robustness. Dming
reparsing for MT in ASURA, if no well-formed sentences are found, partial syntactic
structures are discarded before semantic analysis; thus there is no chance to translate
partially, or to use semantic information to complete the parse.

b. Pure blackboard approach

The pure blackboard approch solves Pl, but not P2, and introduces other problems.

• P3: control of concurrent accesses

In principle, all components are allowed to access any pmt of the blackboard at their
convenience. Complex protection and synclu・onization mechanisms must be included,
and fast components may be considerably slowed clown by having to wait for
permission to read or write.

• P4: communication overloads

The amount of information exchanged may be large. If components run on different
machines, such as is often the case for speech-related components, and may be the
case for Example-Based MT components in the future, communication overloads may
annihilate the benefit of using specialized or dist1ibutecl hardware.

• PS: efficiency problems

As components compute directly on the blackboard, it is a compromise by necessity,
and can not offer the optimal kind of data structure for each component or algoiithm.

• P6: debugging problems

These are due to the complexity of writing each component with the complete
blackboard in mind, and to the parallel nature of the whole computation.

＼

I

5

Integration of Heterogeneous Components for ST: the "Whiteboard" Architecture and an Architectural Protot)pe

c. Layered blackboard approach

In [3], I proposed to divide the blackboard in successive layers, each accessed by only one component,

as illustrated in the figure below 1. However, this solves P3, but not P4-P6.

三 日II I 11 I I I I
Coded Phonetic Output

Coded Phonetic Input

Figure 1: The layered lattice blackboard approach

1 Many other ideas are illustrated here. Some, but not all of them, such as sharing not only dynamic states of the

computation, but static sources of knowledge, are discussed in the report.

6

Integration of Heterogeneous Components for ST: the "Whiteboard" Architecture and an Architectural Protot:,pe

1. 2 The "whiteboard" approach

In the "whiteboard" approach, the global data structure is hidden form the components, and accessed

only by a "coordinator", as illustrated in figure 2 below (the whiteboard drawing is expanded later!).

Coordinator Component

Whiteboard
ー ＼

Component

2

Component

3

．．．

Figure 2: Coordinator, whiteboard and components

This simple change makes it possible to avoid problems P3-P6. It has also at least two good points.

-It encourages developers to clearly define and publish what their inputs and outputs are, at least to

the level of detail necessary to represent them in the whiteboard.

It is often a headache for "integrators" to find out what it is really that the components

to integrate expect to receive and happen to deliver. Specifying these in a common
structure or object description language is ce1iainly worthwhile, not only for the
integrators, but for the developers of each component, who will gain a clearer view of
their own work.

-The whiteboard may be the central place where graphical inteげacesare developed to allow for easy

inspection, at vaii.ous levels of detail.

As this is a very time-consuming task and is looked upon as development and not l
research, researchers tend not to do it. By introducing the idea of gene1i.c inte1faces for
a class of components, interface building for NLP becomes a research topic in its own
right, and developers gain access to better tools without having to build them.

1. 3 Rationale for the proposed time-aligned, layered lattice

Beyond the general idea of a layered whiteboard, there are some arguments in favor of our design

preferences for time aligned lattices and the use of "shaded" complex nodes (white, grey, black). A

discussion of the kind of complex information to put into the nodes may be found in [3].

7

Integration of Heterogeneous Components for ST: the "Whiteboard" Architecture and an Architectural Protoハpe

a. Charts, Q-graphs, lattices

In a grid, there are no explicit arcs. A node N coveting [t1 ,t2) is implicitly connected to another node N'

covering [t'1,t'2) iff [t1 ,t2] is anterior to [t'1,t'2), that is t1 ::::; t'1, t2 < t'2, and t2-e1 ::::; t'1 ::::; t2+e2, e1

and e2 being respectively the gapping and overlapping thresholds [14]. Because of the first condition,

there can be no cycles.

In a lattice, there are only explicit arcs. Cycles ai・e forbidden, and there must be a unique first node and a

unique last node. Figures 3 and 4 show two kinds of lattices used in natural language processing (NLP

in the following), a chaii and a Q-graph.

Sent4

NP6
NPZ

NPS
Sentl

NP4

Sentz

Sent3

Remove filler cap and ground fuel tank

Figure 3: A chart (built Oil a syntactically ambiguous sentence)

N(can,N(f'.') .. Y(sparkle,P(3pl) ...)

N(can,N(Sl:-•l

g) ...)

• 1

N(light,N(S),

G(M) ...)

N(Paul,PN, A(light,N(S,P V(can,T(P), N(sparkle, AV(slight. ..) .,...。
Nb(sg),Poss) G(M,F))

V(light, ...) I N(can,N(P), Iじ
N(P),G(M))

V(can,T(P), _ V(sparkle,lrf ...)

TV(mod))

Paul's light can(s) sparkle(s) slightly

Figure 4: A Q-graph (built on a phonetically ambiguous sentence)

8

Integration of Heterogeneous Components for ST: the "Whiteboard" Architecture and an Architectural Protot.11Je

b. Why a lattice?

Both types of structures have been used in Speech Recognition. In the above reference ([14]), Quinton

presented in 1980 that of the Keal system, where the output of the phonetic component, the "lexical

spectrum", is such a grid. The results of A TR's speech recognizer today are also presented as a grid.

Each node contains a "detection", made of a start time, an end time, a label and a score. The difference is

that Kea.l's labels are words, while ATR's are phonemes. There are two special detections, initial and

final, which contain special endmarkers instead of words or phonemes.

By contrast, the HWIM [24] system used a "phonetic lattice" on which an extended ATN operated.

Grids have only been used in MT to implement some working structures (like that of the Cocke

algo11thm). However, we may imagine to use them for representing an input text obtained by scanning a

bad 011ginal, or a stenotypy tape [11].

On the other hand, lattices have been used extensively, in two varieties. First, the chart structure has

011ginally been introduced by M. Kay in the MIND sytem (around 1965, see [10]). In a chm1, the nodes

are mTanged linearly, so that there is always a path between any two given nodes, and the arcs bear the

information, not the nodes. This data structure is also used by many unification-based natural language

analyzers [16].

The Q-graphs of [7] and their extension [21] are the basic data structure for text representation in the

METEQ [4, 5] and TAUM-Aviation [9] systems. A Q-graph is a loop-free graph with a unique entry

node and a unique exit node. It is possible for two nodes not to be on any common path from the entry

to the exit. The information is beared on the arcs, in the form of simply labelled trees, or, in the

extension, of trees with labels and binary features.

Actually, none of these structures is st11ctly a lattice, because two different arcs may link the same pair of

nodes ; moreover, a Q-graph may contain two different arcs linking the same two nodes, and beming

the same tree. However, it is always possible to transform a cha11 or a Q-graph into an equivalent lattice

(with the information on the nodes) by replacing arcs with nodes and creating approp11ate arcs.

For example, ATEF (a SLLP, or Specialized Language for Linguistic Programming, developed at

GETA for writing morphological analyzers) produced initially Q-graphs and decorated trees [6]. It was 1
easily adapted [2] to also produce lattices, used as input to "algogrammars" (kinds of bilevel ATNs

where one level describes the grammar and the other the heu11stic control).

Q-graphs and lattices are also natural structures to represent a text with alternate formulations, like a first

draft or a rough translation. For example, the following alternate formulations :

r~9,

.

，

Integration of Heterogeneous Components for ST: the "Whiteboard" Architecture and an Architectural Protoハpe

it if you came

I would like you to come

j be early

early

earlier

tomorrow

Figure 5: A sentence with alternate formulations

could be represented by the lattice of figure 6, or by a Q-graph (with repetition of at least one arc), but

not by a grid or a chaii.

Figure 6: A word lattice (representing a sentence with alternate formulations)

Our favoiite kind of structure, then, is a lattice. We record complex information in nodes, rather than in

arcs as in chaiis. Our arcs bear only activation or inhibition weights, as in neural networks. This analogy

with neural networks has the added advantage to pave the way for applying ideas from that fast

developing field ... as soon as we will understand how to do it!

The decomposition of the lattice in layers seems quite natural, and leads to more clarity. Each layer

contains results of one component, selected to the "approp1iate level of detail".

Its time-aligned character makes it possible to organize it in such a way that everything which has been

computed on a ce1iain time interval at a ce1iain layer may be found in the same region.

Each layer has 3 dimensions, time, depth and class. The terms "class" and "label" are used

interchangeably here. The idea is that a node at position (i,j,k) corresponds to the input segment of

length j ending at time i and be of class (number) k2. All realizations of class k corresponding to this

2 More precisely, we could say that a node at position (i,j,k) in the basic structure will cover the intervals [11 ,2]
(0 $; t 1 $; t2さ tmax)of the input such that t1-e $; i-j+1 $; t1+e and t2-e $; i $; t2+e, e being some error margin
associated to the node, and tmax being about 10000 if we take the basic unit of length to be the time between two
successive frames (10 ms), a take a very safe maximum corresponding to 100 seconds, or 200-250 words at a speaking rate
of 2-3 words/second. Although usual interpretation units are far shorter, they may consist of several utterances.

10

Integration of Heterogeneous Components for ST: the "Whiteboard" Architecture and an Architectural Protoハpe

segment are to be packed in this node, and all nodes corresponding to approximately equal input

segments紅 ethus geometrically clustered.

In other words, the resulting structure is "factorizing", meaning that ambiguities are packed so that

dynamic programming techniques may be applied on direct images of the whiteboard. Here is an

example, where the main NP has been obtained in two ways .

•
j

r~

••
t

Figure 7: The whiteboard as a factorizing data structure

c. Degrees of detail: white, grey and black nodes

We said that the whiteboard could be a central place for transparent inspection, at suitable levels of

detail. We use the notion of "shaded nodes" for this.

- "White" nodes are the real nodes of the lattice. They contain results of the computation of the

component associated with their component: a white node contains at least a class, or label, legal in

its layer, such as NP, AP, CARDP, VP ... in the example above, and possibly more complex

information, such as a "decoration" (bounded prope11y list), an annotated tree, a feature structure,

or ... another latttice, as allowed by the declaration of the layer in the whiteboard.

- "Grey" nodes may be added to show how the white nodes have been constructed. They don't

belong to the lattice proper. In the example above, they stand for rule instances. In other cases,

they nlight be used to show the correspondences beetween nodes ot two layers. They may be used

to represent general rewriting rules, such as Xl...Xp-> Yl...Yq.

｀`
『`ーー・

11

こI

sapou叩町q1/J_IM a7dwuxa uv :6 aJ.ni? ば

・［ャI]皿亨IBuoiu戒）叫iiq pgsn sg.mpmis叫lpuB

Jgi可 JpBm'amuisgqi iugsg.1dg.1 gM g.1gqふ 'g叫muxggqi u! su'.1gs.md B JO sdgis i.miugmgp gqiぷoqs

oi・'3・g'iuguodruoJgqi JO UO!lB+ndmoJ gqi U! sdgis 1gug iugsg.1dg.1 oi pgsn gq ABUI sgpou汎JBIII..

奴・--z,,ru <-clx・・zx rx :uN JJn1 oJ珈 puodsJ110:JsJpou iCJ12 puv JJ!lfM :8 a」11叩

〇、.. . 訊 I入
ヽ

ヽ ,゚'。ヽ
ヽ

ヽ
ヽ

ヽ

／

0'
ad心OJOJdJ1JJ11JJJJ!lfJJV UIJ puv JJ11JJJJ!lfJJV、、pmoqJJ!lfM... Jl/J :Ls JOj SJUJUOdUIO:J S110Jl/J80」JJJHJo UO!JUJ8a1u1

Integration of Heterogeneous Components for ST: the "Whiteboard" Architecture and an Architectural Protoりpe

Whitebo紅 dlayers are organized in a loop-free dependency graph. Non-linguistic as well as linguistic

information can be recorded in appropliate layers. For example, in a multimodal context, the syntactic

analyzer might use selected information from a map layer, where pointing, etc. could be recorded.

Interlayer dependencies should be declared, with associated constraints, stating for instance that only

nodes with certain labels can be related to other layers. Here is an illustration of that idea, without any

pretense to propose a realistic choice of layers, however.

f-structures

concrete trees

words & phrases

phonemes

language
layers

map
layers

icon
layer

choices

menu
layer

Figure 10: A hierarchy of layers in an hypothetical whiteboard

2. Let a coordinator schedule the work of components

In its simplest form, a coordinator only transmits the results of a component to the next component(s).

However, it is in a position to carry out global strategies by filtering low-ranking hypotheses and

transmitting only the most promising paii of a whiteboard layer to its processing component.

Further, if certain components make useful predictions, the coordinator can pass these to other

components as constraints, along with input. A process tracking entities in discourse focus, for instance,

could produce constraints narrowing the set of rules used for word recognition.

3. Encapsulate components in managers

Developers of components should be free to choose and vary their algorithms, data structures,

programming languages, and possibly hardware (especially so for the speech-related components).

Our approach is to isolate (or "encapsulate", in technical terms) existing components in managers, which

hide them and transform them into se1-vers. This strategy has the fu11her advantage of avoiding any direct

call between coordinator and components. To plug in a new component, one just writes a new manager,

a good paii of which is genetic. Hence, we get the following updated diagram.

13

Integration of Heterogeneous Components for ST: the "Whiteboard" Architecture and an Architectural Protoハpe

Whiteboard

贔
manager

2

manager
3

Component

ー

Component

2

Component

3

．．．

Figure 11: Coordinator, components and managers

A manager has a request box where clients send requests to open or close connections. A connection

consists of a pair of in and out mailboxes, with associated locks, and is opened with ce1iain parameters,

such as its sleep time and codes indicating pre-agreed impo1i and expo1i formats.

The coordinator puts work to do into in-boxes and gets results in corresponding out-boxes. A managers

periodically inspects its request box and in-boxes; executes the requests, transforms the contents of in-

boxes and subnlits them to its associated component; and transforms the results of previous calls to the

component before placing them in appropriate out-boxes.

As illustrated in figure 11 above, a manager can in p1inciple have several clients, and a client can open

more than one connection with the same server. For example, an on-line dictionary might be called for

displaying "progressive" word for word translation, as well as for answering terminological requests by

a human interpreter supervising several dialogues and taking over if needed. However, this potential is

not used in KASUGA.

4. Use managers to simulate Incremental Processing

In real life, simultaneous interpretation is often preferred over consecutive inte1-pretation: although it may

be less exact, one is not forced to wait, and one can react even before the end of the speaker's utterance.

Incremental processing will thus be an imp011ant aspect of future machine inte1-pretation systems.

14

Integration of Heterogeneous Components for ST: the "Whiteboard" Architecture and an Architectural Protoハpe

One subprocess should be able to begin work on the early output of another subprocess before the latter

has finished processing an entire utterance. For instance, a semantic processor might begin working on

the syntactic structures hypothesized for early parts of an utterance while later parts are still being

syntactically analyzed [23].

Even if a component (e.g., any currently existing speech recognizer) has to get to the end of the

utterance before producing any result, its manager may still make its processing appear incremental, by

delive1ing its result piecewise and in the desired order. Hence, this organization makes it possible to'

simulate future incremental components.

II. KASUGA prototype: external level

1. The coordinator and the components

The coordinator (KAS.COORD) is written in KEE™, an object-oriented expert system shell with

excellent interface-building tools. The whiteboard is declared in KEE's object language. KEE itself is

w1itten in Common Lisp.

Three components are involved:

- speech recognition (SP.REC) providing a phoneme lattice, programmed in C [19];

-island-driven syntactic chai1-parsing (SYNT.AN) deriving words and higher-level syntactic units,

programmed in C;

-word-for-word translation (WW.TRANS) at the word level, programmed in Lisp.

The managers are programmed in Lisp, and run independently, in t虹eeUnix processes. Each manager

and the coordinator can run in different Unix shells. Although WW.TRANS is already accessible as a

server on a distant machine, we had to create a manager for it to get the intended behavior.

SR.Man

manager

SA.Man

manager

WW.Man

manager

Speech

Recognizer

SP.REC

Chart Parser

SYNT.AN

Bilingual

Dictionary

WW.TRANS

Figure 12: KASUGA's coordinator and components

15

Integrdtion of Heterogeneous Components for ST: the "Whiteboard" Architecture and an Architectural Protoハpe

2. What it does

With only these components, it is possible to produce a simple demonstration in which incremental

speech translation is simulated and the transparency gained by using a whiteboard is illustrated. The

phonemes produced by SP.REC are assembled into words and p比asesby SYNT.AN. As this goes on,

WW.TRANS produces possible word for word translations, which are presented on screen as a word

lattice.

3. Whiteboard

KASUGA's whiteboard has only three layers: phonemes; source words and phrases; and equivalent

target words. There is no layer to contain the speech wave itself, although a full system should have one

for easier inspection.

At the first layer, the phoneme lattice is represented with phonemes in nodes. At the second layer, we

retain only the complete substructures produced by SYNT.AN, that is, the inactive edges.

In KEE3, we define a class of NODES, with subclasses WHITE.NODES, GREY.NODES,

PRON.LA YER.NODES, and SYNT.LA YER.NODES in the syntactic layer. NODES have a generic

display method, and subclasses have specialized variants (e.g., the placing of white nodes depends on

their time interval, while that of grey nodes depends on that of the white nodes they connect).

III. KASUGA prototype: internal level

1. Communication Mechanism

When a manager receives a Make.Connection request from a client, it creates an in box and an out box

(and associated locks, used to prevent interference between components), tlu・ough which information is

passed to and from the client4. The Make.Connection request includes codes showing in which

format(s) the client is expecting to deposit data in the in box and read data from the out box, for that

connection.

We believe that the overhead associated with message passing and irnpo1i/expo1i through files will be

negligible in comparison with the actual processing time required by the components and coordinating

processes. Data transfer could be pro堕・ammedmore efficiently, at the level of the operating system, e.g.

using Unix sockets. But our method is more general, as it uses only the file system.

For each out box, the client (KASUGA) activates a reader process and the relevant manager activates a

writer process. Conversely, for each in box, the client activates a writer process and the manager

activates a reader process.

3 Given suitable interface tools, other object languages, such as CLOS or C++, could serve equally well.

4 In KASUGA, the coordinator is actually the only client of the managers, but this could change in a fuller system.

16

Integration of Heterogeneous Components for ST: the "Whiteboard" Architecture and an Architectural Protoりpe

A reader process wakes up regularly (its SLEEPTIME is adjustable) and checks whether its mailbox is

both non-empty and unlocked. If so, it locks the mailbox; reads its contents; empties the mailbox;

unlocks -it; and goes to sleep again.

A w1i.ter process, by comp紅 ison,wakes up regul紅 lyand checks whether its mailbox is both empty and

unlocked. If so, it locks the box, fills it with appropriate data, unlocks it, and goes back to sleep. For

example, the writer associated with SYNT.AN will deposit in the appropriate out box the image of all

the inactive紅 cscreated since the last deposit.

2. Import and Export of Objects

KAS.COORD wtites and reads data to and from the managers in a LISP-like format, and handles the

transformation into KEE's internal format. Each manager translates back and fo1i:h between that format

and whatever format its associated component happens to be using. To enable these translations, the

formats must be precisely defined5.

For instance, the edges produced by the speech recognizer are of the form (begin end phoneme score).

The nodes and edges of the corresponding phoneme layer in the whiteboard are of the form (node-id

begin end phoneme score (in-arcs) (out-arcs)), with arcs being of the form (arc-id origin extremity

weight).

In cooperation with M. Seligman, four algorithms are being specified and implemented. They will be

presented in detail in a fo1i:hcoming technical repo1i:.

grid-to-lattice

lattice-to chart

chart-to-lattice

transforms the g1id output by the speech recognizer into a lattice. A transition is
established between two nodes containing detections iff these detections meet the

condition given above (I.1.3.a, p. 8). A weight can also easily be computed from the

gap or overlap.

is quite interesting, as we try to produce an incremental facto1ization. As a matter of
fact, a trivial solution consists in enumerating all possible paths in the lattice, and in

creating as many cha1i arcs as necessary. But that leads to an explosion of the number
of chart arcs. On the other hand, a solution based on minimizing the finite-state

automaton obtained by the trivial method would be unduly costly, both in time and _

space, and not be incremental.

is quite straightfo1-ward, the only difficulty being to define when two arcs should be

considered identical, and thus give rise to only one lattice node.

lattice-to-lattice-dictionary-expansion
is used to produce the third layer (English word lattice) from the second (Japanese

word and phrase lattice). Here, we use grey nodes to record which English nodes

correspond to which Japanese nodes.

5 Ideally, they should be defined with formal grammars. Then, a given transducer (or "filter" in the world of microcomputer
software) can be realized as a syntax-driven translator, with a target syntax checker.

17

Integration of Heterogeneous Components for ST: the "Whiteboard" Architecture and an Architectural Protot)pe

3 . More on Interfaces

To take full advantage of the whiteboard, systems developers, too, must be able to see and operate on it.

They need to visualize and monitor the overall system organization: to know which components are

active or inactive; to view the data passed between components and the coordinator; and to check and

reset cmTent priont1es and p紅 ameters.

KASUGA's current interface provides some, but not all, capabilities needed in a full system. The

designer can view the phoneme lattice developing from left to right, as if the speech recognizer were

incremental; the paiiial structures (islands), in near-real-time, as they are produced by SYNT.AN尺and

word translation results.

The relations between these can also be made visible: we can see which Japanese words are related to

which phonemes, or which English words are related to which Japanese words, etc.

By default, all nodes show their label only, but it is possible to inspect the rest of their content. Weights

and scores me also displayed on demand. The view of any component can be changed for emphasis: one

can for instance interactively select only the nodes above a certain confidence threshold. Overall

processing can be inte1Tupted for exanunation.

KEE offers very good interface building facilities, and in particular good tools for developing interactive

graphic int~rfaces. If this architecture is to be further developed in the future, one could instead use a

general-purpose, portable interface building toolkit in order to avoid the overhead and overspecialization

associated with using a complete expert system shell.

Discussion

In this prototype, the static knowledge sources (automata, grammars, dictionaries) used by the

components are distinct. Sharing occurs only dynanlically, tlu・ough the whiteboard. But sharing of static

knowledge could also be envisaged, while still meeting the specific needs of each component.

Large MT systems have for some time used neutral lexical data bases, in which the dictionaries of

particular components (analysis, generation) are compiled into the corresponding formats. In some

experimental systems, analysis and generation use specialized叫 escompiled from a common "static"

grammar. Likewise, it might be possible to extract a pure CFG from an augmented (e.g. unificational)

gran皿 arwhen desirable (e.g., as the CFG pat1 of an HMM-LR speech recognizer).

A second idea concerning shaiing is that predictions from a higher layer to a lower layer can be divided

into fine-grained and coarse-grained. Fine-grained predictions (e.g., on the next possible phonemes, or

6 White nodes and grey nodes. We may add a switch to SYNT.AN, so that it also produces its active edges, which would

then appear as black nodes in the whiteboard.

18

Integration of Heterogeneous Components for ST: the "Whiteboard" Architecture and an Architectural Proto図pe

morphosyntactic classes) should be static, that is, compiled in the running resources of the lower

component. Otherwise, fast procedures would constantly be waiting for top-down predictions.

By contrast, coarse-grained predictions are more dynamic in nature, and may actually help improve the

speed and accuracy of lower components. For instance, predicting a sub-task and an utterance type from

a (possibly interactive) discourse analysis component could considerably reduce the set of possible

rules, terms, and word senses.

Conclusion

The whiteboard architecture which has been researched here begins to be not only a concept on paper,

but a reality on the computer. However, the present proto~ype has only been developed for illustration

purposes. It would really take the good will and cooperation of more researchers to build this sort of

"MI shell". But I am deeply convinced that this eff01t would be quite worthwhile, and lead to a state of

affairs where a researcher could independently develop an 01-iginal component, integrate it without too

much eff01t by writing the cones ponding manager7, and expedment with it. Researchers would thereby

gain twice: by getting a clearer view of what they (and others) are doing; and by being able to use

generic interface tools provided by the coordinator for debugging and illustrating pml)oses.

Acknowledgments

Thanks should first and foremost go to M. Seligman, with whom I have been very happy to learn the

basics of KEE and to develop the KASUGA prototype. I hope to continue working with him during the

final development stages, using e-mail to beat the distance. Thanks also to M. Fiorentino from

Intellicorp, Inc. and K. Kurokawa from CSK, Inc., for providing a demo copy of KEE™ and valuable

technical suppo1t; Dr. Y. Yamazaki, President of ATR-ITL, and T. Morimoto, Head of Department 4,

for their support and encouragement; H. Singer, Y. Kitagawa, and H. Kashioka, for their help in

developing the components; and K. H. Loken-Kim, for stimulating discussions and proposing the term

"whiteboard".

Bibliography

[l] Barnett J., Knight K., Mani I. & Rich E. (1990) Knowledge and Natural Language Processing. Comm.
ACM, 33/8, 50-71.

[2] Boitet C. (1976) Un essai de reponse d quelques questions theoriques et pratiques !iees a la traduction
autonwtique. Definition d'un systeme protoハ'f)e.These d'Etat, Universite de Grenoble.

[3] Boitet C. (1988) Representation and Computation of Units of Translation for Machine Interpretation of
Spoken Texts., Comp. & AI, 6, 505ー 546.

[4] Chandioux J. (1988) 10 ans de METEO (MD). In "Traduction Assistee par Ordinateur. Actes du seminaire
international sur la TAO et dossiers complementaires", A. Abbou, ed., Observatoire des Industries de la Langue
(OFIL), Paris, mars 1988, 169ー 173.

.

.
I
¥．

T

7 This should be facilitated by the fact that the part concerning communications through mailboxes is generic and reusable.

19

n

Integration qf Heterogeneous Components for ST: the "Whiteboard" Architecture and a11 Architectural Protot)pe

[5] Chandioux J. & Guerard M.-F. (1981) METEO: im systeme d l'epreuve du temps. META, 1, 17ー 22.

[6] Chauche J. (1975) Les langages ATEF et CETA. AJCL (American Journal of Computational Linguistics),
microfiche 17, 21-39.

[7] Colmerauer A. (1970) Les systemes-Q, un fornwlisme pour analyser et synth釘iserdes phrases sur ordinateur.
TAUM, Univ. de Montreal, dec. 1970.

[8] Erman L. D. & Lesser V. R. (1980) The Hearsay-II Speech Understanding System : A Tutorial. In "Trends
in Speech Recognition", W. A. Lea, ed., Prentice-Hall, 361-381.

[9] Isabelle P. & Bourbeau L. (1984) TAUM-AVIATION: its technical features and some experimental results.
Comp. Ling., 11/1, 18 27.

[10] Kay M. (1973) The MIND system. In℃ ourant Computer Science Symposium 8: Natural Language
Processing", R. Rustin, ed., Algorithmics Press, Inc., New York, 155-188.

[11] Merialdo B. (1988) Multilevel decoding for Veハ・-Large-Siこe-Dictionaryspeech recognition. IBM Journal of
Research and Developmenし32/2,March 1988, 227ー237. 、 9

[12] Moriinoto T., Suzuki M., Takezawa T., Kikui G.-1., Nagata M. & Tomokiyo M. (1992) A
Spoken La11guage Translation System: SL-TRANS2. Proc. COLING-92, Nantes, juillet 1992, C. Boitet, ed., ACL,
vol. 3/4, 1048ー 1052.

[13] Morimoto T., Takezawa T., Yato F., Sagayama S., Tashiro T., Nagata M. & al. (1993)
ATR's Speech Translation System: ASURA. Proc. EuroSpeech'93, Berlin, 21-23/9/83, 4 p.

[14] Quinton P. (1980) Contribution d la reconnaissance de la parole. Utilisation de methodes heuristiques pour la
reconnaissance de phrases. These d'Etat, Univ. de Rennes, 239 p.

[15] Reddy R. (1980) Machine Models of Speech Perception. In "Perception and Production of Fluent Speech",
Cole, ed., Erlbaum, N.J., 215ー242.

[16] Schieber S. M. (1986) An introduction to unification-based approaches to grammar. CSU Lecture Notes , 4,
CSU, Stanford, 105 p.

[17] Seligman M. (1991) Generating Discourses from Networks Using an Inheritance-based Grammar. Ph. D.
thesis, Univ. of California, Berkeley, 171 p.

[18] Seligman M., Suzuki M. & Morimoto T. (1993) Semantic-level transfer in Japanese-German Speech
Translation: Some Experiences. IEICE, S/NLC93-13, 17-25.

[19] Singer H. & Sagayama S. (1992) Matrix Parser and its Application to HMM-based Speech Recognition.
IEICE, 10/SP92-76, DSP92-61, 21ー26.

[20) Singer H. & Sagayama S. (1992) Matrix Parsing applied to TDNN-based Speech Recognition. Japanese
Journal of Speech Processing, 1992/3, 89-90.

し） [21) Stewart G. (1975) Manuel du langage REZO. TAUM, Univ. de Montreal, 120 p.

[22) Tomita M. (1990) The Generalized LR Parser/Co111piler V8-4 : a Software Package for Practical NL Projects.
Proc. Helsinki, COLING-90, 20-25 Aug. 1990, H. Karlgren, ed., ACL, vol. 1/3, 59-63.

[23) Wahlster W. (1993) Planning Multimoda! Discourse. Proc. ACL-93, Columbus, Ohio, 22-26/6/93, 95-96.

[24) Wolf J. J. & Woods W. A. (1980) The HWIM Speech Understanding System. In "Trends in Speech
Recognition", W. A. Lea, ed., Prentice-Hall, 316-339.

-o-o-o-o-o-o-0-0-0-o-

20

	001
	002
	003

