
Internal Use Only

TR-1-0367

The NP Manual
NPマニュアル
Version 3.1

John K. Myers

r
¥

March 16, 1993

Abstract

This manual presents user documentation for the ATR Interpreting Telephony

Research Laboratories Natural-language Plan-inference system, NP version 3.1.

NP is an assumption-based system that uses Nadine-style feature structures as

its basic data representation, for plan schemata input, utterance input, and

output. The system thus will be able to take input directly from the semai;itic

parser, and send output directly to the transfer and/or generat10n modules

◎ ATR Interpreting Telephony Research Laboratories
’ ◎ ATR自動翻訳電話研究所

THE NP MANUAL
'Version 3.1

John K. l¥llyers

ATR Interpreting Telephony Research Laboratories

Sanpeidani, Inuidani, Seika-cho, Soraku-gun

Kyoto 619-02 .Japan

Net mail: myers◎ atr-la.atr .co.jp

Abstract

This manual presents user documentation for the ATR Interpreting Telephony Re-

search Laboratories Natural-language Plan-inference system, NP version 3.1. NP is an

assumption-based system that uses Nadine-style feature structures as its basic data rep-

resentation, for plan schemata input, utterance input, and output. The system thus will

be able to take input directly from the semantic parser, and send output directly to the

transfer and/or generation modules.

The NP system actually contains two other systems, the NFL Natural-language

Fact/Rule Language inference engine, which also uses feature structures, and the ATMS

Assumption-based Truth Maintenance System. These systems can be used by themselves,

for tasks other than plan inference. They are described in here as well.

NP is a Natural-language Plan-inference system that is based on assumptions and

uses feature structures as its input and output. Plan schemata with preconditions, decom-

positions, and effects are represented by feature structures, which can be taken directly

from the output of a semantic parser. The system's result is a network of believed as-

sertions in an ATMS knowledge base, representing the inferred plans. This network can

drive user-supplied processing demons or can be used to answer language-system queries.

The plan-inference component is implemented using models of recognition, prediction, and

inference, and a feature-structure-based inference engine called NFL (Natural-language

Fact/Rule Language). NFL is implemented using a nonmonotonic rewriting system for

pattern-matching, and a Rete algorithm for control and conjunction testing. Its output is

assertions in the ATMS data-base. The ATMS allows pre-instantiation of hypothetically

known assertions and implications. "¥i¥「henthese match observed or derived assertions, sig-

nificant time is saved. The ATMS also permits simultaneous consideration of multiple

possible inputs or inferred plan outputs, which will be important for disambiguation. A

dialog understanding example illustrating how plans are inferred from multiple alternative

inputs is presented.

Copyright (c) 1990, 1993 ATR Interpreting Telephony Research Laboratories.

Acknowledgment

This research was supported by ATR Interpreting Telephony Research Laboratories. I

would like to express my gratitude to Dr. Akira Kurematsu, President of the Interpreting
Telephony Research Laboratories, for the invitation to come to ATR, for providing the

support tha.t enabled this research to be clone, and for the interest shown in this work.

Thanks are also clue .to Mr. Hitoshi Iida, who provided helpful suggestions as to the

technical direction of this work. Finally, I would like to acknowledge the friendliness and the

helpfulness of the rest of the people in the Natural Language Understanding Department.

9、

冒

凰

Contents

I Working with the NP system 2

．
2 Introduct10n 4

3 Glossary 6

4 Data Type Explanation 12

4.1 NP System Data Types 12

4.2 NFL System Data Types 13

4.3 ATMS System Data Types 13

5 Command Type Explanation

5.1 NP Plan Inference System Commands

1
2
1

．

．

1

1

．

．

5

5

NP Creation Commands

NP Nioclification Commands

5.2 NP Commands

5.3 NFL Inference Engine Commands

5.3.l

5.3.2

5.3.3

5.3A

5.3.5

5.3.6

NFL Creation Commands

NFL Modification Commands

NFL Deletion and Initialization Con1111ands

NFL User Query Commands

NFL User Output Commands

NFL User Access Commands

5.3.7 NFL Explanation Commands 19

5.3.8 NFL Significant Variables . 19

5.3.9 NFL System Flag Variables 20

5.4 ATMS Truth Maintenance System Commands 21

5.4.l

5.4.2

5.4.3

5.4.4

5.4.5

5.4.6

ATMS Creation Commands

ATMS Modification Commands

ATMS Deletion Commands

System Activity Commands

Significant Variables

System Flag Variables

5

5

5

7

7

8

8

8

8

9

9

9

1

1

1

1

1

1

1

1

1

1

1

1

21

22

22

23

23

24

6 What is a Plan? 25

7 Format for Plan Schemata 25

8 Purpose. 27

9 The Domain of the Problem. 27

10 Plan Schemata.
し曹

28

11 The NP Plan-Inference System. 28

12 The Plan Inference Layer. 29

13 NFL, A Feature-Structure-Based Inference System.

14 The ATMS Layer.

15 Operation of the NP System.

16 Multiple Possible Input Example.

17 Comparison with Previous Works.

18 Discussion.

19 Critical Evaluation of the NP System

30

31

32

32

34

35

36

20 Assumptions and Understanding

20.1・what Is An Assumption?

20.2 vVhy Are Assumptions Necessary for Understanding?

20.3 NFL VS FS .

20A ATMS .

1

1

1

2

2

4

4

4

4

4

21 The ATMS 42

22 Example Application: Representation of Illocutionary Force

23 Recognition of Plan Inferences.

24 Review of Theory-Types of Knowledge

43

43

44

25 Conclusion. 45

11

A Implementation of NFL 46

B Implementation of the ATMS 49

B.l Impl ementat1011 Data Structures . 49

B.1.1 ATMS-nocle structure ．．． 50

B.1.2 The Assumption-Tag Structure

B.1.3 The Implication Structure

B.1.4 The Environment Structure

50

50

50

B.2 Firing Processing Demons 51

B.3 Efficiency Considerations ．．．． 51

C Version History of NP 5 2

D Example Listing of Plan Input 53

E Example of a Conversation that is Input to the Program 61

F Example Output of the Program 69

G Command Dictionary 7 4

List・of Figures

1 :Models for Plan Recognition, Prediction, and Inference. 30

2 The Plan Recognition, Prediction, and Inference Network for the Example. 34

＼

ー

1 Working with the NP system

NP is installed as a System on the Symbolics netvvork, in directory LM01: >NP>*. This clirec-

tory is designed to contain the complete source to the code of the system itself, including the

system lisp extension :file, a copy of atms5, and a copy of node-graphics. The conversation

data to be processed is kept in a subdirectory, LM01: >NP>example-conversations>*.

The NP system is invoked on the Lisp Machine by using the command Load System

NP.

The plan schemata for the system are kept in various :files starting with

LM01: >myers>np1-plan-XXX.

Running the NP system is done by typing (NP切iput-conversation-file-codetraining-

conversation-file-code list-of-plan-actions-file-codes). The input-conversation :file and the

training-conversation :file are determined based on conversation codes, which are presented

here (from function demo-file in file np2-prog.

(case code

(0 "lm01:>myers>convn>conv0-ex")

(A "lm01:>myers>con>flail-conv-Ae")

(B "lm01:>myers>con>flail-conv-Be")

(1 "lm01:>myers>convn>conv1-test")

(1 "lm01:>myers>convn>conv1-ex")

(1s "lm01:>myers>convn>conv1-ex-short")

((1r r1) "lm01:>myers>convn>rough-1")

((1-4L mixed) "lm01:>myers>convn>conv1-4L-mixed")

(2 "lm01:>myers>convn>conv2-ex")

(3 "lm01:>myers>convn>conv3-ex")

(4 "lm01:>myers>convn>conv4-ex")

(5 "lm01:>myers>convn>conv5-ex")

((dO Od cOd cdO) "lm01:>myers>convn>c-demo-0")

((di id cid cdi) "lmOi:>myers>convn>c-demo-i")

((d2 2d c2d cd2) "lmOi:>myers>convn>c-demo-2")

((d3 3d c3d cd3) "lmOi:>myers>convn>c-demo-3")

((d4 4d c4d cd4) "lmOi:>myers>convn>c-demo-4")

((d5 5d c5d cd5) "lmOi:>myers>convn>c-demo-5")

((d6 6d c6d cd6) "lmOi:>myers>convn>c-demo-6")

((d7 7d c7d cd7) "lmOi:>myers>convn>c-demo-7")
’

((cAs cAst) "lm01:>myers>convn>cA-short-test")

((cBs cBst) "lm01:>myers>convn>cB-short-test")

((c1s c1st) "lm01:>myers>convn>c1-short-test")

((c2s c2st) "lm01:>myers>convn>c2-short-test")

((c3s c3st) "lm01:>myers>convn>c3-short-test")

((c4s c4st) "lm01:>myers>convn>c4-short-test")

((c5s c5st) "lm01:>myers>convn>c5-short-test")

2

((c1sp c1p c1stp) "lm01:>myers>convn>c1-short-test-preinit")

(6 "lrn01:>rnyers>con>flail-conv-6e")

(7 "lrn01:>rnyers>con>flail-conv-7e")

(8 "lrn01:>rnyers>con>flail-conv-8e")

(9 "lrn01:>rnyers>con>flail-conv-9e")

(10 "lrn01:>rnyers>con>flail-conv-10e")

(-1 "lrn01:>rnyers>convn>conv0-ex")

((4L1 4L) "lrn01:>rnyers>convn>4L-conv1")

((4L2 FS-LF) "lrn01:>rnyers>convn>conv1-ex")

(train "lrn01:>rnyers>cs-conv2")

(test "lrn01:>rnyers>convn>srnall-test")

(same same-file-name)

((nil) nil)

(T (progn

(format T "-&Using unfamiliar conv file -A.-%" code)

code))

ーヽ

The plan action schemata files use different codes, determined in function plan-file

in file np2-prog.

(loop for mycode in code

collecting

(case mycode

(1A 11lm01:>myers>np1-plans-1a-TRNSFR-rules11)

((4L1 4L) 11lm01:>myers>np1-plans-4L11)

((4L2 FS-LF) 11lm01:>myers>np1-plans-4L-FS-LF11)

(0 11lm01:>myers>np1-plans0-test11)

(1 11lm01:>myers>np1-plans1-shortAns11)

(10 11lm01:>myers>np1-plans1011)

(2 11lm01:>myers>np1-plans2-informif11)

(3 11lm01:>myers>np1-plans3-hello-bye11)

(4 11lm01:>myers>np1-plans4-CAN11)

(5 11lm01:>myers>np1-plans5-asking-knowing11)

(6 11lm01:>myers>np1-plans6-domain11)

(7 11lm01:>myers>np1-plans7-idioms11)

(8 11lm01:>myers>np1-plans8-cmnSns-time11)

((dO Od cOd cdO) 11lm01:>myers>np1-plan-c0-short11)

((di 1d c1d cd1) 11lm01:>myers>np1-plan-c1-short11)

((cAs cAst) "lm01:>myers>np1-plan-cA-short")

((cAi cAio cAo) "lm01:>myers>convn>cA-inter-old-test")

3

((cBs cBst) 11lm01:>myers>np1-plan-cB-short11)

((cBi cBio cBo) 11lm01:>myers>convn>cB-inter-old-test11)

((c1 1c 1r r1) "lm01:>myers>np1-plan-c1-rough11)

((c1s c1st) 11lm01:>myers>np1-plan-c1-short")

((c1i c1io c1o) 11lm01:>myers>convn>c1-inter-old-test11)

((c1ri t c1i t 1ri t r1i t c1irt) 11lm01: >myers>convn>c1-inter-rough-test 11)

((c1ri 1ri r1i c1ir) 11lm01: >myers>convn>c1-inter-rough11)

((c2s c2st) 11lm01:>myers>np1-plan-c2-short")

((c2i c2io c2o) 11lm01: >myers>convn>c2-inter-old-test 11)

((c3s c3st) "lm01:>myers>np1-plan-c3-short11)

((c3i c3io c3o) "lm01:>myers>convn>c3-inter-old-test11)

((c4s c4st) 11lm01:>myers>np1-plan-c4-short")

((c4i c4io c4o) 11lm01:>myers>convn>c4-inter-old-test11)

((c5s c5st) "lm01:>myers>np1-plan-c5-short")

((c5i c5io c5o) 11lm01:>myers>convn>c5-inter-old-test11)

(train 11lm01:>myers>cs-plans211)

(test "lm01 :>myers>convn>inter-small-test")

(full "lm01:>myers>cs-plans")

((normal default can)

11lm01:>myers>cs-plans-can11)

(T (progn

(format T 11-&Using unfamiliar plan file -A.-%" mycode)
mycode))

）

奮

into answerlist

finally (return answerlist)

）

The results are represented in the system's ATMS data-base. Finally, if you want the

results printed out in a graph, you should call draw-graph (reverse *atms-nodes*)).

2 Introduction

This manual describes the ATR Interpreting Telephony Research Laboratories'NP plan

inference system, version 3.1. NP stands for the Natural-language Plan-inference system.

The NP system accepts descriptions of general actions, in the form of plan schemata with

variables. Next, the system is preinitialized with common-sense knowledge assertions and

hypothetical knowledge. Finally, the system is given parsed feature-structure utterances

from a conversation. The system instantiates a hierarchy of plan schemata representing

the recognized, predicted, and inferred plans abstracted from the conversation.

The NP system actually consists of three systems, or layers, taken together. Because

the user can interface with NP at any one of these layers, it is important to understand

4

all of them. The NP plan inference layer is a plan inference engine. It works with feature

structures as its basic input format, both for data and plans to be recognized. This is the

level that the user will probably use most often. The NP plan inference layer uses the

NFL layer. NFL stands for the Natural-language Fact/Rule Language. It is an inference

engine that works with feature structures as its input. NFL uses the AT.MS layer to record

its inferences. ATMS stands for Assumption-based Truth J1!faintenance Syste叫dK86a].

The ATMS is a data-base that is able to represent and store concepts (atms-nodes) and

constraints between these concepts (implications) that occur in different possible situations

at the same time, known as multiple possible worlds. ・worlds are set up by "assuming" a

concept-if the assumed concept is believed, this contributes to forming one possible world,

whereas if the assumption is disregarded (not believed), this forms a different possible

world.

Dia.log understanding is important for machine translation. In order to disambiguate

possible translations, it is necessary to represent the perceived beliefs and goals of the di-

alog participants. However, beliefs cannot be directly observed; thus, when understanding

a dialog, it is necessary for a system to make assumptions. The dialog participants must

also make assumptions about domain operations and communication, that must be mod-

eled by the system. However, when moving beyond the understanding of simple dialogs

to using input from a real corpus, these assumptions can be mistaken. The understand-

ing system therefore must be able to 1) explicitly model assumptions; 2) retract mistal;;en

assumptions; 3) automatically retract all beliefs that depend on mistaken assumptions; 4)

represent m1dtiple possibilities; 5) explicitly rep1・esent the a研erencebetween possible and

actual belief

This paper presents a plan-inference system built using an assumption-based truth

maintenance system (ATlVIS) that accomplishes these requirements. The system can be

used as a tool to represent and understand plans based on assumptions and facts. An

assumption is a possible belief that is treated as believed true, but may be (nonmono-

tonically) retracted later. A multi-valued uncertainty logic, containing the values actual,

possible, hypothetical, and inconsistent, is used to represent assumptions and the

degree of belief in assertions'current and predicted occurrence. The system uses precondi-

tion/ effect/ decomposition plan schemata with variables in order to represent actions and

plans.

This manual starts out with a glossary, which defines the technical terms that are used.

Next is a command explanation section that gives a breakdown of all the commands used

in the system, grouped by function. After this, technical discussions of various aspects of

the NP system are presented. Finally, a command dictionary is provided in the appendix

for the convenience of the user.

It is strongly recommended that the reader first read the ATMS manual [Mye89b], in

order to get a background for the logic and the underlying operations, before reading this

manual Although this manual was originally designed to stand by itself, it is easier to use

the two manuals rather than having to repeat most of the ATMS manual in here. Note

that the NP system uses a later version of the ATMS than that discussed in the ATMS

manual [Mye89b], and some of the commands have been changed or upgraded. All of the

important commands have been documented here.

5

3 Glossary

In the definitions in this section, italics represent terms that are defined elsewhere under
other definitions; bold face represents the term itself. Underlining is occasionally used for
emphasis.

Action A conceptualization of a change that happens in the real world. The dual of

state. Actions supposedly map one world into another world. For the purposes of the
current version of NP, time is disregarded (e.g., actions are either assumed to occur

instantaneously, or the duration does not matter). Actions are represented by plan
schemata.

Action Schema See plan schema.

Act叫 Abelief value. When an assertion is actually believed, then it is considered to

be "real"-it definitely happened in the "real world". Also see possible1 hypothetical1
加 onsistent,and叫 l.

Alternatives vVhen a person utters a sentence, the speech recognition module and the

parsing module create a number of different possible interpretations for that single

utterance. These are input to the NP system as a set of alternatives. An alterna-

tive has two distinguishing characteristics: (1) It is a possible, not an actual observed

utterance; (2) It is pairwise inconsistent with all other utterances in that alternative
set. That is, only旱 ofthe alternatives will be believed true, and the rest not
believed; however, the system does not know which one to believe.

Antecedent The IF part of an IF-THEN concept. Both NFL rules and implications have

antecedents. Each rule or implication can have one or more antecedents.

Assertion A concept. A "fact" or "statement", that will either be believed or not believed.

Assertions are explicitly represented in the system, by using feature structures. Giving

a concept to the system is called making an assertion, or asserting a statement. An

assertion can have an interpretation or belief value of actual, possible, hypothetical, or

inconsistent. Since an assertion by definition must be represented inside the system,
it is techically impossible for an assertion to have the belief value of null.

Assume To believe that a concept is possible (as opposed to act1wl or hypothetical). Also,

the action of augmenting an ATMS-nocle by turning it into an assumption.

Assumption A concept that the user system thinks is basic or influential. Assump-

tions are concepts on which other concepts depend. Also, the data-structure that

represents this concept. Assumptions are also ATMS-nocles that have been specially

marked, by assuming them. Typically, assumptions will justify a network of ATMS-
nodes. A single assumption can be BELIEVED or NOT BELIEVED. In fact, it takes on
both of these values simultaneously; this serves to split the knowledge base into two

different [sets of] possible worlds.

ATMS-node The basic atomic data structure for the ATMS system. An ATMS-nocle

stores a single concept (or assertion).

愴

I

-'

6

Belief Value A value assigned to a state or assertion by an observer describing whether

the observer believes that that state corresponds with the real world or not. Be-

lief values are used by the NP system instead of truth values to interpret results.

The system currently uses a five-valued belief value system. See actual, possible1

hypothetical1 inconsistent, and null.

Believed A truth value for a concept (ATMS噂 ode)in a particular possible world (conte説）．
BELIEVED corresponds to TRPE in a trinary TRUE/FALSE/UNKNOWN logic. See not

believed.

Characterizing Environment A characterizing environment is a consistent, com-

plete, m切imalenvironment that characterizes (uniquely represents) a context. Since

all valid environments that are not created by the user are always characterizing

environments, this concept may be ignored. See environment instead.

Concept An idea about something, represented by an ATMS-node or an implicatio几

Conjunction A logical AND. If止 ofthe items in a conjunction are believed, then the

conjunction as a whole is believed.

Consequent The THEN part of an IF-THEN concept. Each implication has one conse-

quent. NFL rules can have more than one consequent.

Consistent A context is consistent if it is not inconsistent. Conceptually, a. possible

world is consistent if a.11 the things that are believed in that possible world can a.11 be

believed at the same tinie.

Context The set of all BELIEVED nodes that are implied by a.n environment's assumptions.

An environment is only a set of assumptions, whereas a context consists of those

assumptions plus all ATMS-nocles that are directly or indirectly implied by those

assumptions (including all premises), following all active implication cha.ins forward

as far as possible. A context is an entire possible world, including all the concepts

implied by it.

If a context includes the *nogood-node*, that context is inconsistent.

Constraint A concept that rules out the possibility of something happening, i.e. several

specific concepts occurring at the same time. That is, it states that these concepts

taken together are inconsistent. Constraints are implemented in the ATMS system

by implications.

Contradiction A contradiction is a set of concepts that cannot all be BELIEVED at the

same time. See inconsiste叫．

Deletion Physically removing an item from the knowledge base. ・when an item is deleted,

its truth value becomes mdl. See retraction.

Disjunction A logical OR. If any one or more of the items in a disjunction is believed,

then the disjunction as a whole is believed.

Disregarded This means, Not used by the system. Another name for Not Believed.

7

Environment A data structure that stores a list of believed assumptions. An environment

represents and is the symbol for a possible world. An environment implicitly implies
a context. An environment can be consistent or inconsistent.

Feature Structure A particular data representation method. A feature structure com-

prises a list of features. Each feature has a value that can be an atomic value or a

feature structure. The NP and NFL systems use the Hasegawa-style Nadine feature

structures.

Hypothetical A truth value. Assertions that are hypothetical are known to the system,

but are not believed true, nor believed false. The system has no opinion about them.
The system simply knows that the assertions could exist.

Implication A logical form, consisting of the conjunction of a number of antecedents, and

a single consequent. If, in any one possible world, all of the antecedents are BELIEVED,
then this implies that the consequent must be BELIEVED as well. The antecedents

imply the consequent. An implication is both this concept, and the name of a data

structure that represents this concept. See justification.

Implications can have associated data attached to them that exp la.in (to the user

system) why this implication is valid. This can simply be the name of the implication,

or a user system representation of the rule that this implication represents, etc.

In A truth value for a concept (ATMS-node) taken over the set of all known possible worlds

(conte.-rts). If the ATMS-node is BELIEVED in at least one known, consistent context,
then it is IN. See OUT.

Inconsistent A context is inconsistent if it includes the *nogood-node*. Conceptually,

a possible world is inconsistent if it has a thing that cannot be believed, or if there

are things in that possible world that cannot be believed together. Inconsistencies

(contradictions) are asserted into the ATMS by the 1tse1・system by using the (nogood)
or the (nogood-set) commands.

The system only uses the inconsistencies that it is told about; there are no implicit

inconsistencies. In particular, all negatives have to be expressed explicitly.

Inconsistent 1s also a belief value for a concept, corresponding
to permanently not believed. Concepts that are切consistentwill never be believed

true by the system.

Invalid Inconsistent.

Item An instantiation of any data structure, including an environment, an ATMS-nocle,

an implication, etc.

Justification A justification is actually the same as an implication, but the conceptu-

alization is different. A believed ATMS-node that is not an assumption must have

at least one implication that justifies why this node is believed. The node is the

consequent of the justification, and the node is justified by the antecedent nodes. All

of the antecedent nodes must be believed in order for the nodes to "actually justify"

the consequent; otherwise, they simply "potentially justify" the consequent. The

justification is the link between the antecedents and the consequents. A justification

賣

8

is both this concept, and an alternative name for the implication data structure that

represents this concept.

A justification can have associated data attached to it that explains the reason behind

that justification. This could be a name, or some other concept relevant to the user

system.

Knowledge Base The sum total of assertions that have been made to the system. The

contents of the ATMS system, looked upon as a data-base that represents knowledge.

Label A set of environments attatched to a node. Each environment is conS'iste直， and

the node is BELIEVED in each environment. The set is complete but m切imal;thus,

larger (subsumed) environments having no new information will not be listed.

Minimal A label is minimal if it contains the smallest possible significant environments.

Technically, a set of environments is minimal when no environment in the set is

subsumed by another environment in the set. Because label environments consist of

sets of assumptions that justify a node's concept, maintaining a minimal label stores

only the assumptions that are truly relevant.

Mutually Inconsistent A set of two or more items is mut叫 lyinconsistent if all (the

conjunction) of the items cannot be believed true at the same time (i.e., in the same

possible world). For a set of n mutually inconsistent items, it is alright to have any

(n -1) items be believed true. Mutual inconsistency is implemented in the ATNIS

by building a single implication that has all of the items as its antecedents and the

rwgood-node as its consequent.

NFL The Natural language Fact/Rule Language (or, the Nadine-based Fact/Rule

Language). An inference-engine system that works with feature structures as its

basic input and output, and asserts its results into the ATMS. Since NFL uses the

RWS rewriting system to pattern-match new assertion feature-structures against all

of the rule patterns, it is rather slow.

Node An ATMS-node, Assumption, or Premise.

N ogood A loose term that technically means inconsiste磁 whenapplied to an environ-

ment, but can also mean OUT (or even sometimes, incorrectly, not believed) when

applied to a node. ・when an environment becomes nogood, there is no way to reverse

this change.

Nogood-Node A special node used by the system to embody and represent the concept

of nogood or inconsistency.

Not Believed A truth value for a concept (ATMS-node) in a particular possible world (coか

text). NOT BELIEVED corresponds to UNKNOWN in a trinary TRUE/FALSE/UNI<:NOWN

logic. See believed. Other ways of thinking about NOT BELIEVED include DISRE-

GARDED, or NO OPINION. Note that NOT BELIEVED is .ill庄thesame as FALSE; there

is no way to explicitly represent FALSE using an ATMS.

No Opinion NOT BELIEVED.

，

Null A belief value. Concepts that are null are completely unknown to the system. The

system has no opinion as to whether the concept could be true or not. The system
has no representation for the concept.

Out A truth value for a concept (ATMS-node) taken over the set of all known possi-
ble worlds (contexts). If the ATMS-nocle is NOT BELIEVED in all known, consistent

contexts, then it is OUT. See IN.

Pairwise Inconsistent A set of two or more items is pairwise inconsistent if (at most)

only旱 itemin that set can be believed true at any one time (i.e., in any one possible

world). This follows because if any D四 ormore items in the set were to be believed,

the belief would be inconsistent. For example, a set of input utterance alternatives is

pairwise inconsistent-only one of the alternative utterances can be believed true,

and the rest must be wrong. However, it is not known豆h辿 oneto accept. Pairwise
inconsistency is implemented in the AT.i11Sfor a set of n nodes by iterating through

the n(n -1)/2 set of all possible巴巴ofnodes, and setting the conjunction of each
pair to imply the nogood-node.

Plan Schema A plan schema is a form of representation for a single action. A plan

schema names the action, and defines it. Plan schemata are composed of a list of

precondition states that are necessary in order for the action to take place; a list of

effect states that become true after the action takes place; and a list of decomposition

actions that compose the defined action.

Plan Schemata l¥fore than one plan schema. The representation method used to repre-

sent actions.

Possible A belief value. If an assertion is possibly believed, it could be true, or it could
not be true. Possible beliefs are used to represent altematives.

Possible World Something that could be happening. An intuitive conceptualization of

an environment and its context. A self-consistent set of assertions that are all believed.

Premise A concept that is considered to be always true, no matter what. Technically, a

premise is BELIEVED in all possible worlds. A premise cannot be retracted, but it
can be deleted. Premises represent the truth value actual.

Retraction Taking an assertion back; no longer believing it. Retraction essentially con-

sists of making an assertion NOT BELIEVED in all considered possible worlds. This can
be done permanently by setting the node representing the assertion to directly imply

NOGOOD; or, it can be done conditionally by having the node, and an assumption

that the node is really retracted, together imply NOGOOD. Alternatively, retraction

can be accomplished by not considering any possible worlds in which the node is

BELIEVED. Retraction differs from deletion in that deletion physically removes the

node (setting its truth value to nulり， whereasretraction simply removes the且 of
the node by the system (setting its truth value to inconsistent). Items can now be

deleted in the current system.

Schema See plan schema.

Schemata This is the (irregular) plural form of the word schema.

10

..

,.,
I

-,

State A basic concept. A logical sentence or assertion about the conditions of certain

things in the world, along with an associated belief value. States are timeless. Actions

are thought of as being a change between states or state values.

Subsumed An environment is subsumed by another environment if it is a larger super-

set of the beliefs of that environment. For instance, environment 1 contains believed

concept A, "The c?mputer has crashed", while environment 2 contains believed con-

cept A plus believed concept B, "There is a pen on the table". Environment 2 is

subsumed by environment 1. To obtain a m切imalrepresentation, subsumed envi-

ronments are eliminated from labels.

Truth Maintenance The problem of maintaining the correct truth value of assertions

that are based on the truth value of other assertions. Since there can be long chains

of truth dependencies, a particular truth value typically propagates through many

nodes.

Truth Maintenance System (TMS) A computer system that performs truth mainte-

nance. There are several kinds. An Assumption-based Truth lvfaintenance System

allows the representation of multiple possible worlds simultaneously, whereas most

other kinds can only represent a single possible world.

Truth Value A value associated with a particular state or assertion, defining whether that

state corresponds to the real vvorld or not. Traditional binary truth value systems

used the _values TRUE and FALSE; new trinary truth value systems use the values

TRUE, UNKNOWN, and FALSE. The objective truth of whether a state actually exists

in the real world usually cannot validly be determined. It seems always necessary for
an observer to subjectively determine the truth of an assumption. For this reason,

the NP system uses a five-valued belief value system instead of a truth value system

for actual result interpretation.

Unknown See NOT BELIEVED.

User System The user system is a computer system outside of the ATMS, that uses

the ATMS to help solve its problems. The user system will have data structures and

information that the ATMS knows nothing about. The ATMS stores data for the

user system, and reports answers to it.

Utter To speak with the mouth. To make a single phrase or sentence known as an

utterance, that is treated as a single unit.

Utterance A sound, consisting of a single phrase or sentence, that is made by a person

wanting to communicate. Also, the feature-structure representation of that sound,

as obtained from the results of the speech recognition module and/or the syntac-

tic/semantic parsing module. Utterances are asse1・ted into the system, as input.

Valid Not inconsiste直．

World See possible world.

World State The set of all significant states defining a possible初 orld.

11

4 Data Type Explanation

This section presents a description of the NP system's data types. The data types are

divided based on whether they belong to the NP plan inference system, the NFL inference

engine, or the ATMS truth-maintenance system.

”
 4.1 NP System Data Types

Plan Schema A description/ de恥 itionof a single action, used in the recognition and
inference of plans. A plan schema has an action name 01、 description,a series of

preconditions, a series of decompositions, and a series of effects. All of the components

of the plan schema, including the action name or description, can include variables.

All of the components of a plan schema, and the plan schema itself, are represented

using feature structures. (The plural of schema is "schemata", this word is irregular

in English.)

Sufficiency Set An optional specification attached to a particular plan schema. Normally,

an action requires that the set of all of its preconditions and decompositions be

present in order to be recognized. The specification of sufficiency sets a.llo-ws subsets

of these to recognize the action. This is useful in cases where the action has multiple

alternative decompositions.

Assertion (Utterance) A logical structure representing a particular complex concept
inside the system. ・whereas an assertion is any concept, an utterance is a concept or

phrase that has been spoken by one of the conversation participants. Assertions are
represented using feature structures. Assertions are assigned a logical belief value

by being stored in ATMS-nocles. Assertions are used to represent utterances, facts or

statements about the conversation, common-sense knowledge statements, and derived

results. Utterance assertions are used as input to the system. The following :five types

of utterance assertions are distinguished:

Preinstantiation Utterance, or Hypothetical Utterance This is an utterance that

the system thinks beforehand coitld be said in the actual conversation. The system
uses the hypothetical utterances to preinstantiate chains of reasoning. The system

gives no commitment whatsoever to the preinstantiation utterances; it does not be-

li~ve that they exist in the real world.

Actual Utterance This is an utterance that the system believes actually exists in the

real world. The system is complet~ly committed to this utterance. This category
also includes assertions about domam knowledge and connnon-sense facts known to

be true. Actual utterances are used to input data from conversations known with

certainty.

Possible Utterance This is an utterance that the system believes may actually exist
in the world. The system believes that the utterance may or may not have been

observed. This category also includes assertions about uncertain domain facts. Note

that in most cases the following classification, alternative utterances, will be used

instead of this one.

12

Alternative Utterances These are a mut叫 lyexclusive set of utterances, one of which

the system believes may actually exist in the world. Alternative utterances must
always be entered in sets. Only one utterance from the set is allmved to be believed

in any one possible world. Thus, the system only believes one utterance at a time,

but it explores the possible belief of each utterance in the set simultaneously. The
system does not force belief in one of the alternatives; it is possible for all of the

alternatives to be not believed. Alternative utterances are used to input data from

conversations that have been recognized with uncertainty, where each uttered phrase
has many alternative candidate utterances, and it is not known for certain that the

actual utterance is in fact contained in the alternatives.

Goal Utterance This is an utterances that is possibly or definitely known to represent

the goal of one of the conversation participants. In the current system, these must

be extracted and explicitly asserted to the system. Goal utterances are used for

plan prediction and inference. The current plan inference method does not bother to
discriminate between actual goals and possible goals; both trigger plan inference.

4.2 NFL System Data Types

NFL-Fact An assertion made to the NFL system. NFL-facts are represented by using

feature structures. NFL facts are always hypothetical; the NFL system does not
distinguish between the actual, possible, and hypothetical belief values, nor between

different possible worlds. NFL uses the ATMS to perform these functions. NFL-facts

get placed in a single fact-pool.

NFL-Rule An inference rule that is specified to the NFL system. NFL rules are composed

of a list of antecedent patterns, a list of consequent patterns, and a special optional

list of effect-consequent patterns. Each of these components is in the form of a feature

structure, and each feature structure can have variables. vVhen all of the antecedents

consistently match a particular set of facts in the NFL fact-pool, the consequents and

the effect-consequents are instantiated, and the entire inference instance (antecedents

imply consequents, and the first consequent implies all of the effect consequents) are

instantiated (hypothetically) into the ATMS. If the flag *nfl-propagate* is T, both
the consequents and the effect-consequents are inserted back into the NFL fact-pool.

4.3 ATMS System Data Types

There are three major kinds of data in the ATMS system. These are:

ATMS-node A node. Otherwise known as a Concept, a Statement, or (sometimes, de-

pending upon the usage) an Assumption. Nodes are used to store Utterances or

Assertions.

implication An AND GATE structure between nodes. Takes many antecedents and one

consequent. If all the antecedents a.re IN, then the consequent is IN. Also known as

a Justification, a Constraint, or an Inference.

13

environment A set of assumptions. Each assumption in the environment is BELIEVED

under that environment. Also known as a Possible vVorld, Assumption Set, or Con-
sistency Set.

In addition, each ATMS-node can merely be a simple node, or it can be modified to
become one of the following two mutually-exclusive subtypes:

premise A node that is always true. It does not have its own kind of data structure.

Premises have the empty environment (#0) as their label.

assumption A fundamental node that is used to justify other concepts. Assumptions

are both BELIEVED and NOT BELIEVED. They are used for environments.

14

,.

5 Command Type Explanation

This section presents a description of the NP system's commands. The commands are

divided based on whether they belong to the NP plan inference system, the NFL inference

engine, or、theATMS truth-maintenance system. In addition, the commands are arranged
by the type of function they perform.

5.1 NP Plan Inference System Commands

This section presents the commands used for the NP Plan Inference system.

5.1.1 NP Creation Commands

Utterance Assertion Commands. These commands assert utterances into the NP sys-

tem, with varying levels of realization. The utterance takes the form of a single feature

structure, or a set of mutually exclusive feature structures (e.g., from the results of an am-

biguous process). Act叫 ly,the feature structure does not have to represent an utterance-it

could represent world knowledge or other assertions just as easily.

(preinstant-utt FS) This command enters an utterance into the NP system for prein-

stantiation. The utterance is then a hypothetical fact or concept that the system

knows about, but does not believe exists in the world yet. Preinstantiation utter-

ances are used to allow the system to do (slow) reasoning off-line, ahead of time. The

system reasons with the utterance, even though the system knows the utterance is

only hypothetical.

(hypothetical-utt FS) This command enters a hypothetical utterance or concept into

the NP system. It is actually the same as preinstant-utt.

(actual-utt FS) This command enters a feature structure representing actual utterance

or concept into the NP system. After this, the system will believe, with certainty,

that the utterance happened or the concept exists in the "real world". If the system

has seen the concept before with a hypothetical or possible value, no (slow) reasoning

is performed. However, the system does update the values of resulting implications,

in a rapid manner. If the system has not seen the concept before, first the concept

is instantiated hypothetically and reasoning is performed using the concept; next,

the concept's value is upgraded to ACTUAL and the system correspondingly updates

implied concepts.

If one of a set of pairwise inconsistent concepts is asserted as actual, the remaining

concepts automatically immediately become inconsistent.

It is a mistake to assert as ACTUAL a concept that is already INCONSISTENT.

(possible-utt FS) This command enters a feature structure representing a possible (un-

certain) utterance or concept into the NP system. After this, the system will believe,

with uncertainty, that the utterance may have happened or that the concept may

exist in the "real world". However, other possibilities are also allowed. If the system

15

has seen the concept before with a hypothetical value, no (slow) reasoning is per-

formed; the system simply updates the value of the representative ATMS node to

POSSIBLE, and propagates the resulting implications in a rapid manner. If the system
has not seen the concept before, the concept is sent to the NFL inference engine and

reasoning is performed with it in a hypothetical manner. Next, the concept is then
upgraded from HYPOTI—IETICAL to POSSIBLE.

It is a mistake to assert as POSSIBLE a concept that is already ACTUAL or INCONSIS-

TENT.

(alternative-utts FSl FS2 ...) This command enters a set of feature structures repre-

sen ting pairwise inconsistent possible (uncertain) utterances or concepts into the NP

system. After this, the system will believe, with uncertainty, that any one utterance

from the set may have happened or may exist in the "real world". Only one con-

cept or utterance out of the set will be true, and the rest will be false. However,
the system will not know which orie is true, and will explore all possibilities. It is

also possible that none of the utterances are true. If the system has seen a concept

before, no reasoning is performed with that concept; otherwise, the system uses the
concept for inferencing. In any case, the resulting updates to the given node values

are propagated.

If, later on, one of the alternatives is re-asserted as ACTUAL, all of the other alterna-
tives i1nmediately become INCONSISTENT.

It is a mistake to assert as an alternative any utterance that is already ACTUAL or
INCONSISTENT.

＂

(goal-utt FS) This command enters a feature structure representing a goal utterance or
assertion.

(inconsistent-utt FS) This command enters a feature structure that is self-inconsistent

and will never be believed by the system in any possible world.

(incon-utt FS) Same as the inconsistent-utt command.

(mutually-inconsistent-utts FSl FS2…) This connバandenters a set of feature-
structure assertions that are mutually inconsistent. The entire set, i.e . .the con-

junction of all of the assertions taken together, is made inconsistent and wiUnever

be believed in any possible world. However, of then assertions in the list, any n -1

or less assertions may be believed at the same time in any one possible world.

(mutual-incon-utts FSl FS2…) Same as the mutually-inconsistent-utts com-

mand.

(pairwise-inconsistent-utts FSl FS2) This con11nand enters a set of feature-structure

assertions that are pairwise inconsistent, i.e. they can never both appear in the same

possible world. This is the same as the mutually-inconsistent construction, with

n = 2.

(pair-incon-utts FSl FS2) Same as the pairwise-inconsistent-utts command.

16

5.1.2 NP Modification Commands

Currently there is no way to modify a fact or rule in the NP system.

5.2 NP Commands

(NP-Action [plan-FS]) Declares a plan schema to the system. The schema should be

an explicit feature-structure. The semicolon character, ";", supports to-end-of-line
comments, even inside the feature structure. It is important that the action have at
least one precondition or decomposition; otherwise, it will never be instantiated and

will be useless. The current version is UN ABLE to accept extra features in the data

to be matched, that are not described in the plan feature structure.

(NP-Input "documentation-string" [data-FS]) Declares an input data assertion to the
system. The schema should be an explicit feature-structure. The semicolon character,

";", supports to-end-of-line comments, even inside the feature structure.

17

5.3 NFL Inference Engine Commands

This section presents the commands used for the NFL inference engine.

5.3.1 NFL Creation Commands

(nfl-rule ant-FSl ant-FS2…ant-FSn consq-FS) This command is the main user••in­
terface for entering a rule into the NFL system. A rule is specified, such that a series

of antecedents implies a consequent. Because of the syntax, currently only one con-

sequent pattern can be specified. All of the feature structures can have variables.

However, the variable names should be the same between feature structures. The

feature structures currently must be in internal format (they must have been read

in already). This function returns the created n恥 uleobject. There is no particular

reason why the user system should save this object.

(nfl-rule-list'(ant-FSl ant-FS2…)'(consq-FSl consq-FS2 ...) &optional'(eff-

FSl eff-FS2…)） This command is the main system interface for entering a rule

into the NFL system. A rule is specified, such that a series of antecedents implies

a series of consequents, and then the LAST consequent (only) implies an (optional)

series of effect consequents. The command takes (two or) three lists as input; each
of the series of patterns must be a list of feature structures in internal format. This

function returns the created nfl-rule object. There is no particular reason why the

user system should save this object.

(nfl-fact FS) This command is the main interface for entering a fact into the NFL system.

A fact must be in internal feature-structure format. In the current system version,
all of the NFL-rules must be entered into the NFL system before the NFL-facts start

being entered. The system only tests facts against those rules that are already there.

vVhen a new rule is entered, it is currently not tested against any facts that might
already be there. This was made expedient by the implementation of the pattern-

matcher, which uses the rewriting-system engine.

(clock-nfl-stack) This command pulls the first rule instantiation off the top of the stack,

examines it, and fires the rule if the antecedent arguments are consistent. It returns

T if an entry was found, and nil if the stack was empty.

Since this function is now called with a (loop while (clock-nfl-stack)) at the

end of (nfl-fact), there is currently no need for the user to ever use this function.

This may change to more explicit control in the future.

5.3.2 NFL Modification Commands

Currently there is no way to modify a fact or rule in the NFL system.

5.3.3 NFL Deletion and Initialization Commands

Currently there is no way to individually delete a fact or rule in the NFL system.

18

(reset-nfl) Resets the NFL system. Clears out the rules, their patterns, and the active

rules stack. (In the current system there is no fact table to clear). Caution: ALSO

RESETS THE HASEGAWA RWS SYSTEIVI.

5.3.4 NFL User Query Commands

(nfl-rule-p item) Tests whether i tern is an n恥 uleor not.

5.3.5 NFL User Output Commands

(print-nfl-rules) Prints out all n恥 ules.

(print-nfl-rule nfl-rule) Prints out a single specified nfl-rule.

(print-nodes) Prints a list of all of the nodes in the ATMS. This includes at least all of

the NFL facts known to the system.

5.3.6 NFL User Access Commands

(nfl-rule# n) Accesso1、functionfor n恥 ules. Returns the object representing n恥 ule

#n.

(nfl-pattern# n) Accessor function for nfl-patterns. Not normally used.

5.3. 7 NFL Explanation Commands

The firing of NFL rules can be backtracecl by using the explanation capabilities of
the ATMS. See Section ??. In particular, the functions (why-env-assums fact) and
(why-envs fact) are useful, for a given fact feature structure.

5.3.8 NFL Significant Variables

nfl-rule-count This variable contains an integer that tells the number of nfl-rules that

have been entered in to the system. The default is O.

nfl-pattern-count This system variable contains an integer that tells the number of nfl-

patterns that have created by the system. The default is 0. The user should not need

to use this variable.

nfl-answer-stack This system vari~ble is used by NFL to interface with the RvVS rewrit-
ing system. The pattern-match answers from the R1NS system are pushed on this

stack by RWS and pulled off by the NFL system. The user should not need to use

this variable.

nfl-rules This variable stores a hash-table of all the rules known to the NFL system.

nfl-patterns This variable stores a hash-table of all the rule patterns known to the

NFL system.

19

nfl-active-rules This variable stores the NFL "stack", a heap of all of the activated rules

that are waiting to be processed and possibly fired if consistent. Since the current

system always reprocesses this "stack" until it is empty, this variable should always

contain an empty heap when examined by the user.

nfl-answer-stack This system variable is used internally by the NFL system when ac-

cepting results from the RWS system. The RWS is made to push its bindings on this

stack when a new nfl-fact is submitted for pattern recognition. The NFL system then
takes the results of the recognized patterns and uses them to put rule instantiations

on the active rules stack. If no antecedent patterns match, this variable is nil.

5.3.9 NFL System Flag Variables

nfl-propagate This flag determines whether the NFL system asserts the consequents

of rule firings back as facts into the NFL system, therebye propagating them and

firing more rules, along with entering the results of the fired rule into the ATMS (T);
or whether when a rule fires the results of the fired rule are simply entered into the

贔 S,but not propagated as new facts to the system (NIL). The default is T.

nfl-assert-unused-facts This flag determines wh叫1erorphan facts that are not used

by any rule are entered into the ATMS (T) or are simply forgotten (NIL). The default
is T.

nfl-debug vVhen this flag is non-NIL, each new or propagated fact is printed out as
the first action performed by nfl-fact. This flag is useful in detecting infinite loops

in rule sets. The default is nil.

nfl-dont-repropagate・when this flag is true, the NFL system does not re-use any

newly re-asserted facts that it has already seen before, but instead throws them away

before they are compared with any rules. Telling the system about a fact once is

enough. Since in the current version it is expected that all of the rules will have been

predefined, there is no problem using this feature. This flag prevents duplication of
results, and basically enforces monotonic behavior for the inference engine. If the

inference engine is expected to obtain nonmonotonic results, this should be set to

nil.

This feature actually works by testing the AT:tvIS table, using the uniquification

algorithm. If the fact is already in the ATMS (even if it's only hypothetical), it is

not used.

The default is T.

＼

20

5 .4 ATMS Truth Maintenance System Commands

5.4.1 ATMS Creation Commands

These are the basic commands. They are the ones used most often by the user system.

(reset-at ms) Clears the system out. Expunges all previously-defined ATMS-nodes, as-

sumptions, premises, implications, and environments. Automatically initializes

Node# O a.s the NOGOOD-NODE, and Environment# 0 as the Truth Environ-

ment.

(atms-node data) Constructs and returns an ATlVIS node representing the given infor-
mation. Assigns an ID number to that node. The nodes are numbered serially. Note:

Node O is always the NOGOOD-NODE. ・

(premise data) Constructs and returns a Premise node storing the given information.

(assumption data) Constructs and returns an Assumption node storing the given infor-

mation. For future expansion, it is possible to assign a probability number to the

assumption when it is created, by calling (assumption data prob). Currently, the
probabilities are not used otherwise by the system.

(implication consequent data antecedentl A2…) Constructs and returns an impli-
cation. This function is mostly for human users. Same as (justification ...) .

The consequents and the antecedents can either be atms-nodes or data. The system

will check each consequent and antecedent node to make sure that it is in fact a node;
if not, it will use the old node containing that data, or it will create a new atms-node

for that data if necessary.

(implication-list consequent-node data (list antecedentl A2…)） Constructs and

returns an implication. This function is useful when you have a variable containing

a list of the antecedents. The consequents and the antecedents can either be atms-
nodes or data. The system will check each consequent and antecedent node to make

sure that it is in fact a node; if not, it will use the old node containing that data, or

it will create a new atms-node for that data if necessary.

(sys-implication consequent-node data antecedent-nodel A2…) Constructs and
returns an implication. This function is mostly for computer users. Assumes that

the consequents and antecedents are nodes already, and does not check for legality.

This results in significant speed gains, at the cost of extra safety.

(justification consequent-node data antecedentl A2…) Same as implication.

(inference consequent-node data antecedentl A2…) Same as implication. The
"inference" terminology is supported but not encouraged; use "implication" or "jus-

tification" instead.

(nogood nodel) Builds a justification from the node to *nogood-node*. This is the

standard method of entering contradictions, or in other words permanently making

the node's data false. This function can also be called with a sequence of nodes, in

which case each node in the sequence is set to NOGOOD.

21

(nogood-set nodel node2 ...) Builds a justification to *nogood-node* based on the

conjunction of the given nodes. Standard method of entering contradictions. Note
carefully that (nogood-set) of a set of nodes, which contradicts the AND of the set,

is not the same as (nogood) of each of the members of the set, which contradicts

the OR of the set.

(nogood-env env) Forces the given environment (and all of its supersets) to become
NOGOOD. Calls nogood-set on the (conjunction of the) set of assumptions compos-

ing the environment. In general, this should be used only because of higher-level

knowledge not part of the knowledge represented in the ATMS.

(inconsistent env) Same as (nogood env).

5.4.2 ATMS Modification Commands

There is no way to modify an implication once it has been created. There is no way to

retract the action of turning a node into a premise or an assumption.

All user data that the system stores can be modified using the setf function called on

the data accessor function.

(presume-this-node node) Turns an ATMS-nocle into a premise. Technically, overwrites

the label with the single, empty environment *truth-env*.

(premise-this-node node) Turns an ATMS-nocle into a premise.
(presume-this-node).

Same as

(assume-this-node node) Turns an ATMS-node into an assumption. (Technically, jus-

tifies the node with a new assumption-tag whose data contains the node.) Returns

the node. Typically used only for effect. Of course, the user should not call this on
nodes that are already assumptions or premises. Optional arguments: Assumption-

implication data, and the assumption probability (not used): (assume-this-node

node data prob).

5.4.3 ATMS Deletion Commands

(del-atms-node name-or-node) Hard-deletes an atms-nocle.

(del-implic implication) Hard-deletes皿 implication.

(unassume name-or-node) Turns a node from an assumption back into a hypothetical

node.

(del-env environment) Hard-deletes an environment. Not supported yet.

(reset-atms) Clears the system out. Expunges all previously-defined ATMS-nodes, as-
sumptions, premises, implications, and environments. Automatically initializes

Node# 0 as the NOGOOD-NODE, and Environment# 0 as the Truth Environ-

ment.

22

5.4.4 System Activity Commands

(install-action node action) Installs the con1111and (action) into the given node. If

the given node becomes IN, (i.e., believed in any valid context), the given action

command is executed. It is now possible to call this routine several times on the

same node, and install several different actions; when the node becomes IN, all of

the actions are performed. The action should be of the form'(funcname argl a.rg2).

Most of the time, one of the a.rgs will be the node itself. If the args are not constants,
they must be evaluated:'(funcname ,node ,arg2). The function can have any number

of nodes; the literal is simply sto1:ed and evaluated later.

5.4.5 Significant Variables

OS This variable holds the 0叫）ut Stream for the print functions. Default is T, meaning

standard screen output stream.

use-uniquification This flag tells whether ATJVIS data. is treated as being unique (under
equal) or whether it can be duplicated. If unique, (atms-node data) and similar

functions will return a previously created node instead of creating a new one. Default

is T.

environments This variable stores a list of all (both valid and inconsistent)。fthe

environments known to the system.

nogood-node This variable stores the special NOGOOD node. This node is allocated

on reset. Note that (Node# 0) also returns this node.

truth-env This variable stores the empty environment. This environment's context

contains all the premise nodes; it is always true.

atms-nodes This variable stores a list of all the ATMS-nodes known to the system.

This includes the assumptions and the premises.

assumptions This variable stores a list of all the assumptions known to the system.

premises This variable stores a list of all the premises known to the system.

implications This variable stores a list of all the implications known to t~e system.
Each assumption internally generates an implication; these are included as well.

atms-node-count The number of ATMS-nodes, including those that have been turned

into assumptions or premises, known to the system.

assumption-count The number of assumptions known to the system.

＊ environn1ent-count* The number of environments known to the system.

premise-count The number of premises known to the system.

implication-count The number of implications known to the system.

23

initial-assumption-limit This number gives a soft limit on the number of assump-

tions that the system can store. It is used to determine the initial size of the

assumption-bit-vector assigned to each environment. It must be set before calling
(reset-atms). Set this to the reasonable maximum number of assumptions expected

to be handled by the sys~em. This number affects memory allocation, paging, and
performance. Default is 200.

incre1nental-assun1ption-size This number tells how much the system's bit-vector

size is increased during the next growth cycle. See *initial-assumption-limit*.
This number indirectly affects memory allocation, paging, and performance. Default

is 50.

geometric-limit-increase This flag tells whether *incremental-assumption-limit* dou-

bles after every expansion (geometric increase) or stays con st ant (arithmetic in-

crease). This number indirectly affects memory allocation, paging, and performance.
Default is T.

5.4.6 System Flag Variables

watch-atms This flag makes the system print out a notification each time an item is

created. Default is T.

debug-atms This flag makes the system print out debugging information. Default is

nil.

watch-enlarge This flag rnakes the system print out a message when the system
enlarges the bit-vector arrays for assumptions. Default is T.

print-data "¥"/./hen this flag is T, the print functions print out the data inside nodes

and assumptions. vVhen it is nil, the print functions only print out a numbered node.
Set this to nil when very long data is stored in nodes. Default is T.

24

6 What is a Plan?

NP is a plan切ferencesystem that attempts to recognize and understand plans. For the

purposes of this work, a plan is a series of actions that, when taken together, lead to a goal.
A goal is a state of affairs, or situation, that is desired by an agent. Normally, it is assumed

that the agent intends to obtain the goal, and thus will be following the series of actions

composing the plan. For this reason, if the goals of the agent are known, and the current
actions of the agent are known, then the future actions of the agent can be inferred.

The characteristics of the current system are as follows:

• The system has no explicit representation for time.

• The system can represent multiple alternative possible worlds, consisting of alterna-
tive plans. However, the multiple worlds are timeless; in a sense, the system ahvays
lives in now.

• The system recognizes plans with monotonic actions. Although it is possible for the
user to nonmonotonica.lly retract assertions that a.re believed concerning the initial

situation, it is currently impossible for a.n action to retract a.n assertion a.s pa.rt of
the action's effects. It is possible to assert the negation of a state, as an action effect;

however, in this case, both the state and its negation are believed in the resu_lting

possible world, which is normally considered to be erroneous. Because there 1s no
concept of a transition of states over time, if an initial required precondition in a series

of actions is later retracted, the actions also go away. The decision to represent only

monotonic actions is similar to circumscription. This restriction makes the plan in-

ference system easier to build, and it makes the system run faster. However, it makes
the system less powerful than one that can represent nonmonotonic actions. Plans

containing monotonic actions are sometimes called linear in the planning literature;

those containing nonmonotonic actions are then called nonlinear.

7 Format for Plan Schemata

The system is able to recognize plans because the user specifies action templates to the

system, in the form of plan schemata. A plan schema is composed of a number of parts.

These include: the action name, or a description of the action; preconditions of the action;

decompositions; and effects. There must be only one action name or description. All of

the other components are optional, and can take none or more entries. Preconditions and

effects are typically states, while decompositions are typically other, more low-level, action

descriptions. Since the system is based on feature-structures, it is possible to have the

preconditions or effects be action descriptions, and the decompositions be states. However,

this abuses the model conceptualization, and should be avoided if possible.

The plan schemata are specified using feature structures, in Hasegawa-style Nadine for-

mat. One feature is specified for each component. Although the order of the features does

not matter to the system, the following order is recommended for notational consistency:

(1) the action description, (2) the preconditions (if any), (3) the decompositions (if any),

25

(4) the effects (if any). The feature slot names are coded to correspond to the components.

These code names are in fact special ("magic") features and are contained inside the single

feature-structure itself, and so there is no need to provide lists of feature structures for

the different components. The action description has the feature slot name of action. All

the other feature slot names consist of a code plus an integer. The preconditions have the

code prec (so, for instance, precondition features will have the slot names precl, prec2,
etc.). The decompositions have the code dee (e.g., decl). And, the effects have the code

eff (e.g., effl). See Section 10 for further explanation and an example.

26

8 Purpose.

This work is aimed at developing a natural language understanding module to be used

in the ATR Interpreting Telephony Research Laboratories'Japanese-English automatic
telephone interpretation system. Such a system will minimally include modules for per-

forming speech recognition, syntactic/ semantic parsing, natural language understanding,

language-dependent concept transference, language generation, and speech generation

[KU89, IKYA89]. It is the task of the NP system to help with the natural language uncleじ

standing module. The natural language understanding component must take input from

the parser module, store contextual information about the progress of the conversation, and

provide output for the transfer and generation modules. In addition, the understanding
system should be able to answer specific queries from the transfer or generation modules

should further information be required.

As a first step in creating a full understanding module, this work contributes a plan-

inference system and a rule-based inference system. Since the basic data-structure of

the parser, transfer, and generation modules is the feature struchtre [Shi86], a powerful
frame-like structure popular in natural language processing, both the NP plan-inference
system and the NFL rule-based inference system have been implemented using feature

structures as the basic data structure. This is necessary to allow the understanding system
to be easily integrated with these other modules.1 The plan-inference system uses plan

schemata in order to be able to represent general types of plan actions. Since the system

is to use context-dependent information to reason about the knowledge and intentions
of dialog participants, it must be able to match multiple patterns against an unordered

set of assertions. It should explicitly represent and work with assumptions, inconsistency
constraints, and multiple possible inferred plans.

In the future, the actual input from the parser will consist of multiple possible parses

rather than single parses. This is because the speech recognition module produces multi-

ple possible input utterances, and because the parser produces multiple possible semantic

parses for each utterance. The understanding system will have to disambiguate between

these possibilities. Disambiguation requires the ability to represent and reason with multi-
ple mutually-exclusive alternative inputs for a single utterance. In NP, this is provided by

strongly basing both the plan inference and the inference engine on assumptions by using
an ATMS, as will be explained.

9 The Domain of the Problem.

The NP plan-inference system was tested by understanding conversations between two

people in a single language (Japanese). Utterance parses were obtained from the expected
output of the semantic parser, which was machine-and partially hand-generated indepen-

dently by a parsing expert, Mr. Masaaki Nagata [Nag89]. The input consists of a series

of feature structures in textual format. The NP system converts these to internal feature-

structure format using the read-fs command developed by Toshirou Hasegawa [Has89].
The system then works with this internal representation.

1This specification was originally proposed by Mr. Hitoshi Iida, the manager of this project.

27

The NP system serially processes the utterance parses, attempting to maintain a rep-

resentation of the currently-believed concepts as the conversation progresses. The system

does not take part in the dialog. The conversation is a task-oriented dialog on the subject

of registering for a conference. Output consists of a representation of the plan structures

found in the conversation, and explicit reports of inferred plans.

10 Plan Schemata.

The system is initialized with action template declarations in the form of plan schemata

represented using feature structures. The plan schemata are best understood by considering

a simple plan action. 2

[[action [[RELN Identity-of-other-confirmed-1]

[AGEN ?questioner]

[RECP ? answerer] J J

[prec1 [[RELN Confirming-identity-of-other-1]

[AGEN ?questioner]

[RECP ?answerer]]]

. [dec1 [[RELN Hai-AFFIRMATIVE]

[AGEN ?answerer]

[RECP ?questioner]]]

[dec2 [[RELN Sou-Desu-CONFIRMATIONJ

[AGEN ?answerer]

[RECP ?questioner]]]

[eff1 [[RELN Know-Identity]

[AGEN ?questioner]

[OBJE ?answerer]]]]

A schema has an action name or description, as well as a series of preconditions, clecom-

positions, and effects. Plan schemata are formed from (possibly cyclic) feature structures

and can include variables, "co-instance tag" variables and "rest" variables.

11 The NP Plan-Inference System.

The NP system is composed of three layers: the plan inference layer, which consists of

a conceptual model for plan inference plus routines to implement this model using an

inference engine; the NFL inference engine layer, which consists of pattern matching rou-

tines, control routines, and routines to assert concepts and implications into an ATMS;

2This plan says that an "Identity of other confirmed" action necessarily occurs when a precondition
question of "Confirming identity of other" has been asked, and decomposition answers of "Hai" (''Yes")
and "Sou desu" ("It is") both occur. Then the effect of "Know identity" must also occur. This action is
part of a plan for learning the identity of a caller at the opening of a telephone conversation.

28

and the ATJ11S layer, which records the results of the system, propagates implications

and maintains consistency, responds to degree-of-belief requests, and fires user-specified,

event-driven processing demons. These layers will now be discussed in turn.

12 The Plan Inference Layer.

Plan inference requires two things: concept叫 modelsof the plan recognition, prediction,

and inference processes, and a method of instantiating these models using the rules of an

inference engine.

A strong view of plan recognition is taken. Recognition of an action occurence implies

the occurence of each of the action's effects. Recognition is based on necessary entailment—

observation of all of the preconditions and decompositions forces recognition of the action.

This faithfully models certain kinds of actions, such as those defined by conve叫 onalgeか

eration or other types of generation processes [Gol70]. Other kinds of actions, where inputs

can have multiple interpretations (such as Kautz's hunting example [Kau87]3) require more

explanation. First, if the definition of an action allows unwanted ambiguity when recogniz-

ing inputs, then that definition is incomplete and must be augmented with the appropriate

preconditions or decompositions. However, some of these states required to complete the

action's definition may be unobservable [Mye88]. In this case, such states must be repre-

sentecl by assumptions, which have the belief value POSSIBLE. In e仔ect,the assumption

simultaneously explores both the cases in which the state is true and those in which it is

not true. Second, in some cases the requirement that all the decompositions or precon-

clitions be present is simply too strong. Also, the action's definition might have multiple

alternative decompositions. In these cases, the model can be weakened by specifying ex-
plicit precondition and decomposition state sufficiency sets which certify that the action

has occurred.4 (E.g., {precl, dec2} is sufficient for the previous page's example.)

The preceding discussion concerns (certain) input states which are actually observed,

resulting in ACTUAL recognition of the actions. It is also possible to have uncertain inputs
that are possibly observed, resulting in POSSIBLE recognition. In addition, it is possible to

have multiple conflicting alternative inputs, where only one input corresponds to reality.

In this case, the recognized actions are POSSIBLE as well. This capability is significant for
representing ambiguous spoken language input.

The prediction model, in contrast to the recognition model, uses a weak method sim-

ilar to spreading activation. Each assertion is duplicated in a parallel top-down network

where it is marked PREDICTED. The possible or actual declaration of a goal sets the cor-

responding predicted-state's value to possible or actual. Goals cai1 be genuine states or

action-occurrence states. Prediction of any one of the effects of an action causes prediction

of the action.'¥Vhen an action is predicted, the inference is made that each of the action's

3 A man walks into a bank holding a gun, possibly in an attempt to rob the bank, or possibly only
cashing a check after going hunting. The situation must be disambiguated based on the man's intent, an
unobservable state. Note that if there is a law against walking into a bank with a gun, the example is
unambiguous and the man's intent does not matter; the occurence necessarily entails that that law has
been broken (by conventional generation).

4This is a refinement of Knoblock's necessary and sufficient conditions [Kno88).

29

亡]Action

@ State

D
"AND"
1叩 licat1on

Figure l: Models for Plan Recognition, Prediction, and Inference.

preconditions and decompositions is predicted as well. Prediction thus propagates top-
clown through the predicted decompositions, and in a backward-chaining manner through
the predicted preconditions.

The system supports specification and simultaneous exploration of multiple possible

goals. Due to the facilities of the ATMS, each activation spread is labeled with the name

of the goal assumption that originally caused it. Thus, if there are multiple goals, it

is possible to query a possibly predicted node about which assumption causes it to be

believed. If more than one goal is contributing to its belief, more than one answer will be

returned.

The inference model is very simple: any concept in which both the current occurrence

and the predicted occurrence are believed POSSIBLE or ACTUAL signals an inferred plan.

The plan has been completed through the current occurrence, and is predicted to (possibly)

continue through the predicted occurrences to the goal that caused the predictions.

Naturally, it is possible to implement other models of recognition, prediction, or in-
ference, using the system. An examination of these specifications reveals that the current

system can infer plans with monotonic actions (although particular states may be retracted

in a nonrnonotonic fashion) without resorting to searching. Nonmonotonic extensions are

being investigated.

The plan inference models are instantiated using inference rules. Each input plan

schema is interpreted into a series of NFL rules, according to the models. Originally the

rule for the preconditions and decompositions inferring the action, and the rule for the

action inferring each effect, were separate. However, this required that the action name
possess all variables found in the effects (otherwise unbound-variable problems resulted).

Currently, recognition is instantiated with a single rule using the special syntax explained

below. Prediction and inference are instantiated in the same manner.

13 NFL, A Feature-Structure-Based Inference Sys-

tern.

The NP system is based on NFL, a forward-chaining inference engine that uses feature

structures as its basic representation for assertions and rule patterns. It is tied to the

ATMS and instantiates all successful rule firings into the ATMS.

The NFL inference-engine data consists of an unordered set of assertions and a set of
rules.5 A rule consists of a conjunction of antecedent patterns and a set of consequent

5 Although NFL can employ rule priorities to determine firing order, in the problems encountered thus
far no need has been found to do this.

30

patterns. The antecedent patterns of all rules are kept together in a system set. Each new

assertion is matched against this antecedent pattern set. If the assertions match all of the

antecedent patterns of a particular rule in a consistent manner, then that rule's consequent

patterns are instantiated and asserted. A stack is used to help maintain order during

processing. Pat tern matching and binding consistency checking are provided by parts of a

nonmonotonic feature-structure rewriting system [Has89]. Control flow is performed with

a simple Rete algorithm [For82l[BFKM85].

NFL rules have an optional additional class of consequents called effect consequents,

designed to support action representation. When a rule fires successfully, all of its conse-

quen_ts and effect consequents a.re instantiated and asserted back into NFL's assertion set.

In addition, the bound antecedents, consequents, and effect consequents are instantiated
into the ATMS. Implications are created between the conjunction of the antecedents and

each consequent, and also bet-ween the first consequent and each of the effect consequents.

Typically, the antecedents will represent action decompositions and preconditions; a. single

consequent will represent the action performance; and the effect consequents will represent

the action effects. This particular ATMS structure is designed to reflect the model of an

actiol'1, and makes ATMS tracing easier.

14 The ATMS Layer.

An ATMS, originally proposed by deKleer [clK86.a], is a special kind of data base. A

feature-structure assertion is stored in an atms-nocle, which has an associated truth value.

The atms-nocles are linked by implications (or justifications), which take a number of

antecedent nodes and a consequent node as arguments. If the antecedents are all true, the

system ensures that the consequent is true as well. These results propagate. Thus, the

name "truth maintenance". Further details can be found in [Mye89b].

The ATMS's representation of an assertion's value can have at least two possible in-

terpretations. The customary interpretation is that each assertion takes on one value of a

two-valued logic {BELIEVED, NOT BELIEVED} in multiple possible worlds. The interpreta-

tion followed here is that each assertion takes on one value of a five-valued uncertainty logic

{ACTUAL POSSIBLE HYPOTHETICAL INCONSISTENT NULL 111 a sm e wor , } gl ld [Mye89a).6

The ATMS uses instantiated assertions (with the variables bound). The system op-

erates the ATMS by instantiating a network of hypothetical assertions and implications,

representing prederived conclusion chains from NFL rules. Later, while processing the con-

versation, some assertions are recognized as being possible or actual, so the system modifies

6This is abstracted from the ATMS by the following method: nodes that are premises or derived solely
from premises are permanently IN in all present and future possible worlds and are ACTUAL. Other nodes
that are IN are POSSIBLE. Nodes that are permanently OUT ("nogood") are INCONSISTENT. Other nodes
that are OUT are HYPOTHETICAL. Assertions or concepts that have no representative atms-node are NULL.
Note specifically that simply because a node is believed true in all known consistent possible worlds, it
may not be ACTUAL-it might only be POSSIBLE. This is because later nonmonotonic information could
render it NOT BELIEVED in some new possible worlds. See [Mye89a) for further discussion.
In addition to simple retraction, which changes a node's value from POSSIBLE to INCONSISTENT, it was

found useful to create a true delete function that changes a node's value from POSSIBLE to NULL. This is
convenient for setting and clearing processing flags.

31

the value of the existing hypothetical node. If all of the antecedents of an implication be-

come possible or actual, the ATMS modifies the value of the implication's consequent.

Naturally, this effect propagates. Since truth maintenance is essentially clone by spreading
activation on a network which ha.s already been instantiated, following a series of inferences

for NFL is quite fast and involves no pattern matching. This results in saving considerable

time compared to working with an inference engine, when the system deals with concepts

that are already known hypothetically.

The ATMS always represents the current state of the system's beliefs. An external

system (e.g. the generation module) can query the ATMS as to whether a particular

assumption is actually or possibly believed. The ATMS can print out a list of newly

believed assertions. Also, the user can attach event-driven processing demons to specified

assertion nodes, which fire when the assertion becomes possibly or actually believed. These

are typically used to process and report derived results, including reporting inferred plans.

15 Operation of the NP System.

The system is initialized with a set of pla.n schemata files chosen from a library (this

capability is important for plan design). The plan inference layer takes these plan schemata

and interprets them into NFL rules. At this point the variables in the rules are unbound.

At prerun-time, the system is feel a list of initialization concepts, again in feature-
structure format. These are assertions that a priori can be assumed to be significant,

including hypothetical utterances, world knowledge, and con1111on-sense knowledge. The

system submits these to the NFL assertion set, thus triggering rules which instantiate

conclusions and assert the bound results hypothetically into the ATl¥lIS. Possible goals are

also asserted here.

Next, at run-time, the input utterances are asserted one by one, in the following man-

ner: the system first tests to see if the utterance is hypothetically known to the system.

If it is not, the system submits the utterance to the NFL assertion set, and expends the
effort required to follow NFL inferences and instantiate hypothetical nodes as before. After

this, the system upgrades the utterance's node according to the certainty of the observa-

tion. Certain utterances are set to ACTUAL (premised). Uncertain utterances and multi~le
alternative utterances are set to POSSIBLE (assumed). In addition, a multiple alternative

utterance is specified as pairwise inconsistent with each previous utterance in its alter-

natives set (i.e., the pair's conjunction is set to imply "nogood"). If a possible goal is
recognized by the system, instead of assuming the concept itself, the prediction of the

concept is assumed. Since at this point no matching is done and the system is essentially

executing productions on nodes which have already been instantiated, the operations of

recognition, prediction and plan inference are quite fast.

16 Multiple Possible Input Example.

A common problem in Japanese speech recognition is distinguishing sentence-final ka, a

question marker, from ga, a moderator. The following example demonstrates the sys-

32

tern's capabilities to accept multiple input alternatives, infer plans, and represent multiple

possible output plans. The example has been simplified for clarity.

Plans that are used in this example include: If one communicates moshi-moshi-opeれ一

dialog, then one is greeting. Greeting is one form of opening communications. Having the

identity of the other speaker confirmed is another way to open communications. As shown

previously, having the identity con五rmeclcomprises having an outstanding confirming ac-

tion occur (e.g., a request to con且rmidentity has been made), and both hai-affirmative

and sou-desu-confirmation occur. One effect is that the identity is then known. Moreover,

a statement with a ga-mocleration can be an indirect request.

A caller opens with "Moshi-moshi" ("Hello"). Two alternative inputs are submitted

for the next utterance: "Sochira wa kaigi-jimu-kyoku clesu ka."("Is that the conference

office?"), and "Sochira. wa kaigi-jimu-kyoku clesu ga." ("That is the conference office…").
The reply is "Hai. Sou desu." ("Yes. It is."). The inputs for the second utterance

alternatives are:

[[RELN S-REQUEST]
[AGEN ! X03 [[LABEL *GUEST*]]]
[RECP !X02[[LABEL *OFFICE*]]]
[OBJE [[RELN INFORMIF]

[AGEN ! X02]
[RECP !X03]
[OBJE [[RELN Da-IDENTICAL]

[IDEN [[P ARJvl ! X01 []]

[[RELN
[OBJE

[RESTR [[RELN NAMED]
[ENTITY ! X01]

Ga-MODERATE]
[[RELN Da-IDENTICAL]
[IDEN [[PARM !X01[]]

[RESTR [[RELN NAMED]
[ENTITY ! X01]
[IDEN Kaigi-Jimu-Kyoku-1]]:

[OBJE [[LABEL *OFFICE*]]]]]]

[IDEN Kaigi-Jimu-Kyoku-1]]]]]
[DBJE !X02]]]]]]

The NP system is preloaded with various hypothetical utterances and concepts. The

system assumes a priori that the caller wants to open communications. Next, the actual

conversation is processed. The moshi-moshi utterance is asserted as ACTUAL. The two

alternatives for the sochira utterance, i.e. the s-request and ga-moderate structures, are as-

serted as POSSIBLE and the conjunction is set to be inconsistent. A backtracing processing

demon attached to the plan-inferred node is executed, and the system infers the possi-

ble plan: CONFIRMING-IDENTITY-DF-DTHER-1 <-IDENTITY-OF-OTHER-CDNFIRMED-1 <-
OPEN-COMMUNICATIONS <-S-REQUEST, among others. Processing continues with hai-

affirmative being asserted as ACTUAL; sou-desu-confirmation will be asserted next. At

this point, if an external module queries the system as to whether know-identity is believed

or not, the result is HYPOTHETICAL ("not yet"). After the sou-cleszt-confirmation is made,

this belief will be POSSIBLE.

At the same time, the ga-moderate utterance implies a possible indirect-request. Since

no action was predicted for an indirect-request, no plan is inferred from this possibility.

The ga-moderate plan network is inconsistent with the network based on s-req1test, and the

results will not mix. However, the system is able to simultaneously explore the results of

both possibilities.

The plan recognition, prediction, and inference network for this example is shown in

Figure 2. The display system currently has three levels of verbosity. In the network

33

|もしもし-oea<_血匹l-0-1=

Figure 2: The Plan Recognition, Prediction, and Inference Net-work for the Example.

illustration, the full feature structure for each node is not shown. }or clarity, only the

content of the first slot is shown.

In a separate experiment, the system inferred plans in a 20-utterance conversation.

During the first run, to represent worst-case behavior, no concepts were preinstantiated.

The system had to derive all inferences at run-time, and took 147 seconds. During the sec-

ond run, to represent optimal behavior,,only the 99 ATMS-nodes and 168 implications used
in the plans were preinstantiated. The system took 14 seconds to process the conversation.

During the third and most realistic run, all of the relevant concepts plus considerable extra

knowledge, in the form of 220 ATMS-nodes and 789 implications, were preinstantiated, and

the system took 15 seconds to process the same conversation. The running times quoted
do not include the time taken to load files nor to preinstantiate initialization concepts, and

are expressed in elaspecl-time seconds on a Symbolics 3620.

17 Comparison with Previous Works.

An inference engine or a plan-inference system is significantly different from a rewriting

system (e.g., [Kog89], [EZ89]), in that a rewriting system applies multiple rules to a single
input, while both an inference engine and a plan-inference system apply multiple rules to

a set of inputs.

Knoblock [Kno88] was the first to use an ATMS for a plan recognition system. His sys-

tem also worked with multiple output hypotheses for the plan. However, it did not work

with plan schemata having preconditions, decompositions and effects, and the correspond-

ing effect-precondition chaining. Plan recognition was done only through the hierarchical
decompositions, and the preconditions were used only as a filter for instantiating the ac-

tions. Knoblock made no plan prediction from high-level externally-specified goals, and

:rio plan inference. Although Knoblock worked with single uncertain inputs, no multiple

possible input sets were used.

Kautz [Kau87] was probably the first to work with multiple simultaneous output hy-
po theses (in the form of disjunctions). However, he apparently did not work with uncertain

inputs nor with multiple possible inputs. Kautz also offered a theory of plan recognition

and inference. Kautz used circumscription, and the presumption that all possible plans are

known, to infer missing details. We make no such presumption. Kautz's system worked

34

with ordered events and time, which NP can not yet treat. No assumptions were repre-

sented, and input was hand-generated logical forms.

Pollack [PolS6a, Pol86b] explored the important issue of incorrect opinions of plans
and the difference between the planning agent's and the observer's concepts of plans, and

also worked with nested belief. Pollack worked with a 3-valued logic including "plausible"

beliefs but apparently did not deal with multiple output possibilities, multiple inputs, nor

uncertain observations.

Other significant plan recognition works are found in [CC89], [LAS7], [A11S7], [AP80],

[SA 77], and [WilS6].

No四reviousplan-inference system known to the author has used feature structures as
the basic data structure, has accepted input directly from a feature-structure parser, nor

has been based on assumptions while using full plan schemata.

18 Discussion.

The NP system is intended to be used as part of an understanding module in an automatic

interpretation system. NP is significant in working with feature structures, which allow

direct communication with the parser, transfer, and generation modules. A practical plan-

inference system must work with realistic parser input, as NP does.

A practical system should accept multiple possible parses and rank their likelihood for
disambiguation. Plan inference, as specified, is inherently a logical process that results in

assigning an assertion a value of { true, false} in other systems, or {hypothetical, possible,
act叫， inconsistent,null} in our system. However, a logic-based system cannot support the

inherently analogical representation required for ranking systems. The current system has

no method of ranking different possibilities, performing evidential reasoning, or determining
the degree of probability of a situation. Thus, it cannot yet disambiguate between multiple

possible inputs. To be practical, the current system must be supplemented with a well-

founded evidential reasoning system. See [Pea88] for an independent exploration of this

question.

The current system uses space, in the form of hypothetical assertions, to trade off

against the time required to derive rule-based inferences during conversation processing.
As always, there is a need to preinstantiate all, and preferably only, those concepts which

will actually be used during processing. However, speed advantages will be realized even if

only some of the conversation's concepts and their implications have been pi'einstantiated

(e.~., all speech acts, or all domain plans). How to choose which concepts are to be

premstantiated is a crucial research question.

The current system has been designed to compute with inputs from an unordered set

of assertions. This has a distinct advantage over systems that work with a strictly ordered

representation set, such as those based on parsing technology, in that NFL does not have
to perform large combinatorial searches to find conjunctions. The unordered set is a useful

representation for working with problems dealing with beliefi ability1 desire1 decision1 and
other modal operators. Belief sets are especially relevant. However, the unordered set (and

the corresponding simple multiple-world representation) has known difficulties representing

nonmonotonic actions and time [dK86al[LP89l[WN88]. In addition, that the evolving

35

nature of conversations is not captured is a serious deficiency (but one shared by other

previous plan recognition systems) which will have to be corrected. A representation such

as multiple-action-worlds [MN86) or scripts [SA77] is required for more difficult problems.

The current system works only with what is actually or possibly present. Additional

rules and processing demons are needed for problems in supplying implicit information,

such as zero-anaphora resolution, ellipsis resolution, and other anaphora resolution. These

areas are targets for future research.

Besides these, the current system is deficient in temporal representation, nested belief

computations, mistaken belief, and expectation-based processing.

19 Critical Evaluation of the NP System

One of the most useful parts of researching a major computer system is to find out where

things that were in the original design go wrong. This section will outline the lessons

learned from NP.

The NP system was designed to be relatively simple, fast, and easy to work with. A

major design decision was the use of monotonic actions, which allowed the corresponding

timeless "big pot" model of plan recognition. All of the actions are defined and thrown

together into a "big pot". There is no real difference between an action type and an action

instance. As the actions are defined, they automatically combine together with each other

in a hypothetical manner, forming chains of actions, consequences, and further actions.

Then, when the actual execution starts, there is no need to interpret any rules, perform any
pattern-matching, or search by expanding particular action instances in particular worlds-

inferencing is performed simply by five-valued-logic marker-passing, which is extremely

fast. In this way, the NP system is similar to a connectionist model. Of course, these

things can be clone dynamically by the system as needed, if the system had not thought

about them hypothetically before; in this case, the NP system simply takes as much time

to execute as a normal system.

Thus, the main advantage of this design is the fact that the system does not have to

do any searching ("planning")-all possible useful plans have been hypothetically precon-

structed in an automatic fashion.

The alternative is to allow the representation of nonmonotonic actions, as the B-SURE

system does. However, in this case the user or some level of the system must explicitly

perform searching and plan expansion in each significant possible world, which significantly

slows down the system.

This is the main design feature of the NP system. Other features include:

1. Representing non-linear actions. Office doesn't know name-> office asks -> office

knows name.

2. Representing future time in the system. I will send the form, you will get it, you will

fill it out.

3. How to recognize future time.

36

4. Choosing or not choosing to do an action.

5. It seems that answers to questions are hard-wired. For instance, automatically the

caller wants to say that the caller doesn't have the form.

6. The names of the caller and the office are not included in the input. But the names

must be included in the representation, in order to understand that this is a two-

person conversation, not one person talking to himself.

7. Knows-how-to X, Wants-to X, and Can X meta-actions are not well represented. X

should be tied in with the statements.

8. Should effects follow from the small subactions or the large supera.ctions? Or both?

Should preconditions be attached to the small subactions or the large supera.ctions?

9. What if you really want to represent that the agent didn't notice a small subaction

had a precondition until he tried to execute it?

10. How to represent state changes? First, the o缶cehas the form. Then, the guest has

the form. Then, the office has the form.

11. How will the system be used in machine translation?

12. ・what's the difference between a state and an action?

13. Nondeterministic actions need to be represented. For instance, the caller tries to恥 cl

out about something can result in the caller knows (successful) or the caller doesn't

know (failure). Success is not guaranteed.

14. How to represent ignorance of the agents? The computer knovvs that the caller does

not know where the conference is.

15. How to represent incorrect knowledge of the agents? The computer knows that the

caller knows where the conference is, but the computer、knowsthat the caller is ,vrong.

16. How to represent unspecified incorrect knowledge and disagreements? The computer

knows that the caller knows where the conference is, and the computer believes that

the conference is somewhere else, but the computer does not know who is right.

17. How to represent ignorance of the computer? The computer does not know some-

thing/whether something is true. Knowledge of ignorance: The computer knows that

the computer does not know something. Ignorance of ignorance: The computer does

not know that the computer does not know something. BOTH are required.

18. Previous, during-, and post-conversation off-camera actions. First the caller decides

to call, then dials the telephone. After thinking about things during the conversation,

the caller decides to attend. Later, the caller fills out the form and sends it in. Non-

observable state changes.

19: Preknowleclge of unobservable facts. Caller calls the office implies that caller almost

certainly knows the office's phone number. Caller asks for discount implies the caller

planned to try to get the discount. But these can't be preconditions, because they

are unobservable!!

37

20. Need to handle conjuction of states implying a situation. Also states implying other

states directly. For instance, the caller knows English AND the conference is in En-

glish IMPLIES the caller can understand the conference. [Since NP was designed to
reason with actions, the current version does not provide strong support for reasoning

with states. Additions to the reasoning engine, or entering rules in NFL by hand,

are required.]

21. Wants are attached to some actions but not to others.

22. Promises. "I'll send you the form soon" is NOT equal to (The Office sends the form),

nor (The Office will-send the form) [could change her mind], nor (I stake-my-honor-on

sending you the form). What is a promise?

23. Conjunctive actions. Doing several things at one time with one action. This should

probably be represented by an upside-down decomposition.

24. Knowledge of the action implies some preconditions and some decompositions. This

is backwa¥・ds. Think about: Does "tell name and address" decompose into "tell

name" (or is it a precondition)?

25. How to represent repeated utterances? "I will send you the form right away." [Since

NP is a timeless system, there is no way to reassert something that has been asserted

already.] This is a major problem with confirmations, such as "OK", "yes", and "I

got it."

26. How in the world do we represent repeated or verified information? "My telephone

number is 123-4567." "123-4567, right?" Did he hear it or didn't he? From a domain-

planning standpoint, there is absolutely no justification for communicating the same
information twice. vVhy does he need to say it again-with a computer, if it hears

something once, then it believes it. What kind of logic can represent "maybe hearing

something" or "hearing it but not believing that you probably heard it correctly"?

27. How to represent conditionals? "If you apply next week, it will be 200 dollars."

28. Thinking noises. "Well, let's see." "I understand." Although these play a DI-

ALOGUE function, they do not help any at the DOMAIN PLAN level. How to

reconcile these?

29. All actions must have been hypothetically thought of ahead of time. It is hard to

integrate new actions or new preconditions into the network automatically. Hypo-

thetically thinking of "The deadline is n ex、tApri『'requiresconsidering and instanti-

ating all possible dates [the current NP system does not know how to work well with

variables at the ATMS level. All statements are composed of constants or Skolem

variables.] What about preknowledge of unobservable facts? "I am a member of
the Information Processing Society. Is ther、ea discount?" There are not enough

variables.

30. There's a real problem with specialized vocabulary in the current system [since every-

thing is constants]. "I will contribute" vs. "I will give". These should be represented

as the same conceptual node, but the current system only represents surface meaning

and represents them separately, requiring two lines of reasoning.

38

31. Inferences of identity. Are two things the same? "The topic of the conference" is

the same concept as "what the conference covers", but these are expressed in two
different nodes right now.

32. How can the system deal with input that is helpful but not necessary? "vVe are
also expecting psychologists to attend." There is no way to predict this utterance or

understand why the person has to say it.

33. Choosing to do something. Roles of the participants. Why doesn't the office want to

write a paper to present at the conference?

34. Answering the content of a question is the same as answering the question. This
inference is not supported.

35. There are sometimes two ways to resolve a problem. For instance, with information,

the caller could either (1) ask the office, or (2) wait for a form to come in the mail

with the information on it. vVhen does he do one and not the other? How does he
decide?

36. How to represent and reason with an agent putting off the problem for a future date?
This is a meta-decision action, and needs to be represented. For instance, "I'll wait

for the announcement to come."

37. Generalities. "Know about X." "Know the details of Y."

38. Confirmations and verifications. vVhy do they happen at all? Why don't they happen

ALL THE TIME, or more often than they do? What are the rules that govern when

a confirmation is needed?

39. Potential problems and unknown problems.

40. A major problem is that the current system zips illocutionary acts up with the

utterances, whereas these are actually two separate things. Break these apart and
reason with them separately.

41. Agents are dynamic. Often, the caller will not know what he wants! Or, he might

be exploring possibilities before he decides on what he wants. Or, his wants might
depend on the situation.

42. Permission. Granting, denying. vVhat rules?

43. There is no temporal ordering in the current system. This is a major problem.

44. How to handle convenient but not necessary preconditions? For instance, it is con-

venient for the caller to know about the conference in order to attend, but it is not
necessary.

45. Standard ordering in conjunctions. Know date and place should be represented in

the same concept as know place and elate, but currently these are different.

46. The system works by abstracting out the important information and throwing away
the unimportant information.

39

4 7. For most of the plans, the actual context of the slot is not known-all that is known

is that the contents are known. How to represent (X knows (Y Knows-Ref A))?

48. Bottom-up vs. top-down action decomposition specifications.

49. How to represent the role of guessing? Also Japanese "deshou".

50. Repeating utterances. I'll send you the form right away.

51. Social smoothings and politenesses.

52. The current mechanism for recognizing goals is weak. Responsibility has been post-
ponecl.

53. How to represent volunteering? There is a difference between volunteering informa-

tion and volunteering to do something.

5L1. Implicit acceptance of requests. "Please send me the form." "Give me your name

and address."

55. Real-world reasoning: Specializations imply generals. For instance, "sentence no

desu ga" implies "sentence clesu"; "costs 46000 yen per person" implies "costs L16000

yen"; "there is a discount for members" plus "I am a member" implies "there is a

discount for me".

56. Conditionals in statements. If vs. ¥iVhen.

57. PLans have to be harcl~,virecl to the example data.

In the final analysis of NP, the system receives hi国hmarks for being a very good plan

inference system. It unclerstands plans well; it prechcts what the person will do; and it

recognizes when something has happened that it knows about.

However, all this is next to useless when it comes to solving the real problems asso-

ciated with automatic interpretation, such as utterance disambiguation, "the" vs. "a"

determination, understanding the deep meaning of "hai" or "wakarimashita", or interpret-

ing "unagi-da" sentences [MT90]. A plan inference system does not have the machinery to

solve these kinds of problems.

In order to build a system that is useful to ATR, it is necessary to design [Mye90] and

implement [Mye92] a disambiguation system that is capable of weighting possibilities and

deciding between two choices. Only then can the results of a plan inference system be

rriade useful, by eventually contributing to such a system.

40

I

.'

20 Assumptions and Understanding

20.1 What Is An Assumption?

An assumption is an assertion or concept that is believed by the system. However, rather

than being a fact that is believed with certainty, an assumption has the uncertain belief

value of possible. The system explicitly considers both the case that the assumption is

believed true, and the case that the assumption is not believed. In addition, assumptions

can be nonmonotonic. After an assumption is made, it is possible that later on the user can

find that the assumption was mistaken; the assumption can then be retracted. The system

builds inference cha切isof other concepts that are based on assumptions; the assumptions

directly or indirectly imply belief in the inferred concepts. If an assumption is not believed,
all the concepts that depend on the assumption are not believed either. Thus, retracting

a single assumption can change the belief value of many concepts.

Currently, most dialog understanding systems start with the assumptions that the

hearer and speaker always understand each other perfectly, that they automatically want to

cooperate as much as possible, and that they have absolutely no other commitments outside

of the conversation. Clearly some of these assumptions can occasionally be incorrect.

It is possible to have two or more assumptions that are mutually inconsistent. In this
case, the system automatically constructs different possible worlds for each case [dl(86a].

After this, whenever a new concept is added to the system, it is automatica.lly added to
all relevant possible worlds at the same time.

20 .2 Why Are Assumptions Necessary for Understanding?

Communication is inherently an assumption-based process. People use language as a signal

to communicate their ideas. However, it is never completely possible to directly know the

concepts of another person. Instead, when attempting to understand a conversation, it

is necessary to take a stance and rely on assumptions about the other person's thoughts

[Den87]. In a dialog understanding system, there are at least two kinds of assumptions:

assumptions that the speaker and hearer make (about the conversation and about domain

facts) that must be modeled by the system, and assumptions that the system makes about

the speaker and hearer.

In most cases, when the conversation is going well, these assumptions will be valid.

However, in cases where the conversation fails temporarily, an assumption will be invalid

and must be retracted. One of the people may have a mistaken assumption; the system

must model this change in belief. The system may make a mistaken assumption about

the dialog or about the participants; this assumption must be changed later. In addition,

understanding recovery actions taken by the dialog participants after a mistake is aided

by recognizing which assumptions are incorrect. It is necessary to explicitly represent the

assumptions used in understanding in order to be able to represent and work with such

problems.

41

20.3 NFL vs FS

One problem that rule-based systems have as opposed to feature-structure systems is that

rules typically want to match all of an assertion, while feature-structure systems can deal

with parts and subparts of assertions, leaving the rest unprocessed. This was partially taken

care of by incorporating "?rest" absorption variables into the feature structure patterns for
the rules. However, since the ATMS matches assertions directly, it is important to discard

irrelevent information before saving assumptions in the ATMS, so that true matches will
not go unrecognized because of differences in the irrelevent information.

20.4 ATMS

Since the ATMS only operates on atms-nodes and implications, it is possible to store any

type of data in the atms-nocles (including FSs), and have the system perform inferences
with this data. However, because of the nature of the ATMS, it almost always does not

make sense to store any assertions containing variables into the atms-nodes; the user should

store only assertions containing constants or Skolem constants. For this reason, raw rules or

rule patterns should not be put into the ATMS; only instantiated rule patterns. However,

because the ATMS works with constant nodes, there is no expensive unification or pattern
matching to be done. Truth maintenance or following chains of inferences consists mainly

of activation propagation, which is clone by setting flags in bit vectors and is quite fast.

The system interprets the results of the ATMS by assigning a :five-valued logic to

each atms-nocle assertion, consisting of the uncertain belief values ACTUAL, POSSIBLE,
HYPOTHETICAL, INCONSISTENT, or NULL. The main values that are currently used are
HYPOTHETICAL and ACTUAL.

The belief value of a particular node is indexed to a possible world; the same node can

be BELIEVED TRUE in one possible world and NOT BELIEVED in a different possible world
at the same time.

21 The ATMS

Belief Justification The belief in any assertion can be explained or justified by the

system in terms of its underlying assumptions.

The ATMS can explain why a concept is believed in any one possible world. It does this
by conceptually backward-chaining on the active justifications for that possible world, until

the contributing assumptions are reached. This is necessary because each node has many

hypothetical justifications; however, only a few of them will be active for any particular

assumption set. Also, for different possible worlds, different nodes will be active; it is

necessary to search for the active justifying nodes in a particular possible world. The
actual implementation of this is much faster: each node is labeled with the different sets

of assumptions that justify it-thus, explanation is basically a single look-up operation.

Explanation is important for recognizing plan inferences and explaining predictions.

The input to the initialized system consists of a list of forms that are asserted se-

quentially. The forms represent the surface syntactic meaning of sequential utterances in

observed conversations. The system input forms have no variables.

L12

22 Example Application: Representation of Illocu-

tionary Force

Illocutionary force requires assumptions because the speaker could possibly mean any one

of several different things when an utterance is stated.7 Understanding the illocutionary

force behind an utterance consists of recognizing that a particular illocutionary act has

taken place. This is done in the system by assuming the meaning behind an utterance;

the conjuction of the assumed meaning plus the actual utterance act implies that the

illocutionary act has occurred.

For example, take the utterance "Can I write down your name?". This could have

three possible meanings: it could be a simple question concerning ability (the most literal

interpretation); it could be a request for permission; or, it could be an indirect question

for the information. Assuming the丘rstmeaning is true, the person has just performed

an Ability-Question illocutionary act. The conjunction of the second meaning and the

utterance act implies the occurrence of a Request-For-Permission act. Finally, if the third

possible meaning is believed, in conjunction・with the actual utterance it implies belief in

the possibility that an Indirect-Question-Act has occurred.s

Once these assumptions have been explicitly represented, the system can use them as

justifications, retract inconsistent assumptions, and work with them in other ways.

23 Recognition of Plan Inferences.

It is necessary for the system to recognize when a possible or actual action matches a

prediction of the same action. This is most easily done using the explanation facility of the

ATMS. The system builds a single special node, "PLAN-INFERRED", with an ii1terrupt

routine attached to it. Every time the system creates an action belief node, it also creates a

predicted-action belief node for that action, and a third, special "interested in this action"

assumption. These three nodes are set to imply the PLAN-INFERRED node.'When

both the possible action and the predicted action are simultaneously believed, the PLAN-

INFERRED node becomes believed as well (since the "interested" node is also believed).

This triggers the interrupt routine, which uses the explanation facility to find out why it is

believed, out of the hundreds of implications pointing to it. The routine then reports the

plan inference match, and the resulting plan. Finally, since this match has been reported,

it is no longer of interest; the routine sets the "interested" node to nogood, which disables

belief in the PLAN-INFERRED node and re-arms the interrupt.

71n addition, sometimes utterances can purposefully have more than one meaning. The system can
represent both mutually exclusive interpretations and dual interpretations. However, it must know hypo—

thetically which are which ahead of time.
8This example has been simplified for illustration purposes. For example, the mutually inconsistent

interpretation constraints and the preconditions have been left out.

43

24 Review of Theory-Types of Knowledge

This section of the manual briefly digresses into an review of different theoretical types of

knowledge. This is important in understanding the application of NP and the AT!VIS to

actual problems. More about this theory has been said elsewhere; however, the terms are
important enough to the NP system that this brief review is offered here.

vVhen talking about a state, an action or some other kind of concept, there are at least
three impor、tantattitudes that can be taken towards that concept, or conversely, three

ways of knowing that concept. The first is theoretical or hypothetical knowledge. This

is used to talk about concepts in the abstract, without any commitment as to whether

the concepts actually exist or not. An example is, "People who are asking questions" (or,

more formally, "Hypothetically, there might exist such a thing as a person who is asking a

question"). Another example is, "People who are expecting answers" (or, more formally,

"In theory, there might exist such a thing as a person who is expecting an answer.")

Hypothetical concepts can be linked with hypothetical rules. An example of a hypo-

thetical rule is: "People that ask questions expect answers", or, more formally, "In theory,

if a question is being asked, then always an answer is expected."

The second kind of knowledge is uncertain, potential, or possible knowledge. This is

used to talk about a concept that is suspected of existing, but the question of its actual

existence is unclear or could be challenged later. An example is, "This person might be

asking a question", or, more formally, "It is possible that right now a question is being
asked".

Note that possible concepts, when combined with hypothetical rules about hypothet-

ical concepts, produce further possible concepts. Thus, using the previous hypothetical

example, the new possible knowledge "It is possible that right now an answer is expected"
1s now known.

Note that if a concept is possible knowledge, it usually implies the consideration that

it is also possible that that knowledge could be not true.

The third attitude that can be taken towards a concept is taking it as actual knowledge.

This is used to talk about a concept when it is clear that the concept actually exists, and

when there is no possibility that that concept could be challenged later. An example is,
"This person is asking a question", or, more formally, "It is actually true that right now a

person is asking a question".

Actual concepts can also combine with hypothetical rules to produce further actual

concepts. Again, using the previous hypothetical example, the actual concept "An answer

is expected" is produced (more formally, "It is actually true that right now an ansvver is
expected"). 9

The ATMS Representation. The ATMS represents the different kinds of knowledge
in different ways. Hypothetical knowledge is represented by the ATMS-nodes. But, unless

there is a reason to BELIEVE the knowledge, it remains hypothetical, and is not used by

9In addition, actual concepts can combineヽvithother possible concepts when hypothetical rules have
multiple antecedents. However, in this case another possibility is produced, not another actuality.

44

the system. Possible knowledge is represented by the BELIEVED/NOT BELIEVED paradigm.

If a node is an assumption, then it represents possible knowledge; ATMS-nocles that are

implied by assumptions and therefore also come to be BELIEVED in some contexts also

represent possible knowledge. Actual knowledge is represented by premises, which are

always believed in all possible worlds.

25 Conclusion.

As a first step towards an integrated understanding system, this paper has presented

NP, a plan-inference system, and NFL, a rule-based inference engine. Both systems use

feature structures as their basic representation method, allowing direct interface with a

parser, a transfer module, and a language generation module. Both systems are based

on the use of assumptions. This allows NP to accept uncertain and multiple possible

inputs, and to represent multiple possible inferred plans. Multiple possible input capability

is important for disambiguating speech recognition results. The current version of the

system is not yet able to support nonmonotonic actions nor reasoning in time. The system

uses preinstantiated hypothetically-known inferences to save run-time processing. The

NP system successfully recognizes feature-structure plans in expected parser output from

actual dialogs in the ATR corpus.

45

A Implementation of NFL

To review, there are two main user data-structures employed by NFL: the nfl-fact, and the

nfl-rule. Nfl-rules are divided into antecedent patterns, consequent patterns, and the spe-

cial, optional effect-consequent patterns. All patterns have variables. When the conjunc-

tion of a rule's antecedent patterns consistently match assorted facts, the rule's consequent

and effect-consequent patterns are instantiated.

NFL is an inference engine that uses an unordered list of "facts" and a set of "rules" to
draw conclusions and find new assertions. In this aspect, NFL is quite sii11ilar to an ordinary

inference engine; it has many features similar to a standard inference engine. There is a

stack, which contains instantiations of rule firings to be examined. The top insta.ntiation on

the stack is examined for consistency; if its antecedent pattern instantiations are consistent,

then the consequents are asserted. The rules'antecedents consist of a conjunction of

patterns. However, NFL・differs in three importa.rit aspects:

• Instead of logical forms, feature structures are used to represent both facts and pat-
terns.

• vVhen a rule fires, that firing is customarily asserted into the ATMS to be remem-
berecl. This is clone by asserting the particular instantiated patterns of the rule (in-

eluding the antecedent, consequent, and effect consequent patterns) into the ATMS,
along with appropriate implications.

• The user has the option of disabling propagation inside NFL of the derived conse-
quents of a rule. In other words, it is possible for the new resulting facts not to get
inserted as new NFL-facts, but only to get used by the ATMS system.

These features are reflected in the implementation of the NFL system.

The actual data structures used by the system are slightly different. There is a structure

for an nfl-rule, and a structure for an nfl-pattern; facts are simply raw feature-structures,

and so do not need an explicit separate data-structure. Both the nfl-rules and the nfl-

patterns are stored in respective hash-tables. There currently is no hash-table for facts,

as all of the used facts are stored in the ATMS. There is also a processing stack that gets
clocked.

The nfl-rule structure consists of a print-function, a list of antecedent nfl-patterns, a
list of consequent feature-structure patterns, a list of effect-consequent feature-structure

patterns, a documentation string, and a priority. The rule priority is used to sort the

rule onto the system execution heap. Currently, all of the rules have the same priority,

and there is no explicit provision for setting this priority. (Priorities are not especially

significant in a monotonic system.) However, the priority-based stack insertion has been

implemented, and if the user were to set rule priorities by hand (e.g. before any facts were

asserted), this would w~rk properly.

The nfl-pattern structure consists of a print-function, a data slot (used for documen-

tation), a list of dotted-lists of matching node and bindings pairs (used for consistency

checks), and a list of rules the pattern belongs to.

46

The current system assumes that the user first resets the NFL system, next enters all of

the rules required for the system, and finally starts entering facts. In the current version,
no provision has been made for remembering facts, and then checking a newly entered

rule against all previously known facts. This restriction seems to be reasonable for a plan

inference system. Currently, there is no penalty for adding rules after some facts have been
added; the rule simply does not examine these. It would not be difficult to add the ability

to add new rules if this were required.

Resetting the system clears out the nfl-rules and n仕patternshash-tables, resets the

stack, and clears the counters. It also clears out the RWS system, which could cause

problems if another system is using R¥¥S.

The user starts by specifying a series of rules to the NFL system. Each rule gets entered

into an n廿—rule data structure, and filed in the hash-table (currently under its ID number).

The antecedents get entered as a list of n仕patterns.

vVhen a new nfl-pattern is created, first the pattern should be checked to see whether

it is isomorphic with a previous pattern. If it is, the old pattern would be used instead, for
efficiency. Since doing this check correctly involves theoretical problems with normalizing
variable names, currently this nonessential efficiency check is bypassed. Next, the pattern

object gets created, initialized with the feature-structure data, and filed in the nfl-pattern

hash-table (again, currently under its ID number). The pattern's rule is pushed onto the

pattern's rule list. Finally, the pattern, along with its ID number and its name-tag, gets
specially asserted into the RWS system.

The R¥iVS assertion, used to interface with the R¥i¥1S system, is perhaps the most difficult

part of the system. The NFL system does not use the normal RvVS utilities, rather it uses
a special custom routine to assert RvVS rules. The routine dynamically builds a RvVS rule

at run-time, using macros. It is important to get the macro-expansion evaluation level

correct when the software gets changed-make sure that the actual macro assertions are
evaluated at run-time, and not the customary compile-time. Note that there is a difference

between compiled and interpreted code on this point; errorful code will run correctly while

interpreted. The current system does work when the code is compiled. …Normal R¥i¥1S

rules consist of an antecedent feature structure, and a consequent routine that instantiates
and returns an appropriate consequent to the RWS routine when that RvVS rule fires. The

NFL RWS routines instead accept the bindings list from the recognized antecedent, push

it on a special NFL answer stack as a side-effect, and return a null answer to RWS. This

has the desirable effect of bypassing any RWS-system-specific requirements for instantiated

answers. The bindings list has an objectiC?nable "?input" variable automatically inserted

on it, so this is removed before the bindings are returned to NFL. Since the RWS system
changes, this particular interface procedure has to be adjusted every time a new, modified

version of RWS comes out.

After the user has finished asserting rules into the NFL system, the user next asserts

facts one by one to the system, in the form of a specified feature structure. The fact is

:fi rst printed out, if the *nfl-debug* flag is on. Next, if the *nfl-dont-repropagate*
flag is on, the feature structure is checked against the ATMS node table, using find-node.

In this case, if the fact has been entered into the ATMS already, the rest of the process

is disregarded. Otherwise, the feature structure is submitted to the RvVS for pattern-

matching, and the results (in the form of a list of bindings/pattern-ID dotted lists) are

47

returned to the NFL system. The pattern IDs are used to look up the m試chingnfl-

patterns, and the bindings are pushed onto the pattern's node.bindings slot. All of the
rules in the pattern's rule slot are reactivated. After this, currently the activated rules
stack is clocked by the nfl-fact routine until it's empty. If a more user-oriented system is

desired, this feature should be removed and the user should be allowed to clock the stack

as desired.

Submission to the RWS system consists of running the submitted fact feature-structure

against the pattern-recognition rules that were submitted into the R¥i¥TS by NFL already.

A special global interface variable is used to keep and return a stack of all of the results

from RvVS to NFL. If no rules match, this variable is NIL.

Activating a rule consists of forming all of the permutations between the one pattern

instantiation that activated the rule, and all of the other binding sets associated with

the other antecedent patterns. A set of one bindings from each pattern consists of an
instantiation. The rule instantiations are sorted into the processing stack to be checked,

based on the rule's priority.

Clocking the stack once consists of checking (only) the single instantiation on the top

of the stack (whether it turns out to be consistent or not), and then firing the rule if it's

consistent. In any case the stack is popped, and the instantiation is discarded.

Checking an instantiation on top of the stack is currently done by throwing the bindings

in a "comparison pot", one by one. !irst, a variable is tested against the pot by performing
an assoc. If the variable was not m the pot already, it is put in the pot, along with its
binding. If the variable was in the pot, the current variable's binding is tested against the

pot variable's binding, to see whether they are equivalent or not. Since the bindings are

(cyclic) feature structures, there are some philosophical questions as to what constitutes

equivalency. Currently rws: FS-equal is used for this test, which is not as strict as eq. It is

unknown whether variable names are (or should be) significant in this test. If the bindings

are equivalent, no action is performed, as the variable is in the pot already. If the bindings

are not equivalent, the algorithm signals an inconsistency rejection, and terminates. If the
algorithm manages to check all of the bindings without returning an inconsistency, the

algorithm completes successfully and signals consistency. This algorithm works well, but is

rather brute-force and conceivably could be improved for speed by replacement with some

more clever algorithm.

vVhen a consistent rule fires, both all of the consequences'and all of the effect conse-
quences'feature structures are instantiated using a copy of the variable bindings, and each

resulting feature structure is asserted into the ATMS as a hypothetical node. If the flag

nfl-propagate is true, each of these feature structures is asserted, as it is created, as

an nfl-fact. Of course, when an nfl-fact is asserted, it could fire off more rules and clock

the stack. Note that this depth-first instantiation method could have important implica-

tions if the system is used for nonmonotonic applications in the future; this might have to
be trivially replaced with a breadth-first instantiation method. In addition to the system
creating ATMS-nodes for the rule's antecedents and consequents, implications are created

from the conjunction of the rule's antecedent nodes to each of the rule's consequent nodes.

Also, if there are any effect consequents, implications are created from the last consequent

to each of the effect-consequent nodes. This is useful for implementing action networks.

Currently there are no functions for supporting retraction of facts. Thus, the NFL

system is currently monotonic. It would be possible to write routines in NFL that would

48

retract NFL facts, however there is a question as to what should be done with the ATMS

nodes and/or the corresponding implications. A node cannot be retracted when it is
hypothetical, it can only be deleted (to a NULL belief status). Although this could be

done, it is unclear whether it would be desir~ble or not. Perhaps the best thing would be
to retract all justified (outgoing) implications from a retracted node, or to build a system
centered around retracting rules rather than nodes. It might also be useful to re-examine

the philosophy of hypothetical reasoning versus actual reasoning.

Currently, the current system only implements hypothetical reasoning. It is then left

to the user system to assert actual or possible concepts directly into the ATMS. This is a

clean breakdown, and results in a useful and understandable system.

However, NFL maintains only one pool of hypothetical facts. One consequence of this is

that NFL explores only one possible universe, in effect exploring multiple possible worlds at

the same time but not keeping the distinction between them. If there are no implications in
the ATMS that imply the nogood node this is not a problem. Otherwise, the NFL system

might waste some time exploring combinations of facts that belong to disjoint possible

worlds, i.e. that are inconsistent.

Places for possible future improvement include: reworking the pattern matcher (either
RvVS or some other system) so that it matches multiple facts and patterns concurrently,

using trees for representation; put in the test for pattern repeats in multiple rules; create

and implement a better consistency checker; and, put in the new-rules-against-facts com-

parison. Eventually, the rules should also have locally compiled programs to represent the

consequents, instead of being interpreted. There is also no support for a backward-chaining

inference engine.

The results of the system are that all consistent rule firings are instantiated as irnpli-

cation networks in the ATMS. I:h addition, if the flag *nfl-propagate* is on, the system

repropagates the results of the rule firings back through the NFL system. The resulting

system offers an implementation of an inference engine based on feature structures.

B Implementation of the ATMS

As a brief review, from the user's viewpoint, there are three kinds of nodes: ATMS-nocles,

premises, and assumptions. There is also one kind of connection between nodes, the

implication (or, "justification"). Finally, there are the environments, which consist of sets

of assumptions. Use of the system consists of creating nodes, and then creating implications

to link them together. The user can also indicate inconsistent nodes or sets of nodes.

Environments can then be referenced, to see what assumptions are required in a particular
possible world, and which possible worlds are inconsistent. This section provides a brief

review; more information can be found in the ATMS manual [Mye89b].

B.1 Implementation Data Structures

The actual data-structures that are used to accomplish this are somewhat different from the

user conceptualization. There are four types of structures in the implementation: the ATMS-

node, the assumption-tag, the implication, and the environment. Premises are implemented

49

as a special case of the ATMS-node. An assumption is implemented as an ATMS-node

together with an assumption-tag, with a single-antecedent implication pointing to the

ATMS-node from the assumption-tag. All of these objects are implemented as structures

for speed.

B.1.1 AT:rvIS-node structure

An ATMS-node has the fields data1 implies, implied-by1 label1 my-assum1 ID1 and rule. In
addition, it has an associated print-function. The data field stores the user's data, and is

not referenced by the ATMS system. The implies field contains a list of implications that

have this node as an antecedent, i.e. the node implies something. The implied-by field

contains a list of implications that have this node as a consequent, i.e. this node is implied-

by those justifications. The label field contains a sorted list of consistent charactenzmg
environments which this node is in the context of, i.e. directly or indirectly implied by.

If this node is a premise, the label consists of a single environment, the null environment

truth-env. The environments in a label are sorted by size; the size of an environment
is the number of assumptions it comprises. The my-assum field contains the assumption-

tag for this node if the node is an assumption, or nil otherwise. The ID field contains a

unique non-negative integer identifying this node. And, the rule field is usually nil, but

can contain a short program that gets executed when the node becomes IN.

B.1.2 The Assumption-Tag Structure

An assumption-tag has the fields my噂 ode1environments1 and ID. In addition, it has an
associated print-function. The assumption-tag's my-node field contains the corresponding

ATMS-node that gets assumed, that this tag justifies. Assumption-tags can only justify one

ATMS-node. The environments field contains a list of all the explicitly-identified environ-

ments this assun1.ption is in. And, the ID field contains a non-negative integer to identify

this assumption-tag, that is unique among the assumption-tags.

B.1.3 The Implication Structure

An implication has the fields data1 antecedents1 consequent1 and ID. In addition, it has an

associated print-function. The data field contains the user data for this implication, which
is not used by the ATMS. The antecedents field contains a list of an assumption-tag, or

a list of one or more nodes, that are antecedents to the implication. The consequent field

contains an ATMS-nocle that is the consequent of the implication. The ID field contains a

non-negative integer to identify the implication, that is unique among the implications.

B.1.4 The Environment Structure

An environment has the fields nodes) nogoocl-p) size) ID) and assum-bits. In addition, it

has an associated print-function. The nodes field contains the context of the environment,

i.e. a list of all of the nodes that have this environment in their label. The nogood-p
field is nil unless the environment is nogood; this provides a quick check, although it is

50

not strictly necessary. The size field provides a count as to the number of assumptions

in this environment; it is used to order the environment in lists. The ID field contains a

non-negative integer to identify the environment, that isunique among the environments.
And, the assum-bits field contains a special bit-array that has a bit set for the number of

each assumption that composes the environment.

B.2 Firing Processing Demons

ATMS processing demons are implemented using a user-specified routine that is stored in

the appropriate ATMS node, and a special check in the OR-label routine that gets called

when a node's justifying implication is reprocessed. If the node turns from OUT to IN, the

stored routine is eval'ed.

B.3 Efficiency Considerations

Data structures are implemented with Lisp structures, instead of flavor objects. This re-

sults in faster access time. Some previous ATMSs have based their propagation on nodes,
requiring a node to recompute its label from its justifications and their antecedent nodes

when a change is propagated. This involves unnecessary computation. The ATR ATMS

bases propagation on implications, which is faster. As explained above, the propagated
change contributed by an implication is unioned into the label of the implication's conse-

quent; there is no need to examine the sister implications contributing to the consequent.
This results in significant time savings (around lOx in one benchmark) when one node is

justified by many different implications. Some previous ATMSs have represented their la-

bels using lists, which require list computations. This ATMS uses bit vectors to represent
labels; as a result, label computations are extremely fast. In particular, the important

subsumption test is represented as two accesses ai1d a single bit-vector operation, resulting

in extremely efficient operation on the Symbolics Lisp Machine.

Efficiency questions also center around the porting of the ATMS to other machines, such

as the SUN. A previous version of the ATMS used.extensible bit-vectors, which, although

fast on the Symbolics, are extremely slow on the SUN. The current system uses static

bit-vectors that get copied. In addition, the environment bins stored in assoc lists under

env-bins and *nogood-bins* that were previously themselves implemented as assoc

lists, have been reimplemented using hash tables. This also resulted in a 2.3x speedup in
benchmarks for very large user systems.

51

C Version History of NP

Version 1.0 was based on logical forms, and used the FLAIL inference engine. Instan-

tiation was top-clown, which meant~hat no new infor;mation could be instantiated in the
lower levels of the hierarchy-the actron descriptions had to contain enough variables and

constants to completely support the decompositions. This was a disadvantage. The NP

actions were monotonic.

Version 2.0 was a complete rewrite that converted the NP system from using logical

forms to the use of feature structures. Instead of using an inference engine, the system

used the rewriting facilities of R¥VS along with a plan-schema pre-interpreter, a set of

切structionrules, and an instruction post-interpreter. The pre-interpreter built up a set of
instructions and put them in the single consequent of an RvVS rule. ¥¥hen the rule executed,

the instructions were instantiated and returned. The post-interpreter interpreted these

instructions and built a corresponding ATMS network. Although this method worked,

it was clumsy. Instantiation was performed bottom-up, which had the advantage that
information could be discarded when going from the low levels of the hierarchy up to the

higl 1 1 evels. However, instantiation was performed with a set of instructrons-recognizing the

actron from the decompositions was performed separately from implying the effects from
the action. This meant that the action description had to contain enough information

to instantiate the effects, a disadvantage. In addition, because the decompositions were

necessarily segmented into separate rewriting rules, two different decompositions to the

same action might unnecessarily reinstantiate the identical implications network, resulting

in duplicate implications.

Version 3.0 was another rewrite that introduced NFL and phased out most of the use

of the RWS. Instead of all of the RvVS being used for recognizing patterns, rewriting the

consequents, and returning the results as an instruction rule to be interpreted, only part
of the R¥VS was used, just for recognizing patterns for NFL. The NFL inference engine

instantiated actions bottom-up. Since all of the decompositions were present in the rule, the

information required for the effects could be derived from all of the decompositions together,
and it was no longer necessary to include deriving information in the action description.

The system was invoked in a single pass using a complex series of six arguments. Multiple

alternatives were not explicitly supported. Three levels of verbosity were added to the

graphics display: small, medium, and large.

Version 3.1 cleaned up the user interface by introducing the "-utt" user commands.

The system was invoked incrementally, in an interactive fashion, reflecting a more realistic
method of use. In addition, the "alternative-utt" command was introduced to explicitly

support possible alternative inputs. The graphics was converted to bold-outline actual

assertions, instead of reversing them as white-on-black.

Version 3.2 cleaned up some other minor items. Assumptions can now accept proba-

bilities, although they are not used by the system.

Version 3.3 saw NP installed as a Lisp System. The NP system can now be invoked

with the Load System NP command. The "pairwise-inconsistent" functions were added

for the ATMS.

52

D Example Listing of Plan Input

; ;; -*-Syntax: Common-Lisp; Base: 10; Mode: TFS-*一

; ; ;PLANS 4 File LM01:>rnyers>np1-plans4-CAN.lisp

•9.,·' •9.,.

,

•9.,•9

"CAN" ABILITY /POSSIBILITY

•9•9 •9., ?variables
ccoref-tag[DEF], ccoref-tag.

，

，

9

.

，
．
，
．
,
．
,
．
,
．
，

HISTORY

March 9'90 Some variables had a question-mark in the MIDDLE.

The reader was choking on them. Don't use question-marks

inside variable/constant names.

"Meet extra feature value11---no [[after the feature, only [.

(make-FS-action

[[action

[prec1

+/Q/1/DEKIRU]

[[RELN

[ARG1

[ARG2

;Can (I) do X? and Xis a comrnissive, means 11X11.

Is-a]

?verb]

Commissive]]]

[dec1 [[RELN S-REQUEST]

[AGEN ?questioner]

[RECP ?answerer]

[OBJE [[RELN INFORMIF]

[AGEN ?answerer]

[RECP ?questioner]

[DBJE [[RELN できる一POSSIBLE]

[AGEN ?questioner]

[DBJE [[RELN ?verb]

?rest]]JJJJJJ

[eff1 [[RELN ?verb]

53

I I

?rest]]

J
 ヽ`ノ

(make-FS-action

[[action +/Q/1/DEKIRU] ;Can IX?

[dec1 [[RELN S-REQUEST]

[AGEN ?questioner]

[RECP ?answerer]

[OBJE [[RELN INFDRMIF]

[AGEN ?answerer]

[RECP ?questioner]

[OBJE [[RELN できる一POSSIBLE]

[AGEN ?questioner]

[DBJE ?action]]]]]]]

J
 、＼ノ

(make-FS-action

[[action +/Q/2/DEKIRU]

[dec1

r
j
 、ヽ

ノ

(make-FS-action

[[RELN S-REQUEST]

[AGEN ?questioner]

[RECP ?answerer]

[OBJE [[RELN INFDRMIF]

[AGEN ?answerer]

[RECP ?questioner]

[DBJE [[RELN できる一POSSIBLE]

[AGEN ?answerer]

[OBJE ?action]]]]]]]

[[action +/Q/3/DEKIRU]

;Can you X?

;Can he/she X?

[prec1 [[RELN DIFFERENT]

54

[ARG-1 ?answerer]

[ARG-2 ?third-person]]]

[prec2 [[RELN DIFFERENT]

[ARG-1 ?questioner]

[ARG-2 ?third-person]]]

[dec1 [[RELN S-REQUEST]

[AGEN ?questioner]

[RECP ?answerer]

[OBJE [[RELN INFORMIF]

[AGEN ?answerer]

[RECP ?questioner]

[OBJE [[RELN できる一POSSIBLE]

[AGEN ?third-person]

[OBJE ?action]]]]]]]

J
 冒ヽ

(make-FS-action

[[action +/Q/U/DEKIRU] ;Can [O someone] X?

[dec10 [[RELN S-REQUEST]

[AGEN ?questioner]

[RECP ?answerer]

[OBJE [[RELN INFORM IF]

[AGEN ?answerer]

[RECP ?questioner]

[OBJE [[RELN できる一POSSIBLE]

; This may need a ? or a ! .

[AGENcagent []]

[OBJE [[RELN ?verb]

[AGENcagent]

?rest]]]]]]]]

[eff1

[eff2

[[RELN S-REQUEST]

[AGEN ?questioner]

[RECP ?answerer]

[OBJE [[RELN ?verb]

[AGEN ?answerer]

?rest]]]]

[[RELN DESIRE]

;Please X.

;I want [O someone] to X.

55

[AGEN ?questioner]

[OBJE [[RELN ?verb]

[AGEN ?agent]

?rest]]]]

］
 、＼ノ

(make-FS-action

[[action -/Q/1/DEKIRU] ;Can't IX?

[dec1 [[RELN S-REQUEST]

[AGEN ?questioner]

[RECP ?answerer]

[OBJE [[RELN INFORMIF]

[AGEN ? answerer]

[RECP ?questioner]

[OBJE [[RELN

[DBJE

NEGATE]

[[RELN できる一POSSIBLE]

[AGEN ?questioner]

[OBJE ?action]]JJJJJJJ

J
 、'‘、 i

(make-FS-action

[[action -/Q/2/DEKIRU] ;Can't you X?

[dec1 [[RELN S-REQUEST]

[AGEN ?questioner]

[RECP ?answerer]

[OBJE [[RELN INFDRMIF]

[AGEN ?answerer]

[RECP ?questioner]

[DBJE [[RELN

[DBJE

NEGATE]

[[RELN できる -POSSIBLE]

[AGEN ?answerer]

[OBJE ?action]]JJJ]]]]

J
 ヽ

~

56

(make-FS-action

[[action -/Q/3/DEKIRU] ;Can't he/she X?

[prec1

[prec2

[[RELN DIFFERENT]

[ARG-1 ?answerer]

[ARG-2 ?third-person]]]

[[RELN DIFFERENT]

[ARG-1 ?questioner]

[ARG-2 ?third-person]]]

[dec1 [[RELN S-REQUEST]

[AGEN ?questioner]

[RECP ?answerer]

[OBJE [[RELN INFDRMIF]

[AGEN ? answerer]

[RECP ?questioner]

[DBJE [[RELN

[OBJE

NEGATE]

[[RELN できるーPOSSIBLE]

[AGEN ?third-person]

[OBJE ?action]]]JJJJJJ

J
 ‘ー

(make-FS-action

[[action -/Q/U/DEKIRU] ; Can't [O someone] X?

[dec1 [[RELN S-REQUEST]

[AGEN ?questioner]

[RECP ?answerer]

[DBJE [[RELN INFORMIF]

[AGEN ?answerer]

[RECP ?questioner]

[OBJE [[RELN

[OBJE

NEGATE]

[[RELN できる一POSSIBLE]

; This may need a ? or a ! .

[AGENcagent[]]

[OBJE ?action]]JJJJJJJ

J
 ヽ

~

57

(make-FS-action

[[action +/./1/DEKIRU] ; I can X.

[dec1 [[RELN できる一POSSIBLE]

[AGEN ?questioner]

[OBJE ?action]]]

J
 ‘ー

(make-FS-action

[[action +/ ./2/DEKIRU] ;You can X.

;Unknown error here--unfinished?

[dec1 [[RELN できるーPOSSIBLE]

[AGEN ?answerer]

[OBJE ?action]]]

r,
＇1

 `~

(make-FS-action

[[action +/./3/DEKIRU] ;He/She can X.

[prec1

[prec2

[[RELN DIFFERENT]

[ARG-1 ?answerer]

[ARG-2 ?third-person]]]

[[RELN DIFFERENT]

[ARG-1 ?questioner]

[ARG-2 ?third-person]]]

[dec1 [[RELN できる一POSSIBLE]

[AGEN ?third-person]

[OBJE ?action]]]

r,＇1

、ヽノ

(make-FS-action

58

[[action +/./U/DEKIRU]

[dec1 [[RELN できるーPOSSIBLE]

; This may need a . or a 1

[AGENcagent []]

[OBJE ?action]

?rest]]

J
 ‘.j

(make-FS-action

[[action -/./1/DEKIRU]

; [O someone] can X.

;I can't X.

[dec1 [[RELN NEGATE]

[OBJE [[RELN できるーPOSSIBLE]

[AGEN ?questioner]

[OBJE ?action]

?rest]]]]

J
 ヽ`

ノ

(make-FS-action

[[action -/./2/DEKIRU]

[dec1 [[RELN NEGATE]

[OBJE [[RELN できる一POSSIBLE]

[AGEN ? answerer]

[DBJE ?action]

?rest]]]]

J
 ．ヽ＇ノ

(make-FS-action

[[action -/./3/DEKIRU]

;You can't X.

;He/She can't X.

[prec1 [[RELN DIFFERENT]

[ARG-1 ?answerer]

59

[prec2

[ARG-2 ?third-person]]]

[[RELN DIFFERENT]

[ARG-1 ?questioner]

[ARG-2 ?third-person]]]

[dec1 [[RELN NEGATE]

[OBJE [[RELN できるーPOSSIBLE]

[AGEN ?third-person]

[OBJE ?action]

?rest]]]]

J
 ヽ

j

(make-FS-action

[[action -/./U/DEKIRU] ; [O someone]・can屯 x.

[dec1 [[RELN NEGATE]

[OBJE [[RELN できるーPOSSIBLE]

; This may need a . or a ! .

[AGENcagent []]

[DBJE ?action]

?rest]]]]

J
 ーヽノ

60

E Example

Program

•9.

,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.

,•9.,

•9.

,.,.,.,.,.,.,.,.,.,.,.,.,.,

•9.

,.,.,.,

•9.,

.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,

-*一 Base:

of a

CONVS-EX

10; Syntax:

Conversation

Common-Lisp; Mode:

that is Input to the

TFS-*一

LM01:>NP>example-conversations>conv5-ex.lisp

Expected output results for conversation 5

HISTORY:

Nov 21'89 Changed all ?'s to !'s for Hasegawa.

Bug; changed all ++u's to++ u. Changed read-fs to rws:read-fs.

Switched over to NP-input, reset-NP-input. 5 errors in input file.

"meet extra feature value" == you left out a [[square bracket

after this slot, or other [] mismatch.

"Can't redefine tag" == Two ! X [] ! X []'s encountered.

Take square brackets off second one.

"illegal tag definition" == you forgot the [] after the

Converted SPEAKER and HEARER to OFFICE and GUEST.

Let's be consistent! POSSIBLE should always take AGEN.

Changed EXPR to AGEN in three places.

Nov 22'90 Copied over to NP:>example-conversations.

・--，
(NP-input 11はい＂

!X the first time.

[[RELN

[AGEN

[RECP

はいーAFFIRMATIVE]

[[LABEL *OFFICE*]]]

[[LABEL *GUEST*]]]]

）

・--

(NP-input"こちらは会議事務局でございます＂

[[RELN

[IDEN

fビーIDENTICAL]

[[PARM !X01[]]

[RES TR [[RELN NAMED]

[ENTITY ! X01]

[IDEN 会議事務局ー1]J J]]
OFFICE]]]

GUEST]]]]

[OBJE

[HEAR

）
・---，

[[LABEL

[[LABEL

61

(NP-input 11ちょっとお願いがあるのですが＂

[[RELN が一MODERATE]

― [OBJE [[RELN ある一1]

[OBJE [[PARM ! X01 []]

[RESTR [[RELN お願いー1]

[AGEN []]

[RECP []]

[OBJE []]

[ENTITY ! X01]]]]]

[INFMANN [[PARM ! X02 []]

）

[RES TR [[RELN ちょっと一1]

[ENTITY !X02]]]]]]]]

・--，
(NP-input 11私は会議に申込みをした者です＂

[[RELN だーIDENTICAL]

）

[OBJE [[LABEL *GUEST*]]]

[IDEN [[PARM !X04[[PARM !X01[]]

[RESTR [[RELN 者ー1]

[ENTITY ! X01]]]]]

[RESTR [[RELN たーPERFECTIVE]

[OBJE [[RELN する一2]

[AGEN ! X04]

[SLOG [[PARM ! X02 []]

[RES TR [[RELN 会議ー1]

[ENTITY ! X02]]]]]

[OBJE [[PARM ! X03 []]

[RES TR [[RELN申込みー1]

[AGEN []]

[OBJE []]

[SLOG []]

[ENTITY !X03]]]]]]]]]]]]

・--，
(NP-input 11参加を取り消したいのですが＂

[[RELN 力~-MODERATE]

[OBJE [[RELN T-cこV>-DESIRE] ; Weird IDEN taken out.

[EXPR ! X02 []]

[OBJE [[RELN 取り消すー1]

[AGEN ! X02]

[OBJE [[PARM !X01 []]

[RESTR [[RELN 参加ー1]

62

）

[AGEN []]

[SLOC []]

[ENTITY ! XO 1]]]]]]]]]]

・---，
(NP-input 11お名前をお伺いできますでしょうか II

[[RELN S-REQUEST]

）

[AGEN !X01[[LABEL *OFFICE*]]]

[RECP !X02[[LABEL *GUEST*]]]

[OBJE [[RELN INFORMIF]

[AGEN ! X02]

[RECP !X01]

[OBJE [[RELN できる一POSSIBLE]

[AGEN !X04[]] ;Changed EXPR to AGEN

[OBJE [[RELN 聞くー1]

[AGEN ! X04]

[RECP []]

[OBJE [[PARM ! X03 []]

[RES TR [[RELN 名前ー1]

[ENTITY !X03]]]]]]]]]]]]

・---，
(NP-input 11はい"

[[RELN はいーAFFIRMATIVE]

[AGEN [[LABEL *GUEST*]]]

[RECP [[LABEL *OFFICE*]]]]

）

・---，
(NP-input 11ベル研のジムワイベルです＂

[[RELN T<ビーIDENTICAL]

[IDEN [[PARM !X03[[PARM !X01[]]

[RESTR [[RELN NAMED]

[ENTITY ! X01]

[IDEN ジムワイベル］］］］］

[RESTR [[RELN のー連体修飾］

[OBJE []]]

[ARG-1 [[PARM !X02[]]

[RESTR [[RELN NAMED]

[ENTITY ! X02]

[IDEN ベル研ー1]]]]]

[ARG-2 ! X03]]]]]

63

ヽ`
ノ

・--，
{NP-input 11既に登録料の 8万5千円を振り込まれておられますね＂

[[RELN ねーCON~IRMATION]

[OBJE [[RELN ている一PROGRESSIVE]

[AGEN ! X01[]]

[OBJE [[RELNれる一RESPECT]

[DBJE [[RELN 振り込むー1]

[AGEN ! X01]

[SLOC []]

[OBJE [[PARM ! X04 [[PARM ! X02 []]

[RES TR [[RELN 8万 5千円ー1]

[ENTITY ! X02]]]]]

[RESTR [[RELN のー連体修飾］

[ARG-1 [[PARM !X03[]]

[RESTR [[RELN 登録料ー1]

[ENTITY !X03]]]]]

[ARG-2 !X04]]]]]]]

[TLDC [[PARM ! X05 []]

[RESTR [[RELN 既にー1]

[ENTITY !X05]]]]]]]]]]

ーヽ

・--，
(NP-input 11はい＂

[[RELN はいーAFFIRMATIVE]

[AGEN [[LABEL *GUEST*]]]

[RECP [[LABEL *OFFICE*]]]]

ーヽ

・--，
(NP-input 11そうです＂

[[RELN そうですーCONFIRMA TI ON]

[AGEN [[LABEL *GUEST*]]]

[RECP [[LABEL *OFFICE*]]]]

‘,ノ
・---，
(NP-input 11参加料を払い戻して頂けますか II

[[RELN S-REQUEST]

[AGEN ! X04 [[LABEL *GUEST*]]]

[RECP !X05[[LABEL *OFFICE*]]]

64

[OBJE [[RELN

[AGEN

[RECP

[OBJE

INFORMIF]

! X05]

! X04]

[[RELN

[AGEN

[DBJE

もらえる一POSSIBLE]

!X03[]]

[[RELN もらえるーRECEIVE_FAVDR]

[AGEN

[RECP

[OBJE

!X03]

! X02 []]

[[RELN

[AGEN

[OBJE

払い戻すー1]

!X02]

[[PARM ! X01[]]

[RES TR [[RELN 参加料ー1]

[ENTITY !X01]]]]]]]]]]]]]]

‘ー
・--，
(NP-input"お気の毒ですができません＂

[[RELN NEGATE]

[OBJE [[RELN できる -POSSIBLE]

[OBJE []]

[AGEN []]]]

[INFMANN [[RELNがーDISJUNCT]

[OBJE [[RELN だーIDENTICAL]

[IDEN [[PARM !X01[]]

[RESTR [[RELN 気の毒ー1]

[ENTITY ! X01]]]]]

[DBJE []]]]]]]

）
・--

(NP-input 11案内書にも書いていますが＂

[[RELN 力~-MODERA TE]

[DBJE [[RELN ている一STATIVE]

[AGEN ! X02 []]

[OBJE [[RELN 書くー1]

[AGEN ! X02]

[SLOC [[PARM !X01 []]

[RES TR [[RELN 案内書ー1]

[ENTITY ! X01]]]]]

[OBJE []]]]]]]

）

; ----------------------------------
(NP-input "9月27日以後の取り消しに対する払い戻しできません＂

65

[[RELN NEGATE]

）

[DBJE [[RELN できる一POSSIBLE]

[AGEN []] ;EXPR changed to AGEN

[OBJE [[PARM !X05[[PARM !X04[]]

[RES TR [[RELN 払い戻しー1]

[AGEN []]

[OBJE []]

[ENTITY ! X04]]]]]

[RES TR [[RELN 対するー1]

[AGEN ! X05]

[OBJE [[PARM ! X03 []]

[RESTR [[RELN 取り消しー1]

[AGEN []]

[OBJE []]

[TLDC [[PARM ! X02 []]

[RESTR [[RELN 以後ー1]

[ENTITY !X02]

[COMP-OBJE [[PARM ! X01 []]

[RES TR [[RELN 9月27日ー1]

[ENTITY ! X01]]]]]]]]] ;] moved here from next line

[ENTITY ! X03]]]]]]]]]]]]

(NP-input"後日プログラムと予稿集をお送り致します＂

[[RELN 送るー1]

[AGEN []]

[RECP []]

[TLDC [[PARM ! X03 []]

[RESTR [[RELN 後日ー1]

[ENTITY ! X03]]]]]

[OBJE [[RELN と一COORDINATE]

[ARG-1 [[PARM !X01 []]

[RESTR [[RELN プログラムー1]

[AGEN []]

[OBJE []]

[ENTITY ! X01]]]]]

[ARG-2 [[PARM ! X02 []]

_,...,. [RESTR [[RELN 予稿集ー1]

[ENTITY !X02]]]]]]]]

）

--
(NP-input"では誰かが私の代わりに参加することはできますか II

[[RELN S-REQUEST]

66

[AGEN ! X04 [[LABEL *GUEST*]]]

[RECP !X06[[LABEL *OFFICE*]]]

[OBJE [[RELN INFORMIF]

[AGEN ! X06]

[RECP ! X04]

[OBJE [[RELN できる一POSSIBLE]

[AGEN [[PARM ! X02 []] ; EXPR changed to AGEN

[RESTR [[RELN 誰か— 1]

[ENTITY !X02]]]]]

[OBJE [[RELN 参加するー1]

[AGEN !X02]

[SLOG []]

[PURP [[PARM ! XOS [[PARM ! X03 []]

[RESTR [[RELN 代わりー1]

[AGEN []]

[ENTITY ! X03]]]]]

）

[RESTR [[RELN のー連体修飾］

[ARG-1 ! X04]

[ARG-2 ! XOS]]]]]]]]]]]

[INFMANN [[PARM !X01[]]

[RESTR [[RELN ではー1]

[ENTITY ! X01]]]]]]

[OBJE ! X04]

． --，
(NP-input"それは別に問題ありません＂

[[RELN NEGATE]

[MANN [[RELN 月IJ71ビー1]

[COMP []]

[OBJE !X01[]]]] ; [] moved here from down under PARM.

[DBJE [[RELN 問題ある一1]

[SLOC [[PARM ! X01]

[RESTR [[RELN それー1]

[ENTITY !X01]]]]]]]]

) -
・---，
(NP-input 11代理人が参加する場合はあらかじめこちらまでお知らせ下さい＂

[[RELN 下さい—REQUEST]

[AGEN !X01[[LABEL *OFFICE*]]]

[RECP !X02[[LABEL *GUEST*]]]

[MANN [[PARM ! X03 []]

[RESTR [[RELN あらかじめー1]

67

[ENTITY !X03]]]]]

[OBJE [[RELNせる一CAUSATIVE] ;RELN Inserted

[AGEN ! X01]

[RECP ! X02]

[OBJE [[RELN知るー1]

[AGEN ! X02]

[OBJE []]]]]]

[COND [[PARM !X05[]]

[RESTR [[RELN 場合ーCONDITIONAL]

[ENTITY ! X05]

[IDEN [[RELN 参加するー1]

[AGEN [[PARM ! X04 []]

[RES TR [[RELN 代理人ー1]

[ENTITY ! X04]]]]]

[SLOC []]]]]]]]]

ーヽ

・---，
(NP-input 11分かりました＂

[[RELN iiこ -PERFECTIVE]

[DBJE [[RELN 分かる一1]

[EXPR []]

[OBJE []]]]]

）

・---，
(NP-input 11代理人が決まりましたらお知らせ致します＂

[[RELN せる一CAUSATIVE]

[AGEN []]

[RECP ! X03 []]

[OBJE [[RELN知る一1]

[AGEN !X03]

[OBJE []]

[COND [[PARM !X02[]]

[RES TR [[RELN たらーCONDITIONAL]

[ENTITY ! X02]

[IDEN [[RELN 決まるー1]

[DBJE [[PARM ! XO 1[]]

[RESTR [[RELN 代理人ー1]

[ENTITY !X01]]]]]]]]]]]]]]

‘,ノ
・--，
(NP-input 11では失礼します＂

68

[[RELN 失礼する一CLOSE_DIALOGUE]

[AGEN [[LABEL *GUEST*]]]

[RECP [[LABEL *OFFICE*]]]

[INFMANN [[PARM !XO![]]

[RESTR [[RELN では一1]

[ENTITY ! XO!]]]]]]

‘,ノ

F Example Output of the Program

This section shows an example of the results of running the plan recognition system on a
slightly shorted version of conversation 4. Each of the white boxes is a concept that has

been inferred. The black boxes are the system's predictions (prefaced by "P:"), which are

not used in this example for clarity.

There are a number of observations that can be made on the output. Basically, the

system comes up with a massive data-base that tells which concepts are believed. However,
this data-base is so large that it is very difficult to work with, and the form of the data

(mostly domain and communication plans) is also difficult to work with. The entire graph

takes up approximately 12 large screens, or an area 3'x2'; it is impossible to see it all at the

same time, and printing it out and pasting it together is a chore. Even on a lisp machine it
takes about 20 minutes to draw. The graph needs an intelligent browser that would allow

people to look at sections of it.

In addition, the astute reader will notice that the nodes do not contain feature struc-

tures, but rather long atomic names. This is because the feature structures that the system

normally works with are much too long to display. Instead, a researcher has to have two
versions of code-a short version that uses only tiny feature structures for research (the first

RELN feature is used for the display output in this case), and a long version for actual

development and system integration. This also needs to be improved.

Note that the system easily handles logical conjunctions, such as "the office knows the

guest's name and telephone number", which is supported by "the office knows the guest's

name" and "the office knows the guest's telephone number".

The results illustrate the previous evaluation of the system. The system performs plan

recognition, prediction, and plan inference in a marvelous manner, but the resulting data-
base requires at least an intelligent disambiguation system and other reasoning n

in order to be usable in solving practical problems in machine translation.

69

Process, ns utterance: M h
p

Y Pone nuMber is 372-8081.
rocess1n9 utterance: 372-8081.

Process1n9 utterance: Is that ri9ht?
Proce:s:sin9 utterance: 372-8081, ri9ht?
Process1n9 utterance: That's ri9ht.
Proce:s:sin9 utterance: Yoroshiku.
Process1n9 utterance: Well, 9oodbye then.
Evaluation of (ACTIVATE-DEMO) took 25.053543 second:s of

0.717 seconds processin9 sequence break:s, elap:sed tiMe includin9:

1.367 seconds in the stora9e :systeM (includin9 0,243
0.815 seconds processin9 2513 pa9e fault:s includ' second:s uaitins for pages):

0.552 seconds in creatin9 and destro , ns 15 fetche:s,

0.000
yins Pases, and

:seconds in Miscellaneous storase systeM tasks.
The 9arba9e collector has flipped; so no consi
NIL ns was Measured.

CoMMand: (draw-9raph (reverse *atns-nodes*))

R
GUEST-CONFIRMS-

OFF I CE-I DENT! TY

情調｝簡i譴
GUEST-REQUESTS-

OFFICE-TO-TELL-THE-

DETAILS-OF-

CONFERENCE

GUEST-ASKS-OFFICE-

□--(TO-TELL-THE-DETAILS-

OF-CONFERENCE

OFFICE-TELLS-GUEST-

DーIDETAILS-OF-
CONFERENCE

OFFICE-ASKS-GUEST-

0-1 WHETHER-GUEST-HAS-CONFERENCE-

ANNOUNCEMENT

GUEST-INFORMS-

OFFICE-GUEST-DOES-

NOT-HAVE-CONFERENCE-

ANNOUNCEMENT

GUEST-1.JANTS-TO-TELL-

OFFICE-1.JHETHER-

GUEST-HAS-

CONFERENCE-

ANNOUNCEMENT

:-Ill
！ ,,

•t

ふ
唱
＼

．

．．

て・
’

f

5

8

．

一
4

タ・
i

g
．ぎ笞
F
i
i汎
3

名
品
ゑ
翌
ヤ

t
i
g
t匡
笠
、
民
『
こ
乱
尻
三 昌言ー：た

"Lー,-—

OFFICE-INFORMS-

GUEST-CONFERENCE-

PLACE-AND-DATE

OFF I CE -TELLS-GUEST-

Dーl瑶 TlCI PAT! ON-FEE-

AMOUNT

k
-～
 OFF"! r.F:-TEL LS-GUEST-

□-1 PAPER-SUBMISSION-
DEADLINE

悦!It計訃褐薗rt/、D

ご. <

OFF I CE-INFORMS-

CUEST-OFFICE-IIILL-

SEND-GUEST-

CONFERENCE-

ANNOUNCEMENT

―
―

-
H
D
e
E

S

E

H

E

S

E

V

-

R

T

E

L

E

H

I
L
H
F
M
E

BEL
叫

c
o
e
E

F
C
E
F
u
H

E
S
F
I
E
S
H
O

U

F

U

H

C

O

C

A

一D k

T

s

E

-

U

s
c

年

蓬

＿

EHT

R
O
9
C
E
M

P

O

H

E

-

T

E

C

塁
FEROUN

F
F
u
E
O
N
N
N

O

C

C

A

一D

f1iJ 鍼

D

o-

o-

鵬
□-

GUESTー~NTS-TO-TELL-

I← D

D

匿醤昌

GUEST-I NFORHS-

OFF I CE-GUESTS-NAHE 0-1
GUEST-TELLS-OFF I CE-

GUESTS-NAME

／亡）

0--1
GUEST-TELLS-OFF I CE-

GUESTS-ADDRESS

GUEST-TELLS-OFF I CE-

DーjcuESTS-HAME-AHD-

ADDRESS

0-1
OFF I CE-KNOWS-GUESTS-

NAME-AND-ADDRESS

D

阻．，旧坦沌占廿

I
C
E
 1
 S
R
Y
S
-
P
H
O
N
E
 1

¥
B
E
R
'
R
H
D
-
R
S
K
S
 ,
 F
O
R
-

I
F
!
R
t
1
R
T
I
O
N

G
U
E
S
T
 1
 W
A
N
T
S
 1
 T
O
-
T
E
L
L
'

O
t

I
 O

F
F
I
C
E
-
G
U
E
S
T
S
-
P
H
O
N
E
 1

I
N
U
H
B
E
R

G
U
E
S
T
 1
 T
E
L
L
S
 1
 O
F
F
I
C
E
'

O
¥

I

G
U
E
S
T
S
-
P
H
O
N
E
 1

H
呂

B
E
R

一OFF
I
C
E
1
 K

N
O
W
S
 1
 G

U
E
S
T
S
 1

＇ PH
O
N
E
 1
 N
U
M
B
E
R

。

0,1ー

1
+

ー O
F
F
I
C
E
 ,
 VE
R
I
F
I
E
S
 ,

G
U
E
S
T
S
 ,
 PH
O
t
t
E
 ,
 N
U
M
B
E
R

O
L
-

72

↓

O
F
F
I
C
E
'

玉
H
n
,
E
S
 1

O'-5-＂n[
nー
0

い
い
に
一

ID"oTO'IG
U
E
S
T
S
-
P
R
O
B
L
E
M
S
.

。
O
i
 。

I

'
 '
 '

。

:d竺RESS. ~J l~uに:,1:,-H叫.ESS

言醤目—D邑，）,:,,

,,,--0

→
OFF I CE-REQUESTS-

GUEST-TO-TELL-

OFFICE-GUESTS-PHONE-

NUMBER

OFF I CE-ASKS-GUEST-

□.-,TO-TELL-OFFICE-

GUESTS-PHONE-liUHBER

GUEST-tlANTS-TO-TELL-

□--I OFF! CE-GUESTS-PHONE-
NUMBER

OFF I CE-REQUESTS-

CONFIRMATION-ANSWER

OFF I CE-STATES-PHONE-

NUMBER-AND-REQUESTS-

CONFIRMATION-ANSWER

GUEST-INFORMS-

OFFICE-CONFIRM I NC-

UTTERANCE

「卜

、..,••
,,. .•·
,•··'

'i ii
I

D

一蘊幽ヽ

D

D

73

G Command Dictionary

(add-assums-to-env old-env assumptions ...) Creates (if necessary) and returns a

new environment consisting of the assumptions of the old environment plus the new
series of assumptions. Currently returns nil if new environment is nogood. Does not
affect the old environment.

(all-node-envs node) Returns a list of all of the known consistent environments under
which a given node is believed. This function is slightly expensive.

(assume-this-node node) Turns an ATMS-node into an assumption. (Technically, jus-

tifies the node with a new assumption-tag whose data contains the node.) Returns

the node. Typically used only for effect. Of course, the user should not call this on

nodes that are already assumptions or premises. Optional arguments: Assumption-
implication data, and the assumption probability (not used): (assume-this-node

node data prob).

(assumptio11 data) Constructs and returns an Assumption node storing the given infor-

mation. For future expansion, it is possible to assign a probability number to the

assumption when it is created, by calling (assumption data prob). Currently, the

probabilities are not used otherwise by the system.

(Assumption# n) Accessor functions for assumptions.

assumption-count The number of assumptions known to the system.

(assumption-data assum) Returns the data stored in an assumption.

(assumption-ID ass ump) ID number function for assumptions. Returns NIL if not an

assumption.

(assumption-p node) Tests whether object is an assumption (i.e., an assumed node) or
not.

assumptions. This variable stores a list of all the assumptions known to the system.

(Assum# n) Accessor functions for assumptions.

(atms-node data) Constructs and returns an ATMS node representing the given infor-

mation. Assigns an ID number to that node. The nodes are numbered serially. Note:

Node O is always the NOGOOD-NODE.

(ATMS-Node# n) Accessor functions for ATMS-nodes. These functions return the node,
given the ID number for it. Same as (node# n).

atms-node-count The number of ATMS-nodes, including those that have been turned

into assumptions or premises, known to the system.

(atms-node-data node) Returns the data stored in a node.

(atms-node-ID node) ID number function for nodes.

74

(atms-node-p node) Tests whether object is an ATMS-node or not. NOTE: "assump-

tions" (assumed nodes) and premises are also ATMS-nodes.

atms-nodes This variable stores a list of all the ATMS-nodes known to the system.

This includes the assumptions and the premises.

(characterizing-env env) Returns the characterizing environment of the given environ-

ment (possibly itself). Returns nil if inconsistent.

(context env) Returns a list of the nodes in an environment's context, including the

ATMS-nodes, the assumptions, and the premises. Works even if the context is invalid.

This is an expensive function to call.

(create-env ass um-list) Creates a new environment for the system to keep track of

and follow, consisting of the set of all the assumptions in the given assumption-

list. Returns the environment. Returns the old environment instead of creating it if

previously there. Currently returns nil if new environment is nogoocl. If an ATMS-
node in the assumption list was not in fact previously an assumption, it is assumed

by this function. Note that this side-effect should be used with care.

debug-atms This flag makes the system print out debugging information. Default is

nil. 、

(del-atms-node name-or-node) Hard-deletes an atms-node.

(del-env environment) Hard-deletes an environment. Not supported yet.

(del-implic implication) Hard-deletes an implication.

(dont-use assum-list env-list) Returns a list of environments where environments con-

taining any of the given assumptions have been deleted.

(dont-use-nodes nodes envs) Returns a list of environments where environments whose

context contains any of the given nodes have been deleted. A rather expensive

function.

(env-assums env) Returns a list consisting of the assumptions that are BELIEVED in
a given environment. Does not check whether environment is inconsistent or not.

Note that more, derived ATMS-nodes will be believed under this environment, in the

environment's context.

(Environment# n) Accessor function for environments.

environment-count The number of environments known to the system.

(environment-ID env) ID number function for environments.

environments This variable stores a list of all (both valid and inconsistent) of the

environments known to the system.

(Env# n) A ccessor funct10n for environments.

(env-nogood-p env) Tests whether env is nogood.

75

(explain-node node) Gives environments in which node is IN.

(explain-nodes) Runs explain-node on all the nodes.

(find-env assum-list) Finds and returns an existing environment. Returns nil if it did

not exist previously. Does not create any new environments. This is a fast function.

(find-node data) Finds the ATMS node that stores the given data. Returns NIL if the
node was not there. Assumes "uniquification" is on.

geometric-limit-increase This flag tells whether *incremental-assumption-limit* clou-

bles after every expansion (geometric increase) or stays constant (arithmetic in-

crease). This number indirectly affects memory allocation, paging, and performance.

Default is T.

(Implic# n) Accessor functions for implications.

(implication consequent-node data antecedent-node! A2 ...) Constructs and re-

turns an implication. This function is mostly for human users. Same as

(justification ...) . The consequents and the antecedents can either be atms-

nodes or data. The system will check each consequent and antecedent node to make

sure that it is in fact a node; if not, it will use the old node containing that data, or

it will create a new atms-nocle for that data if necessary.

(Implication# n) Accessor function for implications.

implication-count The number of implications known to the system.

(implication-data impl) Returns the data stored in an implication.

(implic-data in1pl) Returns the data stored in an implication.

(implication-ID implic) ID number function for implications.

(implic-ID implic) ID number function for implications.

(implication-list consequent-node data (list antecedent-node! A2…)）
Constructs and returns an implication. This function is useful when you have a
variable containing a list of the antecedents. The consequents and the antecedents

can either be atms-nodes or data. The system will check each consequent and an-

tecedent node to make sure that it is in fact a node; if not, it will use the old node

containing that data, or it will create a new atms-node for that data if necessary.

(implication-p imp) Tests whether object is an implication or not.

implications This variable stores a list of all the implications known to the system.

Each assumption internally generates an implication; these are included as well.

(inconsistent env) Same as (nogood env). Poisons the given environment.

(inconsistent-p env) Returns T if given environment is NOGOOD (INCONSISTENT), nil

otherwise. An environment is NOGOOD if the *nogood-node* is BELIEVED because

of it (i.e., in its context). Same as nogood-p.

76

(in-context-p node env) If the given node is in the given environment's context, returns

a (usually smaller) characterizing environment describing why that node is believed.
Otherwise, returns nil.

incremental-assumption-size This number tells how much the system's bit-vector

size is increased during the next growth cycle. See *initial-assumption-limit*.

This number indirectly affects memory allocation, paging, and performance. Default

is 50.

(inference consequent data antecedents) Constructs and returns an implication (in-

ference). Same as implication.

initial-assumption-limit This number gives a soft limit on the number of assump-

tions that the system can store. It is used to determine the initial size of the

assumption-bit-vector assigned to each environment. It must be set before calling
(reset-atms). Set this to the reasonable maximum number of assumptions expected

to be handled by the system. This number affects memory allocation, paging, and
performance. Default is 200.

(IN-p node) Tests whether node is IN. Returns a list of consistent environments entailing

the node (the label) if the node is IN; returns nil if the node is OUT. This is the

recommended function to use when tracing a node with a user-program.

(install-action node action) Installs the con皿 and(action) into the given node. If

the given node becomes IN, (i.e., believed in any valid context), the given action

command is executed. It is now possible to call this routine several times on the
same node, and install several different actions; when the node becomes IN, all of

the actions are performed. The action should be of the form'(funcname argl arg2).

Most of the time, one of the args will be the node itself. If the args are not constants,

they must be evaluated:'(funcname ,node ,arg2). The function can have any number

of nodes; the literal is simply stored and evaluated later.

(instantiate-goal jFSfact;,) States that the fact is a possible goal. Turns on all predicted

nodes implied by that goal. The fact must be an internal FS.

(instantiate-known-goal jFSfact;,) States that the fact is an actual goal. Turns on all

predicted nodes implied by that goal. The fact must be an internal FS.

(in-world-p node env) Same as in-context-p.

(justification consequent data antecedents) Constructs and returns an implication

(justification). Same as implication.

(Justification# n) Accessor function for implications.

(justification-data just) Returns the data stored in an implication.

(justification-ID just) ID number function for implications.

(Just# n) Accessor function for implications.

77

(Node# n) Accessor functions for ATMS-nodes. These functions return the node, given

the ID number for it. Same as (atms-node# n). Note that (Node# 0) returns the
NOGOOD node.

(node-envs node) Returns a list of the minimal environments under which the give~
node is believed.

(node-label node) Returns a list of the minimal environments under which the given

node is believed.

(no good node I) Builds a justification from the node to *nogood-node*. Standard

method of entering contradictions, which is the same as permanently making the
node's data false. This function can also be called with a sequence of nodes, in which

case each node in the sequence is set to NOGOOD.

(nogood-env env) Forces the given environment (and all of its supersets) to become
NOGOOD. Calls nogood-set on the (conjunction of the) set of assumptions compos-

ing the environment. In general, this should be used only because of higher-level
knowledge not part of the knowledge represented in the ATMS.

nogood-node This variable stores the NOGOOD node. This node is allocated on reset.

Note that (Node# 0) also returns this node.

(nogood-p env) Returns T if given environment is NOGOOD (INCONSISTENT), nil other-

wise. An environment is NOGOOD if the *nogood-node* is BELIEVED because of it

(i.e., in its context). Same as inconsistent-p.

(nogood-set nodel node2 etc) Builds a justification to *nogood-node* based on the

conjunction of the given nodes. Standard method of entering contradictions. Note

carefully that (nogood-set) of a set of nodes, which contradicts the AND of the set,

is not the same as (nogood) of each of the members of the set, which contradicts the
OR of the set.

(NP-Action [plan-FS]) Declares a plan schema to the system. The schema should be
an explicit feature-structure. The semicolon character, ";", supports to-end-of-line

comments, even inside the feature structure. It is important that the action have at
least one precondition or decomposition; otherwise, it will never be instantiated and

will be useless. The current version is UNABLE to accept extra features in the data

to be matched, that are not described in the plan feature structure.

(NP-Input "documentation-string" [data-FS]) Declares an input data assertion to the

system. The schema should be an explicit feature-structure. The semicolon character,

";", supports to-end-of-line comments, even inside the feature structure.

NP-to-LF This is a master global flag. When it is set to T before the system starts

running, the system will print out logical forms for each atms-node that becomes IN

(POSSIBLE or ACTUAL).

(OR-env envl env2) Returns an environment consisting of the union of the assump-

tion sets from the two given environments. This may be inconsistent, even if both

of the previous two are not. Such an environment might not be a characterizing
environment.

78

OS This variable holds the Output Stream for the print functions. Default is T, meaning

standard screen output stream.

(OUT-p node) Tests whether node is OUT. Returns T if OUT, NIL otherwise.

(pairwise-inconsistent node-or-datal node-or-data2…) Sets each node in the set
to be inconsistent with each other single node.

(pairwise-nogood node-or-datal node-or-data2…) Sets each node in the set to be
inconsistent with each other single node. Same as pairwise-inconsistent.

(premise data) Constructs and returns a Premise node storing the given information.

(Premise# n) Accessor function for premises. This function returns a premise. Since

premises are really ATMS-nodes, this is the same as Node#.

premise-count The number of premises known to the system.

(premise-data node) Returns the data stored in a premise.

(premise-ID node) ID number function for premises. Same as (atms-node-ID).

(premise-p node) Tests whether object is a premise or not.

premises This variable stores a list of all the premises known to the system.

(premise-this-node node) Turns an ATMS-node into a premise. Technically, overwrites

the label with the single, empty environment *TRUTH-ENV*. Same as (presume-

this-no de) .

(presume-this-node node) Turns an ATMS-node into a premise. Technically, overwrites
the label with the single, empty environment *TRUTH-ENV*. Same as (premise-

this-node).

(print-assum assum) Prints an assumption.

(prin t-assums) Prints a list of all the assumptions, and the corresponding nodes.

(print-atms) Dumps everything. Use this to get used to the system.

print-data vVhen this flag is T, the print functions print out the data inside nodes

and assumptions. ¥Vhen it is nil, the print functions only print out a numbered node.

Set this to nil when very long data is stored in nodes. Default is T.

(print-implic imp lie) Prints a given implication.

(print-implies) Prints a list of all the implications, including assumption justifications.

(print-env env) Prints an environment.

(print-envs) Prints a list of all the environments.

(print-node node) Individual item printing functions.

(print-nodes) Prints a list of all the nodes, and their data.

79

(reset-atms) Clears the system out.

(sig-envs env-list) Returns a list of environments where subset and inconsistent envi-
ronments have been eliminated. Defaults to using *environments*, all of the known
environments, as input if no argument is given.

(significant-envs env-list) Returns a list of environments where subset and inconsistent

environments have been eliminated. Defaults to using *environments*, all of the

known environments, as input if no argument is given.

(subsumed-by-p larger-env smaller-env) Tests to see whether larger-env is subsumed

by (is a superset of) smaller-env. Returns T if subsumed, nil otherwise. Extremely

fast.

(sys-implication consequent-node data antecedent-nodel A2…) Constructs and
returns an implication. This function is mostly for computer users. Assumes that
the consequents and antecedents are nodes already, and does not check for legality.

This results in significant speed gains, at the cost of extra safety.

(sys-pairwise-inconsistent nodel node2…) Sets each node in the set to be inconsis-
tent with each other single node. Does not check to make sure that the given nodes

are in fact nodes.

(sys-pairwise-nogood nodel node2…) Sets each node in the set to be inconsistent
with each other single node. Does not check to make sure that the given nodes are

in fact nodes. Same as sys-pairwise-inconsistent.

truth-env This variable stores the empty environment. This environment's context

contains all the premise nodes; it is always true.

(unassume name-or-node) Turns a node from an assumption back into a hypothetical

node.

use-uniquification This flag tells whether ATMS data is treated as being unique (under
equal) or whether it can be duplicated. If unique, (atms-node data) and similar
functions will return a previously created node instead of creating a new one. Default

is T.

watth-atms This flag makes the system print out a notification each time an item is

created. Default is T.

watch-enlarge This flag makes the system print out a message when the system

enlarges the bit-vector arrays for assumptions. Default is T.

(why-assumptions node env) Explains the assumptions that directly or indirectly con-

tribute to the given node under the given environment. Returns a list of all the

BELIEVED assumptions that justify the node in the environment's context.

(why-env-assun誌node) Explains the different assumption sets that this node is BE-

LIEVED in. Instead of returning a list of environments justifying this node, like

why-envs, this function returns the environments'assumption sets, in the form of a

list of lists of assumptions.

80

(why-envs node) Returns a list of the consistent environments under which (in whose

context) this node is BELIEVED.

(why-implications node env) Explains the contributing immediate implications that

make the given node believed under the given environment. Returns a list of all the

active implications that directly actually justify the given node in the given envi-
ronment's context. Does not return implications that indirectly justify the node, or

potentia.lly justify the node but are inactive. Returns the system-generated justifica-

tion for an assumption.

(why-nodes node env) Explains the contributing immediately preceding nodes that
make the given node believed under the given environment. Returns a list of all

the believed nodes that directly justify the given node in the given environment's

context.

(why-nogood-assumptions env) Explains the assumptions that directly or indirectly

contribute to NOGOOD under the given environment. The environment should be

inconsistent. This is a very useful function, as it returns only the mutually conflicting

assumptions that are causing the problem with an inconsistent environment.

(why-nogood-implications env) Explains the implications that immediately con-

tribute to the *nogood-node* under the given environment. The environment should
be inconsistent. Returns a list of the active implications that actually justify the

NOGOOD-NODE in the environment's context.

(why-nogood-nodes env) Explains the immediately preceding nodes that contribute to
making the *nogood-node* believed under the given environment. The environment

should be inconsistent.

81

References

[All87]

[APSO]

James Allen. Natural Language Understanding. Benjamin/Cmllll1ings Pub.
Co., Menlo Park, CA, 1987.

James F. Allen and C. Raymond Perrault. Analyzing intention in utterances.
Artificial Intelligence, 15:143-178, 1980.

[BFKM85] Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin. Programming
加 pertS詞 emsin OPS5. Addison-・wesley Publishing Co., Menlo Park, CA,

1985.

[CC89] Sandra Carberry and Kathleen D. Cebulka. Capturing rational behavior in nat-
ural language information systems. In Anthony G. Cohn, editor, Prnceedings
of the Seventh Conference of the Society for the Study of A rtifical Intelligence
and Simulation of Behavior, pages 153-163, Los Altos, CA, 1989. Morgan Kauf-
mann Publishers, Inc.

[Den87] Daniel C. Dennett. The Intentional Stance. The MIT Press, Cambridge, Mass.,
1987.

[clK86a] Johan de Kleer. An assumption-based tms. Artificial Intelligence, 28(2):127-
162, March 1986.

[clK86b] Johan de Kleer. Extending the atms. Artificial Intelligence, 28(2):163-196,
March 1986.

[clK86c] Johan de Kleer. Problem solving with the atms. Artificial Intelligence,
28(2):197-224, March 1986.

[EZ89] Martin C. Emele and Remi Zajac. Retif: A rewriting system for typed feature
structures. Technical Report TR-1-0071, ATR Interpreting Telephony Research
Laboratories, Kyoto, Japan, 1989.

[For82] C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, 19(1):17-37, September 1982.

[Gol70] . Alvin I. Goldman. A Theory of Human Action. Prentice-Hall Inc., Englewood

Cliffs, NJ, 1970.

[Has89] Toshiro Hasegawa. The feature structure rewriting system manual. Technical
Report TR-1-0093, ATR Interpreting Telephony Research Laboratories, Kyoto,
Japan, 1989. (in Japanese).

[IKYA89] Hitoshi Iida, Kiyoshi Kogure, Kei Yoshimoto, and Teruaki Aizawa. An ex-
perimental spoken natural dialogue translation system using a lexicon-driven
grammar. In Computer・world 89切 Osaka,1989.

[JdKW87] Kenneth Forbus Johan de Kleer and Brian Williams. Aaai'87 tutorial on truth
maintenance systems. In AAAI'81, Seattle, vVA, 1987. Tutorial No. TA 4.

82

.~ ー一

゜

゜

[Kau87]

[Kno88]

[Kog89]

[KU89]

[LA87]

[LP89]

[MMSS]

Henry Kautz. A circumscriptive theory of plan recognition. In Philip R. Co-
hen and Martha E. Pollack, editors, Symposium on Intentions and Plans切

Commimication and Discou1'se. SRI International, Monterey, CA, March 1987.

Cra.ig A. Knoblock. Data-driven plan recognition. CS Dept., Carnegie-Mellon

University, Pittsburgh, PA, March 1988.

Kiyoshi Kogure. Parsing japanese spoken sentences based on hpsg. In Inter-
national・workshop on Parsing Technologies-89, 1989.

Akira Kurematsu and Yoshihiro Ueda. Generation in dialogue translation. In
:Machine Translation Workshop at Univ of }Manchester, 1989.

Diane J. Litri1an and James F. Allen. A plan recognition model for subclialogues

in conversation. Cognitive Science, 11:163-200, 1987.

Vladimir Lifschitz and Eel Pednault. Ijcai'89 tutorial on reasoning about actions
and change. In IJCAI189, Detroit, MI, 1989. Tutorial No. MP2.

David McAllister and Drew McDermott. Aaai'88 tutorial on truth mainte-
nance systems. In AAAf 188: The Seve叫hNational Conference on A悦ificial

I叫elligence,St. Panl, MN, 1988. Tutorial No. MPl.

[MN86] Paul H. Morris and Robert A. Nado. Representing actions with an assumption-

based truth maintenance system. In AAA/186, Philadelphia, PA, 1986.

[MT90] John K. Myers and Takashi Toyoshima. Known current problems in auto-
matic interpretation: Challenges for language underst皿 ding.Technical Report
TR-I-0128, ATR Interpreting Telephony Research Laboratories, Kyoto, Japan,

January 1990.

[Mye88] John K. Myers. The necessity of intentions under fallible execution. ATR
International, Kyoto, Japan, December 1988.

[Mye89a] John K. Myers. An assumption-based plan inference system for conversation
understanding. In WGNL]Meeting of the IPSJ, pages 73-80, Okinawa, Japan,

June 1989.

[Mye89b] John K. Myers. The atms manual (version 1.1). Technical Report TR-1-0074,
ATR Interpreting Telephony Research Laboratories, Kyoto, Japan, February

1989.

[Mye90] John K. Myers. A design for a disambiguation-based dialog understanding
system. Technical Report TR-I-0189, ATR Interpreting Telephony Research

Laboratories, Kyoto, Japan, November 1990.

[Mye92] John K. Myers. An agent-based approach to natural-language understanding
of conversations for an interpreting telephone. In International Symposium on
Natural Language Understanding and AI (NLU +AI), as a part of the Inteた

national Symposia on Information Sciences (ISKIT'92), pages 211-218, Kyu-
ushuu Institute of Technology, July 1992.

83

[Nag89) Masaaki Nagata. Expected semantic parser output for conversations 1-5. ATR
corpus, August 1989. (feature structures in Japanese).

[Pea88] Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann
Publishers, Inc., Los Altos, CA, 1988.

[Pol86a] Martha E. Pollack. Inferring Doma切 Plansin Question-Answering. PhD
thesis, University of Pennsylvania, Philadelphia, PA, 1986.

[Pol86b] Martha E. Pollack. A model of plan inference that distinguishes between the
beliefs of actors and observers. In Michael P. George:ff and Amy L. Lansky,
editors, Reasoning about Actions & Plans: Proceedings of the 1986 Workshop,
Los Altos, CA, 1986. Morgan Kaufmann Publishers, Inc.

[SA 77] Roger Schank and Robert Abelson. Scripts, Plans, Goals, and Understanding.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1977.

[Shi86)

[Wil86]

[WNSS]

Stuart M. Shieber. An Introduction to Unification-Based Approaches to Gram-
mar. CLSI, Stanford, CA, 1986.

Robert Wilensky. Points: A theory of the structure of stories in memory. In
Barbara J. Grosz, Karen Sparck Jones, and Bonnie Lynn Webber, editors,
Readings in Natural Language Process切g,pages 459-473. Morgan Kaufmann

Publishers, Inc., Los Altos, CA, 1986.

John R. Walters and Norman R. Nielsen. Graf, 材ng1〈nowledge-BasedSystems:
EぉpertSystems A!fade (Easy) Realistic. John Wiley & Sons, New York, NY,
1988. pp. 253-284.

）

、J

84

	001
	002
	003

