
For Internal Use Only

TR-I-0362

Morphological Facilities

for German Generation in ASURA

Mark Seligman

(

March, 1993

（

Abstract

This document describes a11 of the morphological facilities used for German generation in the
ASURA speech-to-speech translation system (CSTAR demo version of January 28, 1993): a morpho-
logical network and related programs; a morphological dictionary and associated lexical programs; a
set of morphological rules which add endings to word stems (and sometimes alter the stems as well);
and functions for postprocessing punctuation and capitalization. It emphasizes information needed
for maintenance and extension.

ATR自動翻訳電話研究所
ATR Interpreting Telephony Research Laboratories

◎ ATR自動翻訳電話研究所 1993
@1993 by ATR Interpreting Telephony Research Laboratories

Contents

1 Introduction 4

1.1 Overview of Morphological Processing 4

1.2 Pathnames of Files . 6

2 The Morphology Net work 7

2.1 Defining Nodes and Arcs ... 7

2.1.1 Path Specification in a Network Node 7

2.1.2 Body Specification in a Network Node 8

2.2 Comments on Selected Network Nodes 10

2.2.1 mg.11et-main (network root) 10

2.2.2 mg-11et-trace-check (checking for traces) 10

2.2.3 mg-11et-cats (listing of word categories) ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 10

2.2.4 mg-11et-a (adjectives) 11

2.2.5 mg.11et-aux (auxiliary verbs) ．．．．． ．．．．．．． ．． 11

2.2.6 mgJ1et-d (determiners) . 12

2.2.7 mgJ1et-n (nouns) 13

2.2.8 mg..net-num (numerals) ．． •••••••••••••• 14

2.2.9 mg_net-p (prepositions) ．．．． 14

2.2.10 mg_net-pronp (pronouns) 14

2.2.11 mg_net-q (quantifiers) 15

2.2.12 mgJ1et-v (verbs) 1.5

2.3 Morphology Network Functions 16

2

2.4 Limitations of the Present Approach 18

3 D・・叫 1011aryCreat1011 19

3.1 Surveymg the Corpus . 19

3.2 Creation of D1ct10nary Entnes 21

3.2.1 Making Partial Dictionary Entries 21

3.2.2 Completing D叫 onaryEntnes and Making a Dictionary 23

3.3 Automatmg D1ct10nary Production 25

3.3.1 Computing Stems for Weak Verbs ... 25

3.3.2 Automatically Adding Endings 25

3.3.3 Automatic Mergmg of Dictionary Entnes 31

3.4 Compiling the Dictionary 31

4 Morphological Rules 33

5 Postprocessing 35

5.1 Postprocessing: the Specification 35

5.1.1 Default Punctuation ... ．． ．． 35

5 1 . .2 Capitalization 36

5.1.3 Penultimate (Just-Before-Final) Comma . 36

5.lA Comma Before Comma 36

5.2 Postprocessmg Functions ．． 37

A References 39

3

Chapter 1

Introduction

This document describes all of the morphological facilities used for German generation in the ASURA speech-
to-speech translation system (CSTAR demo version of January 28, 1993):

• a morphological network and related programs;

• a morphological dictionary and associated lexical programs;

• a set of morphological rules which add endings to word sterns (and sometimes alter the sterns as well);

• and functions for p ostprocessing punctuation and capitalization.

After a brief overview of morphological processing and a listing of relevant files, each facility will be discussed
in a separate chapter. Emphasis will be on the information needed for maintenance and further development.

The primary reference source for ASURA's morphological system is [Kikui 93]. This resource describes basic
system functions and discusses English morphological facilities.

Concerning maintenance: Some remaining bugs or problem areas must be expected. While the facilities function
without errors in translating twelve dialogs concerning conference registration ("mset" dialogs <la through d12),
there has been no chance to systematically test every path through the morphology network, every dictionary
entry, every rule, etc. Another likely source of error: in an attempt to cover German morphology as generally
as possible, we have treated in passing some phenomena which appear rarely or not at all in the test dialogs.
(For example, we support inflection of derived nouns like die Vortragenden, although there is only one example
in our corpus; and we enable the use of verb present participles as adjectives - as in ein laufender H皿 d-
even though no examples occur.)

Concerning future development: We will point out below several areas in which our treatment has been incom-
plete or unsatisfactory.

1.1 Overview of Morphological Processing

Let us now begin our overview. During morphological processing, terminal leaves representing German words
are harvested in order from a complete syntactic tree. Each word leaf is a feature structure, a collection of
features and their values. The features may indicate, for instance, that the current word has [cat aux] or
[cat v] (verb), where cat means category, or part of speech. Each feature structure must also contain a lexid
feature, giving the unique lexical identification of the current word, for example [lexid muessen-1] or・[lexid
gehen-1]. Additional features may indicate the word's person, number, tense, etc.

4

The feature structure of each leaf (word) in turn is given to the morphology network. At each node of the

network, the value of a different feature is examined. For instance, at one node, near the top of the network,
the value of the word's cat feature is checked: is it n(oun), v(erb), aux, etc.? Each answer will point toward

a lower node, where a different feature's values are checkecl.1 If the current word has [cat v J, for example, we
go to a node where the tense feature is checked: is the value pres, past, or future? and so on. Once this

series of questions is complete - that is, once a terminal network node has been reached - the morphology

network delivers as output either (a) an inflected word string ready for pronunciation or (b) a position within

a dictionary entry where a string can be found. The string may represent the entire word (e.g. "gehen"); or

it may represent just its stem (" geh"), and in this case a second position in the dictionary entry must also be

indicated where a morpholog-ical end-ing rule can be found. The ending rule then operates on・the stem string,
and an inflected word is returned. 2

The morphology network avoids visiting the dictionary (case a) when the current word is inflected irregularly,

for example if it is an auxiliary verb. (For [cat aux], [lexid muessen-1], [person 1], [number sing], and

[tense pres] the morphology network directly produces "mu:s", a.s in "ich "mu:s" .)3 All closed-class lexical
items (e.g. pronouns, determiners) are handled within the morphology network, without dictionary entries.

However, the dictionary is visited when inflection is regular (c邸 eb), and of course this occurs more often -

for nouns, most verbs, adjectives, and so on.

A look at a dictionary entry4 may be helpful. Consider the dictionary entry for lexid gehen-1:

("gehen" V (: ALL "geh" "geh" "ging" "ging" "gegangen" H NIL
EST TENT Z ST ZENT))

If the current word has [cat verb], [lexid gehen], [person 1], [number sing], and [tense pres], the

morphology network will indicate positionally that word stem string" geh" and ending rule E should be retrieved

from this dictionary entry. After this rule operates on this stem, the result will be "gehe", as in "ich gehe".

Several functions have been written to partly automate the production of dictionary entries and dictionaries.

All are described below. Some such functions contain morphophonemic knowledge of German: one program,

for instance, knows how to form singular genitive endings for nouns, considering the gender, the final letters of

the stem, membership within a list of exceptional cases, and so on. The function thus automatically indicates

which ending rules should be included in a noun's dictionary entry.

Morphological rules add a certain ending to a word stem, sometimes altering the stem. Each rule is defined by

a call to the function DEF-MG-RULE:

def-mg-rule(rulename no-of-chars-to-remove string-to-attach obsolete)

The rule named E, for instance, adds the ending "e" without making any stem changes:

(def-mg-rule e O "e" nil)

1The morphology network usually exan出nesthe features and values of the current word. However, it is also possible to query
about the featm・es and values of the immediately preceding word, 01、evenabout those of the word which wm be processed next.
Morphological decisions about the current word can thus be made context sensitive; and this capacity can be used to hanclle
junctm-e ph"enomena like English contraction or Ge皿 ancliticization.
2ASURA's e四lierEnglish morphology system always added inflectional enclings to a default word stem: the value of the lex
feature of the current word. Thus, to enable English inflection, it wa5 only necessai"J to indicate one clictionai・y entry position,
that of an ending ntle. In Ge血 an,by contrast, the stem may v紅 y.Thus it is sometimes necessary to indicate two positions, the
position of the right stem and the position of the ending. The functions whicl, make this extension possible are described below.
3To enable 1.111皿 biguo1.tscon ver辿ionto standard print characters i.i, a, o, and fiin output strings, we adopt a special spelling
convention for untlauts (:u, :a, :o) and schaifes S (:s). The more readable alte11.,ative spellings ue, ae, oe, and ss are 1.mfortunately
ambigiwus: they sometimes resmt from j1.111c畑 es.
4There is some danger of confusing the morphological diction匹 ywith the syntactic lexicon. In ASURA, these are separate
data resom℃ es with separate functions. A morphological clictionary entry contains the stems and endings wluch are necessai・y to
assemble a word's sm・face string: it helps construct the output of morphological processing. A lexical syntax ntle, by contrast,
provides a partial featuェestruct1.rre description of a word, and thus helps to construct the complete syntactic tree which becomes
the input for morphological processing.

5

Thus, as we have seen, "geh" altered by rule E gives final output "gehe", as in "ich gehe". (For comparison,

the rule LE changes a stem like "klingel" into "lding" before adding "le".)

Notice that a rule's operations are specified via its internal structure, not by its name, which is simply a memory

aid. Notice also that a rule name is a Lisp symbol, while a word stem is a string.

・when all of the words (leaves) of the syntactic tree have been processed, the result is a Lisp list of strings, e.g.

(" Harald" " weint" "." " " " aber" " Hehnut" " lacht" " ") . . The string includes punctuat.1011 marks, since these

are included as terminal elements in the syntactic tree. Postprocessing then creates a single string which will

become the final result of German generation: "Harald weint, aber Helmut la.cht."

The strings in the list cannot simply be concatenated, however, since punctuation and capitalization can create

special problems. For example, the punctuation of an embedding construction can override the default punctu-

ation of an embedded construction. (The medial punctuation for a compound sentence, for instance, normally

overrides the default final punctuation of the embedded clauses.) Further, since the German grammar can

deliver multiple sentences, capitalization after a final punctuation mark sometimes becomes necessary.5

In the chapters which follow, ヽveexamine the four facilities in more detail, each in its own section: the morphology

network, the morphological dictionary, morphological rules, and postprocessing.

1.2 Pathnames of Files

First, however, we give full pathnames for the files mentioned (by filename only) throughout the text.'Ne

include some of the code below where we think it will be most helpful, but recommend keeping the complete,

commented versions handy while reading.

All a.r・estored in

as25:/home/tropf/gen-off/

• The most recent version of the morphology network:

as25:/home/tropf/gen-off/mgen/mg-net/<date>

• Morphology network functions:

as25:/home/tropf/gen-off/mgen/mg-net/functions/net-macro-patch.lisp

• Numerous lexical survey and input files:

as25:/home/tropf/gen-off/lexical/

• Lexical functions:

as25:/home/tropf/gen-off/lexical/readfns.lisp

as25:/home/tropf/gen-off/lexical/lexfns.lisp

• Morphological dictionary:

as25:/home/tropf/gen-off/dict/<date>

• Morphological rules:

as25:/home/tropf/gen-off/mgen/mg-rule/<date>

• Postprocessing functions:

as25:/home/tropf/gen-off/mgen/mg-net/functions/mgen-main-patch.lisp

5The e叫 ierpostprocessing for English did not support such ptmctuation ove1Ticle or multiple sentence output. The pro忠・ams
which give the German post processor added flexibility are described below.

6

Chapter 2

The Morphology Network

The morphology network receives a feature structure representing a German word. After considering the values
of the features in a specified order, the function which traverses the net delivers a word ready for output. The
output word may be included in the network itself; or it may be retrieved from the morphological dictionary.
It may be retrieved as a single element from the dictionary entry (e.g. "gehen"); or a stem and an ending rule
may be retrieved (e.g. "geh" and E), and in this case the rule adds to the stem (perhaps changing the stem as
well) to produce the final inflected output (e.g. "gehe").

2.1 Defining Nodes and Arcs

The network is built of nodes and descending arcs. Nodes and arcs are defined using the function DEF _MG_NET.
A single call defines one node and the arcs leading down from it.

(def_mg_net
: name <node name>
: path (ftri ftr2 ... ftrN)
: default : warnュng
: body ((valuei action action action ...) ; arci

（ value2 action actュonaction ...) ; arc2

（ value3 action action action ...))) ; arcN

The node name is usually arbitrary, but may be mentioned in other function calls. (There is one exception: the
root node must be named mgュet-main.)

2.1.1 Path Specification in a Network Node

The path -:specification in a node definition is an ordered series of features, referring to the feature structure of
a terminal node in the syntax tree. (The relevant feature structure is usually that of the current node, but see
below.) The path (syn agr person), for instance, says, "Fetch the value along the path (syn agr person)
in the current leaf's feature structure". (Agr stands for agreement.)

The allowed values for this path in the German generation grammar are 1 (first person), 2fam (2nd person,
familiar), 2pol (2nd person, polite) and 3 (3rd person).

Notice that the notation (: previous [path]) tests the value of [path] in the preceding word rather than the

current one.

7

2.1.2 Body Specification in a Network Node

The body of a node definition defines downward arcs as a series of value/act.ion tuples. (There may be several

actions, but not every combination of actions makes sense. The possible actions are described below.) In the

node defined below, if the value of the specified path is 1, a certain node will be visited ("called") next; if the

value is either 2fam or 2pol, a different node will be visited; and if the value is 3, a third node will be visited.

(def_mg_net
: name mg_net-v_regular_finite_indicative_pres

: path (syn agr person)

: default :warning
: body ((1 (:call mg_net-v_regular_finite_indicative_pres_1))

((:set 2fam 2pol) (:call mg_net-v_regular_finite_indicative_pres_2))

(3 (:call mg_net-v_regular_finite_indicative_pres_3))))

Test Operators

Several test opera.tors are provided for the test part of a test/action combination:

• The above example shows that simple values, such as 1 and 3, can be used a.s tests.

• Notice also the notation (: set value1 value2), which allows disjunctive value tests: the action will be
taken if either value1 or value2 is found.

• Another special test operator is :previous. The combination (:previous "ich"), for instance, tests
whether the immediately preceding word was "ich".

• The opera.tor : next can be used comparably to point toward the immediately following word.

• Finally, the operator otherwise provides a default test condition.

Actions

Several action operators are provided for the action part of a test/action combination.

We have seen that the action : call means to visit (i.e. traverse to) the node which is named. The other

actions used in the German morphology network can be indicated using a string, or using the keywords :diet,

: inflectroot, : warning, : left_space, or : nop. We now give examples of each usage.

String At the node below, we test the current word's number, along path (syn agr number). If the value
is sing, the string "mu:s" (as in "ich mu:s") will be the output of the morpholog! network; or, if the value is
plur, the output will be "m:ussen". In these cases, the morphological dictionary 1s never visited. Instead, the
morphology network's own output becomes the final morphological output for this word.

(def_mg_net

: name mg_net-muessen_finite_indicative_pres_1

: path (syn agr number)

: default :warning
: body ((sing "mu: s11)

(plur "m:ussen")))

8

:diet If the current word is the past participle of a verb, we reach the following node. We then test the

word's (syn type) path. If the value is nonseppref ("does not have a separable prefix"), we fetch a single
element from the verb's dictionary entry: the one fomtcl at position 6, which of course should be the verb's past

participle, e.g. "gegangen".

(def_mg_net

: name mg_net-v_pastpart

: path (syn type)

: default :warning

: body ((seppref (: diet : nadine91 : lex-cat-id 6) (: left_space nil)

(nonseppref (:diet :nadine91 :lex-cat-id 6))

(otherwise :warning)))

Concerning the use of numerical positions within a dictionary entry, see discussion of the : inflectroot func-

tions, below.

:inflectroot If the current word is a regular verb, used finitely in the indicative present tense, first person,

we then test its number along path (syn agr number). If the value is sing, we fetch the appropriate verb

stem (" geh") from position 2 in the dictionary entry and the appropriate ending rule (E) from position 9. The
inflected verb "gehe" (as in "ich gehe") will be returned. By contrast, if the value were plur, the same stem

would be fetched with a different ending rule (EN), found in position 12, to given "gehen".

(def_mg_net

: name mg_net-v_regular_finite_indicative_pres_1

: path (syn agr number)

: default :warning

: body ((sing (:inflectroot :nadine91 :lex-cat-id (2 9))) ;ich

(plur (:inflectroot :nadine91 :lex-cat-id (2 12)))))

Note: The : inflectroot action is enabled for German generation only. The enabling functions are described

below. Concerning the use of numerical positions within a dictionary entry, see discussion of the : inflectroot

functions, below.

:warning If this action is found, an error message is printed before the final text string appears in the output.

By default, it reports the name of the node where a problem occurred. An error message can also be included,
e.g. (: warning "bad part of speech entering morph network").

／

:left_space We have already seen the following function call. It defines a node which is reached if the current

word is the past participle of a verb.

(def_mg_net

: name_ mg_net-v_pastpart

: path (syn type)

: default :warning

: body ((seppref (: diet :nadine91 : lex-cat-id 6) (: left_space nil))

(nonseppref (:diet :nadine91 :lex-cat-id 6))

(otherwise :warning)))

Notice now that the same dictionary fetch is made whether the word's (syn type) value is seppref ("separable

prefix") or nonseppref: in both cases, the element in the 6th position of the dictionary entry is taken. However,

in the seppref case, the word should be printed without the space to its left which would normally appear. It

，

will thus appear to be fused with the separable prefix which should immediately precede it. For example, the
words "mit" and "gegangen" will be written to the output stream as "mitgegangen" (rather than the clefaulL
"111it gegangen").

:nop This is the null operator, indicating "no operation": in other words, the value of the lex feature of the
currentvヽorclshould become the output of the morphology network.

It is used, for instance, when the current word belongs to a non-inflected cat, e.g. adv.

2.2 Comments on Selected Network Nodes

¥i'¥Te now comment on selected nodes or subnetworks of the morphology network. Since we cannot reproduce

large sections of the network here, we assume the reader can refer to the code.

2.2.1 mg_net-main (network root)

The highest (root) node must have this name. Our root node unconditionally calls mgェet-trace-check.

2.2.2 mg_net-trace-check (checking for traces)

This node pre-checks for traces: special feature structures whose (trace) path has the value t. Such trace

feature structures result from the gra1runar's HPSG-style treatment of long-distance dependencies. They are
printed as null strings ('"'), and with no preceding space (using the action (:left_space nil)). Thus they

become invisible in the output string.

2.2.3 mg_net-cats (listing of word categories)

This is the node in the network where parts of speech (values of the cat(egory) feature) are recognized.

The following cats require no inflection (their lex value is returned unchanged via the action : nop):

adv coord idiom particle propp sign vpref

Most other cats branch to their own subnets. Exception: q(uantifier) calls the same subnet as cl(eterminer),
since these cats are identically inflected.

(def_mg_net

: name mg_net-cats

: path (syn cat)
: default :warning
: body ((a (: call mg_net-a))

(adv :nop)
(aux (: call mg_net-aux))

(comp :nop)
(coord :nop)
(d (:call mg_net-d))

(idiom :nop)

10

;adjective
; adverb

; aux verb

; complementizer
; coordinator

; determiner
; idiom

(n (: call mg_net-n)) ;noun
(num (: call mg_net-num)) ; numeral
(p (: call mg_net-p)) ;prep

(particle :nop) ;particle
(pronp (: call mg_net-pronp)) ; pro-noun-phrase
(propp :nop) ;pro-prep-phrase
(q (: call mg_net-d)) ; quantifier

(sign :nop) ;punctuation
(v (: call mg_net-v)) ; verb

(vpref :nop) ; verb prefix
(otherwise (: ロarning"bad part of speech entering morph network"))))

2. 2 .4 mg_net-a (adjectives)

Adjective dictionary entry format is as follows:

(diet-form A (: ALL compar-stem super-stem

0 NA 1 2 3

(11 gut II A (: ALL "besser" "best"

er-ending e-ending es-ending en-ending em-ending))

4 5 6 7 8

ER E ES EN EM))

Numbers refer to ordering in the sublist whose first element is a lexid symbol (usually :ALL). The number 0

can be treated as a reference to the diet-form.

Adjectives are used attributively when they modify the following noun (der gute Mann). They can also be used
as predicate adjectives (der Mann ist gut) or adverbially (der Mann spricht gut). Adjectives whose pa.th (syn

type) has the value attr are inflected; while those with value advpred (" adverb or predicate adjective") take
an en ending if they are superlative ((am) schnellsten), but otherwise are not inflected.

There are three possible values for the path (syn degree): pos(itive)_~gut), comp(arative) (besser), and
sup(erlati ve) (best). The dict-forrri. serves as the stern for inflecting pos1t1ve adjectives. We list as dictionary
entries, rather than compute, the comparative and superlative sterns.

For adjectives, it is convenient to associate ending positions 4 -8 with specific phonological endings: position 7,
for instance, always gives an EN ending. Compare this "phonological" ending pattern with the "morphological"
ending pattern for verbs. For verbs, an ending position is associated with a specified combination of case and

number, (such as genitive singular); and a combination may have several quite different phonological expressions,

(the sing-gen morphophoneme, for instance, may be zero, S, ES, etc.).

Note carefttlly our terminology regarding "strength". We recognize two patterns for NP's containing both

determiner and adjective: weak (der gute Mann), and strong (ein gut er Mann). In a weak NP, both determiner
and acljeciive are called weak; in a strong NP, both are called strong. This treatment facilitates agreement, but
may be confusing. See the section on determiners for fuller discussion.

2.2.5 mg_net-aux (auxiliary verbs)

Sein, haben, d:urfen, k:onnen, m:ussen, sollen, werden, wollen, and m:ogen are handled under the category aux.

By request from the syntactic component, subjunctiveii uses of m:ogen, as in Jch m:ochte, meaning "I'd like",

11

can be treated as indicative, present tense uses of a pseudo-auxiliary "m:ochten". However, more orthodox

treatment - as m:oge1らsubjunctiveii- is also enabled.

Sein, haben, and "1110:chten" can act as main verbs instead of aux, as in Er ist ein il1ann, Er hat einen Buch,

or Er m:ochte einen Huch. Syntax indicates the proper cat (part of speech) in each case.

2.2.6 mg_net-d (determiners)

Dictionary entry format for d(eterminers) is as follows:

(diet-form

゜("dieser"
DET

NA

D

L

L

L

1

L

A

A

••••
（

（

stem

2

"dies"

zero-ending

3

z

er-ending

4

ER

e-ending

5

E

es-ending

6

ES

en-ending

7

EN

em-ending))

8

EM))

Numbers refer to ordering in the sublist whose first element is a lexid symbol (usually :ALL). The number 0
can be treated as a reference to the diet-form.

For determiners, the diet-forms are unusual: for easy recognition, inflected forms ending in "er" a.re used, e.g.

"jener". However, these a.re for human reading only. They a.re not used by inflection rules. A determiner stem,
e.g. Jen 1s used mstea.d.

For determiners, it is convenient to associate ending positions 3 -8 with specific phonological endings: position 7,

for instance, always gives an EN ending. Compare this "phonological" ending pattern with the "morphological"

ending pattern for verbs. For verbs, an ending position is associated with a specified combination of case and

number, (such as genitive singular); and a combination may have several quite different phonological expressions,

(the sing-gen morphophoneme, for instance, may be zero, s, es, etc.).

Note carefully our terminology regarding "strength". We recognize two patterns for NP's containing both

determiner and adjective: weak (der gute」i¥lfann),and strong (ein guter Mann). In a weak NP, both determiner

and adjective are called weak;-in a strong NP, both are called strong. This treatment facilitates agreement, but

may be confusing. 1

Notice that the strength or weakness of the "ein words" (ein, mein, and kein) depends on their number, gender,

and case. These dets are usually "weak", but become "strong" for the number/ gender/ case combinations

sing/rnas/nom, sing/neu/acc, and sing/neu/nom.2

Strength values are assigned to determiners by syntactic rules, and adjectives must a虹ee.3

The current subnet for determiners enables prep/ clet cliticization (e.g. van plus elem becomes vorn) for preps

van, in, and an. These facilities, however, were not used in the demo version of the German grammar. Instead,

1Memory aid: in a "weak" NP, the adjective ending gives little info1TI1ation about case, gender, 皿 dnumber; in a strong one,
the adjective encling gives a lot of information. In om・terms, if an adjective is weak in this sense, the cletenniner is, too. Beware,
however: in some discussions, an adjective wluch is "weak" (i.e. has an encling giving little information about case, gender, 皿 d
number) is said to be compensated by a "strong" cleternuner (one which~ 邸 aninformative ending) and vice versa.
2For these combinations, the determiner ending gives little info1TI1at10n about case, gender, and nmnber, so an i面orn1ative
adjective is required. As noted, an NP with an informative adjective is called "strong", and has a "strong" det.
3This is presently the only紅 eaof the Ge1TI1an忠・anm1ai・inwhich syntactic rules make featm・e value assignments. Eight ntles are
needed for each dete1n1iner to assign a strength value for every relevant combination of number, gender, and case. Note, however,
that the strength featm・e is ud・undant precisely becatise it does entirely depend on the values of ntm1ber, gender, and case. The
gran1mar cottld omit it entirely, using only these t虹eefeattrres for agreement. For now, the strength featm・e h邸 beenretained at
the request of syntax.

12

cliticization was treated within the syntactic component. Thus all determiners received the value no for path

(syn deli tic). The cliticization facilities remain in place, however. See the discussion of prepositions for
further explanation.

2.2. 7 mg_net-n (nouns)

The format of a morphological dictionary entry for a noun is as follows:

(sing-stem syn-cat (:ALL plur-stem sing-gen plur-dat other))

0 NA 1 2 3 4 5

("Konferenz" N (:ALL "Konferenzen" Z Z Z))

Numbers refer to ordering in the entry sublist whose first element is a lexid symbol (usually :ALL). The number

0 can be treated as a reference to the diet-form.

There are two stems, sing-stem and plur-stem, and three endings, sing-gen(itive), plur-clat(ive), and "other".

("Other" covers singular nouns in the accusative and dative (sing-ace and sing-clat) and plural nouns in the

nominative, accusative, and genitive (pl-nom, pl-ace and pl-gen).)

Note that noun gender is not marked in the morphological dictionary entry, but rather in the relevant lexical

syntactic rule.

Singular Nouns

The :diet action rather than the : inflectroot action is used to access sing-nom nouns, since it is unnecessary

to fetch any ending from the dictionary entry.

For singular genitive nouns, : inflectroot is used to add the sing-gen ending to sing-stem. The morphological

dictionary entry for a given noun indicates the particular morphophonemic form for this genitive morpheme:

zero, S, ES, etc. See further the discussion of the GET-SING-GEN function below.

For sing-ace and sing-clat nouns, we add the "other" ending to sing-stem: Nor EN for "weak" masculine nouns,

zero for all others, as indicated by the dictionary entry. See further the discussion of the GET-OTHER function

below.

Plural Nouns

The plur-stem (plural stem) is not computed, but rather supplied in a dictionary entry, e.g. as "b:ucher",

"bl:a.tter", etc.

For plural dative nouns, the plur-dat ending is added to plur-stem: N for most nouns; zero for nouns ending in

n or s; and N or EN for weak masculine nouns.

For plur-nom, plur-acc, and plur-gen nouns, the "other" ending is added to the plur-stem: N or EN for weak

masculine nouns, zero for all other nouns. (Note that for weak masculine nouns, we always treat (E)N as a case

ending, and never as a plural ending. Thus, for these nouns, plur-stem = sing-stem.)

13

Derived Nouns

¥Ve label derived nouns like die Vortragenden as partaderived, or・"derivedfrom a participle". (In fact, the
name is too restrictive: nouns can be derived from other cats a.s well, e.g. as der Alte is derived from an
adjective.) In our present treatment, such nouns are not actually derived by rules. Instead, they are listed
in the syntactic and morphological lexicons. Their entries are unusual for noun entries because they contain
acりective(rather than noun) ending rules. V¥'hen the morphology network recognizes a derived noun - because
its path (syn partaderived) has value yes - it branches to the a(djective) subnet, and inflects the noun just
as if it vvere an adjective.

2.2.8 mg_net-num (numerals)

Ordinal numbers (e.g. zweite) a.re inflected like positive adjectives, and cardinal numbers (e.g. zwei) a.re not

inflected.

2.2.9 mg_net-p (prepositions)

The current subnet for prepositions enables prep/det cliticizat-ion (e.g. von plus dem becomes vom) for preps
von, in, and an.

For reasons of syntactic run-time efficiency, these facilities were not used in the demo version of the German
grammar. Instead, cliticization was treated within the syntactic component. Thus all prepositions received the
value no for path (syn deli tic), and prepositions were never inflected (that is, action : nop was always used).

The cliticization facilities remain in place, however. If the value of the path (syn dclitic) is yes, the prep is
produced in its combining rather than full form (e.g. "vo" rather than "von"). In the samevヽay,the following
determiner can be produced in its combining form (e.g. "m" rather than "dem"), using the special action
(: left_space nil) to avoid separation between the words: "vom" rather than "vo m".

2.2.10 mg_net-pronp (pronouns)

We treat das and was specially at the top of the pronp network. (This treatment is temporary; it indicates
only that we are unsure how these pronouns should be subcategorized.) The action : nop indicates that they
are uninflected.

Other pro-np's fall into four groupings according to their (syn type) values:

• pers(onal) and refl(exive) pronps share most of a network, since in many cases they share a single surface
form: compare "Sie liebt mich (pers); ich liebe mich (refl)". The two types are distinguished only for 3rd
person and 2nd person polite forms: "Sie liebt ihn (pers); er liebt sich (refl)." "Sie liebt Sie (pers); Sie
lieben sich (refl)."

● rel(ative) and demonstr(ative) pronps share a network;

• wh pronp's (e.g. wer) have a separate network;

• indef(inite) pronp's (e.g. etwas) have a separate network, indicating via the action :nop that they are
uninflected.

• and poss(essive) pron p's are redirected to the determiner subnet

14

2.2.11 mg_net-q (quantifiers)

Quantifiers (q) are distinguished from determiners (d) for syntactic reasons. Morphological treatment is iden-

tical, however, so there is no separate subnet for q. Instead, both d and q are directed to the determiner net in
node mgュet-cats.

2.2.12 mg_net-v (verbs)

The dictionary entry format for verbs is as follows:

(diet-form syn-cat

0 NA
("fahren" V

(:ALL base-stem 2/3ps-stem past-stem

1 2 3 4

(: ALL "fahr" "f: ahr" "fuhr"

subjii-stem ppart haben-sein separable ich-pres du-pres

5 6 7 8 9 10

"f :uhr" "gefahren" H NIL E ST

es-pres wir-pres il:tr-pres

11 12 13

T

EN T

ich-past du-past es-past wir-past ihr-past))

14 15 16 17 18
Z ST Z EN T))

Notes concerning the dictionary format:

• Numbers refer to ordering in the entry sublist whose first element is a lexid symbol (usually :ALL). The
number O can be treated as a reference to the diet-form.

• Positions 7 and 8 are obsolete. The original intent was to give information which is now in lexical syntax
rules.

• Endings es-pres and es-past can be understood as short ways of writing, "present ending for third person
singular" and "past ending for third person singular". In other words, the verbs which are handled are
not only those following pronoun es but all third person singular verbs.

• Ending wir-pres can be understood as a short ways of writing, "present ending for wir, sie ("they"), and
Sie ("you", singular and plural)." The same person-number combinations are covered by wir-past.

• Position 16 gives the past ending for the third person singular form. As this is always the same as 13 (the
past ending for the first person singular), this information is redundant and could be eliminated. In this

case, one position would give the ending for both first-and third-person singular past. Such treatment
would be more economical, but more confusing.

Notes concerning the verb network:

• Our treatment of imperatives is unfinished. We enable Sie imperatives only: we give "seien" for sein, and
point to the infinitive string for other verbs. Treatment of imperatives with du and ihr would require

additional stem positions in the dictionary entry for verbs.

• Our present corpus contains no verb present pa礼icles,as in der la1tfende Hund. However, the morphology
netヽvorktentatively enables treatment as follows: when it recognizes a present participle - a verbヽvhose

path (syn vform) has value prespart - it branches to the a(djective) subnet, and inflects the verb just

15

as if it were an adjective. Participles could be listed in the morphological dictionary (though this is not
yet done). Their entries would be unusual: they should contain adjective (rather t.han verb) ending rules.
Further, it would be possible to automatically build such entries for all verbs, or to automatically complete

partial entries prepared by hand; but we have not enabled either sort of a.utoma.tion yet. (Compare our

handling of derived (partaderived) nouns: automatic completion of handmade partial entries has been
enabled.) In general, derivational morphology is not handled by the present system.

• Notice the treatment of sepamble verbs in several nodes of the verb subnet. The German generation synta..'C
treats a separable verb and its prefix as two elements. :rviorphology must rejoin them under the proper

circumstances (especially when the feature vpos, "verb position", has the value v-last). "¥?i/hen such

joining is necessary, the special action (: left_space nil) is used, so that the verb itself will be printed

to the output stream without the usual space to its left. An alternative solution, in which syntax itself

made the join, led to syntactic rule duplication and thus to slower generation times. In the current solution,

large sections of the verb network must be duplicated for separable ([type seppref]) and non-separable

([type nonseppref]) verbs, but this duplication affects generation time very little.

• By request of the syntactic component, possible values for the path (syn agr person) are 1, 2f am (dn or
ihr, depending on the value of (syn agr number)), 2pol (singular or plural Sie), and 3. An alternative

analysis, in which familiarity is treated as a separate feature with values familiar or polite, ヽvouldof course

be possible.

• Subjunctiveii (the "past subjunctive") has been implemented for three verbs only, werden, m:ogen, and
k:onnen. Subjuntiveii stems are properly supplied for all dictionary entries, however.

2.3 Morphology Network Functions

ASURA's earlier English morphology system always added inflectional endings to a default word stem, which

was the value of the lex feature of the current word's feature structure. Thus, to enable English inflection, it

was necessary to indicate at most one dictionary entry position, that of狙1ending rule. In German, by contrast,
the stem may vary according to the tense, mood, etc. Thus it is sometimes necessary to indicate two positions

in a dictionary entry, the position of the proper stem and the position of the ending. We now describe the

functions which make this extension possible.

We define a new network action : inflectroot, which visits the dictionary twice; first to fetch a proper root,

e.g. past, and then again to find a rule which can add endings to (and perhaps modify) the fetched root. For

example, input "gehen" might fetch "ging" plus rule EN to give "gingen".

Note the format of an : inflectroot action: two numbers are supplied, one for ea.ch visit to the dictionary, as
in (sing (:inflectroot :nadine91 :lexcat (2 7))).

Program changes have been made in two places:

• First, in the system file net-macro. lisp,

-a cond clause has been added to the definition of the Lisp function MGN _EXECUTE-ACTIONS:

((and (consp action) (eq (car action) c-inflectroot_key))

(setq lex (mgn_inflect_root f_node lex (cdr action))))

-and a constant variable C-INFLECTROOT_KEY has been defined with the value : inflectroot:

(defconstant c-inflectroot_key :inflectroot)

• Second, a patch file net-macro-patch.lisp has been created. It is loaded after the normal generation
system load is complete in order to define two new functions: MGNJNFLECT_ROOT and MGN_GET _ROOT.
We now describe their operation.

**
mgn_inflect_root (f_node lex specs &aux dict_data)

**

16

This new function is called if the keyword : inflectroot is recognized via the COND clause shown above. It
normally takes two steps:

• it fetches the root of the current word from the dictionary entry using the new function MGN _GET _ROOT

• it calls the system function MGN--APPLY-DICTぶULE(patched for German, in net-macro-patch. lisp) in
order to inflect the root, using a morphological rule which it fetches from the dictionary entry

However, if no dictionary entry exists for the current word, a default output is used: the value of the current

word's lex feature.

(defun mgn_inflect_root (f_node lex specs &aux dict_data)

(let* ((dict_name (first specs))

(key (second specs))

(dict_data (mgn_get-dict dict_name key f_node lex)))

(if dict_data

; ; Fetch root from dict. .

(let* ((root_position (first (third specs)))

(inflection_position (second (third specs)))

(root

(mgn_get_root f_node root_position)))

;;Inflect and return the fetched root

(mgn_apply-dict_rule

f_node root dict_data inflection_position))

; ; else if no diet data, use lex of f_node as default

(mgn_get-lex_value f_node))))

**
mgn_get_root (f_node root_position)

**

Fetches a root string for the current node, given a position in a dictionar・yentry.

• The system function MG-FETCH returns a master-entry in the following format:

(*MASTER* (0 "verstehen" VERB (:ALL "versteh" "versteh" "verstand"

"verstuend" "verstanden" H NILE ST TENT ZEST ZEN ET)))

• If the rooLposition is 0, the string after O is accessed. Otherwise, a position is accessed in the sublist
whose first element is a lexid symbol (usually :ALL).

• If the result is a string, it is returned; otherwise, an error message is printed.

(defun mgn_get_root (f_node root_position)

(let* ((lex (mgn_get-lex_value f_node))

(master-entry (mg-fetch lex))

-root)

(if (equal O root_position)

; ； refer to format of master entry above

(setq root (second (second master-entry)))

(setq root (nth-position root_position (fourth (second master-entry)))))

(if (stringp root)

root

(format_msg 00-1/,ERRDR: fetched root -s is not a string" root))))

The file net-macro-patch. lisp also contains a few auxiliary functions.

17

2.4 Limitations of the Present Approach

The : inflectroot action was intended to enable German inflection with few changes to the existing English
morphology functions. For this reason, this action continues to use numerical positions as indexes into a die-
tionary entry. This approach is not satisfactory, however - for either German or English - because it is

difficult to debug and to modify. (When programming, 011.e must continually refer to a format chart; if the
dictionary format changes, new numbers must replace old ones in the morphology network; and so on.) If the

German morphology system is upgraded, symbolic reference to dictionary entries should be enabled. For ex-
ample, the action statement (: inflectroot : nadine91 : lex-cat-id (2 9)) should become (: inf le ctroot
: nadine91 : lex-cat-id (base-stern ich-pres)). A lookup table could enable translation to (and hide) the

position numbers.

The numbering system itself may be confusing. Numbers do not refer to ordering in the entire dictionary entry.
Instead, they refer to ordering within the contained sublist whose first element is a lexid symbol (usually :ALL).

For example, here is the format for noun entries:

(sing-stem syn-cat (:ALL plur-stem sing-gen plur-dat other))

0 NA 1 2 3 4 5

I

I

The number O can be treated as a reference to the first element of the dictionary entry, here sing-stem. (From

the implementation viewpoint, 0 is actually a direct reference to the value of the lex feature of the current

node, but both strings 11.rnst be identical.)

We should also mention the possibility of a more radical change of design: terminal leaves of the syntax tree are
now words; but they could be morphemes instead, if the syntactic component were appropriately augmented.

In this case, to inflect a verb (for example), we would no longer make two dictionary fetches via the present
: inflectroot action, one for the root and one for the ending. Instead, we would handle the stem and suffix

as separate nodes, with at most one dictionary fetch for each. To determine the proper morphophonemic forms
for endings, we would often have to exploit the network's ability to examine not only the current node but its
neighbors. This approach would probably be more satisfying from a linguistic point of view; the present design,
however, stays much closer to the existing English design in both syntax and morphology.

18

Chapter 3

Dictionary Creation

'¥life now discuss the procedures used to compile a German morphological dictionary and the functions written
to facilitate this work.

The lexical work can be divided into two stages:

• surveying the German words needed to translate the "mset" corpus

• preparing dictionary entries for these words

3.1 Surveying the Corpus

We began with an alphabetized concordance of inflected German words, taken programmatically directly from
our corpus. (The results are in the file ger-words-orig.)

（

"ab"
"Abendessen"
"abends"

"aber"
"Abmeldung"
"acht"
"achten"
"Achttausend"
"Adresse"
"Akira"

＇ ＇

•
．、ーノ

・we assigned cats (parts of speech, or pos) by hand. Multiple assignments could be made by creating new lines.
(The results are in the file ger-words-wi th-cats.)

（

("ab" p)
("Abendessen" n)
("abends" adv)
("aber" comp)

19

("Abmeldung" n)
("acht" num)
("achten" num)
("Achttausend" num)

("Adresse" n)

("Akira" n) ;j ap

．．．）

We sorted words according to the assigned cats (parts of speech), using the function SORT-WORDS-INTO-POS.

(Results are in the file ger-words-sorted-by-pos.)

（

("besonderes" A)

("fachliche" A)

("genau" A)

("gut" A)

("Internationalen" A)
("lange" A)

...
("abends" ADV)

("Also" ADV)

．．．）

We then created a sublist for each category, alphabetizing each sublist. The function SORT-WITHIN-POS was

used. (Results are in the file ger-words-sorted-wi thin-pos.)

((("besonderes" A)

("fachliche" A)

("genau" A)
("gut" A)

("I nternationalen" A)

．．．

("wahr" A)

("weiter" A)

("weites" A))

(("abends" ADV)

("Also" ADV)

("anders" ADV)

("dann" ADV)

("Diesmal" ADV)

...))

Then, by hand, we put each word entry into dictionary entry form.

We eliminated the entries which would not require dictionary entries:

• irregular forms (e.g. aux verbs and pronps) which are handled directly by the morphology network

• cats which are not inflected

Cardinal numerals are not inflected, and were omitted; ordinal numerals (zweite, etc.) are inflected like adjec-
tives, and were retained. (Results are in the file ger-words-reg-all.)

((("besondere" A)

20

("fachlich" A)
("genau" A)
("gut" A)
("international" A)

ヽ
ー
ノ
、

j

A

A

I

I

1
,

r

t

h
.
1

a

e

.
w
w

I

I

•
'
,

•((

ヽ
~

((11Abendessen11 N)
("Abmeldung" N)
("Adresse" N)
("Akira" N)
("Ankuendigung" N)
("Anrneldeformular" N)
．．．））

The survey part of our lexical work was then complete. Individual words were occasionally added when our
translation target was adjusted.

We have demonstrated the extraction of word lists from local corpora. Of course, future development could
instead use ready-made word lists from other corpora or from reference books. For instance, we have already
taken a list of strong verb stems from a standard German grammar and have created a corresponding file
strong-verbs-we-endings of dictionary entries. These entries could at any time be integrated into the master
dictionary using the procedures described below. For now, however, we have kept them separate to simplify
debugging.

3.2 Creation of Dictionary Entries

The creation of dictionary entries can itself be divided into two stages: the creation of lexical input files
containing partial lexical entries for each word; and the programmatic completion of those le幼xicalentries.

3.2.1 Making Partial Dictionary Entries

We used the survey information to create a lexical input file for each inflected cat:

nouns-wo-endings
verbs-wo-endings
adjs-wo-endings
num-wo-endings

Each lexical input file contains a list of partial dictionary entries. Most partial entries are created by hand using
a text editor; the partial entries for weak verbs, however, can be created programatically (see next section).
Full dictionary entries are created by automatically completing the partial entries.

The partial entries contain data which we could not compute (plurals for nouns, stems for strong verbs, com-
parative and superlative forms for adjectives) plus a sublist header containing any additional data required for
computing endings.

A partial noun entry, for example, contains a singular and plural stem, and a header list showing (a) the gender
and (b) an indication of whether the noun was derived from another category. ":Ubernachtungsm:oglichkeit",
for example, is a feminine (F) and non-derived (ND) noun whose plural stem is" :Ubernachtungsm:oglichkeiten".

21

((F ND) ":Ubernachtungsm:oglichkeit" N

(:ALL ":Ubernachtungsm:oglichkeiten")

Endings must be added at the end of the sublist whose first element is a lexid symbol (usually :ALL). For this

entry, they will all be Z, or zero.

(":Ubernachtungsm:oglichkeit" N

(:ALL ":Ubernachtungsm:oglichkeiten" Z Z Z))

Some additional partial entries for nouns:

(((F ND) 11:Ubernachtungsm:oglichkeit"

N

(:ALL ":Ubernachtungsm:oglichkeiten"))

((F ND) ":Ubersetzung"

N

(:ALL 11:Ubersetzungen"))

((N ND) "Abendessen"

N

(:ALL "Abendessen"))

((F ND) "Abmeldung"

N

(:ALL "Abmeldungen"))

．．．
((MD) "Vortragend" ;a derived noun

J¥)

(:ALL "**no plural**"))

...)

Verbs have a header indicating whether the verb is strong or weak.

（

((s) "abhalten" V (:ALL "abhalt" "abh:alt" "abhielt" "abhielt" "abgehalten" h nil))

((w) "akzeptieren" V (: ALL "akzeptier" ... "akzeptier" "akzeptier" "akzeptiert" h nil))

((s) "angeben" V (:ALL "angeb" "angib" "angab" "ang:ab" "angegeben" h nil))

((w) "anmelden" V (:ALL "anmeld" "anmeld" "anmeld" "anmeld" "angemeldet" h nil))

((w) "beantworten" V (:ALL "beantwort" ... "beantwort" "beantwort" "beantwortet" h nil))

((w) "begutachten" V (: ALL "begutacht" . . . "begutacht" "begutacht" "begutachtet" h nil))

...)

No extra information is required for adjectives:

（

("besondere" A (:ALL "**no comp**" "**no super**"))

("fachlich" A (:ALL "**no comp**" "**no super**"))

("genau" A (:ALL "genauer" "genauest"))

("gut" A (:ALL "besser" "best"))

("international" A (:ALL "**no comp**" "**no super**"))

("lang" A (:ALL "l:anger" "l:angst"))

("rnaschinell" A (:ALL "**no comp**" "**no super**"))

("rn:oglich" A (:ALL "**no comp**" "**no super**"))

("nah" A (:ALL "n:aher" "n:achst"))

...)

22

or ordinal numerals:

（

("acht" NUM (:ALL "**no comp**" "**no super**"))

("drei:sigst" NUM (:ALL "**no comp**" "**no super**"))
("f:unft" NUM (:ALL "**no comp**" "**no super**"))

("f:unfundzwanzigst" NUM (:ALL "**no comp**" "**no super**"))

("siebenundzwanzigst" NUM (:ALL "**no comp**" "**no super**"))

("viert" NUM (:ALL "**no comp**" "**no super**"))

...)

The following auxiliary functions are used to access information in header lists. Of course, the header lists are

discarded when complete dictionary entries are built.

get-noun-gender (noun-entry)

get-noun-derivation-information (noun-entry)

get-verb-strength (verb-entェy)

3.2.2 Completing Dictionary Entries and Making a Dictionary

To (re)make a morphological dictionary, we first invoke these functions (described in some detail below):

add-noun-endings (input-file output-file)

add-verb-endings (input-file output-file)

add-adj-endings (input-file output-file) ;for both adjectives and ordinal numerals

using these input files, containing lists of partial entries as input,

nouns-wo-endings

verbs-wo-endings

adjs-wo-endings

num-wo-endings

to create the following output files, containing lists of complete entries:

nouns-w-endings

verbs-w-endings

adjs-w-endings

num-w-endings

Files for two closed-class inflected cats - for d(eterminers) and q(uantifiers) - are prepared by hand.

＼

dets-w-endings

q-w-endings

make-master-diet (path a-file d-file n-file num-file q-file v-file output-file)

23

Finally, we invoke MAKE-MASTER-DICT, which simply appends the six -w-endings files a11d writes the result as

the finished dictionary. (Note: The input files are Lisp lists, but the dictionary is written as a stream, with no

enclosing p紅 ens.)

(defun make-master-diet (path a-file d-file n-file num-file q-file v-file output-file)

(let* ((a (read-from-file (format nil "-a-a" path a-file)))

(d (read-from-file (format nil "-a-a" path d-file)))

(n (read-from-file (format nil "-a-a" path n-file)))

(num (read-from-file (format nil "-a-a" path num-file)))
(q (read-from-file (format nil "-a-a" path q-file)))

(v (read-from-file (format nil 11-町 a"path v-file)))

(all (append a d n num q v)))

(write-loop all (format nil 11-a-a" path output-file))))

＊＊＊

remake-diet ()

A hard coded function with no arguments, REMAKE-DI CT, was provided to avoid typing paths and filenames at

remake time when these a.re stable. This version also copies the new dictionary to a second file.

(defun remake-diet ()

(add-noun-endings 00-/generation-ger/lex/nouns-wo-endings"

00-/generation-ger/lex/nouns-w-endings")

(add-verb-endings 00-/generatio正 ger/lex/verbs-wo-endings"

00-/generation-ger/lex/verbs-w-endings")

(add-adj-endings 00-/generation-ger/lex/adjs-wo-endings"
00-/generation-ger/lex/adjs-w-endings")

(add-adj-endings 00-/generation-ger/lex/num-wo-endings"

00-/generation-ger/lex/num-w-endings")

(make-master-diet "-/generation-ger/lex/" "adjs-w-endings"

"dets-w-endings" "nouns-w-endings" "num-w-endings"
"q-w-endings" "verbs-w-endings" "new.diet")

(copy-loop 11-/generation-ger/lex/new.dict"

"-/generation-ger/morph/dict/current.dict"))

Two additional simple functions are useful for handling and integrating dictionary entries:

**
alphabetize-diet-entries (input-file &optional output-file)
＊＊

• Takes a list of dictionary entries from input-file, and alphabetizes it using the first list element as a key.

• Then writes the sorted list to the same file (by default) or to output-file if specified.

**
integrate-and-alphabetize-diet-entries (input-file1 input-file2 &optional output-file)

**

• Combines current input-filel, e.g. nouns-w-endings, with input-file2, e.g. new-nouns-w-endings, con-
taining new items (nouns, verbs, adjectives, or numerals) to be added to dictionary.

24

• Alphabetizes, using the first list element as key.

• "¥Vrites the combined, sorted list to a file. By default, output overwrites input-filel, giving e.g. a new
version of nouns→ 1-endings; or an optional output-file can be specified.

・When there are new nouns, verbs, adjectives, or numerals to be added to the morphological dictionary, the

usual steps are to add endings to new items (using add-verb-endings, etc.) in a separate file and then to

combine with the master file of full entries for the relevant cat (verbs-w-endings, etc.) using this function.

Alternatively, one can integrate items without endings, and then add endings to the integrated file.

3.3 Automating Dictionary Production

We have given an overview of dictionary creation. We now further discuss our attempts to partly automate
this creation. We give further details concerning two automatic processes already mentioned (computing stems

for weak verbs, automatically adding word endings), and describe for the first time a third automatic process
(automatic merging of dictionary entries).

3.3.1 Computing Stems for Weak Verbs

As mentioned, from a handmade list of weak verbs, we can compute partial verb entries, including all stems

and pa.st participles. The function MAKE-WEAK-VERB-ENTRIES is used. It returns a list of partial verb entries.

make-weak-verb-entries (verb-list)

For instance, given an input list including" geh:oren", it returns

(("geh:oren" V (:ALL "geh:or" "geh:or" "geh:or" "geh:or" "geh:ort" H NIL))
...)

3.3.2 Automatically Adding Endings

As mentioned, we automatically complete partial entries for nouns, verbs, adjectives, and ordinal numerals.
That is, for these cats, we compute all endings. (An ending is the symbolic name of a rule which can be used

to augment and/or modify a stem string.) For example, given an input list containing the aしovepartial entry,
ADD-VERB-ENDINGS returns

(("geh:oren" V (:ALL "geh:or" "geh:or" "geh:or" "geh:or" "geh:ort" H叩!IL
EST TENT TE TEST TE TEN TET))

...)

Endings are computed for nouns, verbs, adjectives, and ordinal numerals, based on one or two information
points entered for each word by hand (e.g. noun gender, verb strength). These functions a.re used:

add-noun-endings (input-,-file output-file)

add-verb-endings (input-file output-file)

add-adj-endings (input-file output-file)

25

Note that ADD-ADJ-ENDINGS is used for ordinal numerals as well as adjectives.

vVe now describe these functions and their subroutines. We display Lisp code when this may be helpful. For
further details, see the complete, commented code in the file lexfns. lisp.

**
add-noun-endings (input-file output-file)

**

• Input a list of partial noun entries from input-file.

• Loop through the partial noun entries. For each partial entry:

-if the noun is derived, treat it as an adjective: construct a full noun entry by assigning an invariant
set of adjective endings (ER E ES EN ElVI)

-if the noun is not derived, construct a full noun entry using several subroutines: compute the sing-gen
ending using function GET-SING-GEN, compute _the "other" ending using function GET-OTHER, and
compute the pl-dat ending using function GET-PL-DAT

• once all noun entries are complete (once all the endings have been added) invoke MERGE-ENTRIES-WITI-I-
SAME-LEX

• write the resulting set of complete, merged noun entries to an output-file

We next examine the functions which compute the proper endings for non-derived nouns: GET-SING-GEN,
GET-PL-DAT, and GET-OTHER, and their auxiliary functions and global variables.

**
get-sing-gen (noun-entry)

**

• Determines the singular genitive ending for nouns, according to their gender, stem endings, etc. "'Veak"
masculine nouns are recognized by referring to lists and by checking for endings which usually indicate
weak nouns of foreign origin.

• The sing-gen ending is

-Z (zero) for fem nouns

-S or ES for neuter and non-gender nouns marked (x) (The choice between S and ES depends on the
final letters of the stem. The function s-oR-ES implements the decision.)

-For masculine nouns:

* N for Herr (instead of EN, as the morphophonemic rule would normally require)

* ENS for Herz

* NS for eight exceptional masculine nouns like Name, Gedanke, etc.

* N or EN for other weak masc nouns like Mensch, Affe (The choice between N and EN depends
on the final letters of the stem. The function N-OR-EN implements the decision. Weak masculine
nouns are identified by the predicate IS-WEAK-MASC-NOUN?)

* S or ES for all other m邸 cnouns (The choice depends on the final letters of the stem. The
function s-oR-ES implements the decision.)

(defun get-sing-gen (noun-entry)
(let ((gender (get-noun-gender noun-entry))
(stem (second noun-entry)))

(if (member stem *nouns-wo-singular* :test #'string=)

'z

26

(case gender
((f)'z)
((n x) (s-or-es stem))

((m)

(cond ((equal stem "Herr")
'n)

((equal stem "Herz")
'ens)

((member stem *8-exceptional-masc-nouns* :test #'string=)
'ns)
((is-weak-masc-noun? stem)

(n-or-en stem))

(t (s-or-es stem))))))))

**
s-or-es (stem)

**

Roughly determines the morphophonemics of gen-sing (S or ES?) according to the final letters of the stem. A

list of exceptions (words which should take S according to these rules but in fact take ES for reasons of rhythm,

style, etc.) is in *EXCEPTIONAL-ES~ENDINGS*.

(defun s-or-es (stem)

(if

(or

(is-last-n-chars? stem 1 "s")

(is-last-n-chars? stem 3 "sch")

(is-last-n-chars? stem 2 "ss")
(is-last-n-chars? stem 2 ":s")

(is-last-n-chars? stem 2 "st")

(is-last-n-chars? stem 1 "z")

(member stem *exceptional-es-endings* :test #'string=))

'es
's))

＊＊

global variable: *exceptional-es-endings*

**

(setq *exceptional-es-endings*'("Jahr"))

**
n-or-en (stem)

**

Roughly determines the morphophonemics of <lat-pl: N or EN? Warning! These criteria are oversimplified.

Consult a German grammar for exceptions.

(defun n-or-en (stem)

(cond

((is-last-n-chars? stem 3 ":ar")

'en)
((or

27

(is-last-n-chars? stem 2 "el")
(is-last-n-chars? stem 1 "e")
(is-last-n-chars? stem 2 "er"))
, n)

(t'en)))

**
is-weak-masc-noun? (stem)

**

Determines whether a noun already known to be masculine is "weak". Warning! These criteria are oversimpli-

fied: the endings "a.nt", etc. are good but imperfect evidence ofヽvealmess.

(defun is-weak-masc-noun? (stem)

(or

(member stem *weak-masc-nouns* :test #'string=)

(member stem *8-exceptional-masc-nouns* :test #'string=)

(is-last-n-chars? stem 3 "ant")

(is-last-n-chars? stem 3 "aph")

(is-last-n-chars? stem 4 "arch")

(is-last-n-chars? stem 2 "at")
(is-last-n-chars? stem 3 "ent")

(is-last-n-chars? stem 2 "et")

(is-last-n-chars? stem 3 "ist")

(is-last-n-chars? stem 4 "krat")

(is-last-n-chars? stem 3 "log")

(is-last-n-chars? stem 3 "nom")

(is-last-n-chars? stem 3 "mon")))

**
global variable: *weak-masc-nouns*

**

Contains an incomplete list of common weak masculine nouns, grouped by type. As weak masc nouns a.re added

to the le泣con,they should be listed here.

(setq *weak-masc-nouns*'(

"Affe" "Bote" "Franzese" "Schwabe"

"Barbar" "Chirurg" "Kamerad" "Katholik" "Tyrann"

"B:ar" "Bauer" "Bayer" "Bub" "Bursche" "Fink" "F:urst" "Graf"

"Held" "Herr" "Hirt" "Mensch" "Nachbar" "Narr" "Oberst" "Ochs"

"Papagei" "Pfau" "Spatz" "Tor" "Untertan"

））

**
global variable: *8-exceptional-masc-nouns*

**

These are masculine nouns which take NS in the genitive singular. They a.re considered weak for the purposes
of the "other" ending.

28

(setq *8-exceptional-masc-nouns*'("Buchstabe" "Friede" "Funke" "Gedanke" "Glaube"
"Name" "Same" "応ille"))

**
get-pl-dat (noun-entry)

**

Determines the plural dative ending for nouns.

• Pl-dat ending is Z (zero) for non-weak nouns with pl-stem ending in "n" or "s" and for nouns whose
dictionary entry contains the string "**no plural**" in the pl-stem position. •

• N or EN for all other nouns (including all weak masculine nouns). (The choice is implemented by the
function N-OR-EN. Note: we consider that the plural stem is the same as the singular stem (pl-stem=

sing-stem) for weak masculine nouns.)

(defun get-pl-dat (noun-entry)
(let ((gender (get-noun-gender noun-entry))
(pl-stem (second (fourth noun-entry))))

(cond ((and

(not (is-weak-masc-noun? pl-stem))
(or

; ; plural stem ends inn ors
(or (is-last-n-chars? pl-stem 1 "n")
(is-last-n-chars? pl-stem 1 "s"))

(string= "**no plural**" pl-stem)))
'z)

; ； including all weak nouns
(t (n-or-en pl-stem))))).

**
get-other (noun-entry)

**

Determines the "other" ending for nouns: the ending for number-case combinations other than sing-nom, sing-
gen, and pl-dat - singular nouns in the accusative and dative (sing-acc and sing-dat) and plural nouns in the
nominative, accusative, and genitive (pl-nom, pl-acc and pl-gen).

The ending is Nor EN for weak or" exceptional" masc nouns (the choice is implemented by function N-OR-EN)
and Z (zero) for all other nouns.

(defun get-other (noun-entry)
(let ((gender (get-noun-gender noun-entry))

(stem (second noun-entry)))

(cas~gender
((f n x)'z)

((m)

(if (is-weak-masc-noun? stem)

(n-or-en stem)

'z)))))

**
add-verb-endings (input-file output-file)
＊＊

29

•. ,.・

• Loop through partial verb entries taken from input-file.

• For each partial entry, construct a full verb entry, using these ending patterns:

weak ending ind or t

other weak

(e est et en et ete etest ete eten etet)

(est tent te test te ten tet)

strong (est tent z st z en t)

(Noun strength information is contained in a header list, later discarded, in each partial entry.)

• Once endings have been added, invoke the function MODIFY-IF-EL-STEM as a post-check. It modifies a
verb entry in which the present stem ends in "el", e.g. for klingel(n): instead of the unmarked first person

ending adding E, it substitutes the ending rule LE, giving "!dingle" instead of "*klingele".

• When the list of full entries is complete (once all the endings have been added) invoke MERGE-ENTRIES-
WITH-SAME-LEX

• Write the resulting set of complete, merged verb entries to an output-file.

(defun add-verb-endings (input-file output-file)

(let (output

strength

(verbs (read-from-file input-file))

(weak 》(esttent te test te ten tet))

(weakdt'(e est et en et ete etest ete eten etet))

(strong'(est tent z st z en t)))

(loop for v in verbs do

(setq strength (get-verb-strength v))

(let ((2nd (second v))

(3rd (third v))

(4th (fourth v)))

(case strength
((w)

(if;; stem ends in d or t

(or (is-last-n-chars? (second 4th) 1 "d")

(is-last-n-chars? (second 4th) 1 "t"))

(setq v (list 2nd 3rd (append 4th weakdt)))

(setq v (list 2nd 3rd (append 4th weak)))))

((s) (setq v (list 2nd 3rd (append 4th strong))))

(t (setq v (list 2nd 3rd (append 4th'(**error**)))))))

(setq v (modify-if-el-stem v))

(setq output (cons v output)))

(setq output (merge-entries-with-same-lex output))

(write-to-file-no-pp (reverse output) output-file)))

**
modify-if-el-stem (v-entry)

**

Modifies a verb entry in which the present stem ends in el, e.g. klingel(n). Instead of unmarked first person

ending adding E, substitute ending rule LE, giving klingle instead of klingele.

(defun modify-if-el-stem (v-entry)

(let ((stem (second (third v-entry))))

(if (is-last-n-chars? stem 2 "el")

(subst'le'e v-entry)

v-entry)))

30

**
add-adj-endings (input-file output-file)

**

_ Loop through partial adj (or num) entries taken from input-file.

• For each partial entry, construct a full entry, using this invariant ending pattern: ER E ES EN EM

• When list of full entries is complete (once all the endings have been added) invoke MERGE-ENTRIES-WITH-
SAME-LEX

● write the resulting set of complete, merged adj (or num) entries to output-file

**
global variable: *adj-endings*
＊＊

(setq *adj-endings*'(er e es en em))

3.3.3 Automatic Merging of Dictionary Entries ＼

,’

,'’

We now discuss a third automation process for the first time: automatic merging of dictionary entries.

Sometimes separate words have the same surface dictionary form string (lex) and the same cat. In our corpus,
for instance, it is necessary to distinguish two words with lex "Deutsch" and cat N: one is seen as deriv叫
from an adjective and is inflected as an adjective (ins Deittsche); vヽhilethe second is seen as i1011-derived, and
receives normal noun inflection (aitf Deutsch). (Such situations are actually rare in our corpus - we observe
only De'!ttsch, Englisch, and Japanisch - but might be common in a larger one.)

System conventions require that entries sharing the same lex should appear in a merged dictionary entry. Below,
"Deutsch" is the shared lex, while DEUTSCH-1 and DEUTSCH-2 are lexids. Note the different ending patterns.

("Deutsch" N

(DEUTSCH-2 "**no comp**" "**no super**" ERE ES EN EM)
(DEUTSCH-1 "**no plural**" ES. Z Z))

Our partial entry file contains two separate entries. They are automatically merged when the complete entries
are made, via the function MERGE-ENTRIES-WITH-SAME-LEX.

3.4 Compiling the Dictionary

The compjete master dictionary is not used in its original form during actual generation. Instead, a compiled
version is prepared and used. The function which performs the compilation is

**
mg-make-m-dictionary (file)
＊＊

Given a file dictionary. diet, it creates two files, dictionary. data and dictionary. index. This function
must be invoked each time the master morphological dictionary is changed.

31

Warn-ing! Further, when the master dictionary is updated, (mg-quit) should be explicitly invoked, and
all morphological elements of the generation system should be reloaded. These precautions are necessary
because of a known bug: the function MG-START does not call MG-QUIT, so important variables, including
EMDJvfASTER_STREAM, the dictionary stream, may be left over from a previous session.

32

Chapter 4

Morphological Rules

Morphological rules are used to add endings to, and sometimes also to modify, strings representing word stems.

Each rule is created by a call to def-mg-rule, with these arguments:

def-mg-rule (rulenarne no-of-chars-to-remove string-to-attach double-final-char?)

(The last argument is obsolete, a survival of the earlier English morphology system.)

For example, the function call

(def-mg-rule le 2 "le" nil)

makes a rule named LE which can be referenced in the dictionary entries of verbs. (A rule name is a Lisp
symbol; upper or lower case is not significant.) The rule adds the present ten_se ich-ending "e" to verbs like

klingeln, laecheln or segeln, and at the same time modifies the stem, giving "klingle", "laechle", or "segle" as

output. (If the ending were added without modifying the stem, the result would instead be "klingele", etc.) It
receives a stem (e.g. "klingel"); cuts off the final two characters (giving "lding"); and then adds the string "le'i.

All of the German morphological rules are listed below.

＇ i
 ＼

Note! In German, different cats (parts of speech) sometimes add the same phonological ending. Both verbs

and nouns, for instance, can have EN _endings. Of course, these endings have different functions and thus are

morphologically distinct. However, from the phonological point of view, no distinction is necessary; and so only

a single morphological rule is defined and used in such cases. For easy reference, a rule with multiple uses is

listed under every relevant category (but repeated listings are commented out).

; ; ; verb rules

曇“‘

(def-mg-rule e O "e" nil) ・ich trinke

(def-mg-rule le 2 "le" nil) ;ich klingle, laechle, segle
(def-mg-rule st O "st" nil) ;du trinkst

(def-mg-rule est O "est" nil) ;du arbeitest, verwendest

(def-mg-rule t O "t" nil) ;er/sie/ihr trinkt ---also du gruesst, setzt

(def-mg-rule et O "et" nil) ;er/sie/ihr arbeitet, verwendet

(def-mg-rule en O "en" nil)・; wir/Sie/sie trinken

(def-mg-rule n O "n" nil) ;wir/Sie/sie tun, knien, schrein, wandern, klingeln
(def-mg-rule z O 1111 nil) ;ZERO ending, ich sah

33

; ; ;past tense for weak verbs

(def-mg-rule te O "te" nil) ;ich/er/sie fragte

er sie arbe1.tete (def-mg-rule ete O "ete" nil) ;ich/ /

(def-mg-rule test O "test" nil) ; ich/er/sie fragtest

(def-mg-rule etest O "etest" nil) ;ich/er/sie arbeitetest

(def-mg-rule ten O "ten" nil) ;Sie/sie/wir fragten

(def-mg-rule eten O "eten" nil) ;Sie/sie/wir arbeiteten

(def-mg-rule tet O 11tet11 nil) ; ihr fragtet

(def-mg-rule etet O 11etet11 nil) ;ihr arbeitetet

; ; ;noun rules

; ;;(def-mg-rule z O 1111 nil)

; ； ; (def-mg-rule n O 11n11 nil)

; ; ； (def-mg-rule en O 11en11 nil)

(def-mg-rules O 11s11 nil)

(def-mg-rule es O 11es11 nil)

(def-mg-rule ns O 11ns11 nil)

(def-mg-rule ens O 11ens11 nil)

; ; ; det rules

; ; ; (def-mg-rule z O 1111 nil)

(def-mg-rule er O "er" nil)

(def-mg-rule $$er 2 "rer" nil)

; ; ； (def-mg-rule e O "e" nil)

; ； ; (def-mg-rule es O "es" nil)

; ; ； (def-mg-rule en O "en" nil)

(def-mg-rule em O "em" nil)

; ; ; adj rules

; ; ; (def-mg-rule z O "" nil)

; ； ; (def-mg-rule er O "er" nil)

; ; ； (def-mg-rule e O "e" nil)

; ; ； (def-mg-rule es O "es" nil)

; ; ； (def-mg-rule en O "en" nil)

; ; ； (def-mg-rule em O "em" nil)

;ZERO ending, die Muetter

; (des) Herrn

; (des) Menschen

; (des) Bahnhoffs

; (des) Busches

; (des) Namens

; (des) Herzens

;ZERO ending, ein

・einer ，
; unsrer, eurer

・eュne，
; eines

， ・einen
・eュnem，

;ZERO ending, gut

; guter

; gute

; gutes

; guten

; gutem

34

Chapter 5

Postprocessing

When all of the words (leaves) of the syntactic tree have been processed, the result is a Lisp list of strings, e.g.

(" Harald" " weint" "." " " " aber" " Helmut" " lacht" "."). The string includes punctuation marks, since these
are included as terminal elements in the syntactic tree. Postprocessing then creates a single string which will
become the final result of German generation: "Harald weint, aber Helmut lacht."

The strings in the list cannot simply be concatenated, however, since punctuation a11d capitalization can create
special problems. For example, the punctuation of an embedding construction can override the default punctu-
ation of an embedded construction. (The medial punctuation for a compound sentence, for instance, normally
overrides the default final punctuation of the embedded clauses.) Further, since the German grammar can
deliver multiple sentences, capitalization after a full stop sometimes becomes necessary.

Since the earlier postprocessing functions for English did not support such punctuation override or multiple
sentence output, it became necessary to produce new versions. The new functions are loaded as patches after
the normal generation system load is complete.

5.1 Postprocessing: the Specification

We now describe the behavior of the postprocessing routines. In the next section, we will discuss some of the
functions which implement this behavior.

Postprocessing is used to make punctuation from embedding and embedded constructions combine properly;
to manage capitalization when there are multiple sentences in the output; to suppress default commas, e.g.
from relative clauses, immediately before sentence-final punctuation; and to avoid the appearance of multiple
commas in constructions (especially addresses) allowing null elements.

5.1.1 Default Punctuation

Punctuation is supplied by syntactic rules associated with illocutionary force types (IFT's). Simple IFT's
include INFORM, QUESTIONIF, QUESTIONCONF(irmation), etc., and the syntactic rules which express
them provide period or question mark. When these are joined under COMPOUND-IFT (supplied by Japanese-
German transfer) the resulting clauses are linked by medial punctuation (,) or separated by final punctuation
(. ? !) coming from the compound construction ..

When explicit punctuation is supplied by a syntactic construction expressing a compound IFT, the default
punctuation from the lower IFT is normally deleted. Thus any punctuation from a compound IFT dominates.
(Or, if no compound IFT punctuation is explicit, a lone simple IFT punctuation is deleted. In effect, a null

35

_,,..-

punctuation mark overrides the default punctuation.) Alternatively, by explicit request, simple (default) IFT

punctuation can be allowed to remain in place.

"「enow give examples using output string lists.
Later punctuation normally overrides earlier in any position:

("a"".""," 11 b11 11.11) -->("A""," 11 b11 11.11)

(" John11 11 laughed" ". 11 ", 11 11 and" " Mary" " cried" 11. 11)
---> (11John" 11 laughed11 11,11 11and11 "Mary" "cried" ".")

("a"".""." "b" ".")-->("a""." "b" ".")
("John"" laughed" 11.•·• ".""and"" Mary"" cried"".")
---> ("John"" laughed""."" And"" Mary"" cried"".")

However, earlier punctuation overrides later iff the later punctuation is the reserved symbol -. This convention

permits the default punctuation to remain in place if desired.

("a""?" 11~11 "b" ".")-->("A""?"" B" ".")

(" did" "John" " laugh" "?" 11~11 " and" " did" " Mary" " cry" "?")

--> (" Did" "John" " laugh" "?" " And" " did" " Mary" " cry" "?")

Lone final punctuation is deleted except at the very end of the list. In effect, null punctuation from the
compound IFT overrides the default punctuation from the simple IFT.

(11 a11 11.11 11 b" 11.11) --> ("A" 11 b11 11.11)

(11 John" II laughed" 11.11 II and11 II Mary11 II cried" 11.11)

---> (11 John11 11 laughed11 11 and11 11 Mary11 11 cried11 11. 11)

5.1.2 Capitalization

A word following a surviving final punctuation is capitalized.

(" John" " laughed" 11." "." " and" " Mary" " cried" ". ")
--->・("John"" laughed" 11.11 "And"" Mary"" cried" ".")

5.1.3 Penultimate (Just-Before-Final) Comma

We delete a conlllla, e.g. the default comma from a relative clause, in penultimate (just-before-final) position.

Otherwise, lone commas are not disturbed.

("this"" is"" John"","" who"" lives"" in"" California"","".")

--> ("This" " is" " John" "," " who" " lives" " in" " California" ". ")

5.1.4 Comma Before Comn1.a

Certain syntactic constructions, especially for addresses, permit null elements. The commas surrounding the

null elements remain until post-processing, so that several consecutive commas may appear in the output string.

For such multi-comma sequences, only the last c01nma is retained.

36

("mein" "Adresse" "sein" "<trace>" 11,11 11,11 "dreiundzwanzig" u,"
"Tschaja-matschi" 11,11 "Kitta-ku" 11,11 "O:saka" "<trace>" 11.11)

—• ("mein" "Adresse" "sein" "<trace>" 11,11 "dreiundzwanzig" 11,11
"Tschaja-matschi" 11,11 "Kitta-ku" 11 ， " "□: saka" "<trace>" ".")

Note! The above example shows a minor problem in the current syntax/morphology interface. Actually, both

commas should be deleted after "Mein Adresse ist ... ": the single remaining comma is a minor punctuation

error. On the other hand, at lea.st one comma should survive between later address elements. Postprocessing

could not distinguish these contexts, however, unless structural clues were given. For now, we keep the extra

bad c01mna, recognizing that later revision of the syntactic rules is desirable.

5.2 Postprocessing Functions

We now give some implementation details concerning postprocessing. Commented functions for enhanced
postprocessing are in the file mgen-main-patch. lisp.

Two system functions are overwritten: MGEN_MAIN and PUNCTUATION-MARKS-P.

The new versions:

**
mgen_main (f_node &aux morphemes last_elem)

**

Postprocess a list morphemes of morphological output strings:

• tag some punctuation marks (using @) for later deletion;

• delete tagged punctuation marks;

• capitalize after surviving final punctuation;

• capitalize the first word of the list;

• concatenate the surviving strings into a single output string.

(defun mgen_main (f_node &aux morphemes last_elem)

(setq morphemes (mgen_make-morpheme_list f_node))

; ;Note DESTRUCTIVE operations

(mark-puncts-for-deletion morphemes)

(delete-marked-puncts morphemes)

(capitalize-after-final-punct morphemes)

一(when (consp morphemes)

; ; capitalize first word
(setf (car morphemes)

(mgen_string_upcase

(string-left-trim'(#¥space)(car morphemes))))

＾

;;concat list of strings into single string
(format nil "-{-a-Va"

(nreverse (cdr (reverse morphemes)))

(car (last morphemes)))))

37

し―--- ---一----

i¥

＊＊

punctuation-marks-p (string)

**

@ is used to tag some punctuation for later deletion. @ should be recognized as a punctuation mark.

'
 ；
 !

I

(defun punctuation-marks-p (string)

(and (= 1 (length string))

(member (char string 0)

'(#¥. #¥? #¥, #¥, #¥: #¥; #¥! #¥c))))

As seen above, the important new functions called by the new version of MGENJvfAIN a.re:

**
mark-puncts-for-deletion {morpheme-list)・

delete-marked-puncts (morpheme-list)
capitalize-after-final-punct (morpheme-list)

**
[>

Several auxiliary predicates are also defined: for instance, the following function recognizes the final punctuation

marks ., ?, and !.

11,'

、**

final-punctuation-marks-p (string)

**

し）

..
尋 9
, .• I . ・.. ,

38

Appendix A

References

Kikui, Gen-ichiro. 1993. Morphological Synthesis: Reference Manual. ATR Technical Report, TR-I-0361.

39

	01
	02

