
-
1
•
一

Internal Use Only (非公開）

TR-l-0377

FBI: A program for inferring
stochastic grammar rules from

example text

H. Lucke

10 March 1993

Abstract

An experimental program infering stochastic context-free grammar rules from

example text. The program uses Bayesian belief updating to incorporate causal

and evidential reasoning. It takes as input continuous unlabeled text and produces

a stochastic context-free grammar in Chomsky Normal form with a pre-set number

of terminal and non-terminal symbols.

◎ ATR自動翻訳電話研究所

◎ ATR Interpreting Telephony Research Laboratories

4 Input format 1

1 Outline

The program fbi described in this document is a research program to study the effec-

tiveness of Bayesian inference applied to the problem of grammar inference from example

text. It takes as input a corpus of running text and iteratevly adjusts its internal grammar

representation to fit the grammar to the corpus. A technical description of the method can

be found elsewhere [2].

2 Building fbi

In order to build fbi, the following files should be present in a directory:

fbi.c common工ode_ops.c graphic.c graphicふeg.c

hinshi.c matrix_primitives.c node_opl.c symboLalloc.c

fbihead.h makefile

The command make will then build the program.

3 Running fbi

There are basically two modes in which the program can be run: A batch mode and a

on-line mode. In the batch mode the the program reads in the entire training data at the

beginning and then performs training on this data. In the on-line mode no data is read

initially. Instead the program attempts to read data from standard input and after each

symbol read performs as much processing as possible. In this mode the amount of training

data is not limited in any way. The program can for example be connected to a continues text

source such as electronic news groups and can be left to train indefinitely on the incoming

text.

If the program is to be run in batch mode the program can be invoked by issuing the

command

fbi <filename>,

where <filename> is the name of a parameter file, specifying certain model parameters

and file names. Its format will be discussed in section 6.

If the program is to be run in on-line mode the corresponding invocation command is

<data reader> I fbi <filename>,

where <data reader> is a program that reads the training data formats it if necessary

and writes it to standard output. A simple application could use the unix cat program.

4 Input format

At present, two input formats for the training data are supported.

simple format In the simple formats consists of plain ASCII with words being separated

by whitespace. In other words consecutive sequence of non-whitespace characters ter-

minated on either side by a whitespace character is treated as word.

忍 6

The parameter file

ATR dialogue database format The ATR dialogue database and its file format is de-

scribed elsewhere [l]. Essentially, each each word in the database occupies one line

with several transcriptions given for each word as in the following line:

使い

word as

it appears

つかい

kana
. .

transcnpt10n

使う

base form

32 01 01

5

6

品詞 code 活用型 code 活用形 code

Of this the program uses the品詞 codeand the活用形 code.Together these define 51

distinct parts of speech.

Dictionary

The fbi program requires a "dictionary containing the list of words that it is capable of

handling. If the training data is specified in the simple format, this dictionary is simply a

file contain1ng all the words to be processed separated by whitespace. The number of entries

in this file determines the number of terminal symbols to be used by the program.

If the training data is in the ATR dialogue database format, each entry in the dictionary

is of the form品詞／活用形.The first ten lines of the dictionary currently used are included

here to illustrate this format:

記号

形容詞／未然

形容詞／連用

形容詞／終止

形容詞／連体

形容詞／仮定

形容詞／語幹

形容詞

普通名詞

サ変名詞

The parameter file

As was mentioned in section 3, the fbi program requires a parameter file as argument

when invoked. The parameter file consists of keywords followed by (optional) parameter

values. An example file is provided below:

"
|
,
1
し

f

status

batch

file_format

dictionary

data

non-terminals

logging

iterations

max_ tree_base

penalty

st

了
ー
ー
、
ヽ
ー
ふ

゜/q28/users/lucke/work/bgi/dict
/q28/users/lucke/work/bgi/data.100

16

25

2000

12

0.0

6 The parameter file 3

tree_base_mult 2.9

A description of the allowable keywords follows:

status <file> This line specifies the filename in which all (rather most) internal parame-

ters are to be saved during training and from which parameters are read if the cont

or test flags are specified.

During training parameters are saved after each parameter update as long as n seconds

have elapsed since the last time parameters were saved. Here n is the parameter sup-

plied to the save_interval keyword. In addition after every 10 iterations, parameters

are saved in a file called <file>. i tJ10, where i t_no is the current number of itera-

tion. This saving is also suppressed if the previous save into such a file was less then

n seconds ago, where n is the value supplied save_intervaLi ter keyword described

below. At the end of training the parameters are once more saved in the file <file>

irrespective of the timing of the last save.

If the cont flag is specified parameters are first read from <file> and then later during

training saved into this file as well as into the file <file>. i t_no as was described above.

Please note that the original content of <file> may be erased.

If the test flag is specified the parameters are read once initially. In this case the

program does not save to any file.

cont The cont flag tells the program to continue training using the parameters in the

specified status file, rather than then starting a new training process with random

parameters. This flag is no longer supported and may or may not work.

test This flag tells the process to merely measure the entropy over the specified data.

When specified, the parameters are read from the status file and one iteration over the

specified data is performed. parameters are not updated or saved. This flag is useful

to evaluate the a parameter set over a test set.

dictionary <file> This line specifies the file to be used as dictionary file.

data <file> This line specifies the file to be read as training or test material, if the program

operates in batch mode. Only one of the keywords data or online should be present.

online This flag tells the program to operate'on line', i.e. to read its data from standard

input. This key word conflicts with the keyword data and only one of the two should

be specified.

batch This is an obsolete flag, which should always be specified for consistency with earlier

parameter files. Not specifying it will cause the program to print an error message and

exit.

update_period <n> This parameter specifies (the approximate) number of symbols pro-

cessed before parameters should be updated. If the program is run on-line, this pa-

rameter must be specified. If the program runs in batch mode the parameter need not

be specified in which case it defaults to the number of symbols in the training data. By

4

6

The parameter file

specifying this parameter in batch mode it is possible to have more than one parameter

update per training epoch.

var_update <n> If specified, this option causes the update period to be increased by n

symbols after each update.

non-terminals <n> This parameter specifies the number of non-terminal symbols to be

used.

logging <n> This parameter specifies how much logging information is to be provided dur-

ing test and training. The integer n is regarded as a binary number and each bit causes

a particular type of verbose information to be printed. Some flags were used during

program development and are no longer supported. The important flags are:

1 After each parameter updat~a line is printed consisting of 7 fields:

• number of symbols processed

• average entropy when measured at the terminal nodes

p

,

l

．

average entropy when measured at the root nodes

• average size of trees

• number of non-terminal symbols

• number of non-terminal symbols used for production that are not pre-terminal
productions. This only properly when the matrices are sparse coded.

• The number of production rules.
sparse coded.

Only applicable when the matrices are

2 Entropy information is printed after each symbol processed. (used during debugging)

4

Currently not used.

8 The program establishes an X connection and displays important parameters as

histograms in special windows. In particular a windows are opened that display

the B matrix and the matrices心 foreach i. Further a window displaying the
priors used for the root nodes of trees of various sizes and a window displaying

the usage of each symbol are opened. The usage of a symbol is defined as the

average number of times it occurs on the left-hand side of a production rule. The

usage window displays this in a normalized fashion, for all productions in the top

row, for non-terminal production in the second row and for terminal production

in the bottom row.

16 This flag will create an X window called "Segmentation" in which the tree struc-

tures constructed for the observation sequence are displayed. An example screen

dump is shown in figure 1. The window shows the first 50 symbols of each iter-

ation. The terminal symbols are printed at the bottom upon which a graphical

structure representing the tree is drawn. At each node the non-terminal symbol

with highest belief is also marked. The histogram above the terminal symbols

represents the entropy for the terminal symbols i.e. the quantity -log (P (St Is;))

where St is the current symbol and s; is the context of this symbol within the

current tree.

l
,
~
1
,
1

』

6

The parameter file 5

戸、
戸 G3

3ヽ CO. CO. XO. l3. 忍 co. 記、＼氾 Iぎヽ XO. ベ＼ 房2. CO. XO. 児、 03 戸＼ ヘ
~CXA QLBYZTHKLC VQZIYHKLCY YAAA U AX

IO. ヽ訊訟ぉ、訟
YAKLCSVKLBFIYH

----―I・------ --■■■-- ---■ -■■ -
n., 代格閏昔接昔昔格昔格助終間本接捕格本昔格助終間昔格昔保サ問補助接記間代格昔保助終閉遠助助終昔格本昔キ
h投名助投通続通通助通助勃助投動続助助軌通助動助投通助通助変投助豹続号投名助通助動助投 1本動軌助通助動通 i
司詞詞詞詞名詞名名詞名詞詞詞詞詞助勅詞詞名詞詞詞詞名詢名詞名詞動詞助 詞詞詞名詞詞詞詞飼詞詞詞名詞詞名言
詞詞詞詞／ ／詞詞／詞／ 詞誇詞詞／詞 詞／ ／／詞／詞
終逗／逗終 ／通 終遠終通

止月 t体止 ＇靡｛本 止用止体

3あこのあイな登デの方（こでねあ来て］貝といこででねあ会の方は参あ出まの。えこの方もでねあそよでね手を取こ（；
のちのンい録ス すの くうとすの話 加の来すで一ち すののうす続ると

ーらーフしク ー ら ーにき

四1:Segmentation window to be displayed when the 16 flag in the logging parameter is

specified.

The appropriate numbers should be added and supplied to the logging keyword. A

value of O provides no logging information at all. The default is 1.

bi gram When specifying this flag, the program estimates or evaluates (depending on whether

the test flag is specified a bi-gram and tri-gram grammar on the specified corpus. This

is used as a comparison.

iterations <n> This parameter specifies the maximum number of iterations (parameter

updates) to be performed before the program exits. The default value is 1000.

file_format <n> If n is O the simple file format is expected for the data file. If n is 1, the

:fi le is expected to be in ATR Dialogue database format.

max_tree_base <n> The maximum number of symbols spanned by each tree.

tree_base皿ult<J> After each iteration, the average tree size from the last iteration is

multiplied by this factor. The result is rounded down to the nearest integer This

number becomes the maximum size of the trees to be considered during the next

iteration unless this number is bigger than the number specified by the max_tree_base

keyword above in which case the latter becomes the upper limit.

penalty <J> This number is added to the entropy of each tree when the best segmentation

of the observation sequence is selected (segmentation problem). Thus a positive value

should encourage larger trees whereas a negative value discourage larger trees. However

when a non-zero value is specified the E-M algorithm used in the program is not

guaranteed to converge. For this reason the value should always be set to 0.0 or

otherwise not specified in which case it defaults to O .O;

save_interval <J> The minimum time in seconds between two successive savings to the

status file (see keyword status above). The default value is 300.0.

6

7 The form邸 ofthe status file

save_intervaLiter <J> The minimum time in seconds between two successive savings to

the file status. i tJ10 (see keyword status above). The default value is 300.0.

7 The format of the status file

に
~，

After each iteration and important internal parameters are save in a status file. This is

useful should the process get killed during training. In this case training could in principal

be re-commenced using the information in the status file. If the cont keyword is specified

in the parameter file, the program should read the status file and recommence training from

where the previous process finished. However this feature has not been supported recently

and is not guaranteed to work.

At present the parameters describing the trained grammar can only be extracted from

the status file. Since the process writes relatively often to this file a binary file format was

chosen. Thus a programmer wishing to read the status file will need to write his own bit of

C-code to read the file. The following routine used to save the status file is printed here to

guide programmers to write their own reading routine.

Many of the parameters saved are only of interest to the training process and can be

ignored. (Some of these have since become obsolete, but are kept here for compatibility

with earlier versions of the program.) The comments on the right state the meaning of the

parameter, if relevant, and the type in the C language. The most important parameters are

the number of terminal and non-terminal symbols the A tensor, the B matrix and the priors.

#define WRITE(a) fwrite(&a,sizeof(a),1,fp)

void save_status (fnarne)

char *fnarne;

｛

int i,j;

FILE *fp = fopen(fname,11w11);

if (!fp) {

fprintf(stderr, "Couldn't open %s.¥n", fnarne);

exit (1);

｝

WRITE(version);

WRITE(Nnt);

WRITE(Nt);

WRITE(llll);

WRITE(maxiter);

WRITE(iter);

WRITE(symb);

WRITE(energy);

WRITE(max_chain_length);

WRITE(max_tree_base);

WRITE(cur_tree_base);

I* internal parameter (int) *I

I* number of non-terminal symbols (int) *I

/* number of terminal symbols (int) *I

I* parameter supplied by keyword logging (int) */

I* parameter supplied by keyword maxiter (int) */

I* current iteration number (int) */

/* internal parameter (int) *I

I* internal parameter (double) *I

I* internal parameter (int) *I

I* parameter supplied by max_tree_base keyword (int) *I

I* internal parameter (int) *I

，

I

i

参考文献 、 7

WRITE(tau); I* internal parameter (double) *I

WRITE(save_interval); I* internal parameter (double) *I

WRITE(trainall_flag); I* internal parameter (int) *I

WRITE(batch_flag); I* internal parameter (int) *I

WRITE(rand_flag); I* internal parameter (int) *I

WRITE(on_line_flag); I* 1 if training is online (int) *I

WRITE(update_period); I* internal parameter (int) *I

WRITE(var_update_flag); I* 1 if var_update keyword was specified (int) *I

WRITE(cur_update_perio_d); I* current update period (int) *I

WRITE(current_symbol); I* internal parameter *I

WRITE(file_format); . . I* argument supplied to f:i.le_format keyword (int) *I

WRITE(alloc_flag); ・I* internal parameter (int) *I

WRITE(kill_thres); I* internal parameter (double) *I

WRITE(split_thres); I* internal parameter (double) *I

1) WRITE(update_inc); I* argument supplied to var _update keyword (int) *I

WRITE(sparse_thres_mult); I* internal parameter (double) *I

WRITE(fast_flag); I* internal parameter (int) *I

WRITE(diffs_flag); I* internal parameter (int) *I

fwrite(fname_diffs, sizeof(char), 100, fp);. I* obsolete *I

fwrite(fname_data, sizeof(char), 100, fp); I* data file name *I

fwrite(fname_dict, sizeof(char), 100, fp); I* dictionary file name *I

for(i=O;i<Nnt;i++) for(j=O;j<Nnt;j++)

fwrite(A[i] [j], sizeof(double), Nnt, fp); I* The A tensor *I

for(i=O;i<Nnt;i++)

fwrite(B[i], sizeof(double), Nt, fp); I* The B matrix *I

for(j=O;j<cur_tree_base;j++)

fwrite(prior[j+1], sizeof(double), Nnt, fp); I* The priors *I

fclose(fp);

I、}

参考文献

[1] T. Ehara, N. Inoue, H. Kohyama, T. Hasegawa, F. Shohyama, and T. Morimoto. Con-

tents of the ATR Dialogue Database. Technical Report TR-I-0186, ATR Interpreting

Telephony Research Laboratories, 1990.

[2] Helmut Lucke. A method for inferring stochastic context-free grammars using the theory

of bayesian causal trees. In Proceedings of the Institute of Electronics1 11が'ormationand
Communication Eng切eers,SP92-113, pages 79-86, December 1992.

8 参考文献

l
'

¥
、
-

,
1
,＇ ＼

	001
	002
	003

