
皿旦竺~ぽ謳

002

TR-IT-0002

Analysis, generation and more
by means of genetic algorithms

Yves Lepage

June 1993

Abstract

This report describes an experiment of applying genetic al-

gorithms to example-based machine translation. A very simple
introduction to genetic algorithms is given. A possible appli-
cation of this technique to analysis and generation is proposed.

It is based on the board data structure, which is the associa-
tion of a text and a structure. This data structure allows non-
directionality, an original property which is kept in this exper-
iment. If part of a text and part of a structure are provided,
possible completions can be filled in. Some assessment measures
are given.

Keywords

Example-based translation, genetic algorithms, non-directionality.

◎ ATR Interpreting Telecommunications Research Laboratories

ー

Contents

Introduction 7

1 Genetic algorithms 9

1.1 Principles . 9

1.2 Realisation . 10

2 Implementation 13

2.1 The toolbox。.• 13

2.2 The population object 14
2.2.1 Structure . 14
2.2.2 Functions 14

2.3 The individual object . 15

2.3.1 Structure 15

2.3.2 Functions 15

2.3.3 The fitness funct10n 16

2.3.4 Crossover ．． 16

3 The progran~21
3.1 Analysis . 21

3.2 Generation . 21

3.3 Non-directionality . 22

4 The data 25

4.1 Nature of the data 25

4.2 Provenance of the data : : : : : : : : : : : : 25
4.3 Extraction of the data 26

5 Experiments 29

5.1 A trace. 29

5.2 Analysis 30

5.3 Generation : 30

5.4 Non-directionality . 30

5.5 Runtime . 31

6 A叫 ys1sof the results 37

6.1 Quality. 37

6.2 Runtime . 38

3

Conclusion

Bibliography

41

43

4

List of Figures

1 Principle of crossover 10
2 A board 13
3 Distance between two boards 16

4 Proximity score with string part unknown 17
5 Prox1m1ty score with tree part unknown 18
6 Three trees . 18
7 The trees fact~red . 19
8 C (rossover on trees crossover pomts are marked by a *) . 19
9 Analysis 22

10 G enerat1on 23
11 Non-directionality . 23
12 A board 25
13 From HPSG feature structure to syntactic tree 27
14 Tree-transformational program・for the extraction of the

syntactic part from a feature structure 28
15 A trace for analysis 29
16 Analysis results . .. 32

17 G eneration results . 33
18 Results for non-directionality 34

19 R untime values for analysis 35
20 R . unt1me values for generation 36

5

6

Introduction

One of the differences between the example-based and the rule-based

approaches in natural language processing (NLP) is the type of en-
gine used. Whereas in rule-based systems it is generally a context-free

parser, various sorts of engine can be used for the example-based ap-
proach. This report shows that an engine based on an optimisation
technique, genetic algorithms, can perform analysis and generation.

Two things make this possible:

• the definition of a data structure, called board after the proposal
in [Vauquois & Chappuy 85] and which is in essence bidirectional.
It is the association of a string (for example, a sentence) and a
tree (a linguistic structure). This data structure is thus ready to

be interpreted for analysis (from string to tree) and generation

(from tree to string).

• the definition of a distance (strictly speaking, a proximity score)

on this data structure, which may contain variables. Analysis and
generation can then be defined as optimisation problems. For ex-
ample, an analysis result is the closest object to the board formed

by the input sentence and an initially unspecified or variable tree.

This report first gives a very simplified view of genetic algorithms.
It then shows which objects and functions were implemented to provide

a simple genetic algorithm tool. The most important function, fitness
and crossover, are detailed. Precisely how analysis, generation and a

third interesting operation can be defined completes the view of the
engme.

Experiments were conducted on data drawn from the ATR dialogue
corpora. These data had to be transformed to fit the purpose of these

experiments.

The quality of the results obtained during the experiments for analy-

sis, generation and non-directionality are given in charts. Also, runtime
measures have been carried out.

The advantages and the flaws of this work are considered in conclu-
SI011.

7

8

1 Genetic algorithms

Genetic algorithms are a collection of techniques for approaching the

solution of optimisation problems. These techniques are only heuristics:

one cannot be sure of reaching the solution, if it exists. But these

techniques have been shown to have good convergence results for some

problems [Goldberg 89].

The term genetic algorithm originates in a comparison with pop-

ulation evolution and the idea that populations might optimise some

function on their individuals1.

1.1 Principles

In this section we give very basic notions about genetic algorithms
in their simplest form. For a better presentation, see [de Garis 91].

Population Usual programming techniques handle only one object

at a time. By contrast, genetic algorithms deal with a collection of

individuals, called a population.

For each individual in a population, one can compute a function,

called the fitness function. Those individuals for which the fitness func-

tion is optimum, are the best individuals.

Reproduction From two individuals, one can derive two new indi-

viduals by cutting them into two pieces and gluing the pieces back in

the way illustrated in Figure 1. This process is called crossove1色

Generation On a population, the previous operation can be repeated

until the number of children equals the number of parents. In this way,

one derives one population from another, and this operation can. be

repeated a number of times. In the last generation, the best individuals
hopefully are solutions to the optimisation problem at hand.

1 Like other advertising terms in computer science, from "artificial brains" in the
fifties, to" neural networks" today, the term" genetic algorithm", drawn from a dar-
ing analogy, has some ideological implications I do not share at all. Unfortunately,
it is the term in usage.

2In the complete model, some random modification of part of the children may
occur. This accounts for mutation to complete the genetic metaphor.

，

⇒
 州八口

□爪爪八
Figure 1: Principle of crossover

1.2 Realisation

In the previous description of genetic algorithm, some crucial issues

are raised:

• How to select individuals to be parents?

• Where to cut when performing crossover?

• How to determine the number of generations?

One can imagine many possible answers to these questions. Thus
the diversity of genetic algorithms. Below, we will describe how we
answered these questions in the present experiment.

Selection In order to have good convergence results, it seems nee-
essary that those individuals which have higher fitness value should
intervene more frequently in the production of the next generation.

Selection for crossover is done randomly, but an individual has a

higher probability of being selected as a parent if its fitness has a higher
value. The probability of individual i, given its fitness /i, is defined as:

Ji・

JJi =
冗ふ

Crossover For simplicity, the place in the data structure where cross-

over occurs is determined at random. The way individuals are cut will
be explained in the following section.

10

Halting This experiment was designed to see whether genetic algo-
rithms were of some interest for our purpose. Hence, we tested precisely

the number of generations necessary to get good results.

11

12

2 Implementation

2.1 The toolbox

We developed the program rapidly because a toolbox for the primitive
objects had been implemented before (see [Lepage 92b]). It provides
various objects, among which the board data structure is the most im-
portant one for this experiment. A board is the association of a tree
and a text, as illustrated in Figure 2.

S-TDP
___ , __ _
S NOUN

__ I_

BE NOUN

"is this the conference office?"

Figure 2: A board

The toolbox has been implemented following an "object-oriented"
approach. Hence, an object type is defined by a particular structure
and a particular set of functions. For each object type, there usually
are functions for creating, deleting, copying, reading and writing.

For the present experiment, two new object types have been created
using the same methodology. The first one is population, the second
one is individual.

13

2.2 The population object

2.2.1 Structure

A population is a list of individuals (see [Lepage 92b] for the list

object type).

2.2.2 Functions

Input/ output

input a population is read as a list of individuals separated by
spaces;

output a population is written as a list of individuals separated
by spaces.

Performance

fitness the fitness of a whole population is defined as the sum of
the fitness of all individuals in the population;

best yields the first best individual found in the population.

Genetic algorithm proper

selection the selection function randomly selects~n individual
in the population to be a parent. An individual is selected
with a probability defined according to the_ formula given in
Section 1.2;

copulation 3 produces two new individuals from two parent in-
dividuals. This function calls the crossover function on in-
dividuals;

generation builds a new population from a previous one, by a
series of calls to the previous function. The new population
has the same size as the previous one;

evolution calls the previous function as many times as said in
the arguments.

3Looking for a word ending ¥¥"ith "tion", I could not resist it. I apologise.

14

2.3 The individual object

2.3.1 Structure

An individual consists of two parts.

• the first part pertains to the role of the individual in the popula-
tion. It contains

parents an individual points to the parents it comes from;

crossover point the place where crossover took place when the
individual was produced is remembered;

fitness value the fitness of the individual.

• the second part is the internal structure of the individual. For

our experiment, it is a board, i.e. the association of a tree and a

string.

2.3.2 Functions

Input/output

input an individual is read according to the input function of
the data structure it encapsulates;

output an individual is written according to the output function

of the data structure it encapsulates;

copy this function copies an individual;

Genetic algorithm proper

The following functions are defined independently of the internal
structure of an individual.

fitness computes the fitness value of a given individual. See be-

low for a definition of this function in the present experiment.

inherit creates a new individual. Its parents are given as argu-

ments. The individual created is half valid as it waits for
crossover with another individual.

crossover for two individuals, randomly draws a crossover point,

then cuts and cross-glues back the individuals. See below for
a description of this function in the present experiment.

15

genealogy prints the tree of the ancestors of a given individual.
It is for trace purposes.

2.3.3 The fitness function

In the present experiment, the fitness of an individual is defined as
the distance to a goal. The goal is an individual given as input to the
program.

As an individual is a board, its fitness is defined through-the board
distance, which is defined as the sum of the distances between the
strings, on one hand, and between the trees, on the other hand, which
are contained in the two boards (see Figure 3).

dist(

S-TOP

I
s

S-TOP

I
INTERJ

"Hello." "hello"
）＝

S-TOP

dist(I

S-TDP

I) = 6

S INTERJ

+ + = 8

dist ("Hello. 11, "hello") = 2

Figure 3: Distance between two boards

The string distance is the Wagner and Fischer distance generalised
to string patterns (strings with variables). The tree distance is the

Selkow distance generalised to tree patterns (trees with variables). In
fact, these distances are implemented as a single subroutine working
on a single generalised data structure called woods, or rather wood
patterns. Is has been shown that the generalisations of these distances
on wood patterns is not a mathematical distance, strictly speaking. We
call it a proximity score (see [Lepage et al. 92] for more details). With
this proximity score, the results shown in Figures 4 and 5 are obtained.

2.3.4 Crossover

First let us recall that in our implementation, all objects are factored
by their end. For example, consider the trees in Figure 6. They are
factored in the way shown in Figure 7. This factorisation avoids the
creation of unnecessary copies.

When crossover is performed on two individuals, the cutting point
is selected at random. The crossover point is an integer which refers to

16

S-TOP S-TDP __ , ___ __ 1 ___

s SIGN s SIGN

I I
INTERJ INTERJ

dist(）＝

11Hello.11 "$1"

S-TDP S-TDP
__ I ___ __ I ___

dist (s SIGN s SIGN)

I I
INTERJ INTERJ

+ dist("Hello." "$1" ‘,ノ

= 0 + 0

= 0

Figure 4: Proximity score with string part unknown

a position in the structure (list or tree) when traversing the structure

in preorder. A copy of each parent is made until the crossover point is
reached, and then the pointers to the rest of the structures are simply

exchanged. This performs the crossover.
The effect of crossover on lists is simple to understand. On trees,

its effect is to exchange the sister forests after the crossover point,

as illustrated in Figure 8. This technique is quite different from the

exchange of the subtrees described in [Koza 92].

17

S-T□P __ , ___ $1

s SIGN

I
INTERJ

dist(）＝

"Hello." "Hello."

S-TOP

__ I___ $1

dist(S SIGN,

I
INTERJ

‘,／

+ dist(11Hello.11 , 11Hello.11)

= 0 + 0

= 0

Figure 5: Proximity score with tree part unknown

S-TOP S-TOP S-TOP
__ , ___ __ , __

-----'------
s SIGN NP SIGN s NP SIGN

I I ___ I_ I
INTERJ NOUN AUX NP NOUN

I
NOUN

Figure 6: Three trees

18

S-TOP
__ I __ _

s
I

INTERJ

S-TDP

I

S-TOP
_____ I _____ _

s
___ I_

AUX NP

I

: : ____ _
NP SIGN

I
: ...•..• NOUN

: :

Figure 7: The trees factored

before crossover after crossover

S-TOP
_____ 1 _____ _

*S NOUN SIGN

__ I_

BE NOUN

S-TOP
___ , __ _
s

__ ,_ p
ーz

BE NOUN PRON

S-TDP
_____ ! ______ _

S-TOP

-----'---------
s

__ I __
NP SIGN

I
s

_____ , ___ _
NP SIGN

I
*AUX NP PRON

I
PRON

AUX NOUN SIGN PRON

Figure 8: Crossover on trees (crossover points are marked by a *)

19

20

3 The program

This section describes the application program in natural language
processing. We show how analysis and generation are performed, and
also another kind of operation, called non-directional completion. In
fact, analysis and generation are only particular cases of this third
operation.

The basic object is a board, i.e. a pair of a pattern string and a
pattern tree. The program works with a database of examples, that is
a set of boards each of which associates a syntactic tree with a sentence.

The input to the program is a board. The program, running accord-
ing to the genetic algorithm principles we described above, attempts to
build a new board from pieces in the data base in order to output a
board whose distance to the input is as small as possible.

3 .1 Analysis

If the board given as a goal consists of a sentence with an undefined
tree, that is, a variable, the effect of the program is to build a tree
corresponding to the given sentence. This is analysis. This comes from
the fact that a tree reduced to a variable has a distance equal to zero
to any tree. As crossover works both on the string part and on the tree

part., the string output from the program may happen to be slightly
different from the input string. Figure 9 shows an example of analysis.

3 .2 Generation

If the board given as a goal consists of a tree with an undefined string,
that is a variable, the effect of the program is to build the sentence
corresponding to the given sentence. This is generation. The reason
is similar to the one given for analysis: a string reduced to a variable
has a distance equal to zero to any other string. Again, the output

tree may be slightly different from the input tree. Figure 10 shows an
example of generation.

21

$1 S-TOP
__ I ___ _

S NP
___ I_ I

AUX NP PRON

I
PRON

"may I help you ?11 11may I help you ?11

input output

Figure 9: Analysis

3. 3 Non-directionality

An important property we wanted for the system is the one described
in [Lepage 91] as non-dfrectionality. This is the possibility of giving a
partially defined tree and a partially defined st_ring as input. The job
of the program is to build a complete association from an incompletely
specified one. This operation is original and, to our knowledge, it has
never been described for natural language processing. It is illustrated
in Figure 11.

ぅl91

S-TDP
__ I ___ _

S NP
___ I_ I

AUX NP PRON

I
NOUN

"$1"

input

S-TOP
__ I __ _

S $2

I
$1

"$1 help you $2"

input

S-TDP __ , ___ _
S NP

---I_ I
AUX NP PRON

I
NOUN

"may I help you ?11

Figure 10: Generation

output

S-TDP
__ , ___ _
S NP

___ I_ I
AUX NP PRON

I
PRON

"may I help you?"

output

Figure 11: Non-directionality

23

24

4 The data

4.1 Nature of the data

Our experiments require that linguistic descriptions (syntactic struc-
tures) be provided for input strings. We used the results produced by
the ASURA system. However, if the structures were created by hand,
a linguist would have to draw a syntactic tree for each sentence of the
data base. This may appear to be a disadvantage in comparison with
example-based translation systems, since it is often assumed that such
systems require only input strings, and themselves do all the linguistic
structure-building work. But this conception is incorrect. In TDMT
[Furuse and Iida 92b] for example, a thorough inspection of a corpus
allowed the extraction, the collection and the abstraction of the rele-
vant patterns in order to build the linguistic core of the system. This
task is a linguistic task.

4.2 Provenance of the data

The data consist of 116 boards, which come from the English analysis
of dialogues A-B, 1-10 of the ATR corpus. Figure 12 shows such a
board.

S-TOP
__ I __ _

S SIGN

I
INTERJ

11Hello.11

Figure 12: A board

In this database, the average length of a sentence is 24.8 characters
and the average weight of a tree is 29.2 characters.

25

4.3 Extraction of the data

The English analysis of the ASURA system delivers a feature struc-
ture for each sentence. This feature structures encapsulate three k'inds
of information: syntactic, semantic and pragmatic. The syntactic part
is the one which interests us. Unfortunately, HPSG representations do
not deliver explicit syntactic trees; they encode them in feature struc-
tures using the following conventions: a mother node is put under its
natural place as leftmost node and is dominated by an M label. During
this operation, all its daughter become its sisters and they are domi-
nated by nodes numbered Dl, D2, ... , in sequence.

Because of this unnatural representation, one needs a program to
carry out the transformation illustrated in Figure 13.

This program takes the form of five tree-transformation rules listed
in Figure 14. For the sake of comprehension, variables beginning with
a dollar sign are forest variables, those with a colon are node variables.
These rules are applied in unique mode (i.e. not recursively) in a
postorder traversal.

The tree-transformational program works as follows:

• relabel all D1, D2, ... as D. To do this, first relabel Dl as D, and
then, recursively, all successors of a D node as D.

• reduce a feature substructure to the CAT value it contains.

• elevate the mother node to its natural position.

• erase all remaining D nodes.

26

a feature structure:

[[M [[PRAG ...]

[SEM ...]

[SYN [[CAT S-TOP]

[INV -]]]]]

[D1 [[M [[SEM ! X3]

[SYN [[CAT SJ

[INV -]]]]]

[D1 [[M [[SE11 -]

[SYN [[CAT INTERJ]

[LEX hello]]]]]]]]]

[D2 [[M [[SEM -]

[SYN [[CAT SIGN]

[LEX'.']]]]]]]]

viewed as a forest:

M D1
_______ , ___ _

---------'-----
PRAG SEM SYN M

D2

I
M

I I __ , __ _ ____ I __
Di

I
M

_____ I_
CAT INV SEM SYN

I I I __ , __ _______ I_
SEM

I
S-TDP - !X3 CAT INV SEM SYN

I I I ___ j ___

s CAT LEX

I I
INTERJ hello

reduced to ,its syntactic part:

S-TDP
__ I __ _

S SIGN

I
INTERJ

SYN
__ , __

CAT LEX

I I
SIGN

Figure 13: From HPSG feature structure to syntactic tree

27

1
ー

1

D

$

D
ー

1＄

--relabel D1 as D

D :d

I I
$1 $2

D D

I I
$1 $2

--relabel D2, D3, ...

--as D

:root :root
_______ ! _____ _

$1 SYN $4 : cat
____ I __ _

$2 CAT $3

I
: cat

:node
______ , __
M $daughters

I
: root

:root

--keep CAT value only

elevate mother node to

its natural position

$daughters

D

|

1

＄

$1 erase D nodes

Figure 14: Tree-transformational program for the extraction of the syn-

tactic part from a feature structure

28

5 Exp er1ments

5.1・A trace

Here is a very simple trace of the program. Figure 15 draws the

genealogy of the analysis result for the sentence "Hello". The output

is the right tree for the normalised sentence "hello ." The trace is to

be read in the following way: each line is a board, a parenthesised syn-

tactic structure with a sentence. The output board appears vertically

between its parent-boards which are shifted to the right by one tabu-

lation. This trace is a genealogic tree with an particular individual as

a stem (leftmost board) and its parents, grand-parents, and so on, as

branches (above and below).

Number of generations: 3

A goal individual: $1 "Hello"

A population: #include "base"

Best: S-T□P (S (INTERJ), SIGN) "hello 11

S-TDP(S(INTERJ),SIGN) "hello 11

S-TDP(S(INTERJ),SIGN) "hello .11

S-T□P(S(ADV),SIGN) "yes 11

S-TOP(S(INTERJ),SIGN) "hello .11

S-TDP(S(ADV),SIGN) 11yes 11

S-TDP(S(ADV),SIGN) 11yes .11

S-TDP (S (ADV) , SIGN) 11yes 11

S-TOP(S(INTERJ),SIGN) "hello .11

S-TDP(S(INTERJ),SIGN) "hello 11

S-TDP(S(INTERJ),SIGN) "hello .11

S-TDP(S(ADV),SIGN) 11yes 11

S-TOP(S(INTERJ),SIGN) "hello .11

S-TDP(S(NP(PRDN),VP(VERB)),VP(VERB))
11I see . 11

S-TDP(S(NP(PRON),VP(VERB)),VP(VERB)) 11I 11

S-TOP(S(ADV),SIGN) 11yes .11

Figure 15: A trace for analysis

29

5.2 A nalys1s

We measured the quality of analysis on a data base of 116 elements on
sixty elements. For each board in the database, the string part only was
retained and given as input to the program with an undefined associated
tree. Every 3 generations, the best board built in the population is
compared with the original one by applying the board distance. This
yields a measure of the quality of the best board (a difference of one
means a difference of one character in the string or in the syntactic
tree).

Figure 16 shows the results.

• In abscissa are the generation steps (30 generations in total);

• in ordinate, the sentences of the database are ranked from the
shortest to the longest one;

• in the vertical dimension, the quality of the best board is given.

5.3 Generation

Similarly to analysis, Figure 17 gives the quality of the results ob-
tained.

• In abscissa are the generation steps (30 generations in total);

• in ordinate, the syntactic trees of the database are ranked from
the smallest to the biggest one;

• in the vertical dimension, the quality of the best board is given.

5.4 Non-directionality

For non-directionality, we built manually a base of partially undefined
boards from the database used in the previous experiment. Figure 18
shows the results obtained.

• In abscissa are the generation steps (30 generations in total);

• in ordinate, the partially defined boards are ranked from the
smallest to the biggest one;

• in the vertical dimension, the quality of the best board is given.

30

5.5 Runtime

The main criticism of the genetic algorithm is that it consumes ex-
cessive time. To give an idea of how slow our program is, we made some
measurements. Figure 19 shows the runtime measures for analysis on
the data base of 116 elements. Figure 20 is for generation.

• In abscissa are generation steps (30 generations in total);

• in ordinate, the number of the sentence (resp. the syntactic tree)
ranked by size;

• in the vertical dimension, the time, in seconds, needed to produce
a result.

These figures show that the performance of the genetic algorithm run

on a serial machine (a SPARC workstation, 96 Mips) are unacceptable.

However, we think that the time argument is not a valid one, when

considering that genetic algorithms are in essence parallel, and that
they are supposed to be implemented on parallel architectures.

The simplest design would be to assign one processor per individual
in a generation. Then, running selection and crossover in parallel, the

overall run time is simply proportional to crossover and the number of
generations. We think that this kind of architecture, which is in fact
the natural one for this kind of algorithm, would make the run times
acceptable.

31

Quality (in characters)

40

20

。

。

Sentence number

60 ー

Figure 16: Analysis results

30

Number of generations

32

Quality (in characters)

0

0

0

4

2

。 30

30
20

Syntactic tree number
Number of generations

ー

Figure 17: Generation results

33

Quality (in characters)

40

20

＂^》

。
ーー。。

ー。，

＂̂v

8
 。

7
 。

6

r

e

。
b

5

0

m

4

u

o

n

e

3

O

c

2

n

o

e

l

t

n

o

e

s

30

Number of generations

ー

Figure 18: Results for non-directionality

34

Runtime (in seconds)

80

60

40

20

゜

。
30

Sentence number Number of generations

60 ー

Figure 19: Runtime values for analysis

35

Runtime (in seconds)

0

0

0

4

2

。

Syntactic tree number

30

Number of generations

ー

Figure 20: Runtime values for generation

36

6 Analysis of the results

Below we will discuss the results obtained for analysis and generation

and leave aside those for non-directional completion.

6.1 Quality

Analysis Roughly, about thirty generations are needed to produce

an almost correct result in analysis. The following array shows the
average quality and the average runtime every third generation.

generation quality time

1 8.98 1.81

4 4.30 6.79

7 2.16 12.16

10 3.08 17.02

13 3.68 21.86

16 2.14 26.46

19 1.71 29.49

22 2.03 32.32

25 0.81 34.41

28 0.81 34.41

Generation The generation quality results seem rather disorderly
and poor, as shown in the following table. They stabilise at a ten

character difference in average. The average weight of an output is

55 characters (about 25 characters for a sentence and approximately
30 characters for a tree). Since about 11 characters are wrong in the

average output, we have an average error of 1/5.

37

generation quality time

1 15.60 1.12

4 12.23 5.13

7 11.87 9.10

10 10.60 13.22

13 10.75 17.32

16 13.85 21.72

19 11.75 26.25

22 10.97 30.88

25 11.45 35.15

28 11.07 38.92

However, in fact, further inspection of the results helps to explain

these disappointing scores. Two phenomena seem to be involved here.

Firstly, nearly all syntactic trees in the data base correspond to
more than one different sentence. For example "yes.", 11no. 11 on one

hand, or "I am with Ken Brown.", "I attend with my wife." on
another hand, have the same syntactic trees respectively.

The apparently bad results are due to the assessment of such boards.
From the data base, one board is extracted, S-TOP(S (ADV), SIGN)

"yes . 11 for instance. The tree part only is retained and the following
board is taken as input to the program: S-TDP(S(ADV) ,SIGN) 11$111.
The output may be S-TOP (S (ADV) , SIGN) "no . 11 which is a perfectly

valid result, since both sentences have the same syntactic trees associ-

ated with them in the database. But assessment is done by comparing
the output to the original board. Hence, for the current example, the

quality is estimated dist ("yes . ", "no . "), i.e. 3, although it should
have been zero.

The second phenomenon is that the program seems to hesitate be-
tween possible results. It delivers outputs like: 11 I is the conference
office . 11, which is a mixture of two valid sentences.

These two phenomena explain mostly the noisy shape of the quality
results for generation.

6.2 Runtime

Generation is slightly slower than analysis. Generation takes 39 sec-
onds in average for 30 generations, whereas analysis needs only 35 sec-

38

onds.
We suspect that this difference is due to the ambiguity of trees

in relation. to sentences. Another explanation might be the relative
simplicity of trees in the data b邸 eand their resemblance. In other
words, the trees might not be distinct enough.

39

：：：

40

Conclusion

This report has shown the application of an optimisation technique
to natural language processing tasks, i.e analysis and generation. This

technique offer some advantages.

Non-directionality The engine builds a complete sentence and its

complete associated syntactic tree from a partially specified sen-
tence and a partially specified tree. Analysis and generation turn

out to be only particular cases of this general operation.

RobU:stness The main flaw of rule-based systems using context-free

parsers is that they often fail to deliver a solution for trivial rea-
sons such as a word missing in a dictionary. In contrast, the
system described here ensures an answer in any case.

Evaluation Natural language processing lacks methods to assess its

results. The introduction of distance calculations is .a step to-
ward evaluation. Our system self-evaluates itself when delivering
a result: this is the fitness of the output in the genetic parlance.

Some criticisms can still be addressed to the current technique.

Granularity ,rvhen performing crossover, the system does not estab-
lish any link between the string side and the tree side. It would be
better to know which part of the string corresponds to which part

of the tree, and to cut only according to these correspondences.
Crossover would then be given a linguistic meaning.

Normalisation Experiments carried out with input sentences from

outside the data base have shown that the system has a "normal-
ising" effect. Outputs are cast to resemble sentences and trees

from the database. This can be seen as a desirable effect if look-
ing for normalisation, or as a negative effect if a free-input system

is wanted.

As this work is only a first experiment, open questions still remain.
They have been only skimmed over when experimenting with the sys-

tem. They range from the use of dictionaries in such a framework to

the representativeness of an example data base and its effect on the

results obtained.

41

42

・
ム
汀
'
\
'
い
り

1
~
l
-

―
—
-
―
]
」
F
'
~
、
n
心
ヒg
朽
r
'
9
9
·
~
9
,
J
'
’
:
l
:
’
9
9
J
i
/
·
ー
t
f
'
t
ぃ
t
J
-
t
r
t
t
.、
F
ユ
9
·：
一
―

n
-―
―,
m
,
＇
~
、
五
．9
~
·

→
、
9
~
'「
,
••
:;:~1,·99,~

~1,L

•••

，

References

[de Garis 91] Hugo de Garis
Genetic Programming, chap. 8
in Pr. Brank Soucek (ed) Neural and Intelligent Systems Inte-

gration, Wiley , 1991.

[Furuse and Iida 92b] Furuse Osamu and Iida Hitoshi
An Example-based Method for Transfer-driven

Translation
Proceedings of the fourth International Conference on Theoret-
ical and Methodological Issues in Machine Translation TMI-

鶉 pp139-150, Montreal, 1992.

Machine

I¥!

!
I

□

，
 i

I

[Goldberg 89] David E. Goldberg
Genetic Algorithms in Search, Optimization,

and Machine Learning
Addison Wesley Publishing Company, 1989.

[Koza 92] John R. Koza
Genetic Programming -On the Programming of Computers

by Means of Natural $election

MIT Press, 1992.

[Lepage 91] Yves Lepage
Parsing and Generating Context-Sensitive Languages

Correspondence Identification Grammars
Proceedings of the Pacific Rim Symposium on Natitral Lan-
guage Processing, Singapore, November 1991, pp. 256-263.

with

口
[Lepage et al. 92] Yves Lepage, Furuse Osamu and Iida Hitoshi

Relation between a pattern-matching operation and a dis-

tance:
On the path to reconcile two approaches in Natural Language

Proceessing
Proceedings of the First Singapore International Conference on
Intelligent Systems, Singapore, November 1992, pp. 513-518.

[Lepage 92b] Yves Lepage
Easier C programming

Some useful objects
ATR report TR-I-0294, Kyoto, November 1992.

43

[Lepage 92c] Yves Lepage
Easier C programming

D ynamic programming
ATR report TR-I-0295, Kyoto, November 1992.

[Nagao 84] Nagao Mako to
A framework of a Mechanical Translation between Japanese
and English by Analogy Principle
in Artificial intelligence and Human Intelligence,
Elithorn A. and Banerji R. eds., Elsevier Science Publishers,
1984.

[Selkow 77] Stanley M. Selkow
The Tree-to-Tree Editing Problem
Information Processing Letters, Vol. 6, No. 6, December 1977,
pp. 184-186.

[Vauquois & Chappuy 85] Bernard Vauquois and Sylviane Chappuy
Static grammars: a formalism for the description of linguistic
models
Proceedings of the Conference on . Theoretical and M ethodologi-
cal Issues in lvlachine Translation1 Colgate University, pp 298-
322, Hamilton, New York, August 1985.

[W agn'er & Fischer 7 4] Robert A. Wagner and Michael J. Fischer
The String-to-String Correction Problem
Journal for the Association of Computing Machinery, Vol. 21,
No. 1, January 1974, pp. 168-173.

44

	001
	002
	003

