
r1 In tern al Use Only

TR-1-0343

The FLAIL
Expert System Shell

Manual

John K. Myers

゜

March 12, 1993

Abstract

し）
This manual presents users'documentation for FLAIL, the Factlrule Language

for ATR's Interpreting Telephony Research Laboratories. FLAIL is an inference

engine (or, "expert systems shell") progrrun that allows users to write facts and

rules, and have the system draw inferences to solve problems.

cATR Interpreting Telephony Research Laboratories
◎ ATR自動翻訳電話研究所

"1

｀

~

＾

The FLAIL
Expert System Shell

Manual
John K. Myers

February 23, 1993
ATR Interpreting Telephony Research Laboratories

Sanpeidani Inuidani Seika-cho Soraku-gun
Kyoto 619-02 Japan

Netmail: myers%atr-la.atr .junet@uunet.uu.net

Abstract

This manual presents users'documentation for FLAIL, the Fact/rule Lan-
guage for ATR's Interpreting Telephony Research Laboratories. FLAIL is
an inference engine (or, "expert system shell") program that allows users to
write facts and rules, and have the system draw inferences to solve problems.
It was developed to enable ATR to have modifiable LISP source code to
an inference engine (which was required for interfacing an inference engine
to a LISP ATMS in order to perform plan recognition). Like all inference
shells, FLAIL is a general-purpose system that can work with any kind of
problem that can be represented using rules and facts; the user is not lim-
ited to plan-recognition applications. The current version of FLAIL directly
supports forward chaining; backward chaining can be implemented on top
of this. FLAIL supports constant facts, rules with variables that can be
used in the rules'consequents, hierarchically nested lists for facts, "rest-of"
indefinite-count variables, retraction of facts, and escapes to the. full LISP
operating system.

This manual describes the FLAIL system by itself. For the use of the
AT1¥IIS system, or the integrated FLAIL+ATMS system, please see the sep-
arate appropriate manuals.

~Copyright (c) 1989,1993 ATR Interpreting Telephony Research Laboratories.

Contents

＾

1 The System

2 Introduction: Programn1er's Description

3 What does an Inference Engine do?

4 Conceptual Use of FLAIL

5 Entities: Types of Data Structures
5.1 Facts

5.1.1 Theory .
5.1.2 Method

5.2 Rules
5.3 Pat terns

5.3.1 Variables . . .
5.3.2 "Rest-of" Variables . . .

5.4 Lisp Escape Execution Commands
5.5 Retraction ..
5.6 Extras

6 Execution
6.1 The Execution Cycle
6.2 Parallel Execution and Rule Priority Numbers
6 .3 Use of Priorities .

2

2

3

3

4

4

4

5

6

7

7

7

8

9

0

0
 0
 1
5

1

1

1

1

1

＾
7 Exan1.ples

7.1 Example 1: Sequential Stepping
17

. 1 7

8 Con1mands .19

8.1 User Commands . 19
-一

8.2 User Option Flags 19
8.3 Debugging Flags 20
8.4 System Configuration Flags 20

8.5 Output Stream Variables 20

， Command Dictionary 21

1

1 The System

Source and binary for the system is found on the Symbolics Lisp Machines,
under file LM01: >Myers>golden-flail, with extensions . lisp and . bin re-
spectively.

To load the system, type (load "LM01 :>Myers>golden-flail").

To run the system, load or type in the facts and rules desired, and then
type (flail). See Section 4, Conceptual Use of FLAIL.

2 Introduction: Programmer's Description ,.....,

FLAIL is a rule-based inference engine that matches facts in a fact data-base
against similar patterns in rules in a rule data-base. A rule may have many
patterns as its antecedent; if the conjunction of these patterns match in a
consistent manner, the rule's consequent is executed sequentially. A conse-
quent is a list of facts, fact retractions, and LISP escape commands. Facts
are asserted; retractions are deleted from the fact data-base; and escape com-
mands, which can be any LISP command outside of the FLAIL system, are
executed. Patterns may have variables, that are bound when first matched
inside the rule but must match the botmd value inside that rule thereafter.
Bound variables can be used in the consequent, including inside the LISP
escape commands. Variables can match atoms or lists; a special type of
"rest-of" variable can match sequences of atoms at the end of a list. Facts
are unique. The system directly supports only forward-chaining in Version
1.1 (naturally, backward-chaining can easily be implemented on top of this).
Rules are fired once for each pattern match. Facts and rules can be asserted
in any arbitrary, mixed order, there is no need to forward-reference or prede-
fine items. A fact or a pattern may be an atom, a list, or a nested list. Atomic
facts allow the definition of packages of rules. Although the execution order
of rule-based systems is typically not guaranteed, rule priorities in FLAIL al-
low matching rules with high priority to be executed before rules with loヽ~~r

priority. Together, the FLAIL system is intended to provide a clean but
power{ ul package that per£orms rule-based inferencing, allows nonmonotonic
retraction and interfaces with arbitrary outside systems.

~

?l

喜＝＝ 三＝
lne F•ct. D●C●-6●●0 The Rule Daい-B••e

3

What does an Inference Engine do?

＾

An inference engine is designed to allow relatively simple programming of
problem-solving systems by supporting a rule-following paradigm. Inference
engines, instead of having a series of subroutines like normal programming
languages, have a data-base of rules. These rules are of an "if X X then
Y Y" form. A rule is an instruction that says if certain conditions (X X)
hold, then execute or assert the results (Y Y). The test conditions of the rule
are called the rule's antecedent; the results are termed the rule's consequent.
When the rule's antecedents are all valid and the consequents are performed,
this is known as firing the rule.

The rules work on a data-base of facts. Facts are passive data that the
system operates on. A rule tests whether all of a series of facts are present
in the fact data-base; if so, then the rule typically puts more, different facts
into the fact data-base.

Because historically this kind of system was built to deductively infer
facts about a situation, this kind of system is called an inference engine.
Sometimes it is called a rule-based system. Because an inference engine is
typically the primary system component in so-called "expert systems", this
kind of rule-based program, together with support, explanation, and debug-
ging facilities, is sometimes known as an "expert system shell". Note that
the inference engine is a system, and therefore cannot do anything by itself;
the actual expert system or application program is embodied in the rules and
facts that the system works with.

4

Conceptual Use of FLAIL

＾ •—

Inference engines as a whole are very simple and intuitive to use. (The actu~l
problems come in designing the rules so that they do something useful, not in
using the system itself.) There are basically only four main commands for the
entire system. First, you reset the system, clearing out any old facts or rules
that might have been left over in the fact data-base or the rule data-base.
This is done with the command (reset). Next, you assert fa~ts that you
want the system to know about, using the command (facts ...) described
below. After that, you assert the rules that the system is going to use, by
means of the (rules ...) command which is also described below. You can

3

assert as many rules and as many facts as you want, and in any order. Each
time you call (facts ...) or (rules ...) the facts or rules get inserted
into the respective data-base, along with all the facts or rules that were there
previously. (There is no need to predeclare rules, or to have to declare facts
before rules, as there is with some systems.) After you have finished loading
all the facts and rules, you run the system, by using the command (flail).
The system keeps executing rules until none of them fire any more.

5 Entities: Types of Data Structures

vVe now go into a discussion of the actual entities (conceptual data structures)
that are used by FLAIL. These consist of the facts, the rules, the patterns
used by the rules to match the facts, and the two kinds of variables inside
the patterns. ＾
5.1 Facts

5.1.1 Theory

Facts are the basic data of the system. A fact can be an atom, a list of
atoms, or even a hierarchical list of atoms and lists. Examples of facts (with
explanatory notes) include the following:

conversation-package Single LISP atoms are allowed.

(guests-turn) Lists with one atom are also allowed.

(The guest wants to talk) Lists with multiple atoms are the most com-
monly used,

(The (guest named Kazuko) said (Where is the conference?)) however
it is also possible to have nested lists in a single fact.

(I want (You to tell me (What is (your name))) please) Lists can be
hierarchically nested as deeply as is necessary.

Remember that in LISP, the hyphen "-" is treated as a letter and can
appear in the middle of a single name just like any other letter.

，

4

’

~

Of course, a fact, just like anything else inside a computer, has no intrinsic
meaning. The only meaning associated with a fact is what the rest of the
computer program can do with it. For instance, a person can enter the fact
(Takeshita is President of the USA) and the computer will accept this
happily. We use the simple name "fact" as a convenience to refer to the
assertions that the system works with; whether the fact is actually true in
the real world or not does not matter to the computer. In fact, facts in
FLAIL are not true or false, and are not interrelated; a fact is either IN
THE SYSTEM, in which case it is~NOWN, or it is simply not in the system
(unknown), perhaps because the user has not typed it in yet or it has been
retracted.

Since facts are not interrelated, th~re is nothing to stop the user from also
entering (Bush is President of the USA) into the fact data-base, (unless
there is some special rule that the user has created that detects multiple
presidents and does something about it). However, facts are unique; if the
user again enters (Takeshita is President of the USA) as a fact, there
are not two facts starting with (Takeshita ...) in the fact data-base that
are exactly the same; there is only one-the second one overwrites the first
one, if it is exactly the same fact.

Facts are treated as constants. Although it is lexically possible, facts
should not have any variables (represented by symbols beginning with ques-
tion mai・ks, which of course includes a single question-mark by itself) in them,
because they have no semantic meaning. That is, if you write a位凶 witha
variable in it, e.g.

WRONG: (The guest said ?something to ?someone)

you are quite probably making a mistake. The system will allow you to
assert such a fact, but it will complain to you (unless the system variable
watch-variables-in-facts 1s set to NIL. Don't do this.)

．．
 5.1.2 Method

Facts are asserted using the (facts ...) command. This takes a series of
facts as its argument. Although you can call facts from inside a program,
for example:

(setq my-fact'(This is a fact))

5

(facts my-fact)

it is much more common to call this command from the top level, with a list
of literal arguments. Since facts evaluates its arguments, in this case it is
necessary to put a quote before each fact:

(facts

'conversation-package
'(guests-turn)

'(The guest wants to talk)
'(The (guest named Kazuko) said (Where is the conference?))
'(I want (You to tell me (What is (your name))) please)

）

Of course, we can call facts again and add more facts to the ones that
we just asserted. vVe can add more facts to the system at any time, even
after we have added rules or after we have run the system. And, naturally

facts can take a single fact as an argument:

(facts'(Another additional fact))

Be careful that you do not put a set of parentheses around all of the fact
arguments-facts takes a series of arguments, not a list. If you type

WRONG: (facts'('(fact1)'(fact2)))

you will get a single fact asserted which is a list of two items (each consisting
of a quoted list), which is probably not what you wanted.

Since facts are treated as constants composed of atoms and hierarchical

lists, they can store just about anything. It is particularly interesting to
store facts that take the form of rules; in this case, one can implement a
meta-system, using the rules in the rule data-base, that performs backward

chaining, heuristic search, etc.

5.2 Rules

Rules are the basic "program instructions" of the system. A rule consists of a
situation to recognize, which is a list of facts called the antecedent, plus a list

＾

~

6

of actions to take, called the consequent. The rules operate on facts; if all of
the facts in the antecedent are present in the fact data-base, that rule is fired
(executed) and all of the actions in the consequent are performed. Actions
usually consist of adding more facts to the fact data-base, although actions
can be retracting (deleting) a fact from the fact data-base, or executing an
arbitrary Lisp function.

，

5.3 Patterns

The way that a rule matches~nd asserts facts is through the use of pat-
terns. There are two kinds of patterns, antecedent patterns and consequent
patterns. Antecedent patterns look like facts; they are input patterns to the
rule, used for matching. Consequent patterns also look like facts, but they
are output patterns for・asserting facts into the fact-base or for executing
functions.

~

5.3.1 Variables

Ordinary FLAIL variables are distinguished by atom names that start with
the "?" character. They can match atoms or entire sublists in a fact.

Examples of variables inside patterns, and legal matches, includes:

(?a) matches a single item in. a list, such as (my-fact) or ((single sublist in
list)). However, it will not match (two facts) or・((two)(sublists)).

(my ?what) matches (my statement) or (my (anything here)), but not
(your statement).

?single-var matches fact atomic-fact.

(?what ?what) matches (a a) or ((foo bar)(foo bar)), but not (ab).

Variables are bound to their matches inside a particular rule; all of the
matches to a single variable must be consistent .

.

l

5.3.2 "Rest-of" Variables

In addition to the regular variables, there are special, "rest-of" variables
that start with a "+" character. These variables match one or more atoms or

7

sublists in a fact, up to the end of a list; they must occur as the last member
in a list or sublist inside a pattern.

Examples of this kind of variable in a pattern, and legal matches, includes:

(+a)…matches fact... (x y z)

(a +b)…matches fact…(ax y z)

(I said (you +what) right)…matches fact…(I said (you x y z) right)

(+a)…matches fact…(sequence (with (sub)) lists)

In all of these cases but the last one, the "rest-of" variable is bound to
the sequence x y z. Note that this is not the list (x y z); if the variable is
used in the consequent, the sequence is spliced in where the variable was.

Example: In a consequent pattern,

(you said +what)…expands to (you said x y z), NOT to (you said (x y
z)).

For this reason, +variables in consequents must be inside a list or a sublist.
However, unlike antecedents, they do not have to be the last member of the
sublist.

Examples of incorrect usages of +variables in antecedents include:

wrong: +a + Variable not inside parenthises.

wrong: (and +now what) +Variable not last item in sublist.

5.4 Lisp Escape Execution Commands

Besides facts that get asserted, it is possible for a rule to have arbi-
trary Lisp commands in its consequent that get executed when the
rule gets fired. Because these are commands that are not・part of the
closed FLAIL system itself, they are called "escape" commands. Es-
cape commands can execute any legal Lisp function, macro, or special
form. The assertions and the escape commands are performed in the
order in ヽ~hich they appear in the consequent.

，

＾

8

＾

Escape commands are indicated by the first atom in the consequent
pattern list being a " ! " character. Thereafter, the rest of the com-
mand, as regularly typed in to a Lisp Listener, is presented. However,
like fact assertions, the escape command can contain FLAIL variables.
These are macro-instantiated to literals before the command is exe-
cuted. Thus, the escape commands can use・the bindings of FLAIL
variables.

Examples of Lisp escape execution commands, to appear in a rule's
consequent, include:

(! format T "My variable is A." (quote ?what)) Prints binding
of FLAIL variable ?what inside rule.

(! setq my-var (quote ?what)) Sets Lisp global variable my-var to
the binding of FLAIL variable ?what.

5.5 Retraction

＾
0
-

In addition to asserting facts and executing Lisp escape commands, it
is also possible to retract facts-that is, erase them from the fact data—

base. Retraction is done by using the ! retract command pattern in
the consequent of a rule. A fact to be retracted is presented just as it
normally is, inside the !retract pattern.

Examples:

(!retract (an-ato111-in-a-list))…retracts fact: (an-atom-in-a-list)

(!retract ato1nic-fact)…retracts fact: atomic-fact

(!retract (I said ?what)…uses binding of variable ?what and then
retracts the instantiation of fact (I said ?what).

Retracting a fact also immediately pulls all rule instantiations depend-
ing on that particular fact out of the execution stack (see Section 6 .1).

For convenience, ! retract is also implemented as a top-level function,
that the user can call from Lisp. However, in this case its argument is
evaluated, and must be quoted.

，

5.6 Extras
-'＼

Rules can also contain an optional documentation string. This is usu-
ally listed before the antecedent patterns, and is used purely for doc-
umentation, debugging and info1mational purposes. It is a good idea
to put a textual description of what the rule is expected to do in this
place, because sometimes the intention behind a rule can be hard to
understand, especially if the rule has a bug.

In addition, if the first item in the rule is an atom (not a list or a string),
it is treated as the variable-name of that rule. A global variable is cre-
ated with that name, and the rule is stored in that variable (besides
being stored in the system rule data-base, as usual). Naturally, the
system does not include the variable-name as pa;rt of the antecedent
patterns of that rule. Watch out for the mistake of creating a fast rule
without a variable-name or a documentation string, and then chang-
ing it to start with a package-name (single-atom) pattern-this will be
treated as the rule's variable-name.

Rules can also have optional priorities. A priority is a single number,
usually placed after the inference arrow ("=>"). Be careful not to put
the number directly after the arrow, without an intervening space-
the parser will think that the arrow plus the number is one symbol.
A priority should be an integer, but it can be negative. The use of
priorities is discussed in depth in Section 6.2. Rules without explicit
priority numbers get the implicit priority of zero (0).

，

6

Execution ，
The previous section has discussed the kinds of data that the system
works with. This section will now discuss how FLAIL uses this data to
run.

6.1 The Execution Cycle
ヽ
ー
ー
．
—

ヽ

The FLAIL system uses an execution stack of rules. The top rule is
examined; if all of the antecedents match consistently, the rule is fired,

10

冒＝ 三
〗The Fa吐伽いーB●●e The Rule Dec..-8●●e

＾
The Execution Stack
and the
Rule Being Exonincd

＾

and the consequents of the rule are asserted or executed in order. If the
antecedents do not match, this examination of this rule is discarded.
After the system is finished with the current rule being examined, the
stack is popped, and the next rule is examined.

The rules that the stack stores are not actual rules, but particular
instantiations consisting of a pointer to a rule in the data-base plus
a (possibly null) list of rule variable-bindings. Thus, when the stack
discards a rule after it is finished firing, the actual rule is still in the
rule-base; only that particular instantiation is discarded. A single rule
from the rule-base may have many instantiations on the stack at the
same time, corresponding to different variable bindings.

Individual rule patterns are matched when a new fact is asserted into
the fact data-base. Of course, a rule has a series of individual patterns
in its antecedent. If a new fact triggers a rule, such that each of the
patterns in the rule's antecedent matches some fact, then that instan-
tiation of the rule is queued onto the stack. The system computes all
possible permutations of matching facts for that rule that include the
new fact, and queues each of these on the stack as a separate instan-
tiation. Currently, when a rule instantiation comes to the top of the
stack and is examined, although each of the rule patterns matches, it is
not clear that they all match together-Le., that the variable bindings
amongst the various patterns in the antecedent are consistent. This
testing must be done somewhere, and is currently done at the top of
the stack by examining the rule, as mentioned previously.

The stack is actually implemented as a heap, i.e. an ordered list with
priorities. The priority of a rule is used to order it in the heap. Thus,
rules with high priorities are all fired before rules with lower priorities.
Rule priorities and their use will be discussed in further detail in the
next section.

6.2

hers
Parallel Execution and Rule Priority N um-

Rule-based systems
grarmning languages.

are significantly different from conventional pro-
The execution of the rules (which correspond

11

こコ e

h

.

•
↓
"
し

u

v

r▼

0-r

L

u
r

ぐ
,

0

――

S e.'l.ve. ふ/Exec.v f,oi,

P~r~/Je,/ Exe.cvf、ioれ

ort-le..r f . -t ~ o e.x e.c.v r OJ¥

Figure 1: Customary Language Sequential Execution vs. Rule-Based System
Parallel Execution.

conceptually to subroutines) is designed to proceed in (virtual) parallel
order, instead of in the sequential order found in customary program-
ming languages. See Figure 1. In particular, the order in which any
two specific rules are executed is not guaranteed. In fact, the order in
which the rules in the same program are executed is not guaranteed to
not vary from one execution run to the next.

This is one of the main powers of rule-based systems. The rules that
are important are used; the ones that are not important are ignored.
New rules can be added at the end of previous rules, without having
to sort them into a program structure. The system decides which rules
are applicable, and performs inferences with those rules only.

This presents no problems whenever the system acts in a monotonic
fashion, and whenever the execution of rules'consequents have no side-
effects. As long as the actions of the system consist only of adding facts
to the data-base, ! retract is not used, and no LISP escape commands
to user functions are called, it does not matter what order the rules are
executed in-all the rules that are important will eventually get executed

7
¥

，

＾
,
1●一

12

~

~

anyvvay. This makes programming rule-bases very convenient.

However, such is not typically the case. Generally, anywhere where
there are printouts, anywhere where the system retracts something
incorrect or saves search time by retracting an unproductive search
branch, anywhere where FLAIL calls a user system that does some-
thing, or any time that temporal order is important, the unspecified
ordering of rule-based systems is disadvantageous.

For instance, imagine a conversation between two people. The system
is initialized with one fact for each utterance in the conversation, cor-
responding to the literal content of the utterance. We enter a single
rule:

(rules'("Rule for printing out
?utterance

＝＞

conversations.

(! print'?utterance)

）

）

II

that is designed to print the whole converation out. This will work;
this rule will get fired once for every utterance in the fact data-base,
printing it out. However, because the order of execution of rules "is not
guaranteed, the utterances in the conversation will be processed and
printed out in random order. The last utterance could be printed out
first, last, or in the middle. Since much of the contextual information
found in a conversation is derived from the order of the utterances,
obviously this is an intolerable situation.

What is needed is a method of partially defeating the non-guaranteed
virtual-parallel order of execution of the rules. This is supplied by
the optional rule priority number. Rules are executed in the order of
their priorities, highest to lowest; all valid rules with a high priority are
guaranteed to be executed before other rules that have lower priority.
If many rules with low priority are executing, but a rule having a high
priority all of a sudden becomes valid (because its antecedents have
suddenly become true and consistent), that rule is immediately fired.

13

で

＼

~
叫 e.r (J f ex e.'-CJ十、°ん

＾ Figure 2: Semi-Parallel Execution Using Rule Priorities.

Rules without a priority number are assigned an implicit priority of
zero.

Although rule priority numbers can be any kind of rational number,
there is no reason to make them anything other than integers. High
numbers (e.g., "10") will execute before most other rules; low numbers
(e.g., "-8") will execute only after all of the other rules have died out.
The scale of rule priority numbers is arbitrary, and one may use any
priority numbers desired; the only thing that matters is their relative
order.

A rule-based system with priorities executes its rules in a semi-parallel
fashion. See Figure 2. Notice that within the same priority, execution
is still in parallel and the order is still non-guaranteed. However, all
the rules at a particular priority must finish firing before the rules at
the next priority down are allowed to start. This allows the system to
retain the advantages of non-specified ordering and use-when-needed
rules, while permitting specification of order in the special cases where
it is necessary.

＾

14

＾

~

6.3 Use of Priorities

The question arises: when should priority numbers be used? The an-
swer is that priority numbers should not be used unless it is obvious
that they are absolutely needed. This only occurs with temporal or-
dering problems and deadlocks, where one section of the rule program
might be trying to delete a piece of data before another section is done
with it. In general, this happens with system control-flow functions,
and not with user applications. Examples are discussed below.

How does one choose priority numbers? The absolute, actual value of
a priority number has no meaning; it is only the relative value, when
compared against other rules, that matters. Priority numbers sho1,1ld be
assigned to rules based upon the mandatory temporal ordering of the
rules. "Must run before" means has to have a higher pri而 ty;"must
run after" means has to have a lower priority. Examples of this type
of situation, where priority numbers must. be assigned, include:

• Sequential handling. vVhen items must be handled sequentially,
it is necessary to implement special routines that assert the next
item in the sequence after all the processing on the current item
is finished.

• Preprocessing data. Parts of the system must delete or modify
incoming data before the rest of the system can be allowed to
work on it.

• Postprocessing data. Parts of the system must wait until the rest
of the system is completely finished, before they can be allowed
to work on the data as a whole.

• Traps and interrupts. If something is extremely important, it must
interrupt the normal flow of control of the system and run before
all the rules that the system is currently executing. Note that
returning from an interrupt is trivial, as once the system finishes
processing the rules in the interrupt it automatically continues
processing the previous rules that are still valid.

• Flow of control: Switching "packages" (subgroupings of rules). All
of the rules inside a particular conceptual grouping, or package,

15

must be completely finished before other packages are allowed to
run. The control rules that switch to a new package must run
after all the current package(s)'s rules are finished.

• Deleting inconsistent facts. If a fact is found to be inconsistent, it
must be deleted before other rules operate on it and propagate it
further. The rules that detect and delete inconsistent facts should
therefore run at a higher priority than the other rules.

• Trimming branches on a search tree. Branches that are dead and
must not be explored further should be trimmed before they are
expanded.

• Presenting the answer fron1 computed results to a problem. The
rules that assemble and print out an answer are a special case of
post processing.

• Flag-setting. ff an important flag must be set that determines the
manner in which the rest of the system processes the data, this
flag should be set first.

• Default reasoning/ exception handling. Priorities can easily han-
dle exception handling, or marked items that block defaults, by
handling the exceptions first and then removing the item or an
"unhandled" flag. Defaults are then handled afterwards, if the
item still needs to be processed.

¥

＾

Note that in each of these cases, there is a clear system need for tem-
poral processing order. The capability to perform the desired behavior
could not be constructed in a system that operates purely in parallel.

It is important to distinguish these mandatory system needs for pri-
orities from user application desires for priorities. In most cases, the
actual rules that make up the user's application itself should run all
at the same priority. Although it is certainly possible to specify differ-
ent priorities for different segments of the user's application, in general
it is a difficult problem to assign the priorities properly. The user is
the ref ore on his or her own in this regard.

~

1ヽ
,
9
.
,

16

-1. 7 Examples

7.1 Example 1: Sequential Stepping

(setq *watch-facts* T) ;Watch what's happening.

(rules ;Start entering two rules.

; These are the Step rules.

; They allow things to be sequentially asserted~

＾
;Each rule must be quoted.

'(step-rule! ;Rule-variable--put this rule in this var.

"Sequentially asserts facts." ;Documentation string for this rule.

(step ?x +y) ; If you see a II step" fact,

＝＞ ・then

(!retract (step ?x +y)) ;retract it, and

?x ;assert the first part of it, and

(step +y) ;assert a new, smaller 11step11 fact.

）

; Actually, normally this would be run

; at a low priority ...

;We need one more rule to tie off

; the recursion.

＾
'(step-rule2 ;Store rule in var step-rule2.

"Ties off the last fact in the sequence." ;Documentation string.

(step ?x) ;If you see a 11step11 with only one arg,

=> ; then
(!retract (step ?x)) ;retract it, and

?x ;assert its argument.

）

) ； End of "rules".

;Now, let's test it out.

(facts ;We'll enter one fact.

17

0ー

;Each fact must be quoted, too.

'(step ;This is a "step" fact:

(First Fact)

(Second Fact)

(Third Fact)

) ; End of 11 step"

) ； End of 11facts11.

(STEP (FIRST FACT)(SECOND FACT)(THIRD FACT)) ;System comes back with

; a report of the one fact entered,

NIL ;and 11facts11 returns NIL.

(flail) ;Fire the system up!

Retracting fac~: (STEP (FIRST FACT) (SECOND FACT) (THIRD FACT)).

-> (FIRST FACT) ;First fact is asserted.

-> (STEP (SECOND FACT) (THIRD FACT)) ;Step is reiterated.

Retracting fact: (STEP (SECOND FACT) (THIRD FACT)).

-> (SECOND FACT) ;Second fact is asserted.

-> (STEP (THIRD FACT))

Retracting fact: (STEP (THIRD FACT)).

-> (THIRD FACT) ;Third fact is asserted.

NIL ;Flail runs out of rules and returns.

~

;Now, we want to see the results.

(print-facts) ;Print all the facts in the fact-base.

FACTS: ;Note that they are all there.

(SECOND FACT) ;But, they're not in order!

(THIRD FACT)

(INITIALIZE) ;This one is put in by (reset).

(FIRST FACT)

NIL ;print-facts returns.

~

;End of demo.

18

ー

，

．

．
 8 Commands

＾

8.1 User Commands

(reset) Clears the system out.

(facts'f act1'f act2…) Enters a series of facts separately into the data-
base. Since the facts are evaluated, each fact must be quoted if
you are typing the command in directly.

fact description: Facts can consist of:

• a-single-atom

• (an-atom-in-a-list)

• (a list of atoms (possibly with sublists))

• ((lists can (be (nested))(((to an arbitrary depth)))))

(rules'rule1'rule2…) Enters a series of rules separately into the rule
data-base. Since the rules are evaluated, each rule must be quoted
if you are typing the command in directly.

(!retract fact) This function retracts a fact from the fact data-base.
It can be used by itself, or appear in the consequent list of a rule.

(! Lisp-escape-function arg1 arg2…) This pattern, when entered in
the consequent of a rule, allows the rule to temporarily escape
from FLAIL and execute an arbitrary Lisp function. Rule conse-
quent patterns are asserted or executed in the order in which they
appear in the rule.

，
8.2 User Option Flags

watch-facts This flag makes the system print out each new fact
that gets asserted.

flail-stack-count This flag tells FLAIL to simply print out an in-
teger describing the length of the stack every time a rule is ex-
aminecl. It is useful for telling how deep the stack is getting, and
what percentage of the rules are actually firing.

19

8.3 Debugging Flags

watch-execution-dots This flag makes the system print out a dot
for every rule that is examined but fails to fire, and a star for every
rule that fires successfully.

flail-stack-debug This flag tells FLAIL to dump the stack every
time a rule is examined.

●
‘
¥

1
,
.）

8.4 System Configuration Flags

use-nice-assertion Flag governing whether checks are performed
on facts to be asserted, or whether facts just get put in straight
without checking.

watch-redundant-facts This flag makes the system complain if
you put the same fact into the data-base twice.

watch-variables-in-facts This flag makes the system complain if
one of the atoms in an asserted fact looks like a variable, i.e. starts
with a question-mark. It should always be T.

，

8.5 Output Stream Variables

OS This variable holds the flail system standard output stream. Nor-
mally it is set to T, to print out on the screen; however, it may
be set to a user-allocated stream, to print to a file.

DS Flail system debugging output stream.

ES Flail system error output stream.
戸

20

ー
・．．

，

Command Dictionary

＾

~

(! Lisp-escape-function arg1 arg2…) This pattern, when entered in
the consequent of a rule, allows the rule to temporarily escape
from FLAIL and execute an arbitrary Lisp function. Rule conse-
quent patterns are asserted or executed in the order in which they
appear in the rule.

DS Flail system debugging output stream.

ES Flail system error output stream.

fact description: Facts can consist of:

• a-single-atom

• (an-atom-in-~-list)

• (a list of atoms (possibly with sublists))

• ((lists can (be (nested))(((to an arbitrary~epth)))))

(facts'f act1'f act2…) Enters a series of facts separately into the data-
base. Since the facts are evaluated, each fact must be quoted if
you are typing the command in directly.

flail-stack-count This flag tells FLAIL to simply print out an in-
teger describing the length of the stack every time a rule is ex-
amined. It is useful for telling how deep the stack is getting, and
what percentage of the rules are actually firing.

flail-stack-debug This flag tells FLAIL to dump the stack every
time a rule is examined.

OS This variable holds the flail system standard output stream. Nor-
mally it is set to T, to print out on the screen; however, it may
be set to a user-allocated stream, to print to a file.

(reset) Clears the system out.

(!retract fact) This function retracts a fact from the fact data-base.
It can be used by itself, or appear in the consequent list of a rule.

(rules'・1"Ule1'rule2 ...) Enters a series of rules separately into the rule
data-base. Since the rules are evaluated, each rule must be quoted
if you are typing the command in directly.

21

use-nice-assertion Flag governing whether checks are performed
on facts to be asserted.

watch-execution-dots This flag makes the system print out a dot
for every rule that is examined but fails to fire, and a star for every
rule that fires successfully.

watch-facts This flag makes the system print out each new fact
that gets邸 serted.

watch-redundant-facts This flag makes the system complain if
you put the same fact into the data-base twice.

watch-variables-in-facts This flag makes the system complain if
one of the atoms in an asserted fact looks like a variable, i.e. starts
with a question-mark. It should always be T.

・
＼
＼
・

＾ References

[WN88] John R. Walters and Norman R. Nielsen. Crafting 1〈nowledge-
Based Systems: Expert Systems JV[ade {Easy) Realistic. John
Wiley & Sons, New York, NY, 1988.

~

9
ー』

22

(>

し）

Index

"+" variables 7
"?" variables 7

antecedent 3
antecedent 6

consequent 3
consequent 7
facts, method of use 5
facts, theory of use 4

facts 3
firing rules, de恥 itionof 3

(flail) 4

high priority 15
inference engine 3

low priority 15
number, rule priority 13
numbers, priority, use of 15

package 15
priority number, for a rule 13

priority numbers, use of 15
priority, use of high and low 15

reset 3
rule priority number 13
rule-based system 3
use of priority numbers 15

variables 7

23

	0343
	0343cv

