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Abstract 

Previous researchers have indicated that it is not necessary to use full second-order 
probability distributions when making decisions: the first-order equivalent probability is 
sufficient. This paper shows that, under certain conditions, this is incorrect. 
First, the philosophical meaning of a "second-order probability" is discussed, and two 
interpretations are offered. Under the Nondeterministic Probability {NDP) interpretation, 
the "actual probability" of an event is a random variable that keeps changing; this in-
validates the theory of a constant first-order probability and is thus judged unacceptable. 
Under the Unknown Deterministic Probability {UDP) interpretation, the "actual prob a— 

bility" is a constant with an・uncertainly known value; this interpretation is judged to be 
realistic. Utility is typically a nonlinear function of value. It is demonstrated that when 
using a nonlinear utility function, under the UDP interpretation, with repeated trials, and 
maximizing expected utility, the use of a second-order probability distribution gives re-
suits that are significantly different from those obtained using the equivalent first-order 
probability. 
A significant subclass of nonlinear functions is the catastrophe surface. Problems with 
catastrophic outcomes can be represented by catastrophe-surface utility functions of value. 
Catastrophic outcomes are useful for modeling emotional problems such as user accep-
tance, common-sense reasoning problems such as naive physics, and limited-resource prob-
lems such as spending-allocation tasks. Under two咽 aycatastrophic outcomes, advantaged 
agents will tend to be conservative, while disadvantaged agents will tend to choose highly 
uncertain actions. 
The results indicate that full second-order probability distributions should be used for 
making decisions regarding situations with nonlinear utility or catastrophic outcomes, when 
an action may have to be repeated. 
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1 Introduction 

In a landmark paper, Cheeseman states that when using a second-order probability distribution 
to make a decision, "exactly the same decision is reached whether a point value or a density 
function is use炉(italicsoriginal) [Che85]. Kyburg also states that "so-called second order 
probabilities have nothing to contribute conceptually to the analysis皿 drepresentation of 
uncertainty." [Ky b89]. 
Although these statements are accurate under some conditions, they are not true in a 
general sense. Second-order probabilities are indeed useful when dealing with repeated tri-
als in cases in w出chthe utility curve is a nonlinear function of value. A special case of a 
nonlinear curve occurs when the utility curve forms a catastrophe surface. This case will be 
defined further in the paper, and will be referred to as a catastrophic outcome. This paper 
will demonstrate that a representation of uncertain outcomes employing second-order proba-
bilities obtains different, more realistic results from a first-order probability representation in 
these cases, and thus that second-order probability distributions are in fact required to make 
accurate decisions. 

＾ 
2 Basic A ssumpt1ons 

Throughout this paper, objective statistical examples will be used, based on concrete repeatable 
trials. We make no claims as to whether probability is "actually" an objective statistical ratio 
or a subjective normative opinion (see [Che85]). Obviously, if our results hold for objective 
statistical cases, then subjective opinions can be formed based on projections of what could 
happen. Sim恥 ly,our results can be extrapolated from concrete events to subjective opinions 
of hypothetical, imaginary, or nonrepeatable events. 
It will be assumed that the acting agent makes decisions based on maximizing expected 
utility (MEU). Note that utility may be a highly nonlinear function of value, the prima fade 
outcome of an action; this paper departs sharply from maximizing expected value (MEV)1. 
The definition of "utility" and MEU seems to be broad enough to cover almost all practical 
objective or normative decision-making situations. Note, however, that empirical results in 
human decision-making can contradict the MEU theory [Rac89]. 

3 Statement of the Problem 
~ 

.l. 

A concrete problem will be used for illustration purposes. Suppose there is a natural-language 
understanding program that has the task of comprehending the implications of an input ut-
terance. The program has a body of inference rules (the rule set) which it uses to construct 
new facts. A single trial consists of choosing a rule from the set and applying it to the current 
knowledge-base. Either the rule will match successfully and generate a new fact, or the rule 
application will fail, with a certain probability of success. The success or failure outcome is 
randomly and impartially determined by an entity known as the Universe. The program re-
ceives a cumulative score of +1 for each successful new fact, and -1 for each failure (due to 
temporal cost). The trial is repeated 100 times for each utterance, constituting a run. Possible 
scores thus range from +100 to -100. The program is not permitted to stop in the middle of 
a run; the number of trials is predetermined. 
The program has the option to choose between different rule sets. Each rule set has a 
different characteristic probability of success, corresponding to how well it is tuned to the types 
of utterances received. Statistics for each rule set are displayed in this paper by simulating 

1 Also called m血 mizing"expected monetary value" EMV in [Rai68]. 
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Figure 1: 10,000 Runs with First-order Probabilities of 0.5, 0.75, and 0.25 
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Figure 2: An Uncertain Second-order Probability ＾ 
10,000 different runs for that set, representing 10,000 different possible worlds, and plotting the 
histogram of the resulting distribution. (The rule-sets discussed in this paper are hypothetical 
constructs given for illustrative purposes, represented by simulations only.) 
For example, 邸 sumethat rule set A is known with certainty to be successful with a normal 
(first-order) probability of 0.5. The resulting familiar distribution is displayed in the first part 
of Figure 1.2 Results of first-order probabilities of 0.75 and 0.25 for sets B and C are displayed 
in the second and third parts, respectively. 

Now assume that the correct probability of matching is not known with certainty. There 
is a 50% chance that it could be 0. 75, while there is a 50% chance that it could be 0.25. 
The resulting second-order probability is shown in Figure 2. Note that the effective probability 
E(p}, equal to the weighted mean of the distribution,3 is 0.5. There are at least two possible 
philosophical interpretations of what this representation could mean, which result in widely 
differing outcomes. 

4 Second-order Probability as Nondeterministic Probability 
(NDP) 

One interpretation of second-order probability is that the "actual" probability of an event is a 
nondeterministic random variable which varies according to the second-order distribution. 
There is no such thing as the (single) probability of an event; rather, probability is a variable 
which keeps changing every time an experiment is performed. Sometimes the actual probability 
is high, while sometimes it is low, for the same type of experiment. In effect, the Universe 
probabilistically keeps switching the actual world between a set of multiple possible worlds each 
time a trial occurs. The nondeterministic current value of this probability then determines 
whether the event happens or not. This interpretation is known as the Nondeterministic 

＾ 
¥
 

2 An aspect ratio of 1:40 is consistently used throughout the paper to give clean graphs. Actual graphs are 
40 times taller. The zebra stripes are due to no O incremental score. 

3E{p) = f 。 p•q(p) dp, where q(p) = p(p = Pi) is defined as the second-order distribution. 
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 Figure 3: Nondeterministic Probability (NDP): Repeated Single Trials 

Probability (NDP) assumption. 
To represent this, imagine that you are requesting the Universe for balls from an urn. 
Imagine that the Universe has a cave full of urns. Every time you request a ball, the Universe 
randomly pulls an urn out of the cave, draws a ball from the urn, reads you the color, and 
replaces the ball and the urn. The urn, representing "real" probabilities in the "real world", 
keeps changing. 

~A run using this interpretation is known as a repeated single trial experiment. In our 
simulation of rule-set D, for each trial, the probability of success is determined randomly by 
the Universe (in this case, going with 0.25 or 0.75, each for half of the time). The Universe 
then uses this probability to determine the success or failure of the trial. The results for 
the repeated single trial are shown in Figure 3. Note that the results are identical with the 
distribution from the first-order probability corresponding to the effective probability of the 
distribution for rule-set D, i.e. rule-set A. Note also that the expected value of the results is 
zero. An agent making decisions under the NDP interpretation could always use the first-order 
effective probability E(p) (in this case, rule-set A) with identical results. 

This interpretation is quite radical. It rejects the very existance of unique first-order 
probabilities in all cases where the probability is not completely certain (i.e., all practical 
cases). The universe keeps changing probabilities behind our backs. It is possible that this 
interpretation could be useful in quantum mechanics4; however, this seems difficult to reconcile 
with macro-scale behavior. Probability and statistics are based on the assumption that the 
probability of an event is unique, and does not keep changing back and forth. Thus, this 
interpretation is judged to be unacceptable. 

， 
5 Second-order Probability as Unknown Deterministic Prob-

ability (UDP) 

f
 

The second interpretation is that an objective probability of success actually does exist in the 
universe. It is logically consistent to discuss the probability of a trial, and perhaps hypothet-
ically possible to be able to measure it. However, there may be several different conflicting 
sources of evidence as to what this probability could be. Thus, the actual probability is deter-
ministic but unknown. In effect, the Universe probabilistically picks a single world from a set 
of possible worlds, and then uses only that world thereafter. This interpretation is known邸
the Unknown Deterministic Probability (UDP) assumption. 
This interpretation corresponds to the Universe randomly picking a single urn from the 
cave; you are not sure which one, however. When you request a ball, the Universe draws a ball 
from the urn, reads you its color, and then replaces the ball. However, the urn is not replaced; 

4For instance, the Everett interpretation states that the actual world keeps changing from an almost infinite 
number of parallel possibilities (Gri84]. 
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Figure 4: Unknown Deterministic Probability: Repeated Trials 

the same urn is always used in the same situation. 
A run using this interpretation is known as a repeated trial experiment. In the simulation 
for rule-set E, for each run, (each possible world,) the probability of success is determined 
r皿 domlyby the Universe (again going with 0.25 or 0.75, each for half of the time). The 
Universe then uses this probability to determine the success or failure of each trial in the run. 
The results for the repeated trial are shown in Figure 4. Note that the results are identical 
with the weighted average of the results from the corresponding first-order probabilities, i.e. 
50% of rule-set B plus 50% of C. Note also that the expected value of the results is again zero. 
An agent making decisions based only on expected value could use E(p) (rule-set A)皿 dcome 
up with the same results. 

The UDP interpretation of second-order probability is not the same a.s using marginal 
probabilities, unless the second-order distribution is trivially defined邸 arepresentation of 
marginal first-order probabilities conditioned on a (second-order) random selection of which 
world is actual. Marginal probabilities can be collapsed to皿 equivalentfirst-order probability, 
while this paper shows that the second-order distribution cannot be collapsed. 
The UDP interpretation intuitively seems to be correct. First-order probabilities do in 
fact exist in the universe; they simply are unknown to us. It is thus necessary to work with 
probabilities of probabilities. The universe is consistent and does not ch皿 gearound on us; it 
simply is import皿 tto learn which world we are in. It seems that this interpretation will be 
the most useful in ordinary experiments. This interpretation is thus judged to be a realistic 
model of the everyday world. 

＾ 
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Repeated Trials 

＾ A repeated trial represents a situation in which the agent either chooses or is forced to execute 
the same type of action again with the "same setup" or the "same situation". An example is 
a gambler who must decide whether to spend his afternoon at Casino A, at Casino B, or at 
home. Casino A has a reputation for scrupulously fair odds. Casino B has either a reputation 
for cheating for the customer (to draw business) or for cheating against the customer, but the 
gambler forgets which. The casinos are too far apart to switch in midafternoon. The gambler 
must make a decision based on making repeated trials in the same situation. 
It is significant that the agent is forced to "live with its decision". That is, the agent must 
make a decision as to which action to choose before a set of repeated trials starts. The agent 
suffers a penalty for changing situations. In such cases, it is insufficient to collapse the second-
order probability down into a single world by integrating over marginals-it is necessary to 
maintain a full distribution of the different possible worlds, represented by a full second-order 
distribution. 
The use of second-order probabilities provides a different value distribution than the use 
of equivalent first-order probabilities (Compare rule-set E in Figure 4 against rule-set A in 

9
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Figure 5: NDP and UDP Expected Utilities using a Nonlinear Curve 

Figure 1). However, such results are only significant if the UDP interpretation is taken, and if 
more that one trial is performed. Note importantly that, assuming only a single trial, the NDP 
interpretation is equivalent to the UDP interpretation. It can be shown (by integrating possible 
worlds) that both are equivalent to using the equivalent first-order probability under a single 
trial. Thus, a deciding agent that is quite certain it will only be executing an uncertain action 
exactly once may use first-order probabilities-however, if this is not the case, second-order 

＾ 
distributions must be used. 
It is also significant to note that the question of whether an agent will make a single trial of 
an action or multiple trials of an action may not be completely determinable ahead of time. In 
such c邸es,the agent might think that it might have to repeat the trial, with the same unknown 
probability, at some unknown time in the future. Even this consideration of a hypothetical 
repetition could be enough to make an agent choose a situation with a particular degree of 
uncertainty over another situation-especially if the choice is irrevocable. 
We note in p邸singthat, under fallible execution, an agent may make repeated trials even 
though the agent is performing the action only once. The philosophy of fallible execution states 
roughly that "some things don't work right the first time"; this is significant to intentional 
action theory. If the agent intends to produce a particular effect, and endeavors to produce 
this effect by repeatedly executing an action (which nondeterministically results in this effect) 
until the effect is achieved, then the agent is in fact making repeated trials of the action-even 
though the effect is produced only once. (An example is trying to shoot ab邸 ketballthrough 
a hoop once, or trying to find the right parse of a sentence.) Such actions fall in the domain 
of this paper. 

， 

-．！ 

7 Nonlinear Utility Curves 

The expected value of second-order probability runs, under either the NDP or the UDP inter-
pretations, will always be the same as thee、叩ectedvalue computed using first-order probabil-
ities. Thus, as long as utility is a straight-line function of value, the expected utility will also 
be the same, whether NDP, UDP, or equivalent first-order probabilities are used. 
However, in real life, utility is almost never a straight-line function of value. The actual 
shape of utility curves is normally concave [How70], and may in fact typically be logarithmic 
[Bar88, p. 300]. Under the NDP assumption, the value distribution and thus the utility 
distribution come out the same as cases using first-order probabilities. However, under the 
UDP assumption with repeated trials, the value distribution is different. Thus, with a nonlinear 
utility curve, the expected utility will differ as well. See Figure 5. 
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Catastrophic Outcomes 

One significant class of nonlinear curves is the catastrophe surface [Tho75] (see Figure 6).5 The 
catastrophe surface represents a function that depends on the history of previous results. A 
series of results follows the upper surface until it goes past the "catastrophe" point, whereupon 
it follows the lower surface. "One-way" catastrophes are forced to stay on the lower surface; 
"two-way" catastrophes can jump back up to the upper surface. The catastrophe surface is 
important in representing emotions [Zee76]. Since utility is determined to a large extent by how 
~a?PY or satisfied an organism is with a particular state of affairs, and happiness is an emotion, 
1t 1s obvious that there is much to be gained by representing utility functions with catastrophe 
surfaces. Not only emotions, but also perception [SP83] and many physical phenomena can be 
represented by catastrophe surfaces [Tho75], which use concepts in common with chaos theory 
[Gle87]. Catastrophe functions depend on the history of the results; thus, repetition is again 
significant. 

A situation that contains an outcome with a utility that can be modeled by a catastrophe 
surface is defined as a situation with a catastrophic outcome. A catastrophic outcome will 
typically involve an unrecoverable change of state. Examples are given in the next section. 

ー
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The Uses of Catastrophic Outcome Theory 
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The theory predicts that user satisfaction with the repetitive results of a computer program 
should be capable of being modeled by a catastrophe surface, where the abscissa is the amoung 
of time expected to be taken by a single task, and the ordinate is the degree of the user's 
satisfaction. See Figure 7. For instance, suppose a user is interacting with an interpreting 
telephone, and listening to the amount of time the telephone system takes to translate each 

5This paperヽvillactually deal with two-dimensional cross-sections of higher-dimensional catastrophe surfaces. 

The distinction is unimportant for our purposes. 
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utterance. If the actual duration is approximately what the user expects, the user will have a 
certain amount of satisfaction with the system, and e泣stin the upper part of the catastrophe 
surface, labeled "satisfied". If the duration is significantly longer than the user expects, the user 
will reach a point where he or she suddenly loses patience, and satisfaction drops significantly 
("impatient"). Even if the following utterances are then translated in a timely fashion, the user 
will still be dissatisfied with the system. However, if the system then interprets an utterance 
significantly faster than the user expects, the theory predicts that the user will then suddenly 
increase his opinion of the system again, and regain satisfaction. Psychological experiments 
must be performed to confirm these predictions, and empirically establish the parameters of 
the function. 

We note that such a theory of user satisfaction is a necessary input to a scheduling system 
that has to decide whether to attempt a fast, rough interpretation, or a slow but polished one. 
It is dangerous to take too long; this theory permits defining the degree of risk. 

9.2 Naive Physics 

Catastrophic outcomes紅esignificant in naive physics. For instance, a program simulating the 
r--.., results of cooling the solar cells on a space station will have to take catastrophic outcomes into 

effect. A utility function might represent the efficiency of the sol紅 cellsas a function of the 
actual amount of cooling probabilistically obtained from a particular amount of cooling effort. 
If the solai・cells get too hot, performance degrades until suddenly the solar cells melt and 
efficiency drops dramatically. Thereafter, even if cooling is restored, the solar cells will still 
operate at the new low efficiency. This is a one-way catastrophe that does not allow jumping 
back up to the upper surface again. 

， 

”し'‘

9.3 Li111ited Non-negative Semi-renewable Resources 

Catastrophe surfaces are especially useful in representing semi-renewable limited resource sit-
nations, where one has to trade a small amount of resource to uncertainly receive more of the 
resource. One example is an automatic telephone interpretation system, that has hesitation 
or delaying utterances (English: "uhhhh…"; Japanese: "ehhh touuuu") or can ask the user 
for more time if it is necessary to explore or polish a difficult translation. However, planning 
the delaying tactic costs time, and the tactic might not be successful-it might increase the 
impatience of the user. At some point the system runs out of time, and the utility of further 
computation suddenly drops significantly. 
A second example is a Cadillac driving from gas station to gas station in the middle of the 
desert. The decision as to whether to use the air conditioner (which consumes fuel) or not 
depends a lot on how certainly the fuel consumption rate of the car is known. Running out of 
fuel on the highway stops the action and catastrophically results in highly negative utility. 
Other examples of catastrophic outcomes include a gambler running out of money to gamble 
with; a plant running out of water; a pet running out of food; or a hospital life-support system 
temporarily running out of control resources. 

10 Computing with Catastrophic Outcomes 

Perhaps the best method for working with catastropltlc outcomes is to perform multiple Iv!onte 
Cai・lo simulations of the problem (as is shown in Section 11). It is possible, however, to solve 
for a closed-form expression of the value distribution for the top and bottom parts of the 
catastrophe surface, given the surface, the st四tingvalue, a second-order probability expression 
for incremental value, and the number of trials; this can then be used to find the utility of 
the problem. A full exposition of the mathematics is regrettably beyond the scope of this 
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paper. The method of solution involves defining a random walk with an absorbing state at the 
catastrophe point. See the author for further details. 

11 The Preference for Uncertainty 

The degree of uncertainty is defined as the variance of the second-order probability distribu-
tion for a particular event. When the degree of uncertainty is zero, the "actual probability" is 
completely certain (in the objective case) or is believed to be known with certainty (in the sub-
jective case). Correspondingly, when the degree of uncertainty is high, the "actual probability" 
can vary widely. The degree of uncertainty for a repeated trial is correspondingly defined as 
the variance of the resulting value distribution. 
When working with nonlinear utility curves, it is important to investigate situations with 
different degrees of uncertainty. Under repeated trials, different situations with various degrees 
of uncertainty can result in widely different expected utilities. These must be computed and 
com pared against each other. 
If the utility curve is concave (from the bottom), the acting agent is called risk adverse 
[KR76]. With a concave curve, a value distribution with a high degree of uncertainty will, in 
general, tend to have a lower expected utility than a value distribution with the same expected 
value and a lower degree of uncertainty. Conversely, if the utility curve is convex (from the 
bottom), the acting agent is called risk prone [KR76]. With a convex curve, a value distribution 
with the same expected value but a higher degree of uncertainty will, in general, tend to have 
a higher expected utility. 
In the case of a catastrophic outcome, if the agent's initial value position is on the upper 
side of the catastrophe (at an advantage), repeated trials with a high degree of uncertainty 
in the second-order distribution will, in general, tend to send some of the value distribution 
over the edge and result in a lower expected utility than repeated trials with a lower degree 
of uncertainty but the same effective probability and expected value. Conversely, if the agent 
starts on the lower side of a two-way catastrophe (at a disadvantage), repeated trials with a high 
degree of uncertainty may result in some cases "jumping up" to the upper level, which would 
tend to increase the expected utility of the outcome when compared to a similar case with a 
lower degree of uncertainty. See Figure 8, which compares cases from rule-set A against cases 
from rule-set E. These interesting results indicate that agents in good situations will tend to be 
conservative, while agents in bad situations will tend to seek high-uncertainty actions—they 
have "nothing to lose". 

It is important to note that these trends are heuristic tendencies only. The expected value 
plus the degree of uncertainty does not uniquely determine an expected utility [KR76, pp.135-
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136], and specific cases may differ from these guidelines. It is thus important to use the whole 
distribution for computations, and not just parameters. 
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13 Conclusion 

0 

This paper has shown that there are two philosophically consistent interpretations of the con-
cept of a second-order propability: the N ondeternlinistic Probability (NDP) interpretation, and 

the Unknown Deterministic Probability (UDP) interpretation. The Nondeterministic Proba-
bility interpretation requires the universe to constantly change "actual probabilities" and thus 

invalidates the concept of a constant first-or、derprobability; it is therefore judged unaccept-

able. The UDP interpretation allows the universe to have constant first-order probabilities 

which may however be unknown; it is judged to be realistic. Under UDP and repeated trials 

of experiments with nonlinear value/utility curves, second-order probability distributions re-
sult in significantly different expected utilities when compared against experiments made with 

equivalent first-order probabilities. An important subset of the class of nonlinear utility curves 

is the set of those represented by a catastrophe surface; these represent events from experi-

ments having catastrophic oittcomes. In such situations, advantaged agents will generally tend 
to choose actions with certain probabilities, while disadvantaged agents will generally tend 

to choose actions with highly uncertain probabilities. The results indicate that, unlike the 
results of other researchers, the full distribution of a second-order probability, and not simply 

its first-order equivalent probability, is required when making decisions maximizing expected 
utility. 
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