
Internal Use Only (非公開）

TR-1-0302

Manual for Speech Input Programs:

Speechin, SpeechPress

Harald Singer, Masahide Sugiyama

1993.3

ABSTRACT

This report describes Speechin and SpeechPress, two X Window System based programs
for real-f 1me mput and automatic detection of speech. The programs were designed as fron-
tend for demonstration systems at ATR. The main differences to its predecessors segment and
segmentNew are

l. automatic start and endpoint detection

2. improved user interface

3. support for several different configurations, i.e. DEC (ULTRIX4.l) with SCSI bus, DEC
(ULTRIX4.2) with Tur、hoChannel, DEC (ULTRIX4.2a) with SCSI bus, DEC (ALPHA)
with SCSI bus, SUN (SunOS 4.1.1) with VME bus, SUN (SunOS 4.1.1) with S bus, HP
(HP-UX 8.05) with Turbo Channel and HP (HP-UX 8.05) with Turbo Channel (new
DASBOX).

◎ ATR自動翻訳電話研究所
@ATR Interpreting Telephony Research Labs.

、’

ー`
Contents

1 Introduction

2 Program Usage for Speechin

2.1 Default Usage

2.2 Examples
~ 2.3 Format if Writing to stdout .

2.4 Bugs and Problems

3 Program Usage for SpeechPres s

3.1 Default Usage

ー

2

2

5

6

7

8

8

4 Algoritlun and Implementation Details

4.1 Rough Endpoint Detection (Speechln only)

4.2 Fine Phrase Segmentation

11

11

12

＾

5 Installation

5.1 Files and Libraries

5. 2 Compilation

5.3 Updates . .

13

13

15

15

Chapter 1

Introduction

This report describes Speechin and SpeechPress, two X Window System based programs for
real-time input and automatic detection of speech. These programs were designed as frontend
for demonstration systems at ATR. T4ey also allows "manual" editing of the boundary place-

~ments. Such corrections can be made using a pointer device (mouse). Reading-in data from a
file instead of requesting data from the AD conve~ter is also supported.

The program was originally developed by several people (see Chapter 5) on a DECstation
3100 connected to a DASBOX 12. It was then ported to a SUN Sparc station and then to a
HP 9000/750 with a DASBOX 16. We then did a major rewriting. The same program runs
currently on four different architectures, i.e. DEC, DEC ALPHA, SUN and HP.

Chapter 2 explains usage of the program and gives some examples. In chapter 3 we describe the
underlying algorithm and some implementation details. Finally, chapter 4 explains installation
and update procedures.

At ATR, the files described in this report and the documentation can be found on the machine
atr-fs under /NFS/atr-fs/pub1/cornrnon/Speechin. Binary executables for each architecture
are (and will be) accessible via /NFS/atr-fs/pub1/cornrnon/bin/Speechin and
/NFS/atr-fs/pub1/ cornrnon/bin/SpeechPress independent of machine architecture.

,-..., Ple邸 esend comments and bug reports to singerci tl. atr. co. jp.

Keywords: speech input, endpoint detection, continuous AD.

グ
r'

ー

Chapter 2

ー

，

璽

•

Program

2.1

Usage

Default Usage

for Speechin

The following usage message shows the defaults which you can change on the command line.
[] indicates optional arguments. All arguments are optional. <> indicates a required value.
For example -hp O changes the size of the power window from 50 to 0. {} denotes a toggle
flag. For example, simply by specifying -a the value of the fully automatic flag cha~ges to YES.

，

usage: Speechin <Speechin1.14 1993/03/08>
[-a {fully automatic}] default: NO

[-A <additional margin>] default : 0

[-b {bunsho segmentation}] default: NO

[-c <chmod flag file>] default: <>

[-D <de bug 1 evel> J default : 0

[-e {enable manual edit}] default: YES

[-E <endslots>] default: 10

[-f {forced exit}] default: NO

[-F {focus flag}] default: YES

[-i <input file>] default: <>

[-I {iconify}] default: NO

[-ht <text height pixel>] default: 40

[-hw <wave height pixel>] default: 230

[-hp <power height pixel>] default: 50

[-hz <zerocross height pix>]default: 50

[-1 {show level}] default: YES

[-L {lock}] default: NO

[-m <add. margin in frames>]default: 0

[-M {minimal window}] default: NO

[-n {no number for outfile}]default: NO

[-N {no subwindow}] default: YES

[-o {writing to stdout}] default: NO

[-0 <labelfile>] default: <>

[-s <wait secs for display>]default: 0

[-S <suffix number>] default: 0

[-u <unseg. outputfile>] default: <>

[-v <verbose flag>] default: YES

[-w <outputfile>] default: xxx

[-x <x position in pixel>] default: 100

[-y <y position in pixel>] default: 100

＾
ヽ

＇`ー
9
¥

2

2.1. DEFAULT USAGE 3

-a flag exit program automatically after first successful segmentation

-A num additional margin in data points at beginning of segments

-b flag whole utterance segmentation ("sentence"): don't cut into phrases (bunsetsu)
but use whole sentence. This is also useful for speaker adaptation using words.

-c file file name which is used for sync with translation process; file's mode is
changed to 222; file .nph for number of phrases afte~successful segmenta—

tion
-D num display debug information depending on num: the bigger num is, the more debug

information is displayed, i.e if num is O no debug information is displayed.

-e flag enable correction of segmentation boundaries with the mouse

-E num minimum number of slots (lOOms unit) for judgement of end of utterance

-f flag force exit
-F flag grab focus

-1 file read from file instead of using data from AD /DA converter

-I flag iconify window after segmentation

， -ht num height of text in pixels
-hw num height of wave window in pixels

-hp num height of power window in pixels

-hz num height of zero-cross window in pixels

-1 flag display level meter

-L flag start in locked mode
-m num num additional frames at front and end of each phrase (frameshift is 10 mS);

not used for DA!
-M flag rrn．m． rrnze window size
-n flag don't append a number to the output file names for phrase level segmentation

-N flag subwindow display (not implemented)

-o flag sending data to stdout and not to a file; data is preceded by a header (see 2.3)

-0 file output (dummy) labels in ATR format to file

-s num sleep for num seconds after displaying wave and segmentation boundaries

＾
-S num start output with f ilenum, e.g f 0028, f 0029 . . . if num was set to 28. This

is useful for speaker adaptation using words.

-u file output to file of unsegmented data, i.e. only rough endpoint segmentation
has been performed (see Chapter 4.1)

-v flag show program name and version on wave window

！ -w file wave data segmented at the phrase level (bunsetsu) is written to files f ileO,
file1 etc. (unless -n option was chosen)

-x num upper left corner x-coordinate of window in pixels

-y num upper left corner y-coordinate of window in pixels

On startup the program measures the surrounding noise level. This noise level is displayed in
blue in the left bar of the level meter in the upper left corner of the screen (see Fig. 2.1). The
current input level is displayed in green in the right bar. If the input level exceeds the noise
level, the input wave is displayed in real time from left to right. After finding the endpoint of

4

CHAPTER 2. PROGRAM USAGE FOR SPEECHIN

the whole utterance (defined as 1.5 seconds without speech) the data is displayed again with
phrase segmentations marked (see Fig. 2.2).

Figure 2.1: Display before utterance

Figure 2.2: Display after end of utterance

The program will continue monitoring the input and checking if new speech is input. If the
noise level threshold is exceeded, the previously segmented data is discarded and the new data
is read in and segmented. Deactivation and reactivation of this threshold mechanism (locking)
is toggled with the LEFT MB (mouse button). The color of the left level bar is changed to
red and the sign LOCK appears on top of the level bar to display the locked status. Note:

changing the locking mechanism is automatically disabled after the noise level threshold has

been exceeded until the end of the utterance!

By clicking the MIDDLE MB, the phrase whose boundaries are closest to the cursor position
is played back through the DA converter.

The noise level threshold can be updated by clicking the LEFT MB while holding down the
CONTROL key.

If the manual edit flag is enabled (-e option), the segmentation boundaries can be sl;ifted
(SHIFT+ LEFT MB), erased (SHIFT + RIGHT MB) or new segmentation boundaries can

be added (SHIFT+ MIDDLE MB).

2.2. EXAMPLES 5

Pushing the RIGHT MB causes the program to write the segmented data to disk and exit. The
program returns the number of segmented phrases or O if no phrase boundaries were found.

If the fully automatic flag is enabled (-a option), the progr_am usually exits after its first
successful endpoint detection. Pushing any MB allows you to abort this exit operation. The
program stays in fully automatic mode, but requests new speech input from the user.

If you want to exit the program without writing any files to disk, but you already input some
speech data, push SHIFT+ RIGHT MB until no more boundary lines are displayed and then
push RIGHT MB to exit. This works only if the manual edit flag is enabled.

2.2 Examples

In the following we will show some of the most often used command options.

，
● $ Speechin -w foo

Phrase segmented output is written to files f ooO 1 foo1 etc ..

● $ Speechin -w foo -a -s 2

Phrase segmented output is written to files fooO, foo1 etc., exit without query after
getting first utterance, wait for 2 seconds before exiting.

● $ Speechin -w foo -L -a -s 2

Phrase segmented output is written to files fooO, foo1 etc., start in locked mode, exit
without query after getting first utterance, wait for 2 seconds before exiting.

＾ ．
$ Speechin -w foo -u unseg

Phrase segmented output is written to files fooO, foo1 etc., unsegmented output is
written to file unseg.

J

$ Speechin -w foo -i unseg

Phrase segmented output is written to files fooO, foo1 etc., input is read from file unseg.

The following shell script shows how to combine Speechin with a recognition program via
xmenu and xinput (3].

6

CHAPTER 2. PROGRAM USAGE FOR SPEECHIN

demonst.ration. csh

喜!/bin/ csh -f

set OPTIOH =
set JUMP= SPEECHIH

COHTROL:
xmenu ¥

―v demox -n 1 -1 -c -x O -y O -m 60 -v 10 ¥
-£-adobe-times-bold-r-normal--34-240-100-100-p-177-iso8859-1 ¥

-ct'red'ーt'ATRInterpreting Telephony'¥
'CODTillUE'¥
'AUTOMATIC IBPUT'¥
'SEKI-AUTOMATIC IHPUT'¥
'OTHER OPTIOBS'¥

'QUIT'

set ANS匹 R= $status
svitch($ADSWJ源）

case 1:
breaksti
case 2:
set J叩P= SPEECHIB
set OPTIOH = (-a -s 2)

breaksv
case 3:
set JUMP= COBTROL
set OPTIO日＝
breaksv

case 4:
set OPTIOS ='xinput -y 100 -n 20 -f Helvetica24 -1 -t'Input OPTIOHS''

breaksv
case 5:
exit 0
breaksv

endsv
SPEECHI日：
set D叩 ='Speechln$OPTIC日ーllxxx'
江 ($H叩==0) goto CONTROL
RECOGDITIO日：
@ I = 0
vhile($I < $日叩）
echo 11t巧 torecognize xxx$I"

sleep 2
echo 11shov recognition results"
sleep 2
@I= $I+ 1

end
got_o $J呻
四 D:

exit 0
喜＃魯 EDF

2.3 Format if Writing to stdout

In demo speech recog~ition systems at ATR, we recently used the filter paradigm: speech is
sampled, passed through several cascaded "filters" and finally a string is put out as result of
the filtering process. In other words, speech recognition is regarded as a filtering problem with
speech as input and recognized strings as output.

Filter connections are realized as UNIX pipes. We therefore added the -o option to the programs
to send raw data with an header to the next filter instead of writing to a file. This next filter
is usually a program that converts the wave samples to a sequence of 34-dimensional cepstrum
and△ cepstrum vectors (e.g. WavePara34). The header is defined as follows:

,i・ー

u
,
1
.
9

＾

＾
＼

2.4. BUGS AND PROBLEMS 7

,99,“

層
ー
ー

header.h

typede:f struct {

int size; /• size in bytes (vithout header)•/
int utt; /• number of bunsetsu (start vith 0)•/
int totalutt; /• total n1皿berof bunset su in bunsho * /
int t血e1; /• t血evalue•/
江.tt血e2; /• t血evalue (for future use)•/
} ATRBEADER;

That is, the binary data in big-endian format short is preceded by a 20 byte header (5 * 4
int). Consider for example the utterance "kochirawa # kaigizimukyokudesu" (# denoting a
phrase boun~ary). The header of the first phrase contains utt=O and totalutt=2 (0 of 2), the
header of the second phrase contains utt=1 and totalutt=2 (1 of 2).

size contains the number of bytes of the "raw" data.

time1 was created, using the time subroutine, which returns the time since 00:00:00 GMT, Jan.
1, 1970, measured in seconds. It is used for measuring real-time performance.

Speechln can thus be used as follows:

~ $ Speechin -o I WavePara34 I Recognize &

2.4 Bugs and Problems

↑.’

• If additional noise enters the microphone during noise level survey (at startup or with
CTRL LEFT MB), the segmentation algorithm will not work properly. This is due to the
ring buffer implementation. Wait at least 1.5 seconds after noise survey before starting
with speech input

• It would be desirable to have similar low-level routines; currently, the DEC and the
SUN/HP version differ considerably in the implementation of AD and DA routines.

• For future versions a standard X interface should be used, XG.c should be rewritten, and
segment.c should be split in functional parts. ・^ TheDEC version under ULTRIX 4.1 using SCSI bus doesn't work properly on some・
machines and can cause machine hang-up.

• For ULTRIX 4.2a, several paramters like BUS, ID are used through enviroment variable
DASBOX.

setenv DASBOX #1 #2 #3
#1: SCSI BUS No.
#2: SCSI No.
#3: LUN (Local Unit No.) normally LUN =O.

For example with BUS No=O, SCSI No=4 the following command must be used:

setenv DASBOX 040

Chapter
●

}

A

3

＇ー・ー`

Program Usage for SpeechPress

3.1 Default Usage

The following usage message shows the defaults which you can change on the command line.
See chapter 2.1 for a detailed explanation of all options. Some of the options don't make sense
for SpeechPress and are only kept for compatibility with Speechln. ＾ usage: SpeechPress <SpeechPress1.~1 1993/03/01>
[-a {fully automatic}] default: NO

[-A <additional margin>] default: 0

[-b {bunsho segmentation}] default: NO

[-c <chmod flag file>] default: <>

[-d {append date to unseg}] default: NO

[-D <debug level>] default: 0

[-e {enable manual edit}] default: YES

[-E <endslots>] default: 10
[-f { forced exュt}] default: NO

[-F {focus flag}] default: YES

[-i <input file>] default: <>

[-I {iconify}] default: NO

[-H {suppress messages}] default: NO

[-ht <text height pixel>] default: 40

[-hw <wave height pixel>] default: 230

[-hp <pover height pixel>] default: SO

[-hz <zerocross height pix>]default: SO
[-1 {shov level}] default: YES

[-L {lock}] default: NO

[-m <add. margin in frames>]default: 0

[-M {minimal window}] default: NO

[-n {no number for outfile}]default: NO
[-N { no subwl.Ildow}] default: YES

[-o {writing to stdout}] default: NO

[-0 <labelfile>] default: <>

[-s <wait secs for display>]default: 0

[-S <suffix number>] default: 0

[-u <unseg. outputfile>] default: <>

[-v <verbose flag>] default: YES

[-w <outputfile>]・default: xxx

[-x <x position in pixel>] default: 100

＾
f'

8

3.1. DEFAULT USAGE g

[-y <y position in pixel>] default: 100

『疇

'

L

L

Upon starting the program the initial help screen will be displayed (see Fig. 3.1) unless the
verbose flag is disabled (-v option). Make sure, that the cursor is in the wave window before
speaking! Hold down the LEFT MB (mouse button), start speaking with adequate pauses
between phrases, stop speaking and release the LEFT MB. The program calculates segmen-
tation boundaries according to smoothed log-power and zero-crossings and displays them (see
Fig. 3.2). Pushing the RIGHT MB causes the program to write the segmented data to disk or
standard out (stdout flag is enabled with -o option).

＾
Figure 3.1: Start-up and help screen for SpeechPress

＾
,＇l

While speaking the wave signal is displayed left to right on the wave window. After 12.5 seconds
of input the wave signal reaches the right edge of the screen, the screen is cleared and the wave
signal "wraps around" to the left edge of the screen. The maximum length of overall speech
including pause~is set to 50 seconds. No noise level threshold is used.

Two levels of shading are used. The darker shading denotes the speech region as found by the
extraction algorithm, the lighter shading shows an additional safety margin of about 50 ms

10 CHAPTER 3. PROGRAM USAGE FOR s

around the speech region 1.

By clicking the MIDDLE MB, the phrase "under the cursor" is played back thro
converter. If there is no segmented speech under the cursor, the whole utteran1
_pauses is played back.

To correct false segmentation boundaries, e.g. at a weak /shi/ at the beginning紅
the segmentation boundaries can be edited. If the manual edit flag is enabled (..:.1e
segmentation boundaries can be shifted (SHIFT+ LEFT MB), erased (SHIFT+! F
or new segmentation boundaries can be added (SHIFT+ MIDDLE MB).

The initial help screen can be _displayed at any time by holding down h on the keyb
want to exit the program while stdout flag is enabled, enter q on the keyboard.

＾

~

＼

1 Usually, during recognition, an HMM silence model is concatenated in front and at the en
strings.

`
l
l
L
-

Chapter 4

Algorithm and Implementation
Details

Speechin performs a rough endpoint detection using absolute values of the waveform data~
~Speechinand SpeechPress perform a fine phrase segmentation using smoothed log power and

zero-crossings.

4.1 Rough Endpoint Detection (Speechin only)

＾
The endpoint detection algorithm is very primitive but fast. Data is requested in slots from
the AD converter, where a slot contains 1200 points, i.e. 0.1 seconds at 12 kHz. On startup
the mean absolute value of 3 slots is measured and a noise level threshold calculated.

Then, every 0.1 seconds a new slot is requested and written to a ring buffer. If the threshold is
exceeded, the ring buffer contents are copied to the main buffer. If the mean absolute value of
15 consecutive slots (1.5 seconds) is below the noise level threshold, the algorithm decides that
an end of utterance has been found and stops requ~sting slots. The main wave buffer is passed
to the next stage, the fine segmentation algorithm.

As an example, lets suppose that the threshold is exceeded at slot 4 in the ring buffer. The
algorithm then fills up the main buffer starting with slot 13. After detecting an endpoint (15
slots with input level below noise level) the contents of the ring buffer are copied into the first
12 slots of the main buffer as depicted in Fig. 4.1.

The last 12 slots (1.2 seconds) of the previously detected utterance, which are supposed to
contain only noise, are then copied to the. ring buffer for reinitialization. We can't simply set
the ring buffer to zero, as the fine segmentation algorithm uses the minimum of the whole
detected utterance and thus would become confused.

11

12 CHAPTER 4.

ring buffer

ー

―

―

11 I二1111 1111 I 2 3 4 5 6 7 8 9 10 11 12
main buffer

5

6

7

8
 ，

10 11 12 ー

2

3

4

5

6

7

8
 ，

ALGORITHl¥lI AND IMPLEMENTATION DETAILS

Figure 4.1: Slot arrangment for ring and main buff er

To ensure real time performance, only every Nth value is used for the calculation of the absolute

mean of each slot (N = 4 for HP, N = 10 for DEC and SUN). For example, on SUN the absolute
mean for a slot is calculated from 1200/10 = 120 data values.

4.2 Fine Segmentation

A set of power and zero-crossing thresholds facilitates fine segmentation of the utterance into
phrases. Fig. 4.2 depicts the most important of these thresholds. Power thresholds are not
absolute but relative to minimum and maximum values during the current utterance. For
details refer to the source code in segment. c and newsegment. c (function segment_phrase ()
) and see also [2][1].

smoothed
power

ムヽ
> TH_SPEECH_LENGTH ?

『ヽ

< TH_OOUBLE_CONS?

⇔

thS

th1

th2

Phrase

～

O
'ー

｀
ー
・
—

ヽ

＾

＾
マ

・叩 tmp_md tmp_cゴ •md
time

Figure 4.2: Threshold logic for~ne segmentation

-．l
:
i
l
"

Chapter 5

Installation

5.1 Files and Libraries

~Speechin and SpeechPress were installed on several machine architectures, several operating
systems and different DASBOXs. Table 5.1 shows the current list of implementations. For each

implementation exist two makefiles:

rnakeXXX Speech In

makeXXX_p SpeechPress

XXX stands for any of the abbreviations in Table 5.1, i.e. the makefile for SpeechPress on

DECstation with ULTRIX 4.2a would be called makeDEC4. 2a..P.

The necessary source files differ for the various implementations. Table 5.2 shows, which source

files are needed for which machine configuration. All source files are managed with the revision

control system RCS.

Additionally, several shell scripts shown in Table 5.3 provide support for compilation etc ..

＾
Table 5.1: Machines and operating systems

ー'-

abbreviation description devicename bus

DEC DECstation 5000/200, ULTRIX 4.0/4.1 / dev / scsidas box SCSI

DEC4.2a DECstation 5000/200, ULTRIX 4.2a /dev/dasbox SCSI

DECTB DECstation 5000/200, ULTRIX 4.2a /dev/dmO TURBOchannel

ALPHA DEC Alpha station / dev / dasbox SCSI

HP HP 9000/7xx, HP-UX 8.05, DASBOX16 /dev/dasO AT

HPOLD HP 9000/7x.x , HP-UX 8.05 /dev/dmO AT

SUN Sun SPARC, SunOS 4.1.1 /dev/dmO VME

SUNS Sun SPARC, SunOS 4.1.1 /dev/dmO s

13

14 CHAPTER 5. INSTALLATION

Table 5.2: Source files

program and description

segment. c main (Speechln) X X X X X X X X
newsegment. c main (SpeechPress) X X X X X X X X
header. h dataformat for stdout X X X X X X X X
XG. c graphic subroutines X X X X X X X X
time. c measuring cpu-time X X X X X X X X
swap. c byte swapping X X X X X X X X
adin.c high-level AD X X X X X. X X
daou t. c high-level DA X X X X X X X
adinュe-w.c high-level AD X
daout..new. c high-level DA X
dasbox. h DASBOX header X X X X
d.hp.c DASBOX interface X
dmioctl .h AT-DMAC(SDS-9117) X
das90 .h DASBOX16 header X
d...hpnew. c DASBOX16 interface X
dasioctl.h AT-DMAC(SDS-9117) X
d...sun. c DASBOX interface X
udm.h VME-DMAC(SDS-8600) X
d_tb. c DASBOX interface X
udm_tb.h TurboDRC(SDS-9035) X
d.J3uns . c DASBOX interface X
udm_s. h S-DMAC(SDS-9004) X
hand..signal. c interrupt handling X X X X
xaif .h xa driver X X X X
dasdef _con. h DASBOX header X X X
/usr/dasbox/support/dasbox. a library X X
/usr/dasbox/gsc/ ..lib/libgsc. a library X X
/usr/dasbox/src/dasbox. a library X X
/usr/dasbox/lib/lib_uagt. a library X X

II-DEC I DEC4.2a. I DECTB _I ALPHA I HP I HPOLD I SUl'!J SUNS ・
ー
、
ー
ー
d
J

＾

八

filename

compile_all.csh

install.csh

test_all.csh

/usr/common/bin/Speechin

/usr/common/bin/SpeechPress

demonstration.csh

Table 5.3: Script files

description

rsh and make

copying only necessary files for each implementation

tests simultaneously some machines (not up-to-date)

machine independent script

machine independent script

demo of Speechln {not up-to-date)

-＇

5.2. COMPILATI01V 15

5.2 Compilation

Simply run the shell script compile_all. csh. Make sure that you can run rsh on the relevant

machines. For details see man rsh and the source code of compile_all. csh. If you just want
to compile for one machine enter the following commands (e.g. for HP):

$ login atrp13 -1 demoHP

$ cd /NFS/atr-fs/pub1/common/Speechin

$ make -f makeHP all # for Speechin

$ make -f makeHP_P all # for SpeechPress

which compiles executables into /NFS/ atr-f s/pub1/ common/Speechin/BINHP.

5.3 Updates

~ When you perform any changes , e.g. bugfixes, please use RCS commands for revision man-

agement.

$ cd /NFS/atr-fs/pub1/comrnon/Speechln/SRC
$ co -1 newsegment.c
(edit file)

$ cd ..

$ make -f makeHP all

(verify that program does what it should do)

$ ci -u newsegment.c

(write comment)

$ compile_all.csh

You can verify which version is running by using ident.

＾
ぐ
l
ー

ー＇『

$ ident SpeechPress
SpeechPress:
$Header: crtO.s,v 66.10 91/02/25 18:10:31 ssa Rel$
$Header: mapdld.c,v 66.14 90/10/29 18:22:28 shoe Rel$
$Header: RCS/newsegment.c,v 1.11 1993/03/01 05:48:31 singer Rel$
$Header: RCS/XG.c,v 1.1 1992/10/23 13:50:56 singer Rel singer$
$Header: RCS/adin_new.c,v 1.1 92/10/23 13:50:59 singer Rel$
$Header: RCS/d_hpnew.c,v 1.1 1992/10/23 13:51:01 singer Rel$
$Header: RCS/daout_new.c,v 1.1 1992/10/23 13:51:09 singer Rel singer$
$Header: RCS/swap.c,v 1.3 1992/11/16 12:54:33 singer Rel $
$Header: RCS/time.c,v 1.2 1992/10/23 14:16:30 singer Rel $

The current version of segment. c and newsegment. c is usually displayed in the upper right

hand side of the wave window. If you want changes in other files reflected on the screen,
check-out and check-in segment. c and newsegment. c to update the revision number.

The res state of the released version has been set to Rel on March 9th, 1993.

●
ィ

Acknowledgements ー・｀

The authors are grateful to Dr. Kurematsu, the president of ATR Interpreting Telephony
Research Laboratories, and for the support and help received from all colleagues at ATR In-
terpreting Telephony Research Laboratories.

We are especially grateful to Dr. Kawabata (NTT Human Interface), H. Hattori (NEC) and
K. Ohkura (ATR), who wrote the predecessor programs and support from T. Ban (SET) and
K. Takashima (SET).

’

＾
\
•
ー

9
,
_
i

16

Bibliography

．

[1] L. Lamel, L. Rabiner, A. Rosenberg, and J. vVilpon. An improved endpoint detector
for isolated word recognition. Transactions on Acoustics, Speech, and Signal Processing,

29(4):777-785, 1981.

[2] L.R. Rabiner and M. Sambur. An algorithm for determining the endpoints of isolated
utterances. The Bell System Technical Journal, 54:297-315, Feb 1975.

[3] M. Sugiyama. Computer & software user's guide in ATR ITL/ speech processing depart-
ment. Technical Report TR-I-0300, ATR, 1993. (in Japanese).

．

17

	0302_cont
	0302_covers

