
In tern al Use Only

TR-1-0369

The B-SURE MANUAL
Version 2.3

B-SUREマニュアル

John K. Myers

c

March 12, 1993

Abstract

（

This manual presents user documentation for the ATR Interpreting Telephony

Research Laboratories B-SURE representation system. B-SURE, standing for

"the Believed Situation and Uncertain-Action Representation Environment", is a

system that is able to represent and store situations, states, and actions, in

multiple possible action worlds. B-SURE is a general-purpose system that can

work with any application that requires representing multiple possible actions.

The resulting system is useful for such natural language tasks as planning, plan

recognition, and parallel task scheduling.

◎ ATR Interpreting Telephony Research Laboratories
◎ ATR自動翻訳電話研究所

THE B-SURE MANUAL
Version 2.3

John K. Myers

ATR Interpreting Telephony Research Laboratories

Sanpeidani, Inuidani, Seika-cho, Soraku-gun

Kyoto 619-02 Japan

Netmail: myers@atr-la.atr.co.jp

Abstract

This manual presents user documentation for the ATR Interpreting Telephony

Research Laboratories B-SURE system. B-SURE, standing for "the Believed Situa-

tion and Uncertain-Action Representation Environment", is a system that is able to

represent and store situations, states, and actions, in multiple possible action worlds.

The actions can have nondeterministic outcomes-that is, an action can have many

possible outcomes, only one of which will become true. In addition, the actions can

have outcomes that are nonmonotonic, that is, they can retract states. The sys-

tem supports explicit representations of actions and situations used in intentional

action theory and situation theory. Agents have free will as to whether to choose to

perform an action or not. Both types and instances are supported, for situations,

actions, and states. The system can perform global reasoning simultaneously across

multiple possible worlds, without being forced to extend each world explicitly, by

using implications. B-SURE is a general-purpose system that can work with any ap-

plication that requires representing multiple possible actions. The resulting system

is useful for such natural language tasks as planning, plan recognition, and parallel

task scheduling.

Copyright (c) 1991, 1993 ATR Interpreting Telephony Research Laboratories.

Acknowledgment

This research was supported by ATR Interpreting Telephony Research Labo-
ratories. I would like to express my gratitude to Dr. Akira Kurematsu and to

Mr. Hitoshi Iida for managing and supporting this research. I would also like to ac-

know ledge the friendliness and the helpfulness of the people in the Natural Language
Understanding Department.

Contents

1 Working with B-SURE 2

2 Introduction

2.1 How to read this manual

2

4

3 Glossary 5

4 Data and Command Explanation

4.1 ATMS Data Types

4.2 B-SURE Data Types and Major Concepts

4.3 Secondary Concepts .

4 .4 Other Details . .

4.5 . Reset Commands

4.6 Commonly Used Type-Creation Commands

4. 7 Other Type-Creation Commands

4.8 Commonly Used Instance-Creation Commands .

4.9 Other Instance-Creation Commands .

4.10 Commonly Used Action Commands .

4.11 Data Pointer-Following Commands

4.12 History Mechanism Commands

4.13 Modification Commands

4.14 Deletion Commands ..

4.15 User Query Commands .

4.16 User Output Commands

4.17 User Access Commands

4.17.1 Number Acc~ssor Functions

4.17.2 ID Accessor Functions

4.17.3 Data Accessor Functions

4.18 Context Commands ...

4.19 Environment Commands

4.19.1 General Environment Functions

4.19.2 System Environment Functions

4.19.3 User Environment Functions .

14

14

15

15

16

16

16

17

18

18

19

19

19

20

21

21

21

22

22

23

23

23

24

24

24

25

4.20 Explanation Commands . 25

4.21 System Activity Commands ．． 26

4.22 Significant Variables 26

4.23 System Flag Variables 28

5 What does the B-SURE system do? 29

6 Situation Theory 30

7 Intentional Action Theory 31

8 Previous Efforts 31

9 SURE Entities & Implementation 31

10 Representing Nondeterministic Actions 33

11 Maintammg an Interactive History 33

11.1 Counterfactuals . 34

12 Dec1s10n Inference Example 35

13 Intent10nal Communication Example 35

14 A Problem with B-SURE 36

15 Summary of Conceptual User Operation of the B-SURE system 36

16 Conclusion 36

A Not
．

es on Vers10n History 37

A.1 Version 2.2 ．．． ．． ．．．． 38

A.2 Version 2.3 ．．．．．．． 39

B Notes on Implementat10n and Theory of the System 40

B.l Notes on States . 40

B.2 Notes on Situations 40

B.3 Notes on UNDAs 40

B.4 N t o es on Trans1t10ns 40

11

B.5 Notes on Chooses nodes 41

B.6 Notes on Action Worlds 41

B.7 Notes on Implications . 41

B.8 Notes on URC 41

B.9 Notes on Deletion Theory 42

C Example Listing 43

D Command Dictionary 46

List of Figures

1

2

Structure for Representing Nondeterministic Actions

Compact Graphical Representation which Omits States and Types .

30

30

3 Modeling a Plan/Decision Inference Problem in Getting to a Confer-
ence On Time . 34

4 Modeling an Intention to Communicate a Telephone Number Correctly 35

ー

1 Working with B-SURE

The BSURE system is contained in the directory LM01:>myers>BSURE>*. Be-
sides the files in this directory, it also uses standard files LM01: >myers>system
and LM01: >myers>atms5. The BS URE system is loaded completely by loading file

LM01:>myers>BSURE>Load-BSURE-system.

An example of exactly how to use the BSURE system is presented in Appendix C
starting on page 43. Examples of how to use the BSURE system are also contained

in the file LM01:>myers>BSURE>TIAMAT-rep.lisp which is also in the BSURE di-
rectory. The functions (B-test-5), (B-test-6), and (B-test-7) are the best ones

to call here. Note that these functions call (draw-graph) as one of the last things

that they do.

The BSURE system is written in Common Lisp and runs on at least a Symbolics

platform. Care was taken to make sure that the Common Lisp is mostly machine-
independent, and the system should be able to run on other platforms such as

the Sun with little or no modifications. Of course, this would require a Common

Lisp ATMS, such as SQ: /usr2/myers/nl/atms5-sq. The BSURE graphics system,
which is also loaded, is highly Symbolics-dependent (e.g., it uses presentations, and a
special Symbolics graph-drawing algorithm) and cannot be ported to other machines

but must be duplicated.

2 Introduction

This manual describes the ATR Interpreting Telephony Research Laboratories'B-

SURE (Believed Situation and Uncertain-action Representation Environment) sys-
tern, version 2.3. B-SURE is a data-base that is able to represent and store situa-

tions, actions, states, and implications, in multiple action possible worlds. Unlike

the previous version of the ATMS, which was unable to represent nonmonotonic
actions correctly, the B-SURE system fully supports actions that can delete states.

The main task of the B-SURE system is to represent actions and situations cor-
rectly, including actions that can have more than one possible outcome, different

future actions that an agent might perform, past actions that an agent definitely

has performed, and different possible-world timeline histories based on what could

happen. The key to good reasoning is a powerful representation system that is able
to accurately model details of a problem. Once a good representation has been
established, problem computations often become straightforward.

Recent advances in situation theory [BP83,Bar89] and the theory of intentions
[Bra87] have offered many new insights on significant problems found in natural-

language understanding. However, these theories offer philosophical approaches

only, and do not give instructions for building concrete representation and reasoning

engines. At the same time, the software systems that have been built for reasoning
and representation fall short in any number of areas. Production systems and se-

mantic networks can follow chains of inferences, but can only represent one possible
world at a time-they cannot reason with states that are both possibly true and

(

2

possibly not true, while keeping the chains of resulting inferences separate. Most

planners work with limited possible worlds, but cannot reason and perform infer-

ences across multiple worlds at the same time. The classical ATMS1 can represent and

reason with multiple timeless possible worlds, but cannot represent actions [dK86a]-

in particular, nonmonotonic actions where a retracted state is both believed to be

true in the world before the action takes place, and believed to be not true in the

world representing the situation after the retracting action has taken place, cannot

be represented. In addition, the ATMS only represents propositions that are instan-

tiated constants or Skolem constants; it does not represent uninstantiated variables.

A modified ATMS that can represent nonmonotonic transitions between worlds has

been developed [MN86], but this system does not explicitly represent situation types

and instances, action events, nor nondeterminism. Most plan inference systems have

ignored free will and the explicit representation of the right to choose actions, e.g.

to choose to be uncooperative. Almost all previous systems have ignored the nonde-

terministic quality of real-world actions that necessitates commitment in intentions.

Real actions can result in one of several possible outcome situations, whereas almost

all previous systems are are completely unable to model nondeterministic outcomes.

Only decision-analysis systems have modeled expected values of actions, and they

do not support inferencing. See [BL85] for an excellent summary of issues.

The B-SURE (Believed Situation and Uncertain-action Representation Envi-

ronment) package is an implemented system that supports representation, planning,

decision-making, and plan recognition using probabilistic and uncertain actions with

nondeterministic outcomes in multiple possible action worlds. Situations, states, and

action events are all represented explicitly, using types (variables) and instances.

The B-SURE system is implemented as a series of extensions to a classical ATMS.

The resulting system is very useful, and is being used in plan recognition, inten-

tional agent, and scheduling research.

The user specifies state types, situation types that use those state types, uncer-

tainties or probabilities, transitions that use those uncertainties and situation types,

and action types that use those transitions. The user then instantiates one or more

situation types to represent the starting situations. The user then instantiates an

action type in a given situation instance, producing an action instance. Each action

type has a precondition situation type. Two modes are possible; in the automatic

mode, the system has the responsibility of checking that the precondition situation

type is valid before instantiating an action, whereas in the manual mode, the user

has this responsibility. The system automatically instantiates the action's possible

outcome situations and returns the action, which has pointers to the previous situa-

tion instance, the Chooses node, the outcome situations, their transitions, and their

Happens nodes. The user's system can then reference information in the resulting

structure, such as whether a state is true or possible in a given world or not, and

reason with the represention to produce useful results.

1 Assumption-Based守 uthMaintenance System [dK86a]

3

2.1 How to read this manual

This manual starts out with a glossary, which de恥 esthe technical terms that are

used. Next is a conlffiand explanation section that gives a breakdown of all the

commands used in the system, grouped by function. After this, the manual starts
with an introduction to what the B-SURE system does, and a discussion of the
types of data structure objects that the system works with to represent problems.

The manual concludes with the appendicies. Included here is a discussion of the
implementation of the system, and an alphabetical index of the commands used by
the system.

The first-time reader should probably briefly glance at the glossary and the

command explanation section, before going immediately to the introductory expla-

nations and reading them in order. After reading the technical discussion of the
different types of truth values, the reader can go back to the command explanation

section and read it again in depth, to get a good understanding of the system. The

types of knowledge section should be read before the sections on working with the

ATMS and the exan1ples. The implementation appendix, although useful, is not

required to understand how to run the system. The manual contains an alphabet-
ical glossary and the command explanation system at the front, and the command

dictionary at the back, for easy reference.

This manual is intended for the naive user who has never worked with an B-

SURE system or an ATMS before. The user should be able to read the manual,
run the examples, and afterwards understand how to use the system. However,
some familiarity with basic computer science concepts would be helpful. Also, it
is assumed that the reader is familiar with the LISP computer language's syntax.

A deeper understanding of the ATMS used to support the B-SURE system can be

found by reading the ATMS manual [Mye89b]. In fact, it is necessary to read this in
order to learn about the five-valued logic, consisting of hypothetical, possible,

actual, inconsistent, null. However, this manual is designed to be mostly
self-contained.

4

2 Glossary

In the definitions in this section, italics represent terms that are defined elsewhere

under other definitions; bold face represents the term itself. Underlining is occa-

sionally used for emphasis.

Action An action in B-SURE represents a transition from one situation to another

situation. However, in a nondeterministic action, the actual resulting situation

is unknown until the action is executed. Actions have types and instances.

Action Instance A data structure representing an instance of an action. Action

instances are represented by PAWs (Performing Action Worlds).

Action Type A data structure representing the definition of a type of action.

Action World A data structure, which is stored in an ATMS-node, that repre-

sents a timeline history of actions and situations in the form of an explicitly-

represented environment bit-vector. This bit-vector contains a set of all of the

Happens, Chooses, and Not-yet-deleted assumptions that are believed valid

in the current situation instance or action instance. Action Worlds are neces-

sary because a normal ATMS cannot support representation of nonmonotonic

actions [MN86]. Types of Action Worlds include State Action Worlds and

Performing Action Worlds.

Antecedent The IF part of a.n IF-THEN concept. Each implication ca.n have one

or more antecedents.

Assertion A concept. An assertion is a description of the world. "Assertions"

is the name for states that is used by many expert systems and by the ATMS

system. Assertions a.re called states in the B-SURE system.

Assume The action of augmenting an ATMS-node by turning it into an assumption.

Assumption A concept that the user system thinks is basic or influential. As-

sumptions are concepts on which other concepts depend. Also, the data-

structure that represents this concept. Assumptions are ATMS-nodes tha.t

have been specially marked, by assuming them. Typically, assumptions will

justify a network of ATMS-nodes. A single assumption can be BELIEVED or

NOT BELIEVED. In fact, it takes on both of these values simultaneously; this

serves to split the knowledge base into two different [sets of] possible worlds.

ATMS-node The basic atomic da.ta structure for the ATMS system. An ATMS-

node stores a single concept (or assertion).

Believed A truth value for a concept (ATMS-node) in a particular pos-

sible world (context). BELIEVED corresponds to TRUE in a trinary

TRUE/FALSE/UNKNOWN logic. See not believed.

Belief Value Whether a node is believed or not believed.

5

Characterizing Environment A characterizing environn1ent is a consistent,

complete, minimal environment that characterizes (uniquely represents) a con-
text. Since all valid environments that are not created by the user are always

characterizing environments, this concept may be ignored. See environment

instead.

Concept A non-technical word. An idea about something. A concept can be
represented by a type, an instance, a proposition, or some other data structure,

etc. The belief value of a concept is usually represented by a node.

Conjunction A logical AND. If fill of the items in a conjunction are believed, then

the conjunction as a whole is believed.

Consequent The THEN part of an IF-THEN concept. Each implication has one

consequent.

Consistent A context is consistent if it is not inconsistent. Conceptually, a possi-

ble world is consistent if all the things that are believed in that possible world

can all be believed at the same time.

Constituent Sequence Barwise and Perry's technical term for a state [BP83, p.

53]. In their language, a constituent sequence consists of a relation between

individuals, objects, properties, and space-time locations.

Constraint A concept that rules out the possibility of something happening, i.e.
several specific concepts occurring at the same time. That is, it states that
these concepts taken together are inconsistent. Constraints are implemented
in the ATMS system by implications.

Context The set of all BELIEVED nodes that are implied by an environment's as-
sumptions. An environment is only a set of assumptions, whereas a context
consists of those assumptions plus all ATMS-nodes that are directly or in-

directly implied by those assumptions (including all premises), following all
active implication chains forward as far as possible. A context is an entire

possible world, including all the concepts implied by it.

If a context includes the *nogood-node*, that context is inconsistent.

Contradiction A contradiction is a set of concepts that cannot all be BELIEVED

at the same time. See inconsistent.

Deletion Physically removing an item from the knowledge base. The curent system

cannot individually delete items; it can only retract them. See retraction.

Deterministic Something that is deterministic is known ahead of time. It must
happen. See deterministic action and nondeterministic.

Deterministic Action A deterministic action is one that has only one possible

outcome situation. If the action is executed, the single outcome must happen.

Previous planning systems and plan recognition systems have almost all used
deterministic actions in their plans. Deterministic actions are often not good
models of real-world actions.

6

Disjunction A logical OR. If any one or more of the items in a disjunction is

believed, then the disjunction as a whole is believed.

Disregarded This means, Represented but not used by the system in supporting

inferences. Another name for Not Believed.

Environment A data structure that stores a list of believed assumptions. An

environment represents and is the symbol for a possible world. An environment

implicitly implies a context. An environment can be consistent or inconsiste直．

Feature Structure A feature structure is a format used to represent informa-

tion, consisting of pairs of features and feature values (which may be constants,

variables, or nested feature structures) arranged in an unordered list between

square brackets. Various formats of feature structures are possible. The fol-

lowing is an example of a feature structure:

[[reln want]

[agen Caller]

[obje [[reln say]

[agen Caller]
[obje 11Hello11]]]]

Feature structures are one of the methods used to represent information in a

description of a state.

First-Order Probabilities A first-order probability is a normal, typical prob-

ability (measure) of the type that is normally used by most people.

Formula A concept. A formula is a description of the world. "Formulas" is the

name for states that is used by most theorem-proving systems. Formulas are

called states in the B-SURE system.

Implication A logical form, consisting of the conjunction of a number of an-

tecedents, and a single consequent. If, in any one possible world, all of the

antecedents are BELIEVED, then this implies that the consequent must be BE-

LIEVED as well. The antecedents imply the consequent. An "implication"

is both this concept, and the name of a data structure that represents this

concept.

Implications can have associated data attached to them that explain (to the

user system) why this implication is valid. This can simply be the name of the

implication, or a user system representation of the rule that this implication

represents, etc.

Implies A technical term that means that there exists an ATMS implication between

a node representing a concept or a conj訊 ctionof nodes, forming the antecedent,

and a single node forming the consequent. The implication supports reasoning

in a matter corresponding to intuition-if the antecedents are believed, then the

consequent is believed also.

7

In A truth value for a concept (ATMS-node) taken over the set of all known possi-
ble worlds (contexts). If the ATMS-node is BELIEVED in at least one known,

consistent context, then it is IN. See OUT.

Inconsistent A context is inconsistent if it includes the *nogood-node*. Concep-
tually, a possible world is inconsistent if it has a thing that cannot be believed,
or if there are things in that possible world that cannot be believed together.

Inconsistencies (contradictions) are asserted into the ATMS by the user system
by using the (nogood) or the (nogood-set) commands.

The system only uses the inconsistencies that it is told about; there are no

implicit inconsistencies. In particular, all negatives have to be expressed ex-
plicitly.

Influence An influence is a quantity that determines how likely it is that the

outcome of a nondeterm切isticaction is a particular situation. An influence

is the main piece of information attached to a transition. An influence may

be a customary first-order probability or it may be an uncertain second-

order probability.

Instance An instance is a data-structure that represents a particular instantiation

of a type. Instances are theoretically bound in space and time, although these
variables are not supported by the system and must be provided by the user.
Instances may be actual, possible, hypothetical, inconsistent, past, present, or
in a possible如tureworld. States, actions, and situations all have types and
instances. Each instance implies its type. An instance can only be an instance
of one type.

Invalid Inconsistent.

Item An instantiation of any data structure, including an environment, an ATMS-

node, an implication, etc.

Justification A justification is act叫 lythe same as an implication, but the con-
ceptualization is different. A believed ATMS-node that is not an assumption

must have at least one implication that justifies why this node is believed.

The node is the consequent of the justification, and the node is justified by the

antecedent nodes. All of the antecedent nodes must be believed in order for the
nodes to "actually justify" the consequent; otherwise, they simply "potentially

justify" the consequent. The justification is the link between the antecedents
and the consequents. A justification is both this concept, and an alternative

name for the implication data structure that represents this concept.

A justification can have associated data attached to it that explains the reason

behind that justification. This could be a name, or some other concept relevant

to the user system.

Knowledge Base The sum total of assertions that have been made to the system.

The contents of the ATMS system, looked upon as a data-base that represents
knowledge.

8

Label A set of environments attatched to an atms-node. Each environment is

consistent, and the node is BELIEVED in each environment. The set is complete

but minimal; thus, larger (subsumed) environments having no new information

will not be listed.

Logical Form A logical form is a format used to represent information, consist-

ing of atomic symbols and nested logical forms arranged in a list bet-・ween par-

enthises. The following is a logical form: (Wants Caller (Say "Hello"))

. Logical forms are one of the methods used to represent information in a

description of a state.

Minimal A label is minimal if it contains the smallest possible significant environ-

ments. Technically, a set of environments is minimal when no environment in

the set is subsumed by another environment in the set. Because label environ-

ments consist of sets of assumptions that justify a node's concept, maintaining

a minimal label stores only the assumptions that are truly relevant.

Node An ATMS-node, Assumption, or Premise.

N ogood A loose term that technically means inconsistent when applied to an envi-

ronment, but can also mean OUT (or even sometimes, incorrectly, not believed)

when applied to a node. When an environment becomes nogood, there is no

way to reverse this change.

N ogood-N ode A special node used by the system to embody and represent the

concept of nogood or inconsistency.

Nondeterministic Something that is nondeterministic is not completely known

or "determined" ahead of time. It may or may not happen. See nondetermin-
istic action and deterministic.

Non deterministic Action A nondeterministic action is one that has many

possible outcome sihtations. If the action is executed, only one of these out-

come situations will actually occur; however, it is unpredictable which one

will happen. Previous planning systems and plan recognition systems have

almost all used deterministic actions in their plans. Nondeterministic actions

are often better models of real-world actions than deterministic actions are.

See Uncertain Nondeterministic Action.

Not Believed A truth value for a concept (ATMS-node) in a particular possi-

ble world (context). NOT BELIEVED corresponds to UNKNOWN in a trinary

TRUE/FALSE/UNKNOWN logic. See believed. Other ways of thinking about

NOT BELIEVED include DISREGARDED, or NO OPINION. Note that NOT BE-

LIEVED is駆1the same as FALSE; there is no way to explicitly represent FALSE

using an ATMS.

No Opinion NOT BELIEVED.

Out A truth value for a concept (ATMS-node) taken over the set of all known

possible worlds (conteぉts).If the ATMS-node is NOT BELIEVED in all known,

consistent contexts, then it is OUT. See IN.

，

Outcome The outcome of an action is the results of that action; what happens or
occurs when the action is performed, as a direct result of performing the action.
vVhen a nondeterministic action is performed, the actual particular outcome

is unknown ahead of time. The actual outcome may be one of several possible
outcomes. In the B-SURE system, it is assumed that the user knows all the

possible outcomes of an action. Although an outcome is technically a concept,
it can also be used as a short name for outcome situation.

Outcome Situation An outcome situation is a particular sit叫 ionthat repre→

sents one possible outcome of (the results of performing) a nondeterministic
action. A nondeterm切isticaction will have more than one outcome situa-

tions. An action type will have situation types for its outcome situations;

an action instance will have outcome instances.

p The symbol "p" is used to represent a (first-order) probability distribution that

is defined over a set of outcomes in the world.

PAW See Performing Action World.

Performing Action World A special kind of data structure that represents an

action instance that is being performed, along with its history; abbreviated

PAvV. A PAW is a type of Action World. It stores the history of Chooses
and Happens assumptions, along with the Starting Situation assumption, that
were necessary to have happen in order for the action instance it represents to
become actual.

A PAW directly represents an action instance. There is no separate data
structure to represent an action instance, since all action instances must be
performed in a particular situation instance.

PNDA See Probabilistic NonDeterministic Action.

Possible World Something that could be happening. An intuitive conceptualiza-

tion of an environment and its context. A self-consistent set of assertions that
are all believed.

Precondition Situation A precondition situation is attached to an action. It

logically determines whether the action can be executed in a given world or not.

If that situation is true in that given world, then the action can logically be
executed. B-SURE provides two levels of checking for precondition situations,

set by a flag. For the first level, the system automatically checks precondition

situations for each action instance when its instantiation is requested, and does

not perform the instantiation if the precondition is not valid. For the second
level, the precondition situation must be used by the user to check for validity;

the system performs no checking by itself. Apart from this, precondition
situations are not used in B-SURE version 2.3.

Premise A concept that is considered to be always true, no matter what. Tech-
nically, a premise is BELIEVED in all possible worlds. A premise cannot be
retracted.

10

Probabilistic N 011D eterrninistic Action This is represented by the acronym
PNDA. A PNDA is a nondeterministic action in which the influences are

represented by first-order probabilities. The B-SURE system supports repre-

sentation of PNDAs.

Probability The likelihood of a particular outcome occurring. Also, the mathe-

matical science that deals with describing and working with this likelihood.
Also, a short Iiame for a first-order probability constant representing the mea-

sure of a likelihood.

Proposition A concept. A proposition is a description of the world. "Proposi-
tions" is the name for states that is used by some expert systems and some

predicate-calculus systems. Propositions are called states in the B-SURE sys-

tem.

q The symbol "q" is used to represent a probability distribution that is defined, not

over a set of outcomes in the world, but over a set of possible probabilities
of outcomes. It is the "second-order" part of a second-order probability. See
second-order probabilities.

Relation Barwise and Perry's word for an operator that groups things together.
Relations operate over individuals, objects, and space-time locations. A rela-

tion plus its arguments together form a constituent sequence, which is normally
called an assertion, a proposition, or, in the B-SURE system, a state.

Resulting Situation Another name for an outcome situation. A resulting situa-

tion is the situation that results after an action is executed.

Retraction Taking an assertion back; no longer believing it. Retraction essen-

tially consists of making an assertion NOT BELIEVED in all considered possible
worlds. This can be done permanently by setting the node representing the

assertion to directly imply NOGOOD; or, it can be clone conditionally by having
the node, and an assumption that the node is really retracted, together imply

NOGOOD. Alternatively, retraction can be accomplished by not considering

any possible worlds in which the node is BELIEVED. Retraction differs from

deletion in that deletion physically removes the node, whereas retraction sim-
ply removes the 且旦~of the node by the system. Items cannot be deleted in the

current system.

SAW See State Action World.

Second-Order Probabilities A second-order probability is a probability mea-

sure that consists of a random variable p representing the value of a first-order

probability ranging over the closed interval [O, 1], together with a (second-
order) probability distribution q(p) defined over that interval. Second-order

probabilities can explicitly represent uncertainty and confidence in estimates.

Situation (Barwise and Perry) Barwise and Perry [BP83, p. 49] use the term
situation to cover a very large range of types of things, as is explained in
Section 5. Situations are roughly divided along two axes, into real situations

11

and abstract situations, and also into states of affairs and co1lrses of events.
Real situations occur in the real world with real things, and therefore have no

place in a computer model. Abstract situations occur as models, and therefore

all computer situations are by definition "abstract". States of affa切・sdenote
static situations; these are simply called situations in B-SURE. Courses of
events denote events that are nominalizations of the performance of actions,
i.e. the transition from one state-of-affairs situation to another due to an
action being performed; these are simply called actions or action instances in

B-SURE.

Situation (B-SURE) A situation is a set of positive and negative states, each
with a belief value. A situation corresponds to Barwise and Perry's state of

affairs. Situations have types and instances.

Situation Instance A data-structure representing an instance of a situation. A
Situation instance is stored by a SAW (State Action World) that keeps data

on the history of the situation.

Situation Type A data-structure representing the definition of a type of situation.

State A concept. A state is a description of the world. States are sometimes
called propositions, Jormulas, or assertions, and are used by most AI systems
to represent knowledge. In the B-SURE system, a state can be represented

by a logical form, a feature structure, or something else-a user-defined state.
States are treated as atomic in the B-SURE system and in version 2.3 are not

examined, other than to be printed out. In Barwise and Perry [BP83, p.53,50],
states are called constituent sequences composed of relations that deal with
individuals and space-time locations. A unary relation is known as a property.

States have types and instances.

State Action World A special kind of data structure that represents the history

of a situation instance; abbreviated SAW. An SAW is a type of Action World.

It stores the history of Chooses and Happens assumptions, along with the
Starting Situation assumption, that were necessary to have happen in order

for the situation instance it represents to become actual.

In the current version 2.3, a State Action World and the situation instance that

it represents are two separate data structures, even though they both basically
represent the situation instance. This may change in the future. The reason

for the current theory is that it is possible to have a situation instance that
is created indirectly by inferences from the states of different outcomes, which

is different from the type of situation created directly from the immediate
outcome of an action.

Subsumed An environment is subsumed by another environment if it is a larger

superset of the beliefs of that environment. For instance, environment 1 con-
tains believed concept A, "The computer has crashed", while environment 2

contains believed concept A plus believed concept B, "There is a pen on the
table". Environment 2 is subsumed by environment 1. To obtain a minimal

representation, subsumed environments are eliminated from labels.

12

Transition A transition is a change that occurs in the world between the execu-

tion of an action and the occurrence of one of the action's outcomes. Also, a
data-structure that represents this change. A transition has a single infi炉

ence and a single outcome situation. A nondeterministic action will have one
transition for each of its outcome situations.

Truth Maintenance The problem of maintaining the correct truth value of as-

sertions that are based on the truth value of other assertions. Since there

can be long chains of truth dependencies, a particular truth value typically
propagates through many nodes.

Truth Maintenance System (TMS) A computer system that performs truth
maintenance. There are several kinds. An Assumption-based Truth J11ain-

tena.nce System allows the representation of multiple possible worlds simulta-
neously, whereas most other kinds can only represent a single possible world.

Type A type is a data structure that defines a class of objects. A type may have

any number of切stances.Each instance implies the type. Sit叫 ions,actions,
and states all have types and instances.

Uncertainty The word uncertainty is used in this work in a technical sense to
denote the general concept or an instance of a second-order probability.

Uncertain N onDetermm1st1c Act10n This 1s represented by the acronym
UNDA. An UNDA is a nondeterministic action in which the influences are

represented by uncertainties. The B-SURE system supports representation of

UNDAs.

UNDA See Uncertain Nondeterministic Action.

Unknown See NOT BELIEVED.

User System The user system is a computer system outside of the ATMS, that

uses the ATMS to help solve its problems. The user system will have data
structures and information that the ATMS knows nothing about. The ATMS
stores data for the user system, and reports answers to it.

User-Defined State A user-defined state is a piece of information that is used

to represent a state, that is not a feature structure or a logical form. Since the
B-SURE system does not work with the internal contents of states (other than

to print them out when requested), the user is free to use whatever i~formation
is desired when creating a state type. It is up to the user to ensure that the

information is in a usable form.

Valid Not切consistent.

World See possible world.

13

3 Data and Command Explanation

This section presents a description of the system's c01nmands. These are arranged

by the type of command.

3.1 ATMS Data Types

In order to understand the B-SURE system well, it is useful to first review the ATMS

system on which it is based. There are a number of explicit major kinds of data in

the ATMS system. These are:

ATMS-node A node. The ATMS-node is the basic unit of the ATMS system.

Nodes get assumed and presumed. Nodes have a basic belief value of BELIEVED
or NOT BELIEVED in any one possible world. When looking at the universe

of possible worlds as a whole, a node will take on the belief value of actual,

possible, hypothetical, inconsistent, or null, depending upon its existence

and its belief values in the various possible worlds. A node is used to store
data such as states, situations, and actions.

assumption An assumption is a special kind of node that is used to justify other
concepts. Assumptions are both BELIEVED and NOT BELIEVED. An assump-
tion thus splits the universe into two new sets of possible worlds. Assumptions

create environments.

premise A special kind of node that is always true. Premises are BELIEVED in all
possible worlds, and are thus considered to be actual. Premises are imple-

mented by having the empty environment (#0) as their label.

implication An AND GATE structure between nodes. An implication takes many

antecedents and one consequent. If all of the antecedents are BELIEVED in a
given possible world, then the consequent must be BELIEVED in that possible

world as well. An Implication is sometimes called a Justification, a Constraint,

or an Inference in other works in the literature.

the nogood node The nogood node is a single special node that represents the

concept of inconsistency. Any pair of nodes that together imply the nogood
node cannot both be BELIEVED in the same possible world. Such nodes are

said to be pairwise nogood. Any set of nodes that together imply the nogood
node cannot all be BELIEVED in the same possible world-they must have at

least one node that is NOT BELIEVED. Such nodes are said to be mufoally

inconsistent. Any single node that directly implies the nogood node can never

be believed in any possible world, and is said to be inconsistent. It is a
conceptual error to have a premise that directly implies the nogood

node, or to have two premises that are pairwise nogood. This breaks
the belief maintenance capability of the ATMS.

14

environment A set of assumptions that define a possible world. Each assumption
in the environment is BELIEVED under that environment. Environments are
currently implemented as bit-vectors.

'3.2 B-SURE Data Types and Major Concepts

There are a number of explicit major kinds of data in the high-level B-SURE system.
These are:

state The state is the basic fundamental unit of the system. A state encodes a

statement, predicate, or proposition about the world. A state can be positive
(present) or negative (absent). States have belief values that determine whether
the system believes that they could be possible in the future or that they have

happened already.

situation A situation is a set of states. A situation is meant to correspond with
the classification "state of affairs" introduced in Barwise and Perry [BP83].

action An action represents a change between one situation and another. An agent

must choose to perform an action in order for the action to get started.

transition A transition represents the change from the performance of an action
to a new (outcome) situation. An action has a list of outcome transitions. A

transition has an influence and an outcome situation.

influence An influence represents the degree of likelihood that a particular transi-
tion will become actual, that is, how likely it is that execution of the action

will result in the transition to a given outcome situation. Influences can be
probabilistic or 2nd-order uncertainties.

UNDA This stands for Uncertain Non-Deterministic Action. An UNDA is an

action that has more than one possible outcome situation (it is "nondetermin-

istic").

type A type defines something in an abstract manner. States, situations, and ac-

tions all have types and instances.

instance An instance is a particular instantiation of a concept defined by a type.

3.3 Secondary Concepts

Chooses node A Chooses node is an assumption that is associated with an action

that represents the fact that the agent chooses to execute the action. If the
Chooses node is presumed true, it represents the fact that that the agent has

chosen to begin executing the action, and that the action is now under progress.
Often an agent will only be able to perform one action at one level at a time,

and so the various Chooses nodes emanating from a particular situation will
be made pairwise exclusive.

15

Happens node A Happens node is an assumption that is associated with a transi-
tion from an action performance to an outcome sit叫 ion,that represents the

fact that the given outcome situation in fact happens. A Happens node is the

instantiation of a transition type. If the Happens node is presumed true, it
represents the fact that the given outcome has actually occurred. Usually the
transitions from a particular type of action will be mutually exclusive, so the
Happens assumptions will be pairwise inconsistent. It is possible to specify
action types that have transitions that are not mutually inconsistent.

3.4 Other Details

logical-form states and feature-structure states The B-SURE system does

not work with the contents of states; the states are encapsulated. However,

the user system may want to tell the difference between states represented by
logical forms, feature structures, or other methods. In addition, it is useful for

the B-SURE system to be able to print out state descriptions based on the

type of contents of the state. The B-SURE system thus supports three types

of states: logical-form states, feature-structure states, and other types. The
logical-form states and the feature-structure states are each subtypes of the

ordinary state type. The system automatically classifies the input data; the
classification can also be done explicitly by the user using commands provided
to support this facility.

State Action Worlds (SAWs) Situation instances are represented in the time-

lines by State Action Worlds. A SAW has a situation instance and a timeline
history.

Performing Action Worlds (PAWs) A PAW represents an action instance.

3.5 Reset Commands

(reset-BSURE) Clears the B-SURE system out. Wipes out all known State

Types, Situation Types, and Action Types. Resets the ATMS and clears
out all nodes. Automatically initializes Node# 0 as the NOGOOD-NODE,
and Environment# 0 as the Truth Environment.

(reset-SURE) Same as (reset-BSURE).

(reset-UNDA) Same as (reset-BSURE).

3.6 Commonly Used Type-Creation Commands

Type-Creation commands are called by the user to define types.

16

(nice-make-state-type data &optional (value NIL)) Defines and returns a
state type. Checks to see whether the data is a logical form, a feature struc-

ture, or something else, and quietly defines the appropriate subtype. All state

type-creation commands use a special state-type uniquification algorithm that
checks to see whether the state type has been defined yet or not, by using a
hash on equal. Returns the old state type if the name is redefined; does not

change the value.

(make-situation-type name list-of-state-types) Defines and returns a situa-

tion type.

(make-MU-prob 0.5) Defines and returns a probabilistic influence.

(make-MU-p/q 0.0 0.8 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0) Defines and returns an uncertain influence, de-

:fi ned by a distribution of the probability of the 21 probabilities from 0.00 to

1.00 at intervals of 0.05 apiece (i.e., 0.00, 0.05, 0.10, etc.). The entries de-
fault to zero and can thus be omitted if unnecessary (i.e., the example could
have been defined by (make-MU-p/q 0.0 0.8 0.2)). The entries must sum

to 1.0. For more information on second-order probabilities as used to represent

uncertainties, see the author.

(make-transition-type influence resulting-situation-type &optional

(name "") (URC nil)) Defines and returns a single transition type from
an unspecified action to a specified outcome situation, with a corresponding

associated specified probabilistic or uncertain influence.

(make-UNDA-type name documentation precondition-situation-type
list-of-transition-types) Defines and returns a single transition type from

an unspecified action to a specified outcome situation, with a corresponding
associated specified probabilistic or uncertain influence.

3. 7 Other Type-Creation Commands

Type-Creation commands are called by the user to define types.

(make-real-state-type data-or-state-type &optional (value NIL)) This

routine is called when you are not sure whether what you are holding is data

or is a state type, and you want to make sure it's a state type. Checks to see
whether it's a state type or not. If so, the routine returns it. If not, the routine
calles nice-make-state-type and returns the new type. Uses uniquification.

(make-nice-state-type data &optional (value NIL)) Same
nice-make-state-type. Uses uniquification.

as

(make-LF-state-type data &optional (value NIL)) Creates and returns a

Logical-Form state. The data should be a logical form. This is used mostly

for printing out. Uses uniquification.

17

(make-FS-state-type data &optional (value NIL)) Creates and returns a
Feature-Structure state. The data should be a feature structure. This is
used mostly for printing out. Uses uniquification.

(make-state-type data &optional (value NIL)) Creates and returns a general

state. The data should be something that is defined and handled by the user.

This is used mostly for printing out. Uses uniquification.

3.8 Commonly Used Instance-Creation Commands

These routines are used by the user to create instances of objects that already have
been defined by type definitions.

(nice-make-state-instance state-type &optional (data'UNBOUND) (value NIL))
Correctly makes a state instance of the right kind, given a state type. Quietly

checks to see whether the state-type is a logical-form state, feature-structure

state, or user-defined state, and then creates an instance of the corresponding

type.

(make-nice-state-instance state-type &optional (data'UNBOUND) (value NIL))
Sarne as nice-make-state-instance.

(make-situation-instance situation-type &optional (name situation-type-name)
(value situation-type-value) (URC situation-type-URC)) Makes and

returns a new situation instance of the given type. The name, value, and

Uncertain Resource Consumption vector all default to those of the situation

type. Automatically makes instances of all of the situation type's states.

3. 9 Other Instance-Creation Commands

These Instance-Creation commands are sometimes called by the user to create in-
stances of types explicitly.

Calling a make-state-instance routine with the wrong state type simply goes
ahead and incorrectly allocates a state instance of the type mentioned in the name

of the routine. The B-SURE data structures are perfectly fine; the user may have
problems with the state data types, however. ・

(make-LF-state-instance state-type &optional (data'UNBOUND)

(value NIL)) Creates and returns a Logical-Form state. The data should

be a logical form. This is used mostly for printing out.

(make-FS-state-instance state-type &optional (data'UNBOUND)

(value NIL)) Creates and returns a Feature-Structure state. The data should
be a feature structure. This is used mostly for printing out.

18

(make-state-instance state-type &optional (data'UNBOUND) (value
NIL)) Creates and returns a general state. The data should be something
that is defined and handled by the user. This is used mostly for printing out.

3.10 Commonly Used Action Commands

(start-situation situation-type &optional (value situation-type-value))
Creates and returns a State Action World (SAW) that represents an instance
of the given situation type. Used for creating situation instances that start
out action sequences, i.e. that are not derived from previous actions.

(do-UNDA-in-world UNDA-type SAW &optional (Agent NIL))
Hypothetically performs an instance of the given uncertain action type in

the given State Action World (SAW) situation instance. Creates an instance

of the action, and instances of the result~ng outcome situations. Returns the
action instance, in the form of a Performmg Action World (PAW).

3.11 Data Pointer-Following Commands

These commands are used to get one piece of data from another.

(action-world-outcomes PAW-action-instance) Returns a list of the State Ac-

tion Worlds (SAW s) representing the situation instances of the possible out-
come situations for the given action instance.

(performing-world-outcomes PAW-action-instance) Same as

action-world-outcomes. Returns a list of the State Action Worlds (SAWs)
representing the situation instances of the possible outcome situations for the
given action instance.

(state-world-actions SAW-for-situation-instance) Returns a list of the Per-

forming Action Worlds (PAWs) representing the action instances of the pos-
sible subsequence (downstream) actions that have been entered for the given
situation instance's State Action World (SAW).

3.12 History Mechanism Commands

These commands are used to manage the history mechanism that represents actual
execution of the actions.

(Happening SAW) Describes the fact to the system that the given situation has
started happening and is now currently going on. Makes the previous action

world Past. (In the current system, the Past flag now stores a pointer to

the next Happening action world, instead of simply a T /NIL flag.) Converts
the assumption for the current world into a presumption, making the current

19

world Actual and all other mutually-exclusive worlds Inconsistent. Does not
make the current given world Past. Actually works for both SAWs and PAWs.

This function is actually the same as Choosing.

(Happened SAW) Describes the fact to the system that the given situation has
happened already. Ensures that the previous action world is Past. (In the
current system, the Past flag now stores a pointer to the next Happening

action world, instead of simply a T/NIL flag.) Converts the assumption for

the current world into a presumption, making the current world Actual and all
other mutually-exclusive worlds Inconsistent. Makes the current given world

Past by setting its flag to T, since the next world hasn't been Chosen yet.
Actually works for both SAW s and PAW s. This function is actually the same

as Chose.

(Choosing PAW) Describes the fact to the system that the given action has been
Chosen by an agent, i.e. the action has started happening and is now currently

going on. Makes the previous situation world Past. (In the current system,

the Past flag now stores a pointer to the next chosen action world, instead of

simply a T /NIL flag.) Converts the assumption for the current world into a
presumption, making the current action world Actual and all other mutually-
exclusive worlds Inconsistent. Does not make the current given world Past.
Actually works for both SAWs and PAWs. This function is actually the same

as Happening.

(Chose PAW) Describes the fact to the system that the given action was Chosen

by the agent, has been performed, and has happened already. Ensures that

the previous situation world is Past. (In the current system, the Past flag
now stores a pointer to the next Chosen action world, instead of simply a

T /NIL flag.) Converts the assumption for the current world into a presump-
tion, making the current world Actual and all other mutually-exclusive worlds
Inconsistent. Makes the current given action world Past by setting its flag to

T, since the next world, i.e. the nondeterministic outcome, hasn't Happened

yet. Actually works for both SAWs and PAWs. This function is actually the
same as Happened.

3.13 Modification Commands

There is no way to modify an implication once it has been created. There is no way
to retract the action of turning a node into a premise or an assumption.

All user data that the system stores can be modified using the setf function
called on the data accessor function.

(presume-this-node node) Turns an ATMS-node into a premise. Technically,

overwrites the label with the single, empty environment *truth-env*.

(premise-this-node node) Turns an ATMS-node into a premise. Same as
(presume-this-node).

20

(assume-this-node node) Turns an AT MS-node into an assumption. (Technically,
justifies the node with a new assumption-tag whose data contains the node.)

Returns the node. Typically used only for effect. Of course, the user should

not call this on nodes that are already assumptions or premises.

3.14 Deletion Commands

There are no individual deletion commands for the system. Concepts can be re-
tracted, but they cannot be deleted without resetting the entire system.

(reset-atms) Clears the system out. Expunges all previously-defined ATMS-nodes,
assumptions, premises, implications, and environments. Automatically initial-

izes Node# 0 as the NOGOOD-NODE, and Environment# 0 as the Truth

Environment.

3.15 User Query Commands

(explain-nodes) Runs explain-node on all the nodes.

(explain-node node) Prints out environments in which node is IN.

(env-nogood-p env) Tests whether env is nogood.

(IN-p node) Tests whether node is IN. Returns a list of consistent environments
entailing the node (the label) if the node is IN; returns nil if the node is OUT.
This is the recommended function to use when tracing a node with a user-

program.

(OUT-p node) Tests whether node is OUT. Returns T if OUT, NIL otherwise.

(atms-node-p node) Tests whether object is an ATMS-node or not. Note: as-

sumptions and premises are also ATMS-nodes.

(premise-p node) Tests whether object is a premise or not.

(assumption-p node) Tests whether object is an assumption or not.

(implication-p imp) Tests whether object is an implication or not.

3.16 User Output Commands

(print-nodes) Prints a list of all the nodes, and their data.

(print-assums) Prints a list of all the assumptions, and the corresponding nodes.

(print-implies) Prints a list of all the implications, including assumption justifi-

cations.

21

(print-en vs) Prints a list of all the environments.

(print-atms) Dumps everything. Use this to get used to the system.

(print-node node) Individual item printing functions.

(print-assum assum) Prints a single assumption.

(print-implic imp lie) Prints a single implication.

(print-env env) Prints a single environment.

(print-significant-envs env-list) Prints the significant (non-subset, valid) envi-
ronments from a given list. Defaults to all the known environments if given

no argument.

(print-sig-envs env-list) Prints the significant (non-subset, valid) environments

from a given list. Defaults to all the known environments if given no argument.

3.17 User Access Commands

3.17.1 Number Accessor Functions

Each object is given an ID number to distinguish it. Calling these functions with
the number returns the object.

(Node# n) Accessor functions for ATMS-nodes. Given its ID number, these func-
tions return the node.

(ATMS-Node# n) Same as (Node# n).

(Premise# n) Accessor function for premises. Since premises are really ATMS-

nodes, this is the same as Node#.

(Assum# n) Accessor function for assumptions.

(Assumption# n) Accessor function for assumptions.

(Implic# n) Accessor function for implications.

(Implication# n) Accessor function for implications.

(Just# n) Accessor function for implications.

(Justification# n) Accessor function for implications.

(Env# n) Accessor function for environments.

(Environment# n) Accessor function for environments.

22

3.17.2 ID Accessor Functions

These functions return the ID number for the given object.

(atms-node-ID node) ID number function for nodes.

(premise-ID node) ID number function for premises. Same as (atms-node-ID).

(ass urn pt ion-ID ass ump) ID number function for assumptions. Returns NIL if

not an assumption.

(implication-ID imp lie) ID number function for implications.

(justification-ID just) ID number function for implications.

(environment-ID env) ID number function for environments.

3.17 .3 Data Access or Functions

These functions return the user data contained in the given object.

All user data that the system stores can be modified by using the setf function

called on the data accessor function.

(atms-node-data node) Returns the data stored in a node.

(premise-data node) Returns the data stored in a premise.

(assumption-data assum) Returns the data stored in an assumption.

(implication-data impl) Returns the data stored in an implication.

(justification-data just) Returns the data stored in an implication.

3.18 Context Commands

(context env) Returns a list of the nodes in an environment's context, including
the ATMS-nodes, the assumptions, and the premises. vVorks even if the context

is invalid. This is an expensive function to call.

(in-context-p node env) If the given node is in the given environment's context,
returns a (usually smaller) characterizing environment describing why that

node is believed. Otherwise, returns nil.

(in-world-p node env) Same as in-context-p.

23

3.19 Environment Commands

3.19.1 General Environment Functions

(env-assums env) Returns a list consisting of the assumptions that are BELIEVED
in a given environment. Does not check whether environment is inconsistent

or not. Note that more, derived ATMS-nodes will be believed under this envi-
ronment (in the environment's context), than are returned in this function.

(nogood-p env) Returns T if given environment is NOGOOD (INCONSISTENT), nil
otherwise. An environment is NOGOOD if the *nogood-node* is BELIEVED

because of it (i.e., in its context). Same as inconsistent-p.

(inconsistent-p env) Returns T if given environment is NOGOOD (INCONSIS-
TENT), nil otherwise. An environment is NOGOOD if the *nogood-node* is

BELIEVED because of it (i.e., in its context). Same as nogood-p.

(nogood-env env) Forces the given environment (and all of its supersets) to be-

come NO GOOD. Calls no good-set on the (conjunction of the) set of assump-
tions composing the environment. In general, this should be used only because

of higher-level knowledge not part of the knowledge represented in the ATMS.

s e1n Environment Functions 3.19.2 Sy t

(node-label node) Returns a list of the minimal environments under which the
given node is believed.

(node-envs node) Returns a list of the minimal environments under which the

given node is believed.

(all-node-en vs node) Returns a list of all of the known consistent environments
under which a given node is believed. This function is slightly expensive.

(OR-env envl env2) Returns an environment consisting of the union of the as-
sumption sets from the two given environments. This may be inconsistent,

even if both of the previous two are not. Such an environment might not be a

characterizing environment.

(significant-envs env-list) Returns a list of environments where subset and

inconsistent environments have been eliminated. Defaults to using
environments, all of the known environments, as input if no argument
1s given.

(sig-envs env-list) Returns a list of environments where subset and inconsistent

environments have been eliminated. Defaults to using *environments*, all of
the known environments, as input if no argument is given.

(dont-use assum-list env-list) Returns a list of environments where environ-
ments containing any of the given assumptions have been deleted.

24

(dont-use-nodes nodes envs) Returns a list of environments where environ-
ments whose context contains any of the given nodes have been deleted. A

rather expensive function.

3.19.3 U ser Environn1ent Funct1011s

(create-env assum-list) Creates a new environment for the system to keep track
of and follow, consisting of the set of all the assumptions in the given
assumption-list. Returns the environment. Returns the old environment in-

stead of creating it if previously there. Currently returns nil if new environment

is nogood. If an ATMS-node in the assumption list was not in fact previously
an assumption, it is assumed by this function. Note that this side-effect should

be used with care.

(find-env assum-list) Finds and returns an existing environment. Returns nil if

it did not exist previously. Does not create any new environments. This is a

fast function.

(add-assums-to-env old-env assumptions…) Creates (if necessary) and re-
turns a new environment consisting of the assumptions of the old environment
plus the new series of assumptions. Currently returns nil if new environment

is nogood. Does not affect the old environment.

(subsumed-by-p larger-env srnaller-env) Tests to see whether larger-env is
subsumed by (is a superset of) smaller-env. Returns T if subsumed, nil oth-

erwise. Extremely fast.

(characterizing-env env) Returns the characterizing environment of the given

environment (possibly itself). Returns nil if inconsistent.

3.20 Explanation Commands

(why-envs node) Returns a list of the consistent environments under which (in

whose context) this node is BELIEVED.

(why-env-assums node) Explains the different assumption sets that this node is

BELIEVED in. Instead of returning a list of environments justifying this node,
like why-envs, this function returns the environments'assumption sets, in the

form of a list of lists of assumptions.

(why-nodes node env) Explains the contributing immediately preceding nodes
that make the given node believed under the given environment. Returns a

list of all the believed nodes that directly justify the given node in the given

environment's context.

(why-implications node env) Explains the contributing immediate implications

that make the given node believed under the given environment. Returns a
list of all the active implications that directly actually justify the given node in

25

the given environment's context. Does not return implications that indirectly
justify the node, or potentially justify the node but are inactive. Returns the
system-generated justification for an assumption.

(why-assumptions node env) Explains the assumptions that directly or indi-
rectly contribute to the given node under the given environment. Returns a
list of all the BELIEVED assumptions that justify the node in the environment's

context.

(why-nogood-nodes env) Explains the immediately preceding nodes that con-
tribute to making the *nogood-node* believed under the given environment.

The environment should be inconsistent.

(why-nogood-implications env) Explains the implications that immediately

contribute to the *nogood-node* under the given environment. The envi-

ronment should be inconsistent. Returns a list of the active implications that
actually justify the *nogood-node* in the environment's context.

(why-nogood-assumptions env) Explains the邸 sumptionsthat directly or indi-

rectly contribute to NOGOOD under the given environment. The environment

should be inconsistent. This is a very useful function, as it returns only the
mutually conflicting assumptions that are causing the problem with an incon-

sistent environment.

3.21 System Activity Commands

(install-action node action) Installs the command (action) into the given

node. If the given node becomes IN, (i.e., believed in any valid context),
the given action command is executed.

3.22 Significant Variables

use-parallel-action-exclusions This variable is the flag for whether parallel ac-

tions coming out of the same situation are automatically made mutually ex-
elusive or not. T = no parallel actions are allowed-when one action becomes
true, all the rest become inconsistent. NIL = parallel actions allowed; if one
action happens, the rest are not disabled. The default is T. Also see make-
NONEX-UNDA-type.

OS This variable holds the Output Stream for the print functions. Default is T,
meaning standard screen output stream.

ES This variable holds the Error Stream for the print functions. Default is T,
meaning standard screen output stream.

use-uniquification This flag tells whether ATMS data is treated as being unique

(under equal) or whether it can be duplicated. If unique, (atms-node data)
and similar functions will retur'n a previously created node instead of creating
a new one. Default is T.

26

environments This variable stores a list of all (both valid and inconsistent) of
the environments known to the system.

nogood-node This variable stores the special NOGOOD node. This node is allo-
cated on reset. Note that (Node# 0) also returns this node.

truth-env This variable stores the empty environment. This environment's con-
text contains all the premise nodes; it is always true.

atms-nodes This variable stores a list of all the ATMS-nodes known to the sys-

tem. This includes the assumptions and the premises.

assumptions This variable stores a list of all the assumptions known to the

system.

premises This variable stores a list of all the premises known to the system.

implications This variable stores a list of all the implications known to the sys-

tem. Each assumption internally generates an implication; these are included

as well.

atms-node-count The number of ATMS-nodes, including those that have been
turned into assumptions or premises, known to the system.

assumption-count The number of assumptions known to the system.

environment-count The number of environments known to the system.

premise-count The number of premises known to the system.

implication-count The number of implications known to the system.

initial-assumption-limit This number gives a soft limit on the number of
assumptions that the system can store. It is used to determine the initial size
of the assumption-bit-vector assigned to each environment. It must be set

before calling (reset-atms). Set this to the reasonable maximum number

of assumptions expected to be handled by the system. This number affects
memory allocation, paging, and performance. Default is 200.

system's

See

al-

incremental-assumption-size This number tells how much the

bit-vector size is increased during the next growth cycle.

initial-assumption-limit. This number indirectly affects memory

location, paging, and performance. Default is 50.

geometric-limit-increase This flag tells whether *incremental-assumption-
limit* doubles after every expansion (geometric increase) or stays constant

(arithmetic increase). This number indirectly affects memory allocation, pag-
ing, and performance. Default is T.

27

3.23 System Flag Variables

watch-BSURE This flag makes the system print out a notification each time

something changes in the BSURE system. Default is NIL.

use-parallel-action-exclusions This variable is the flag for whether parallel ac-
tions coming out of the same situation are automatically made mutually ex-

elusive or not. T = no parallel actions are allowed-when one action becomes
true, all the rest become inconsistent. NIL = parallel actions allowed; if one
action happens, the rest are not disabled. The default is T. Also see make-

NONEX-UNDA-type.

watch-atms This flag makes the system print out a notification each time an

item is created. Default is T.

debug-atms This flag makes the system print out debugging information. De-

fault is nil.

watch-enlarge This flag makes the system print out a message when the system

enlarges the bit-vector arrays for assumptions. Default is T.

print-data When this flag is T, the print functions print out the data inside
nodes and assumptions. When it is nil, the print functions only print out a

numbered node. Set this to nil when very long data is stored in nodes. Default
is T.

28

4 What does the B-SURE system do?

The B-SURE system is a representation system for states, actions, and situations

in different possible worlds.

First, the user defines state types, and situation ty~es composed of states. Then
the user defines action types that transition between situations.

After that, the user defines a starting world (or two, or more), which is an

instance of a situation.

Next, the user starts exploring what could happen, by defining hypothetical

actions that could take place in any one world (if an agent chooses to execute that

action). Each action will have one or more resulting worlds that will occur as

outcomes. These worlds are still hypothetical, as of yet.

The user builds trees of possible choices of actions, possible outcomes from these

actions, and reactions to these possible outcomes. There is a clear difference between

abstract types and concrete instances.

Instances (and types) can be hypothetical, possible, or actual, also inconsistent

or null. Hypothetical means that the user is simply considering the concepts and

drawing hypothetical conclusions; there is no commitment yet. Possible means that

the action or the world could actually happen if certain things come about. Actual

means that the action (situation, state, etc.) is in fact now happening or has in

fact happened. Inconsistent means that the action will never become possible nor

actual. Null means that the system does not have a representation for that concept.

After the user has specified most of the hypothetical actions and worlds of inter-

est, then the user can start asserting that some things actually happen. An agent

actually chooses to perform an action in an actual world; in this case, the action

turns from being merely hypothetical or possible into an actual occurrence.

However, the system has no way of knowing which outcome has actually occurred,

until the user informs the system that a particular outcome happens. Before this,

all outcomes are possible; after this, one outcome becomes actual, and the rest

become inconsistent.2 In this way, the user keeps track of which situations and

states have actually occurred, which ones are still possible, and which ones are

merely hypothetical.

In addition, the system can set up implications between states, so that if the

conjunction of a set of certain antecedent states are all believed possible or actual,

then an implied consequent state is automatically also believed possible or actual as

well.

At any one point, a user can ask whether a state is true in any one possible

world, or get a listing of all the states that are true in any one world.

The system does other things based on representing probabilities and uncertain

probabilities of action outcome transitions.

2In some particular applications that can actually have more than one outcome occur, it is
useful to be able to specify actions in which the other outcomes do not become inconsistent but
stay possible. The system also supports these.

29

neg
:state均pe:s_
po3
:1ieie
切pe3

po:1itive
:itate i n:1tence:s

Figure 1: Structure for Representing Nondeterministic Actions

Starting Situat1on (Possible OutcoMe Si tuat i~n 1_1.)

（三PossibleOutcoMe Situation 甘り

Figure 2: Compact Graphical Representation which Omits States and Types

Because possible worlds are complex, it is unfortunately necessary for the user

to assert each hypothetical action to be explored in each significant world of interest

by hand. This is an unavoidable design feature grounded on being able to represent

nonmonotonic ordered actions in time, using current technology. In contrast, the
NP system automatically asserts and explores all possible chains of actions that

could be executed from a given possible world, but can only represent monotonic,

partially-ordered actions in a basically timeless fashion. The extra expressive ability

requires stronger control by the user.

5 Situation Theory

In [BP83], situations are divided into the categories abstract and real, and also into

the categories astates of affairs" and "courses of events". Abstract situations denote

situations that are mental representations. All the situations discussed in this paper

are "abstract situations". Real situations denote situations as they actually are in

the real world. Since it basically never makes sense to talk about real situations

in the computer, there is no need to supply these in a representation environment.

"States of affairs" correspond to situations that are static, called simply situations in

this paper. "Courses of events" correspond to situations that describe actions that

are being executed, called action events or actions in this paper. Barwise and Perry

also make use of "relations" defined over "individuals" and "space-time locations".

This paper takes as primitive the expression of a relation, which will be termed a

state. The user is free to mention individuals or space-time locations in state descrip-

tions as desired. State descriptions may be represented using logical forms, feature

structures, or other methods-since the contents of states are not used by SURE ex-

cept for output, it does not matter. States, situations, ai1cl actions are assigned

one of the belief values { definitely believed true, possibly believed true,

not believed true, believed not true, not believed}, otherwise known as

30

{actual, possible, hypothetical, inconsistent, null}, corresponding to

the amount of support offered by the system's underlying ATMS representation (see

[Mye89a] for more information).

6 Intentional Action Theory

One model of intentions states that an intention is a choice to perform an action,

plus a commitment to obtaining its desired outcome[CL87]. With deterministic ac-
tion outcomes, there is no real need for endeavoring [Bra87], since once the action

has been started, it is guaranteed to finish properly. Many planners in fact oper-

ate in this "fire and forget" mode. However, once it is acknowledged that action
execution is in fact nondeterministic and can have undesirable outcomes, the need

for endeavoring becomes clear. The planner must predict the likelihood of possi-
ble outcomes happening, and judge which action sequence offers the best chances.

It must interactively maintain a history of past endeavors and results, and modify

its future behavior based on current outcomes. Acting intentionally becomes sig-
nificantly more interesting and realistic with the explicit representation of possible

chains of nondeterministic actions.

7 Previous Efforts

DeKleer [dK86a] presents the first ATMS. Morris and Nado [MN86] present an ATMS

that can represent nonmonotonic transitions, but do not handle probabilities, un-
certainties, explicit situation types, state types, nor action events. The research

of Allen (e.g. [AK83,All87]), who uses a predicate-calculus representation, offers
some of the best multiple-worlds (deterministic) action representation in this field.

Charniak and Goldman [CG89] use probabilities and Bayesian nets to represent the
truth value of probabilistic statements and attack story understanding. Although

nondeterministic-outcome actions are not represented, and Bayesian nets cannot
support global inferencing with nonmonotonic actions, their work is important.

Norvig and・Wilensky [NW90] comment on problems of probabilistic statements.
The most similar work is recent research by Rao and Georgeff (e.g. [RG91]), who

use a modal logic instead of an ATMS to represent nondeterministic actions.

8 SURE Entities & Implementation

The underlying ATMS works with nodes, assumptions, and implications (justifica-

tions). See [dK86a].

A state consists of a proposition about the world. States are primitives. A
situation is a set of positive and negative (withdrawn) states. An action event

represents the state that execution of the action has started. States, situations,
and actions have types and instances. See figure 1. (The abridged representation

31

of figure 1 is shown in figure 2.) Existance of an instance in a world always im-
plies existance of its type. A chooses node is an assumption associated with an
action instance that represents whether an agent chooses to execute that action

or not. The chooses assumption together with the starting situation instance im-

ply the action instance. Since an agent typically can only execute one action in a
given situation, the situation's ensuing chooses assumptions are rendered mutually

exclusive (pairwise "nogood"). Action types have precondition situation types. Ac-
tion instances are instantiated from types by first verifying that the precondition

situation type is believed true in that world. Action instances transition from a
starting situation instance to one of a number of known nondeterministic outcome

situation instances. Actions have transitions. A transition has an outcome situa-
tion and a probability or an uncertainty. An uncertainty is defined as a probability

random variable of range [O, 1] together with an associated second-order probability

distribution. Uncertainties are initialized using maximum-entropy theory, and get

updated as outcome observations are taken, to enable the system to learn possible

probabilities. Uncertainties are used to represent confidence in values and to make

decisions regarding information-gathering activity. The calculus -of uncertainties is

too complex to explore further here, and is not required for understanding the main
capabilities of the representation; probabilities are sufficient. Transitions can be

types or instances. A transition instance is defined as a happens assumption. An
action instance, together with a happens assumption, imply the corresponding out-
come situation instance. Typically only one outcome situation can occur from a
given action instance, so the action's happens assumptions are made mutually ex-
elusive. A situation type is implied by its state types. When an outcome situation

instance is instantiated, all of its new positive states are instantiated and all of its
old negative states are retracted. A positive nonpermanent state instance is im-
plied by a not-retracted-yet assumption. The outcome situation instance remembers

these. Situation and action instances store an explicit environment history of all
added state, chooses, and happens assumptions that are currently believed true in
that possible world's timeline. A negative state is retracted by making the situation

instance and the state's "not-retracted-yet" assumption mutually inconsistent, and
deleting the state's assumption from the outcome situation's environment history.

A state type or instance or situation type's belief value in a particular world is found
by testing that node against a situation instance's environment history. Situation

types and instances can have values. Actions can have costs. The expected value

of an action is determined by summing the transition probabilities times the ex-

pected values of the outcome situations, when known, and subtracting its cost. The
expected value of a nonvalued situation instance is determined by maximizing the

expected values of the possible subsequent actions, when known. In this manner,
decision theory determines the course of action with the maximum expected value

at any one situation, for a planning agent. This can be used to predict the probable

next course of action of a planning agent by an observing agent performing plan
recognition (actually, "decision recognition").

32

9 Representing Nondeterministic Actions

The main construct of SURE is an ATMS network structure for representing nonde-
terministic actions. This is shown in figure 1. The structure is instantiated from an

action type. It starts with an ATMS node containing the State Action vVorld that
represents a situation instance. This has been previously justified by other starting
assumptions. The State Action World contains an explicit environmental bit-vector

that has a 1 bit for each of the assumptions lea.ding up to this world, plus each of the
nondeletion assumptions from this world's previous timeline that are still valid in
this world. The user first searches for an appropriate action-type to perform by ob-
serving whether the action-type's precondition situation type is believed possible

in the given situation instance. Having found a desirable action, the user then in-
structs the system to perform the given action-type in the given situation instance,

with an optional Agent argument.

The system creates an assumption for the chooses structure, to represent the

fact that the agent may or may not volitionally choose to perform the action.

10 Maintaining an Interactive History

One important advantage of the SURE system is that not only can it be used for
hypothetical reasoning about future events, but the same structures can then be used

as a history mechanism for interactively monitoring and representing the history of
the actual events as they occur. A user system should start out in a known situation,
which is presumed actual. Typically, the user system will use SURE to explore

many different nondeterministic-action sequences and make decisions as to which
actions are the best ones to perform. The system will then start executing the first

action in the chosen sequence. At this point, the user system should instruct the
SURE system to presume the chooses assumption associated with the chosen action
being executed, which will change its truth value from "possibly believed true" to

"definitely believed true". If the chooses node has already been made inconsistent
with other chooses nodes (because the user-system or agent could only perform

one action at a time), those other nodes are automatically rendered "believed not-
true" at this point. The presumption of the chooses node renders the associated

implied Action Event instantiation "definitely believed true" at this point, also.

This represents the fact that the action has started and is currently being executed.

When the action finishes, it is necessary for the SURE system to realize which

outcome occurred. This is typically performed by the system setting up a recognition

demon that is attached to a separate state or situation type that, when true, reliably

indicates that a given outcome has occurred. When the demon fires, it presumes
the outcome's happens assumption. It is important to ensure that one and only one

recognition demon fires. Alternatively, the user can control presuming the happens
nodes directly. vVhen a single happens assumption is presumed, it automatically
renders its sibling happens assumptions "definitely believed not-true".

The combination of the happens node being presumed and the action event

33

(Gets there On line)

r た ets there Late"

ets there Un

ets there

ets there Un

Figure 3: Modeling a Plan/Decision Inference Problem in Getting to a Conference

On Time

node already being believed true renders the appropriate resulting situation instance
believed true. Note that if any instance becomes true, so does its associated type

node. as well.

At any one point in time, the states, situations, and action event instances that

have happened in the world already are believed true; and the situations and events

that have not happened yet but could happen are believed possible. In this way, the
system maintains a timeline history of the situations and action events that have
in fact occurred, while allowing hypothetical planning and exploration of possible
future events in the same data structure.

It is not necessary for the system to maintain only a single timeline history. It is
possible to maintain disjoint histories, to represent e.g. progress made by different
processing agents, progress made in different domains, or progress made at different

hierarchical levels of abstraction. It is possible to maintain forking (nondisjoint)

histories if this makes sense, and the mutual exclusion options have been turned off
(see Section 9).

10.1 Counterfactuals

The system maintains the structures of past possibilities that did not happen. Al-

though these are not believed true, it is possible for the user to explore these
structures and perform reasoning on what could have occurred had certain actions

been chosen or certain nondeterministic outcomes happened, by supplying an extra

counterfactual assumption to justify the desired action or situation instance. It is

even possible to add to these structures, if necessary. This can be used to explicitly

represent newly-received past counterfactual information (e.g., "If you had applied
for the conference last June, the cost would have been 35,000 yen") and the associ-

ated reasoning derived from such assertions. Such reasoning has traditionally been
very difficult to represent, because of the negative truth values.

34

（翌翡ば性翌~567'j
,,.Speaker !ntends~
to Say'123-'1567' (Hearer Doesn't Understand")

r••earer Understands~

Figure 4: Modeling an Intention to Communicate a Telephone Number Correctly

11 Decision Inference Example

A researcher is calling a conference office from the train station and wants to get

to the conference on time. He has a choice between asking for taxi directions, or

requesting the office to send a shuttle-bus out directly to give him a ride. The

shuttle will take him directly to the conference on time. If he requests and the office

turns him down, he has a choice between taking a taxi, and taking the regular bus.

These cost different amounts of money and have different chances of getting to the

conference on time. See figure 3. The plan inference system must predict which

paths of information he will explore, i.e. what he will say next; and then which

decisions he will make for his actions. This is done using "decision inference", by

understanding which action trees offer the best expected value based on the value

and chances of outcomes. Note that the shuttle-bus, the taxi, and the regular bus

will all three allow the researcher to possibly obtain his desired goal, but there are

definite preferences. The system should not remain uncommitted. See [Mye91] for

more details.

12 Intentional Communication Example

A recent analysis of 12 actual interpreted telephone conversations revealed that 31 %
of the utterances were spent in requests for confirmation and repetitions of infor-

mation such as telephone numbers, name spellings, and addresses, that were not

completely understood the first time [OCP90]. This means that the traditional

plan-recognition model of assuming that the hearer automatically understands the

semantic content of the speaker's utterance is fallacious. The speaker, and the

system too, must consider the case in which the hearer does not understand an ut-

terance. Since the speaker wants and intends to communicate specific information3,

the speaker will endeavor to ensure that the information is communicated, by re-

peating an utterance when it is not understood. Thus, speaking an utterance is a

nondeterministic action; it is unclear whether the hearer will understand or not. In-

tentional utterance acts are therefore modeled as nondeterministic-outcome actions

by SURE. Different courses of the conversation can be represented depending upon

the outcomes of the utterance acts. See Figure 4.

3Note that people do not always decide to intend to endeavor to do everything that they want.
Intending is quite different frorn wanting.

35

13 A Problem with B-SURE

There is a mistake that the naive user can make that should be watched out for.
The symptoms are that the user builds a possible network of actions, starts pre-
suming actions that have Happened, and all of a sudden the entire network turns

hypothetical-even those actions that had Actually happened in the past.

The reason why this happens is that the system automatically assumes that only
one action can actually be performed in one sit_uation at a time. All of the rest are

mutually inconsistent, unless the system flag use-parallel-action-exclusions

is set to NIL at the time the network is built, or unless the function

make-NONEX-UNDA-type is used to specify nonexclusive UNDA action types. vVhen
the user asserts that an action definitely happens, and then asserts that a differ-

ent (mutually-exclusive) action definitely happens in the same situation, the ATMS
underlying the history mechanism breaks and all nodes turn hypothetical. It is a con-

ceptual error to attempt to specify that two different things actually (not possibly)

happened in one history line at the same time, without making them nonexclusive.

14 Summary of Conceptual User Operation of

the B-SURE system

• The system is initialized with a set of state types.

• The system is initialized with a set of situation types using the state types.

• The system is initialized with a set of influences.

• The system is initialized with a set of transition types using the influences and
the situation types.

• The system is initialized with a set of action types using the situation types
for preconditions and the transition types for results.

• The user starts the system by declaring that some of the situation types have
been instantiated into situation instances.

• The user performs planning and searching by instantiating possible instances
of actions in specific situation instances.

15 Conclusion

B-SURE is a system that represents states, situations, and nondeterministic actions
in timeline histories of sequential nonmonotonic possible worlds. This capability is

necessary for supporting plan recognition or decision recognition with nondetermin-

istic actions, scheduling nondeterministic processes, creating intentional agents, and

understanding the actions of people operating in the real world.

36

:1
; l

A Notes on Version History

These notes are presented for implementers who may have to change the system. It

is not necessary for users to read or understand these notes.

Version 1.0

This version used ATMS action worlds, but did not use SAWs nor PAWs.

Version 1.1

Moved to atms-action-worlds1.

¥#+'s deleted.

The current possible-action-worlds package is still fumbling deletion.

It goes through most of the motions, but does not acknowledge that

deleted nodes are no longer in the indicated world.

The problem lies with (in-action-world-p).

Solution: 11Form an environment using (create-env) or (add-to-env)

of ALL PREVIOUS worlds plus ALL associated undelete sets.

Stick this in the world node.

Test a node against a world by pulling the env out of the world node,

and doing an (in-context-p) to test. 11

Version 2.0

Choice, Happens, Performing-world, State-world, etc.

Deletes no longer supported--situations do not yet accept negative states.

Transitions use situations. Super major reorganizations.

Version 2.1

delete overhaul. Modified: del-node-from-world;

do-action-in-world, do-raw-action-in-world, add-node-to-world

uses new add-assums-to-env.

Took the implications off the situation instances, put them on SAWs.

Cleaned up a bunch of problems. Make-CHOOSES got turned into

do-UNDA-in-world; there's really no need for

an independent make-Chooses. All routines are much more logical now.

Make-STATE-WORLD sideways-implies its new states; the Situation Instance

now does not get its own node, and is a dinosaur kept for documentation.

Make-HAPPENS calls Make-STATE-WORLD and fills in

the Happens Transition. The old do-action-into-world has been

modified extensively, is now attach-new-world-to-world; it takes care of

37

hooking up ALL pointers. TransAssum data type allows this.

Probable problem

with making Performing Action World in a depth-first manner: The Env magic

probably needs to be propagated before the new SAW deletes its states.

Made Fill-In-Performing-World to take care of this problem; Happens

instantiations are delayed until the Performing World gets its proper Env magic. _

attach-new-world-to-world is called for both Chooses and Happens instantiations.

It assumes that only one Happens can occur and that they are pairwise exclusive

(true, as long as the outcome events are mutually exclusive, which

they will be in all of the foreseeable future); and also that only one Chooses

can occur and that the Chooses action options are mutually exclusive. This last

is equivalent to assuming that the agent can -0nly perform one action at .a time.

In order to correct this, make a copy of attach-new-world-to-world called

attach-new-world-to-world-without-nogood, and take out the pairwise nogood.

Other methods will be nastier because node can't be pushed before nogooding.

World-p not picking anything up because assurn history not yet stuffed on

start-situation. Using quick-world-p.

Problem: the Env magic must be stuffed in an Action World before nodes can

be added or deleted. Had to also make a Fill-In-State-World to take care of

this problem.

A.I Version 2.2

Hacked up use-parallel-action-exclusions, use-parallel-outcome-exclusions.

Currently this is a system-wide flag;

the right way to do this would be to make a new kind of flavor

for parallel action-outcomes, and maybe

a new kind of flavor for parallel-izable actions.

But let's get it to work right first.

Modified routines: do-action-in-world

(not used?!); attach-new-world-to-world; make-HAPPENS; do-UNDA-in-world.

Error msgs in del-node-list-from-world

using del-node-to-world; I corrected them.

State types and state instances; must be

able to instantiate state instances after working with them.

Almost everything with a state in it has been modified.

start-world, do-action-in-world, do-raw-action-in-world

deleted. Can be found in atms-action-worlds1.

Names on transition types. ¥$its use Sit's name.

NDNEX-UNDA-TYPEs. Use-parallel-output-exclusions cut out.

Hacked make-HAPPENS.

Agents on Chooses.

38

make-chooses taken out. Do-UNDA-in-world now returns the action-world,

not the chooses assumption.

Some loops changed to dolists. reset-SURE; reset-BSURE.

Turned watch-UNDA into watch-SURE.

Action-world-actions returning a list of NODES,

not ACTIONS. Fix this.

FEATURE. Symptoms: After presuming a lot of nodes in the network,

all of a sudden everything turns Hypothetical.

Reason: Oh no, you Presumed two outcome Happens from the

same Action, and the mutually-exc-disable

flag was not turned off. You have just proved NDGDOD from

TRUE, which blows away your logic.

SOLUTION: Don't use mutually exclusive outcomes on that action.

A.2 Version 2;3

Past markers on the Action Worlds. Happening, Happened, Choosing,

Chose functions.

watch-SURE defaults to NIL for the production version.

tr-assums for next worlds on Action World structure.

Actions turned to tr-assums; new Actions corrected.

Modified: choosez-node~, happenz-nodes,
attach-new-world-to-world.

Well, I finally found a use for situation instances

vs. SAWs. Use the situation instances to

store the values of the situation itself.

Use the SAWs to store the value of the situation

plus all of its future potentials etc.

Required when incremental value happens. Could need changing.

Null precondition situations allowed in Make.

Fill-in-Performing-world now operates on

reverse of list, to get order to come out right.

Currently actions coming out of a situation

node are reverse-temporally-ordered because of a Push.

There is no good way to get around this yet.

Local and Total URC. Total only represents

DOWNSTREAM Total+ local. What about upstream totals?

Total URC on Happens was macro'd to Type, don't do that!

Converted stuff to Actual, Feasible, Potential.

Happened, Happening now set Past to point to the next

one, not just T.

Hacked in value initialization on make-situation-type.

make-state-world uses situation-instance value.

watch-SURE to *watch-BSURE*. BSURE-FS-p,

BSURE-LF-p. get-State-type.

39

B Notes on Implementation and Theory of the

System

B .1 Notes on States

Start with the States. There is a need to have state types and state instances, even
though a state is more like an adjective than a noun. States represent abstract

State Types and concrete State Instances. In real-world planning applications, of-

ten the data for the actual State Instance will be unbound until the action instance
is actually executed and the results observed. For this reason, State Instances are

structures with data slots. Since this system only worried about the -identity-of

the state and its values, uncertainties, etc., the actual -contents-of the state are left

open for the user to change. States can be represented using Logical Forms, Fea-

ture Structures, or anything else you wish-since states are encapsulated, it doesn't
matter what the data is. Currently states can only be positive-in other words, exis-

tence=true, nonexistence=false. However, it is of course possible to define negative

states by including a NOT in the encapsulated definition, and certain commands

retract states (rendering them not believed in that world). A type has a list of
instances; an instance points to its type. Currently both State Types and Instances

have ATMS-nodes.

B.2 Notes on Situations

A Situation is defined as a set union of states. Situations comprise Situation-Types,

which are patterns corresponding to the abstract conceptual occurrence of the situ-
ation, and Situation-Instances, which are concrete, instantiated occurrences of the

situation (and use State Instances). A type has a list of instances; an instance points
to its type. Situation-Types have a set of State Types; Situation Instances, of State

Instances. A Situation-Instance may be in the future, or it may be only "possible".

Unclear whether it makes sense to talk about "hypothetical" instances or not.

B.3 Notes on UNDAs

The system concerns itself with Uncertain Non-Deterministic Actions (UNDAs).
UNDAs have types and (virtual) instances; the instances are actually a collection of

other structures, mostly tied together by a Chooses node. An UNDA-Type points

to a precondition Situation-Type and a number of Transition-Types. A Transition-
Type points to a resulting Situation-Type.

B .4 Notes on Transitions

Transition-Types have an uncertain Influence, and also an URC. What would be a

transition-instance is called a Happens structure. All Happenses are thus concrete.

40

A Happens points to its Transition-Type to determine its influence chances and

URC. A Happens points from its previous world to its resulting world.

B .5 Notes on Chooses nodes

An UNDA instance is basically represented by a Chooses node. Chooses means

"chooses to do the action", as in "plumps"; no decision-theoretic optimal choice is

implied, and many action instantiations from a single situation will each have their

own Chooses node. A Chooses points from its previous world to its resulting world.

Chooses nodes have optional Agent slots.

B.6 Notes on Action Worlds

Actions in the UNDA package are represented by multiple possible action worlds.

Worlds are explicit node structures, that support all this mess. The two important

kinds of worlds are the State Action World (SAW), and the Performing Action World

(PAW). A State A.W. represents the fact that a Situation-Instance has transitioned

into being. It points to its Situation-Instance. It also has a best-action slot, to sup-

port action decision-theoretic choices. A Performing A.W. represents the fact that

an action, (natural or volitional), is being performed. It points to an UNDA-Type.

Both SAWs and PAWs are supported by custom low-level Action World structures,

which should be ignored by the user. Both SAWs and PAWs have corresponding

atms-nodes. Situation-instances do not need atms-nodes. SAWs "sideways imply"

(with a Non-Deleted assumption) all of their resulting added nodes. SAWs are cur-

rently created from a template of a Situation Instance, which provides the State

Instances.

B. 7 Notes on Implications

A State Instance implies its State Type. The occurrence of all of the State Types

implies a Situation-Type. A Situation-Instance used to imply each of its comprising

State Instances (really Types), but now this is not true-they are "sideways". A

State Action World plus a Non-Deleted assumption sideways implies each of its

added State-Instance nodes.

B.8 Notes on URC

The Uncertain Resource Consumption (URC) package is a note-taking package that

currently only sits on top of UNDA and goes along for the ride. A URC is actually

a vector of uncertain consumptions, notably Time, Money, Fuel, and Prestige.

41

B.9 Notes on Deletion Theory

Deletes currently work by creating a node called (UNDELETED #<Atms-node

#FOO>). The deletion routine then searches for the node with this name. This

could be a problem, because it does not seem to support adding the node in mul-
tiple places in the action net, nor deleting the node and then adding it again. Or
does it? Answer: There is no problem with adding the node at different places in
the tree. There is no problem with deleting the node. There is a small problem

with adding, deleting, and adding the node again, because currently the same (old)

assumption is used to justify the node. However, this assumption has been made

mutually incompatible with the history, by the delete.

42

C Example Listing

This listing illustrates part of a program to set up and monitor nondeterministic

systems as they execute.

(reset-SURE)

(setq speak-state

(setq hear-state

(setq morph-state

(setq patt-state

(setq temp-state

(make-nice-state-type'(Sound Input)))

(make-nice-state-type'(SpRec Output)))

(make-nice-state-type'(Morph Analysis Output)))

(make-nice-state-type'(Pattern Matcher Output)))

(make-nice-state-type'(Template Example Distance)))

(setq start-sit

(setq hear-sit

(setq morph-sit

(setq patt-si t

(setq temp-sit

(make-situation-type "Speech In" (list speak-state)))

(make-situation-type "SpRec Out" (list hear-state)))

(make-situation-type "Morphs" (list morph-state)))

(make-situation-type "Match" (list patt-state)))

(make-situation-type "Dist" (list temp-state)))

(setq influence-1 (make-MU-prob 1. 0))

(setq influence-01 (make-MU-prob 0.1))

(setq influence-025 (make-MU-prob 0.25))

(setq influence-OS (make-MU-prob 0.5))

(setq influence-03 (make-MU-prob (/ 1 3)))

(setq trans-OS-hear

(setq trans-025-morph

(setq trans-OS-morph

(setq trans-025-patt

(setq trans-03-patt

(setq trans-05-patt

(setq trans-025-temp

(setq trans-03-temp

(setq trans-OS-temp

(make-transition-type influence-05 hear-sit))

(make-transition-type influence-01 morph-sit))

(make-transition-type influence-05 morph-sit))

(make-transition-type influence-01 patt-sit))

(make-transition-type influence-03 patt-sit))

(make-transition-type influence-05 patt-sit))

(make-transition-type influence-01 temp-sit))

(make-transition-type influence-03 temp-sit))

(make-transition-type influence-05 temp-sit))

(setq unda-hear (make-UNDA-type'Speech-Rec "Hearing Speech Recognition"

start-sit

(list trans-OS-hear

trans-OS-hear

）））

(setq unda-rnorph (rnake-NONEX-UNDA-type'Morph-Analys "Morphological Analysis"

43

hear-sit

(list trans-05-rnorph

trans-05-rnorph

）））

(setq unda-patt (make-NONEX-UNDA-type'Patt-Match "Pattern Matching"

morph-sit

(list trans-05-patt

trans-05-patt

）））

(setq unda-temp (make-NONEX-UNDA-type'Temp-Match "Template Pattern Matching"

patt-sit

(list trans-03-temp

trans-03-temp

trans-03-temp

）））

(setq start-SAW (start-situation start-sit))

(setq list-of-hears

(action-world-outcomes

(do-UNDA-in-world unda-hear start-SAW)))

(loop for hear-SAW in list-of-hears do

(setq list-of-morphs

(action-world-outcomes

(do-UNDA-in-world unda-morph hear-SAW)))

(loop for morph-SAW in list-of-morphs do

(setq list-of-patts

(action-world-outcomes

(do-UNDA-in-world unda-patt morph-SAW)))

(loop for patt-SAW in list-of-patts do

(setq list-of-temps

(action-world-outcomes

(do-UNDA-in-world unda-temp patt-SAW)))

）

）

）

44

(format T "Presuming -A.-% 11
(happens-atms-node (state-world-happens start-SAW)))

(Happened start-SAい）
;; (presume-this-node (happens-atms-node (state-world-happens start-SAW)))

(setq SpRec-Action (car (state-world-actions start-SAW)))

(Happened SpRec-Action)

(setq SpRec□ut-SAW (car (performing-world-outcomes SpRec-Action)))
(Happened SpRec□ut-SAW)

(setq Morph-Action (car (state-world-actions SpRec□ut-SAW)))
(Happened Morph-Action)

(setq MorphAnal-SAW (car (performing-world-outcomes Morph-Action)))

(Happened MorphAnal-SAW)

(setq Patt-Action (car (state-world-actions MorphAnal-SAW)))

(Happened Patt-Action)

(setq Match-SAW (car (performing-world-outcomes Patt-Action)))

(Happened Match-SAW)

(setq Temp-Action (car (state-world-actions Match-SAW)))

(Happened Temp-Action)

(setq dist-hap1-SAW (first (performing-world-outcomes Temp-Action)))

(Happened dist-hap1-SAW)

(setq dist-hap2-SAW (second (performing-world-outcomes Temp-Action)))

(Happened dist-hap2-SAW)

/(No Good Resu 1 ts Obtained)
DIRECT-TRANSFER~

MORPH-ANALYS

(Direct Transfer Obtained Good Resu 1 ts J

45

~
~
~
~

PATT-MATCH I・I
＼こここ）

＠
~

三正三三臼 四
＠
＠
~
~

D Command Dictionary ヽ

(add-assums-to-env old-env assumptions…) Creates (if necessary) and re-
turns a new environment consisting of the assumptions of the old environment

plus the new series of assumptions. Currently returns nil if new environment

is nogood. Does not affect the old environment.

(all-node-envs node) Returns a list of all of the known consistent environments

under which a given node is believed. This function is slightly expensive.

(assume-this-node node) Turns an ATMS-node into an assumption. (Technically,

justifies the node with a new assumption-tag whose data contains the node.)

Returns the node. Typically used only for effect. Of course, the user should
not call this on nodes that are already assumptions or premises.

(assumption data) Constructs and returns an Assumption node storing the given

information.

(Assumption# n) Accessor functions for assumptions.

assumption-count The number of assumptions known to the system.

(assumption-data assum) Returns the data stored in an assumption.

(assumption-ID assump) ID number function for assumptions. Returns NIL if
not an assumption.

(assumption-p node) Tests whether object is an assumption (i.e., an assumed
node) or not.

assumptions This variable stores a list of all the assumptions known to the

system.

(Assum# n) Accessor functions for assumptions.

(atms-node data) Constructs and returns an ATMS node representing the given
information. The nodes are numbered serially. Note: Node O is always the

NOGOOD-NODE.

(ATMS-Node# n) Accessor functions for ATMS-nodes. These functions return

the node, given the ID number for it. Same as (node# n).

atms-node-count The number of ATMS-nodes, including those that have been
turned into assumptions or premises, known to the system.

(atms-node-data node) Returns the data stored in a node.

(atms-node-ID node) ID number function for nodes.

(atms-node-p node) Tests whether object is an ATMS-node or not. NOTE: "as-

sumptions" (assumed nodes) and premises are also ATMS-nocles.

46

atms-nodes This variable stores a list of all the ATMS-nodes known to the sys-
tern. This includes the assumptions and the premises.

(characterizing-env env) Returns the characterizing environment of the given
environment (possibly itself). Returns nil if inconsistent.

(context env) Returns a list of the nodes in an environment's context, including
the ATMS-nodes, the assumptions, and the premises. Works even if the context
is invalid. This is an expensive function to call.

(create-env ass um-list) Creates a new environment for the system to keep track
of and follow, consisting of the set of all the assumptions in the given

assumption-list. Returns the environment. Returns the old environment in-
stead of creating it if previously there. Currently returns nil if new environment

is nogood. If an ATMS-node in the assumption list was not in fact previously
an assumption, it is assumed by this function. Note that this side-effect should
be used with care.

debug-atms This flag makes the system print out debugging information. De-

fault is nil.

(dont-use ass um-list env-list) Returns a list of environments where environ-

ments containing any of the given assumptions have been deleted.

(dont-use-nodes nodes envs) Returns a list of environments where environ-

ments whose context contains any of the given nodes have been deleted. A
rather expensive function.

(env-assums env) Returns a list consisting of the assumptions that are BELIEVED

in a given environment. Does not check whether environment is inconsistent
or not. Note that more, derived ATMS-nodes will be believed under this envi-
ronment, in the environment's context.

(Environment# n) Accessor function for environments.

environment-count The number of environments known to the system.

(environment-ID env) ID number function for environments.

＊ environments* This variable stores a list of all (both valid and inconsistent) of
the environments known to the system.

(Env# n) A ccessor funct10n for environments.

(env-nogood-p env) Tests whether env is nogood.

(explain-node node) Gives environments in which node is IN.

(explain-nodes) Runs explain-node on all the nodes.

(find-env assum-list) Finds and returns an existing environment. Returns nil if

it did not exist previously. Does not create any new environments. This is a
fast function.

47

geometric-limit-increase This flag tells whether *incremental-assumption-

limit* doubles after every expansion (geometric increase) or stays constant

(arithmetic increase). This number indirectly affects memory allocation, pag-

ing, and performance. Default is T.

(Implic# n) Accessor functions for implications.

(implication consequent data antecedents) Constructs and returns an impli-
cation. Same as (justification ...) .

(Iinplication# n) Accessor function for implications.

implication-count The number of implications known to the system.

(implication-data impl) Returns the data stored in an implication.

(implication-ID implic) ID number function for implications.

(implication-p imp) Tests whether object is an implication or not.

implications This variable stores a list of all the implications known to the sys-

tem. Each assumption internally generates an implication; these are included

as well.

(inconsistent-p env) Returns T if given environment is NOGOOD (INCONSIS-

TENT), nil otherwise. An environment is NOGOOD if the *nogood-node* is

BELIEVED because of it (i.e., in its context). Same as nogood-p.

(in-context-p node env) If the given node is in th~given environment's context,
returns a (usually smaller) characterizing environment describing why that
node is believed. Otherwise, returns nil.

incremental-assumption-size This number tells how much the system's

bit-vector size is increased during the next growth cycle. See

initial-assumption-limit. This number indirectly affects memory al-

location, paging, and performance. Default is 50.

(inference consequent data antecedents) Constructs and returns an implica-

tion (inference). Same as implication.

initial-assumption-limit This number gives a soft limit on the number of

assumptions that the system can store. It is used to determine the initial size
of the assumption-bit-vector assigned to each environment. It must be set

before calling (reset-atms). Set this to the reasonable maximum number
of assumptions expected to be handled by the system. This number affects

memory allocation, paging, and performance. Default is 200.

(IN-p node) Tests whether node is IN. Returns a list of consistent environments

entailing the node (the label) if the node is IN; returns nil if the node is OUT.

This is the recommended function to use when tracing a node with a user-

program.

48

(install-action node action) Installs the command (action) into the given

node. If the given node becomes IN, (i.e., believed in any valid context),
the given action command is executed.

(in-world-p node env) Same as in-context-p.

(justification consequent data antecedents) Constructs and returns an impli-
cation (justification). Same as implication.

(Justification# n) Accessor function for implications.

(justification-data just) Returns the data stored in an implication.

(justification-ID just) ID number function for implications.

(Just# n) Accessor function for implications.

(Node# n) Accessor functions for ATMS-nodes. These functions return the node,

given the ID number for it. Same as (atms-node# n). Note that (Node# 0)
returns the NOGOOD node.

(node-envs node) Returns a list of the minimal environments under which the

given node is believed.

(node-label node) Returns a list of the minimal environments under which the

given node is believed.

(nogood nodel) Builds a justification from the node to *nogood-node*. Standard
method of entering contradictions, which is the same as permanently making

the node's data false. This function can also be called with a sequence of
nodes, in which case each node in the sequence is set to NOGOOD.

(nogood-env env) Forces the given environment (and all of its supersets) to be-
come NOGOOD. Calls no good-set on the (conjunction of the) set of assump-

tions composing the environment. In general, this should be used only because

of higher-level knowledge not part of the knowledge represented in the ATMS.

nogood-node This variable stores the NOGOOD node. This node is allocated

on reset. Note that (Node# 0) also returns this node.

(nogood-p env) Returns T if given environment is NOGOOD (INCONSISTENT), nil

otherwise. An environment is NOGOOD if the *nogood-node* is BELIEVED

because of it (i.e., in its context). Same as inconsistent-p.

(no good-set nodel node2 etc) Builds a justification to *nogood-node* based on
the conjunction of the given nodes. Standard method of entering contradic-

tions. Note carefully that (nogood-set) of a set of nodes, which contradicts
the AND of the set, is not the same as (nogood) of each of the members of the

set, which contradicts the OR of the set.

49

(OR-env envl env2) Returns an environment consisting of the union of the as-
sumption sets from the two given environments. This may be inconsistent,

even if both of the previous two are not. Such an environment might not be a

characterizing environment.

OS This variable holds the Output Stream for the print functions. Default is T,

meaning standard screen output stream.

(OUT-p node) Tests whether node is OUT. Returns T if OUT, NIL otherwise.

(premise data) Constructs and returns a Premise node storing the given informa-

tion.

(Premise# n) Accessor function for premises. This function returns a premise.

Since premises are really_ ATMS-nodes, this is the same as Node#.

premise-count The number of premises known to the system.

(premise-data node) Returns the data stored in a premise.

(premise-ID node) ID number function for premises. Same as (atms-node-ID).

(premise-p node) Tests whether object is a premise or not.

premises This variable stores a list of all the premises known to the system.

(premise-this-node node) Turns an ATMS-node into a premise. Technically, over-
writes the label with the single, empty environment *TRUTH-ENV*. Same

as (presume-this-node).

(presume-this-node node) Turns an ATMS-node into a premise. Technically,
overwrites the label with the single, empty environment *TRUTH-ENV*.

Same as (premise-this-node).

(print-assum assum) Prints an assumption.

(print-assums) Prints a list of all the assumptions, and the corresponding nodes.

(print-atms) Dumps everything. Use this to get used to the system.

print-data When this flag is T, the print functions print out the data inside
nodes and assumptions. When it is nil, the print functions only print out a

numbered node. Set this to nil when very long data is stored in nodes. Default

is T.

(print-implic implic) Prints a given implication.

(print-implies) Prints a list of all the implications, including assumption justifi-

cations.

(print-env env) Prints an environment.

(print-en vs) Prints a list of all the environments.

50

¥; ： ，

(print-node node) Individual item printing functions.

(print-nodes) Prints a list of all the nodes, and their data.

(reset-atms) Clears the ATMS system out.

(reset-BSURE) Clears the B-SURE system out. Wipes out all known State
Types, Situation Types, and Action Types. Resets the ATMS and clears
out all nodes. Automatically initializes Node# 0 as the NOGOOD-NODE,

and Environment# 0 as the Truth Environment.

(reset-SURE) Same as (reset-BSURE).

(reset-UNDA) Same as (reset-BSURE).

(sig-envs env-list) Returns a list of environments where subset and inconsistent

environments have been eliminated. Defaults to using *environments*, all of
the known environments, as input if no argument is given.

(significant-envs env-list) Returns a list of environments where subset and
inconsistent environments have been eliminated. Defaults to using
environments, all of the known environments, as input if no argument

is given.

(subsumed-by-p larger-env smaller-env) Tests to see whether larger-env is

subsumed by (is a superset of) smaller-env. Returns T if subsumed, nil oth-

erwise. Extremely fast.

truth-env This variable stores the empty environment. This environment's con-
text contains all the premise nodes; it is always true.

use-uniquification This flag tells whether ATMS data is treated as being unique

(under equal) or whether it can be duplicated. If unique, (atms-node data)
and similar functions will return a previously created .node instead of creating

a new one. Default is T.

watch-atms This flag makes the system print out a notification each time an

item is created. Default is T.

watch-enlarge This flag makes the system print out a message when the system
enlarges the bit-vector arrays for assumptions. Default is T.

(why-assumptions node env) Explains the assumptions that directly or indi-
rectly contribute to the given node under the given environment. Returns a

list of all the BELIEVED assumptions that justify the node in the environment's

context.

(why-env-assums node) Explains the different assumption sets that this node is

BELIEVED in. Instead of returning a list of environments justifying this node,
like why-envs, this function returns the environments'assumption sets, in the

form of a list of lists of assumptions.

51

(why-envs node) Returns a list of the consistent environments under which (in
whose context) this node is BELIEVED.

(why-implications node env) Explains the contributing immediate implications
that make the given node believed under the given environment. Returns a

list of all the active implications that directly actually justify t_he given node in
the given environment's context. Does not return implications that indirectly

justify the node, or potentially justify the node but are inactive. Returns the
system-generated justification for an assumption.

(why-nodes node env) Explains the contributing immediately preceding nodes
that make the given node believed under the given environment. Returns a

list of all the believed nodes that directly justify the given node in the given

environment's context.

,`̀

(why-nogood-assumptions env) Explains the assumptions that directly or indi-

rectly contribute to NO GOOD under the given environment. The environment

should be inconsistent. This is a very useful function, as it returns only the

mutually conflicting assumptions that are causing the problem with an incon-

sistent environment.

(why-nogood-implications env) Explains the implications that immediately

contribute to the *nogood-node* under the given environment. The envi-
ronment should be inconsistent. Returns a list of the active implications that
actually justify the *NOGOOD-NODE* in the environment's context.

(why-nogood-nodes env) Explains the in皿 ediatelypreceding nodes that con-
tribute to making the *nogood-node* believed under the given environment.
The environment should be inconsistent.

52

(>

C)

References

[AK83]

[All87]

[Bar89]

[BL85]

[BP83]

[Bra87]

[CG89]

(CL87]

James F. Allen and Johannes A. Koomen. Planning using a temporal
world model. In IJCAI'83, pages 741-747, Karlsruhe, West Germany,
1983.

James Allen. Natur:al Language Understanding. Benjamin/Cummings
Pub. Co., Menlo Park, CA, 1987.

Jon Barwise. The Situation in Logic. Center for the Study of Language
and Information (CSLI), Stanford, CA., 1989.

Ronald J. Brachman and Hector J. Levesque. Readings in Knowledge
Representation. Morgan Kaufmann, Los Altos, CA, 1985.

Jon Barwise and John Perry. Situations and Attitudes. The MIT Press,
Cambridge, Mass., 1983.

Michael E. Bratman. Intention} Plans} and Practical Reason. Harvard
Univ. Press, Cambridge, MA, 1987.

Eugene Charniak and Robert Goldman. A semantics for probabilistic
quantifier-free first-order languages, with particular application to story
understanding. In IJCAT89, pages 1074-1079, Detroit, MI, 1989.

Philip R. Cohen and Hector J. Levesque. Intention= choice+ commit-
ment. In AAAI'81, pages 410-415, Seattle, WA, 1987.

[dK86a] Johan de Kleer. An assumption-based tms. A悦ificialIntelligence,
28(2):127-162, March 1986.

[clK86b] Johan de Kleer. Extending the atms. Artificial Intelligence, 28(2):163-
196, March 1986.

[clK86c] Johan de Kleer. Problem solving with the atms. Artificial Intelligence,
28(2):197-224, March 1986.

[JdKW87] Kenneth Forbus Johan de Kleer and Brian Williams. Aaai'87 tutorial on
truth maintenance systems. In AAAI'81, Seattle, WA, 1987. Tutorial
No. TA 4.

[MM88] David McAllister and Drew McDermott. Aaai'88 tutorial on tmth main-
tenance systems. In AAAI'88: The Seventh National Conference on
Artificial Intelligence, St. Paul, MN, 1988. Tutorial No. MPl.

[MN86] Paul H. Morris and Robert A. Nado. Representing actions with an
assumption-based truth maintenance system. In AAAI'86, Philadelphia,
PA, 1986.

[Mye89a] John K. Myers. An assumption-based plan inference system for con-
versation understanding. In WGNL Nf eeting of the IPSJ, pages 73-80,
Okinawa, Japan, June 1989.

53

(Mye89b] John K. Myers. The atms manual (version 1.1). Technical Report TR-1-
0074, ATR Interpreting Telephony Research Laboratories, Kyoto, Japan,

February 1989.

(Mye91] John K. Myers. Plan inference with probabilistic-outcome actions. In
Conj. Proc. Information Processing Society of Japan, volume 3, pages
168-169, Tokyo, Japan, March 1991.

(NW90] Peter Norvig and Robert Wilensky. Abduction models for semantic inter-
pretation. In COLING-90, volume 3, pages 225-230, Helsinki, Finland,

August 1990.

[OCP90] Sharon L. Oviatt, Philip R. Cohen, and Ann Podlozny. Spoken language
in interpreted telephone dialogues. Technical Report AIC-496, SRI In-

ternational, Menlo Park, CA, 1990.

[RG91] Anad S. Rao and Michael P. Georgeff. Asymmetry thesis and side-effect
problems in linear-time and branching-time intention logics. In Proceed-

ings of IJCAI-91, Sydney, Australia, 1991.

[WN88] John R. Walters and Norman R. Nielsen. Crafting Knowledge-Based
Systems: Expert Systems Made (Easy) Realistic. John Wiley & Sons,
New York, NY, 1988. pp. 253-284.

＼
ノ

／ー，＼

flJ

54

	01
	02

