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Abstract 

This report describes an experiment of applying genetic al-

gorithms to example-based machine translation. A very simple 
introduction to genetic algorithms is given. A possible appli-
cation of this technique to analysis and generation is proposed. 

It is based on the board data structure, which is the associa-
tion of a text and a structure. This data structure allows non-
directionality, an original property which is kept in this exper-
iment. If part of a text and part of a structure are provided, 
possible completions can be filled in. Some assessment measures 
are given. 
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Introduction 

One of the differences between the example-based and the rule-based 

approaches in natural language processing (NLP) is the type of en-
gine used. Whereas in rule-based systems it is generally a context-free 

parser, various sorts of engine can be used for the example-based ap-
proach. This report shows that an engine based on an optimisation 
technique, genetic algorithms, can perform analysis and generation. 

Two things make this possible: 

• the definition of a data structure, called board after the proposal 
in [Vauquois & Chappuy 85] and which is in essence bidirectional. 
It is the association of a string (for example, a sentence) and a 
tree (a linguistic structure). This data structure is thus ready to 

be interpreted for analysis (from string to tree) and generation 

(from tree to string). 

• the definition of a distance (strictly speaking, a proximity score) 

on this data structure, which may contain variables. Analysis and 
generation can then be defined as optimisation problems. For ex-
ample, an analysis result is the closest object to the board formed 

by the input sentence and an initially unspecified or variable tree. 

This report first gives a very simplified view of genetic algorithms. 
It then shows which objects and functions were implemented to provide 

a simple genetic algorithm tool. The most important function, fitness 
and crossover, are detailed. Precisely how analysis, generation and a 

third interesting operation can be defined completes the view of the 
engme. 

Experiments were conducted on data drawn from the ATR dialogue 
corpora. These data had to be transformed to fit the purpose of these 

experiments. 

The quality of the results obtained during the experiments for analy-

sis, generation and non-directionality are given in charts. Also, runtime 
measures have been carried out. 

The advantages and the flaws of this work are considered in conclu-
SI011. 
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1 Genetic algorithms 

Genetic algorithms are a collection of techniques for approaching the 

solution of optimisation problems. These techniques are only heuristics: 

one cannot be sure of reaching the solution, if it exists. But these 

techniques have been shown to have good convergence results for some 

problems [Goldberg 89]. 

The term genetic algorithm originates in a comparison with pop-

ulation evolution and the idea that populations might optimise some 

function on their individuals1. 

1.1 Principles 

In this section we give very basic notions about genetic algorithms 
in their simplest form. For a better presentation, see [de Garis 91]. 

Population Usual programming techniques handle only one object 

at a time. By contrast, genetic algorithms deal with a collection of 

individuals, called a population. 

For each individual in a population, one can compute a function, 

called the fitness function. Those individuals for which the fitness func-

tion is optimum, are the best individuals. 

Reproduction From two individuals, one can derive two new indi-

viduals by cutting them into two pieces and gluing the pieces back in 

the way illustrated in Figure 1. This process is called crossove1色

Generation On a population, the previous operation can be repeated 

until the number of children equals the number of parents. In this way, 

one derives one population from another, and this operation can. be 

repeated a number of times. In the last generation, the best individuals 
hopefully are solutions to the optimisation problem at hand. 

1 Like other advertising terms in computer science, from "artificial brains" in the 
fifties, to" neural networks" today, the term" genetic algorithm", drawn from a dar-
ing analogy, has some ideological implications I do not share at all. Unfortunately, 
it is the term in usage. 

2In the complete model, some random modification of part of the children may 
occur. This accounts for mutation to complete the genetic metaphor. 
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□爪爪八
Figure 1: Principle of crossover 

1.2 Realisation 

In the previous description of genetic algorithm, some crucial issues 

are raised: 

• How to select individuals to be parents? 

• Where to cut when performing crossover? 

• How to determine the number of generations? 

One can imagine many possible answers to these questions. Thus 
the diversity of genetic algorithms. Below, we will describe how we 
answered these questions in the present experiment. 

Selection In order to have good convergence results, it seems nee-
essary that those individuals which have higher fitness value should 
intervene more frequently in the production of the next generation. 

Selection for crossover is done randomly, but an individual has a 

higher probability of being selected as a parent if its fitness has a higher 
value. The probability of individual i, given its fitness /i, is defined as: 

Ji・

JJi = 
冗ふ

Crossover For simplicity, the place in the data structure where cross-

over occurs is determined at random. The way individuals are cut will 
be explained in the following section. 

10 



Halting This experiment was designed to see whether genetic algo-
rithms were of some interest for our purpose. Hence, we tested precisely 

the number of generations necessary to get good results. 
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2 Implementation 

2.1 The toolbox 

We developed the program rapidly because a toolbox for the primitive 
objects had been implemented before (see [Lepage 92b]). It provides 
various objects, among which the board data structure is the most im-
portant one for this experiment. A board is the association of a tree 
and a text, as illustrated in Figure 2. 

S-TDP 
___ , __ _ 
S NOUN 

__ I_ 

BE NOUN 

"is this the conference office?" 

Figure 2: A board 

The toolbox has been implemented following an "object-oriented" 
approach. Hence, an object type is defined by a particular structure 
and a particular set of functions. For each object type, there usually 
are functions for creating, deleting, copying, reading and writing. 

For the present experiment, two new object types have been created 
using the same methodology. The first one is population, the second 
one is individual. 

13 



2.2 The population object 

2.2.1 Structure 

A population is a list of individuals (see [Lepage 92b] for the list 

object type). 

2.2.2 Functions 

Input/ output 

input a population is read as a list of individuals separated by 
spaces; 

output a population is written as a list of individuals separated 
by spaces. 

Performance 

fitness the fitness of a whole population is defined as the sum of 
the fitness of all individuals in the population; 

best yields the first best individual found in the population. 

Genetic algorithm proper 

selection the selection function randomly selects~n individual 
in the population to be a parent. An individual is selected 
with a probability defined according to the_ formula given in 
Section 1.2; 

copulation 3 produces two new individuals from two parent in-
dividuals. This function calls the crossover function on in-
dividuals; 

generation builds a new population from a previous one, by a 
series of calls to the previous function. The new population 
has the same size as the previous one; 

evolution calls the previous function as many times as said in 
the arguments. 

3Looking for a word ending ¥¥"ith "tion", I could not resist it. I apologise. 
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2.3 The individual object 

2.3.1 Structure 

An individual consists of two parts. 

• the first part pertains to the role of the individual in the popula-
tion. It contains 

parents an individual points to the parents it comes from; 

crossover point the place where crossover took place when the 
individual was produced is remembered; 

fitness value the fitness of the individual. 

• the second part is the internal structure of the individual. For 

our experiment, it is a board, i.e. the association of a tree and a 

string. 

2.3.2 Functions 

Input/output 

input an individual is read according to the input function of 
the data structure it encapsulates; 

output an individual is written according to the output function 

of the data structure it encapsulates; 

copy this function copies an individual; 

Genetic algorithm proper 

The following functions are defined independently of the internal 
structure of an individual. 

fitness computes the fitness value of a given individual. See be-

low for a definition of this function in the present experiment. 

inherit creates a new individual. Its parents are given as argu-

ments. The individual created is half valid as it waits for 
crossover with another individual. 

crossover for two individuals, randomly draws a crossover point, 

then cuts and cross-glues back the individuals. See below for 
a description of this function in the present experiment. 

15 



genealogy prints the tree of the ancestors of a given individual. 
It is for trace purposes. 

2.3.3 The fitness function 

In the present experiment, the fitness of an individual is defined as 
the distance to a goal. The goal is an individual given as input to the 
program. 

As an individual is a board, its fitness is defined through-the board 
distance, which is defined as the sum of the distances between the 
strings, on one hand, and between the trees, on the other hand, which 
are contained in the two boards (see Figure 3). 

dist( 

S-TOP 

I 
s 

S-TOP 

I 
INTERJ 

"Hello." "hello" 
）＝ 

S-TOP 

dist(I 

S-TDP 

I)  = 6 

S INTERJ 

+ + = 8 

dist ("Hello. 11, "hello") = 2 

Figure 3: Distance between two boards 

The string distance is the Wagner and Fischer distance generalised 
to string patterns (strings with variables). The tree distance is the 

Selkow distance generalised to tree patterns (trees with variables). In 
fact, these distances are implemented as a single subroutine working 
on a single generalised data structure called woods, or rather wood 
patterns. Is has been shown that the generalisations of these distances 
on wood patterns is not a mathematical distance, strictly speaking. We 
call it a proximity score (see [Lepage et al. 92] for more details). With 
this proximity score, the results shown in Figures 4 and 5 are obtained. 

2.3.4 Crossover 

First let us recall that in our implementation, all objects are factored 
by their end. For example, consider the trees in Figure 6. They are 
factored in the way shown in Figure 7. This factorisation avoids the 
creation of unnecessary copies. 

When crossover is performed on two individuals, the cutting point 
is selected at random. The crossover point is an integer which refers to 

16 



S-TOP S-TDP __ , ___ __ 1 ___ 

s SIGN s SIGN 

I I 
INTERJ INTERJ 

dist( ）＝ 

11Hello.11 "$1" 

S-TDP S-TDP 
__ I ___ __ I ___ 

dist ( s SIGN s SIGN) 

I I 
INTERJ INTERJ 

+ dist("Hello." "$1" ‘,ノ

= 0 + 0 

= 0 

Figure 4: Proximity score with string part unknown 

a position in the structure (list or tree) when traversing the structure 

in preorder. A copy of each parent is made until the crossover point is 
reached, and then the pointers to the rest of the structures are simply 

exchanged. This performs the crossover. 
The effect of crossover on lists is simple to understand. On trees, 

its effect is to exchange the sister forests after the crossover point, 

as illustrated in Figure 8. This technique is quite different from the 

exchange of the subtrees described in [Koza 92]. 

17 



S-T□P __ , ___ $1 

s SIGN 

I 
INTERJ 

dist( ）＝ 

"Hello." "Hello." 

S-TOP 

__ I___ $1 

dist(S SIGN, 

I 
INTERJ 

‘,／ 

+ dist(11Hello.11 , 11Hello.11) 

= 0 + 0 

= 0 

Figure 5: Proximity score with tree part unknown 

S-TOP S-TOP S-TOP 
__ , ___ __ , __ 

-----'------
s SIGN NP SIGN s NP SIGN 

I I ___ I_ I 
INTERJ NOUN AUX NP NOUN 

I 
NOUN 

Figure 6: Three trees 
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S-TOP 
__ I __ _ 

s 
I 

INTERJ 

S-TDP 

I 

S-TOP 
_____ I _____ _ 

s 
___ I_ 

AUX NP 

I 

: .................... : ____ _ 
NP SIGN 

I 
: ...•..• NOUN 

: ................................. : 

Figure 7: The trees factored 

before crossover after crossover 

S-TOP 
_____ 1 _____ _ 

*S NOUN SIGN 

__ I_ 

BE NOUN 

S-TOP 
___ , __ _ 
s 

__ ,_ p
ーz

 
BE NOUN PRON 

S-TDP 
_____ ! ______ _ 

S-TOP 

-----'---------
s 

__ I __ 
NP SIGN 

I 
s 

_____ , ___ _ 
NP SIGN 

I 
*AUX NP PRON 

I 
PRON 

AUX NOUN SIGN PRON 

Figure 8: Crossover on trees (crossover points are marked by a *) 
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3 The program 

This section describes the application program in natural language 
processing. We show how analysis and generation are performed, and 
also another kind of operation, called non-directional completion. In 
fact, analysis and generation are only particular cases of this third 
operation. 

The basic object is a board, i.e. a pair of a pattern string and a 
pattern tree. The program works with a database of examples, that is 
a set of boards each of which associates a syntactic tree with a sentence. 

The input to the program is a board. The program, running accord-
ing to the genetic algorithm principles we described above, attempts to 
build a new board from pieces in the data base in order to output a 
board whose distance to the input is as small as possible. 

3 .1 Analysis 

If the board given as a goal consists of a sentence with an undefined 
tree, that is, a variable, the effect of the program is to build a tree 
corresponding to the given sentence. This is analysis. This comes from 
the fact that a tree reduced to a variable has a distance equal to zero 
to any tree. As crossover works both on the string part and on the tree 

part., the string output from the program may happen to be slightly 
different from the input string. Figure 9 shows an example of analysis. 

3 .2 Generation 

If the board given as a goal consists of a tree with an undefined string, 
that is a variable, the effect of the program is to build the sentence 
corresponding to the given sentence. This is generation. The reason 
is similar to the one given for analysis: a string reduced to a variable 
has a distance equal to zero to any other string. Again, the output 

tree may be slightly different from the input tree. Figure 10 shows an 
example of generation. 
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$1 S-TOP 
__ I ___ _ 

S NP 
___ I_ I 

AUX NP PRON 

I 
PRON 

"may I help you ?11 11may I help you ?11 

input output 

Figure 9: Analysis 

3. 3 Non-directionality 

An important property we wanted for the system is the one described 
in [Lepage 91] as non-dfrectionality. This is the possibility of giving a 
partially defined tree and a partially defined st_ring as input. The job 
of the program is to build a complete association from an incompletely 
specified one. This operation is original and, to our knowledge, it has 
never been described for natural language processing. It is illustrated 
in Figure 11. 
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S-TDP 
__ I ___ _ 

S NP 
___ I_ I 

AUX NP PRON 

I 
NOUN 

"$1" 

input 

S-TOP 
__ I __ _ 

S $2 

I 
$1 

"$1 help you $2" 

input 

S-TDP __ , ___ _ 
S NP 

---I_ I 
AUX NP PRON 

I 
NOUN 

"may I help you ?11 

Figure 10: Generation 

output 

S-TDP 
__ , ___ _ 
S NP 

___ I_ I 
AUX NP PRON 

I 
PRON 

"may I help you?" 

output 

Figure 11: Non-directionality 
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4 The data 

4.1 Nature of the data 

Our experiments require that linguistic descriptions (syntactic struc-
tures) be provided for input strings. We used the results produced by 
the ASURA system. However, if the structures were created by hand, 
a linguist would have to draw a syntactic tree for each sentence of the 
data base. This may appear to be a disadvantage in comparison with 
example-based translation systems, since it is often assumed that such 
systems require only input strings, and themselves do all the linguistic 
structure-building work. But this conception is incorrect. In TDMT 
[Furuse and Iida 92b] for example, a thorough inspection of a corpus 
allowed the extraction, the collection and the abstraction of the rele-
vant patterns in order to build the linguistic core of the system. This 
task is a linguistic task. 

4.2 Provenance of the data 

The data consist of 116 boards, which come from the English analysis 
of dialogues A-B, 1-10 of the ATR corpus. Figure 12 shows such a 
board. 

S-TOP 
__ I __ _ 

S SIGN 

I 
INTERJ 

11Hello.11 

Figure 12: A board 

In this database, the average length of a sentence is 24.8 characters 
and the average weight of a tree is 29.2 characters. 
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4.3 Extraction of the data 

The English analysis of the ASURA system delivers a feature struc-
ture for each sentence. This feature structures encapsulate three k'inds 
of information: syntactic, semantic and pragmatic. The syntactic part 
is the one which interests us. Unfortunately, HPSG representations do 
not deliver explicit syntactic trees; they encode them in feature struc-
tures using the following conventions: a mother node is put under its 
natural place as leftmost node and is dominated by an M label. During 
this operation, all its daughter become its sisters and they are domi-
nated by nodes numbered Dl, D2, ... , in sequence. 

Because of this unnatural representation, one needs a program to 
carry out the transformation illustrated in Figure 13. 

This program takes the form of five tree-transformation rules listed 
in Figure 14. For the sake of comprehension, variables beginning with 
a dollar sign are forest variables, those with a colon are node variables. 
These rules are applied in unique mode (i.e. not recursively) in a 
postorder traversal. 

The tree-transformational program works as follows: 

• relabel all D1, D2, ... as D. To do this, first relabel Dl as D, and 
then, recursively, all successors of a D node as D. 

• reduce a feature substructure to the CAT value it contains. 

• elevate the mother node to its natural position. 

• erase all remaining D nodes. 
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a feature structure: 

[ [M [ [PRAG ... ] 

[SEM ... ] 

[SYN [[CAT S-TOP] 

[INV -]] ]] ] 

[D1 [ [M [ [SEM ! X3] 

[SYN [ [CAT SJ 

[INV -] ]] ] ] 

[D1 [[M [[SE11 -] 

[SYN [ [CAT INTERJ] 

[LEX hello]]]]]]]]] 

[D2 [ [M [ [SEM -] 

[SYN [ [CAT SIGN] 

[LEX'.'] ] ] ] ] ] ] ] 

viewed as a forest: 

M D1 
_______ , ___ _ 

---------'-----
PRAG SEM SYN M 

D2 

I 
M 

I I __ , __ _ ____ I __ 
Di 

I 
M 

_____ I_ 
CAT INV SEM SYN 

I I I __ , __ _______ I_ 
SEM 

I 
S-TDP - !X3 CAT INV SEM SYN 

I I I ___ j ___ 

s CAT LEX 

I I 
INTERJ hello 

reduced to ,its syntactic part: 

S-TDP 
__ I __ _ 

S SIGN 

I 
INTERJ 

SYN 
__ , __ 

CAT LEX 

I I 
SIGN 

Figure 13: From HPSG feature structure to syntactic tree 
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1

D

$

 

D
ー

1＄
 

--relabel D1 as D 

D :d 

I I 
$1 $2 

D D 

I I 
$1 $2 

--relabel D2, D3, ... 

--as D 

:root :root 
_______ ! _____ _ 

$1 SYN $4 : cat 
____ I __ _ 

$2 CAT $3 

I 
: cat 

:node 
______ , __ 
M $daughters 

I 
: root 

:root 

--keep CAT value only 

elevate mother node to 

its natural position 

$daughters 

D

|

1

 
＄
 

$1 erase D nodes 

Figure 14: Tree-transformational program for the extraction of the syn-

tactic part from a feature structure 
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5 Exp er1ments 

5.1・A trace 

Here is a very simple trace of the program. Figure 15 draws the 

genealogy of the analysis result for the sentence "Hello". The output 

is the right tree for the normalised sentence "hello ." The trace is to 

be read in the following way: each line is a board, a parenthesised syn-

tactic structure with a sentence. The output board appears vertically 

between its parent-boards which are shifted to the right by one tabu-

lation. This trace is a genealogic tree with an particular individual as 

a stem (leftmost board) and its parents, grand-parents, and so on, as 

branches (above and below). 

Number of generations: 3 

A goal individual: $1 "Hello" 

A population: #include "base" 

Best: S-T□P (S (INTERJ), SIGN) "hello 11 

S-TDP(S(INTERJ),SIGN) "hello 11 

S-TDP(S(INTERJ),SIGN) "hello .11 

S-T□P(S(ADV),SIGN) "yes 11 

S-TOP(S(INTERJ),SIGN) "hello .11 

S-TDP(S(ADV),SIGN) 11yes 11 

S-TDP(S(ADV),SIGN) 11yes .11 

S-TDP (S (ADV) , SIGN) 11yes 11 

S-TOP(S(INTERJ),SIGN) "hello .11 

S-TDP(S(INTERJ),SIGN) "hello 11 

S-TDP(S(INTERJ),SIGN) "hello .11 

S-TDP(S(ADV),SIGN) 11yes 11 

S-TOP(S(INTERJ),SIGN) "hello .11 

S-TDP(S(NP(PRDN),VP(VERB)),VP(VERB)) 
11I see . 11 

S-TDP(S(NP(PRON),VP(VERB)),VP(VERB)) 11I 11 

S-TOP(S(ADV),SIGN) 11yes .11 

Figure 15: A trace for analysis 
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5.2 A nalys1s 

We measured the quality of analysis on a data base of 116 elements on 
sixty elements. For each board in the database, the string part only was 
retained and given as input to the program with an undefined associated 
tree. Every 3 generations, the best board built in the population is 
compared with the original one by applying the board distance. This 
yields a measure of the quality of the best board (a difference of one 
means a difference of one character in the string or in the syntactic 
tree). 

Figure 16 shows the results. 

• In abscissa are the generation steps (30 generations in total); 

• in ordinate, the sentences of the database are ranked from the 
shortest to the longest one; 

• in the vertical dimension, the quality of the best board is given. 

5.3 Generation 

Similarly to analysis, Figure 17 gives the quality of the results ob-
tained. 

• In abscissa are the generation steps (30 generations in total); 

• in ordinate, the syntactic trees of the database are ranked from 
the smallest to the biggest one; 

• in the vertical dimension, the quality of the best board is given. 

5.4 Non-directionality 

For non-directionality, we built manually a base of partially undefined 
boards from the database used in the previous experiment. Figure 18 
shows the results obtained. 

• In abscissa are the generation steps (30 generations in total); 

• in ordinate, the partially defined boards are ranked from the 
smallest to the biggest one; 

• in the vertical dimension, the quality of the best board is given. 

30 



5.5 Runtime 

The main criticism of the genetic algorithm is that it consumes ex-
cessive time. To give an idea of how slow our program is, we made some 
measurements. Figure 19 shows the runtime measures for analysis on 
the data base of 116 elements. Figure 20 is for generation. 

• In abscissa are generation steps (30 generations in total); 

• in ordinate, the number of the sentence (resp. the syntactic tree) 
ranked by size; 

• in the vertical dimension, the time, in seconds, needed to produce 
a result. 

These figures show that the performance of the genetic algorithm run 

on a serial machine (a SPARC workstation, 96 Mips) are unacceptable. 

However, we think that the time argument is not a valid one, when 

considering that genetic algorithms are in essence parallel, and that 
they are supposed to be implemented on parallel architectures. 

The simplest design would be to assign one processor per individual 
in a generation. Then, running selection and crossover in parallel, the 

overall run time is simply proportional to crossover and the number of 
generations. We think that this kind of architecture, which is in fact 
the natural one for this kind of algorithm, would make the run times 
acceptable. 
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Figure 16: Analysis results 
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Figure 17: Generation results 
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Figure 18: Results for non-directionality 
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Figure 19: Runtime values for analysis 
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Figure 20: Runtime values for generation 
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6 Analysis of the results 

Below we will discuss the results obtained for analysis and generation 

and leave aside those for non-directional completion. 

6.1 Quality 

Analysis Roughly, about thirty generations are needed to produce 

an almost correct result in analysis. The following array shows the 
average quality and the average runtime every third generation. 

generation quality time 

1 8.98 1.81 

4 4.30 6.79 

7 2.16 12.16 

10 3.08 17.02 

13 3.68 21.86 

16 2.14 26.46 

19 1.71 29.49 

22 2.03 32.32 

25 0.81 34.41 

28 0.81 34.41 

Generation The generation quality results seem rather disorderly 
and poor, as shown in the following table. They stabilise at a ten 

character difference in average. The average weight of an output is 

55 characters (about 25 characters for a sentence and approximately 
30 characters for a tree). Since about 11 characters are wrong in the 

average output, we have an average error of 1/5. 
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generation quality time 

1 15.60 1.12 

4 12.23 5.13 

7 11.87 9.10 

10 10.60 13.22 

13 10.75 17.32 

16 13.85 21.72 

19 11.75 26.25 

22 10.97 30.88 

25 11.45 35.15 

28 11.07 38.92 

However, in fact, further inspection of the results helps to explain 

these disappointing scores. Two phenomena seem to be involved here. 

Firstly, nearly all syntactic trees in the data base correspond to 
more than one different sentence. For example "yes.", 11no. 11 on one 

hand, or "I am with Ken Brown.", "I attend with my wife." on 
another hand, have the same syntactic trees respectively. 

The apparently bad results are due to the assessment of such boards. 
From the data base, one board is extracted, S-TOP(S (ADV), SIGN) 

"yes . 11 for instance. The tree part only is retained and the following 
board is taken as input to the program: S-TDP(S(ADV) ,SIGN) 11$111. 
The output may be S-TOP (S (ADV) , SIGN) "no . 11 which is a perfectly 

valid result, since both sentences have the same syntactic trees associ-

ated with them in the database. But assessment is done by comparing 
the output to the original board. Hence, for the current example, the 

quality is estimated dist ("yes . ", "no . "), i.e. 3, although it should 
have been zero. 

The second phenomenon is that the program seems to hesitate be-
tween possible results. It delivers outputs like: 11 I is the conference 
office . 11, which is a mixture of two valid sentences. 

These two phenomena explain mostly the noisy shape of the quality 
results for generation. 

6.2 Runtime 

Generation is slightly slower than analysis. Generation takes 39 sec-
onds in average for 30 generations, whereas analysis needs only 35 sec-
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onds. 
We suspect that this difference is due to the ambiguity of trees 

in relation. to sentences. Another explanation might be the relative 
simplicity of trees in the data b邸 eand their resemblance. In other 
words, the trees might not be distinct enough. 
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Conclusion 

This report has shown the application of an optimisation technique 
to natural language processing tasks, i.e analysis and generation. This 

technique offer some advantages. 

Non-directionality The engine builds a complete sentence and its 

complete associated syntactic tree from a partially specified sen-
tence and a partially specified tree. Analysis and generation turn 

out to be only particular cases of this general operation. 

RobU:stness The main flaw of rule-based systems using context-free 

parsers is that they often fail to deliver a solution for trivial rea-
sons such as a word missing in a dictionary. In contrast, the 
system described here ensures an answer in any case. 

Evaluation Natural language processing lacks methods to assess its 

results. The introduction of distance calculations is .a step to-
ward evaluation. Our system self-evaluates itself when delivering 
a result: this is the fitness of the output in the genetic parlance. 

Some criticisms can still be addressed to the current technique. 

Granularity ,rvhen performing crossover, the system does not estab-
lish any link between the string side and the tree side. It would be 
better to know which part of the string corresponds to which part 

of the tree, and to cut only according to these correspondences. 
Crossover would then be given a linguistic meaning. 

Normalisation Experiments carried out with input sentences from 

outside the data base have shown that the system has a "normal-
ising" effect. Outputs are cast to resemble sentences and trees 

from the database. This can be seen as a desirable effect if look-
ing for normalisation, or as a negative effect if a free-input system 

is wanted. 

As this work is only a first experiment, open questions still remain. 
They have been only skimmed over when experimenting with the sys-

tem. They range from the use of dictionaries in such a framework to 

the representativeness of an example data base and its effect on the 

results obtained. 
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