
Internal Use Only(非公開）

TR-I-0297

Instruction Duration Timing Results

for the Sequent Symmetry Parallel Computer

-John K. Myers

1993. 1

Abstract

Command-duration benchmark data is mandatory for programmers who want to write

code that runs as fast as possible. This report provides the results of benchmarking the

duration of the execution of various commands on ATR's Sequent Symmetry parallel

computer. This data will allow Sequent programmers to be able to write efficient code, and

to understand why programs take as long to run as they do.

ATR自動翻訳電話研究所

ATR Interpreting Telephony Research Laboratories

cATR Interpreting Telephony Research Laboratories

- --

Contents

1 Durations Ranked by Duration 1

2 Introduction 5

3 Configuration 5 ~-
疇9 4 Disclaimer 5 、ィ

5
． ← Testing Procedure and Considerations 5

／ 6 Monitor Level Timings 8

7 Durations Ranked by Topic ，
7.1 Common Lisp ，
7.2 CLiP Parallel Commands 12
7.3 Beholder Toolbox Commands 12

＾
7.4 List, Array, and Structure Reference Commands . 13

8 Discussion and Co1nn1.ents 14
8.1 Conditionals 14
8.2 Structures, Arrays, and Lists . . . 14

， Results 15

10 Conclusion 15

11 References 16

A Listing of Test Progra111 17

B San1ple Run of Progra1n 39

C Durations Ranked by Con1n1and Nan1e 41

＾

.

.. ―

•、色―
-, I

｀

ー

ー Durations Ranked by Duration

•• ~,

The following results are for compiled code run in a subprocess.

Results are ordered from the fastest to the slowest.

A microsecond (abbreviated "musec") is 0.000001 second.

Timing results under 1 musec are probably not reliable.

Standard significant-digit conventions are followed in representing the timing informa-

tion. All significant digits are shown. Partially significant digits are represented as a

trailing O or 5 (i.e., +/-0.25). A trailing decimal point means the estimate is accurate to

about +/-0.5; no trailing decimal indicates the estimate is accurate to +/-2. or more.

~

＾

'A

(PROGN'A 》B'C'D'E'F'G'H'I'J):

(PROGN 》A'B 》C'D'E'F'G'H'I'J

'A'B'C'D'E'F'G'H'I 》J

》A'B'C'D'E'F'G'H'I'J

'A'B'C'D'E'F'G'H'I'J

'A'B'C'D'E'F'G'H'I'J

'A'B'C'D'E'F'G'H'I'J

'A'B'C'D'E'F'G'H'I'J

'A'B'C'D'E'F'G'H'I'J

'A'B'C'D'E'F'G'H'I'J

》A'B'C'D'E'F'G'H'I'J):

(PROGN NIL):

(PROGN NIL NIL):

(PROGN'A):

(PROGN 》A'B):

(EQUAL'A'A):

(EQ'A'A) :

(EQ'A'NOT-A):

(EQUAL'A'NOT-A):

(DOTIMES (I 0)):

(LIST'A):

(CONS'A'B):

(DOTIMES (I iteration-count)):

[once through the iteration]

(LET ((A'B))) : 2 . 4

(LET ((A'B) (C'D))): 2.7

(DDTIMES (I 1)): 2.7 musec

(PROGN A) : 5. 90 musec

(PROGN *THIS-LWP*): 5.90 musec

A 6 musec Estimated.
(PROGN (PROGN (PROGN (PROGN (PROGN (PROGN (PROGN (PROGN

(PROGN (PROGN *THIS-LWP*)))))))))): 6.02 musec

(SETQ A 1): 6.4

(WHEN A'B) [A = T]: 6.4

(IF A'B'C) [A = T] : 6. 6

0.01 musec Estimated.

0.05 musec (?!)

0.05 musec

0.1

0 .1 musec

0.1 musec (?)

0.1 musec (?)

0.15 musec

0.22 musec

0.22 musec

0.25 musec

1.46 musec

1.6

1.8 musec

1.925 musec

(? !)

musec

musec

rnusec

rnusec

rnusec

musec

musec

．`

．了

lt
コ

2

1 DURATIONS RANI<ED BY DURATION

(FIRST A):

(CAR A):

(CDR A):

(<= C 3):

(<= C 5):

(<= C 10):

(< C 0):

(< C 3):

(< C 10):

(> C 0):

(> C 5):

(> C 10):

(SECOND A)

(WHEN A'B) [A= NIL]:

(SETQ A'B):

(NTH 1 A):

(<= C 0):

(RPLACD A'B):

(THIRD A):

(IF A'B'C) [A= NIL]:

(FOURTH A):

(FIFTH A):

(NTH 5 A):

(SIXTH A):

(SEVENTH A):

(EIGHTH A):

(NINTH A):

(TENTH A):

(STRUCTA-P STRUCTA-INSTANCE):

(AREF ARRAY1 0):

(AREF ARRAY10 0):

(AREF ARRAY10 9):

(AREF ARRAY100 0):

(AREF ARRAY100 9):

(AREF ARRAY100 99):

(AREF ARRAY1000 0):

(AREF ARRAY1000 9):

(AREF ARRAY1000 99):

(AREF ARRAY1000 999):

(SETF (AREF ARRAY! 0) 1):

(SETF (AREF ARRAY10 9) 1):

(AREF ARRAY1000 99):

(MAKE-SPIN-LOCK):

(SETQ A 0.111):

(MAKE-MAILBOX):

(LIST'NIL'NIL'NIL'NIL'NIL'NIL'NIL): 14 musec

(SETQ A B) : 14 musec

6.7 musec

6.70 musec

6.65 musec

6.8 musec

6.8 musec

6.8 musec

6.8 rnusec

6.8 musec

6.8 musec

6.8 musec

6.8 rnusec

6.8 musec

7. musec

7.1 rnusec

7.2 musec

7.2 musec

7.5 musec

7.5 musec

7.5 rnusec

8.0 rnusec

8. musec

8.5 musec

8.8 musec

9. musec

9.5 musec

10. musec

10.5 musec

11. musec

11.0 musec

11.5 musec

11.5 rnusec

11.5 rnusec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

11.7 musec

11.7 musec

12.1

13

13.4

14

musec

musec

musec

musec

司

司

司

釘

司

司

司

司

司

=
＝
＝
-
＝
-
＝
＝
-
=
＝
-
=

に
に
に
に
に
に
に
に
に

f

‘―

[C = 5] ; Possibly = 0.

~

，

[Depends on swapping.]

[Depends on swapping.]

[B ='A, or 5, or O. 1234567890]

?—

61

ク

~

3

15 rnusec

14.4 rnusec

14.4 rnusec

15 rnusec

16.5 rnusec

16.5 musec

16.5 musec

16.5 musec

16.5 musec

16.5 musec

17 musec

17 musec

[Depends on swapping.]

;All slots the same.

[Depends on swapping. J
18 musec

20. musec Estimate.

20.5 rnusec

21. rnusec

22 rnusec

23

＾

(MAKE-STRUCTA):

(++ E):

(++ E):

(LIST NIL NIL NIL NIL NIL NIL NIL):

(STRUCTA-SLOT1 STRUCTB):

(STRUCTA-SLOT2 STRUCTB):

(STRUCTA-SLOT3 STRUCTB):

(SETF (STRUCTA-SLOT1 STRUCTB) NIL):

(SETF (STRUCTA-SLOT2 STRUCTB) NIL):

(SETF (STRUCTA-SLOT3 STRUCTB) NIL):

(DIV2 15):

(MAKE-SLEEPY-LOCK):

(DOTIMES (I 10)):

(POP A):

(PROGN (POP A)): [A is NIL]

(PUSH'BA):

(AND A A A) : [A = T] :

(WITH-SPIN-LOCK SP-LOCKA NIL):

(OR A A A) : [A = NIL]

(MAKE-FORK):

(PROGN (POP A)): [A is full]

(PROGN (PUSH'BA) (SETQ A'NIL)):

(<= C 2.38):

(PROGN (ACQUIRE-SPIN-LOCK SP-LOCKA)

NIL

(RELEASE-SPIN-LOCK SP-LOCKA)): 30

(PROGN (PUSH'BA)):

(DOLIST (I A)):

(PROGN (++ E) (--E)):

(MAKE-FMAILBOX):

(++LE SP-LOCKA):

(NTH 10 A):

24

27

musec

musec

musec

27.5 musec

28. rnusec

28.0 musec

musec

30 musec [A fills up]

29.1 musec [A='(1 2 3 4 5 6 7 8 9 10)]

32.8 musec

35 musec

38 musec

[Depends on swapping.]

[C = 5] ;Floating.

40.

[Depends on swapping.]

rnusec

＾

(my-with-spin-lock-2 SP-LOCKA NIL): 40 musec

(PROGN (PUSH'BA) (POP A)): 43 musec

(EVAL B): 44.0 musec

(EQUAL'(A B C)'(A B C)) : 46. 5 musec

(MAKE-ARRAY 1): 64 musec

(MAKE-ARRAY 10): 69 musec

(FMB-RECEIVE MAILBOXB): 90 musec

(FMB-SEND NIL MAILBOXB): 100-190 musec [Depends on swapping.]

(PROGN (FMB-SEND NIL MAILBOXB) (FMB-RECEIVE MAILBOXB)): 110 musec

(MAKE-ARRAY 1 INITIAL-ELEMENT 0): 118 musec

(MAKE-ARRAY 10 INITIAL-ELEMENT 0): 130 musec

(MB-RECEIVE MAILBOXA): 140 musec[Apparently varies with swapping.

(MAKE-ARRAY 100): 136 musec

(GETHASH'NOT-THERE HASH-EQL) : 137 musec

(MB-SEND NIL MAILBOXA): 140-200 musec

(? !)

;Hash table empty.

[Depends on swapping.]

.
I
|
`

-．
，

~

4

ー DURATI01VS RANI(ED B1'DURATION

(SETF (GETHASH

(GET-TIME):

(STRING-APPEND A A) [A ='i]:

(MAKE-ARRAY 100 INITIAL-ELEMENT 0):

(MAKE-HASH-TABLE):

(MAKE-HASH-TABLE TEST'EQUAL):

(PROGN (MB-SEND NIL MAILBOXA)

(MB-RECEIVE MAILBOXA)): 300

(NTH 100 A) : 299

(MAKE-ARRAY'(10 10)): 332 musec

(PFORMAT NIL "A short message."): 415

(STRING-APPEND A A) : 415 musec

(MAKE-ARRAY'(10 10) INITIAL-ELEMENT 0): 416 musec

(EVAL (EVAL (EVAL (EVAL (EVAL (EVAL (EVAL

(EVAL (EVAL (EVAL A)))))))))): 450.

(RANDOM 10) : 938

(RAND 10): 985 musec

(BURN-CYCLES 500): 1006.5 musec

(MY-STRING A) [A ='i]: 1295

(MY-STRING A) [A ='ten-charst]: 1560 musec

(PFORMAT NIL "A long message, -A -A -A -A -A with five evaluations."

B C B C B) : 1925 musec

(BURN-CYCLES 1000): 2009.5 musec

(STRING-APPEND A A) [A 100 chars]: 2670

(MY-STRING A) [A's name 100 chars]: 4230

'ONLY-ONE-THERE HASH-EQL)

159.

190

201

223

259

'A) :

musec

musec

rnusec

musec

musec

musec

150 musec

[Depends on swapping.]

[Depends on swapping.]

[with 0, 5,

;Table: One entry.

or 10 in queue]
ぞ

musec

musec

musec

ヽd

[A ='ten-charst]

musec

musec

~

musec

musec

，

・
↑
ー
ー
）
、
一
’

5

2 Introduction

The main reason for using a parallel computer is the potential for significant increases in
the speed of processing. When comparing the use of parallel computers against the use
of sequential computers, the power of the processing and the power of the algorithms will
remain the same as programs run on sequential computers; only the speed will increase.
However, in order to obtain fast processing, it is not enough simply to "use a parallel
computer". Programmers must write efficient programs that use the capabilities of the
computer well. In order to write fast programs, it is mandatory that a programmer know
how long different basic functions take to compute.

This report attempts to partially fill this need. The basic functions of Common Lisp, the
extended parallel functions of CLiP, and the extended functions of the Beholder Toolbox1
package are all documented here. A programmer can use this data to predict how long
his or her routines should take to run. With this knowledge, a programmer can design
programs that run as fast as possible.

＾
3

Configuration

The ATR Sequent Symmetry S2000 /700 parallel computer currently is using 15 processors,
of type 1003-54504. It runs the DYNIX v.3.1.1 NFS #6 system, and the Allegro CLiP
3.0.3 [sequent) version of parallel Common Lisp. The machine has 56 Megabytes of main
memory. It has a 16 Meg memory controller board, and a 24 Meg EXP memory board.
The machine is configured for up to 16 users. All statistics are as of January 1992.

4 Disclaimer

＾

The test results presented here紅 eapproximate, and are intended for advisory purposes
only. These are not official benchmarks. In order to really test the n1achine, it would be
necessary to test it under unloaded conditions, lightly loaded conditions, and fully loaded
conditions; this was not done. There were some discrepancies in the tinung based on
the number of iterations performed for testing (e.g., 10,000 iterations vs. 100,000); these
should be traced down. There were discrepancies on the order of 1 %-5% in the timing of
most instructions other than the tight loop; this is also rather strange for a deterministic
processor. The major difference between code running on forked processes and code running
under the main process should be tracked down and explained. In short, although these
results are useful for ATR programmers, they should not be used as accurate "official"

benchmarks.

5 Testing Procedure and Considerations

”ー

Tinling an instruction execution duration appears to be an easy n1atter. A naive n1ethod of
timing would be to get the tin1e, execute the instruction, get the time again, and subtract

1The Beholder Toolbox package is a series of routines that extends the capabilities of CLiP, simplifies
programming, and fixes many problems with the current version of the Sequent CLiP language. It is
documented separately in [Mye92]. Programmers at installations that do not have the Beholder Toolbox
package can safely ignore sections of this report that refer to such routines.

6

5 TESTING PROCEDURE AND CONSIDERATIOl'iS

the two times to get the duration. Why is timing an instruction more difficult than this?
There are two main reasons. The first reason has to do with the instruction that gets

the time on the Sequent. The second reason has to do with the Sequent operating system.

Problems in the timing routines. The instruction get-interal-real-time on the
Sequent is calibrated to tenths of a millisecond. One would think from this that the function
could therefore be used to time events accurately to a tenth of a millisecond. However, it
turns out that the get-internal-real-time instruction on the Sequent is only accurate
to one or two hundreths of a second. The timing result always ends in 0.0074 seconds, so
the third and fourth decimal places are not significant and the second is questionable.

Thus, in order to obtain significant results, each experiment has been repeated
10,000,000 times using the routing extra-time-routine, or 100,000 times using the rou-
tine time-routine, in order to shift the timing results into the few-seconds range. This
is done by surrounding the code to be tested by a dotimes loop, and then timing the
duration of this loop plus the code. The result of this is the喰rosstime" for the loop plus
the repetitions of the code. The "overhead time" for running the loop itself without any
code in it has been previously determined, and has been found to be quite stable. The
overhead time is subtracted from the gross time to yield the "net time" for the duration of
the code repetitions by itself. This is then divided by the number of repetitions to obtain
the average duration of a single execution of the test code.

The get-internal-real-time instruction itself takes 160 microseconds to execute.
It is called twice: once at the beginning, and once at the end of the instruction to be
timed, after all of the loop has been performed. However, due to signpost considerations,
although it is called twice, it only contributes once to the timing error, and the gross
timings will be consistently high by 160 microseconds. Since the repeat loop is inside the
timing, this error is divided by the repetition count, and the actual error in measurement
for 100,000 repetitions is 0.00160 microseconds [not seconds].2 This is lost in the noise for
most instructions; the few instructions that are down at microsecond levels get timed at
higher repetition rates, so there is no problem. If the loop were to be outside of the timing
start and stop, the 160 microsecond figure would contribute significantly to the timing
result and would have to be subtracted out.

Significantly, since the routine time-routine only repeats its test code 100,000 times,
the results are only accurate to about the nearest microsecond, and anything under 10
microseconds cannot be tested accurately using this routine. It is necessary to use the
routine extra-time-routine, which uses 10,000,000 repetitions, in order to time such
quick routines. This is accurate to about the nearest 0.01 microsecond, so it should not be
used to test anything under 0.1 musec duration.

．ヽ↓

＾

＾
Tin1ing differences in forked processes vs. the n1onitor process. The second
problem con1es with the Sequent operating system. There is a surprising, huge difference
between tin1ed results for running compiled routines at the clip monitor level (using the so-
called ,:initial lwp") and running compiled routines in a subprocess that has been spawned
using start-lwps. Routines that run at the top level are about seven times as slow as
routines that run inside an activated process after start-lwps has been called. It is unclear
why this is the case, but it is speculated that the operating system for the high-level lisp

2The latest thinking observes that this offset error is constant, and is present both in the gross time
and in the overhead time n1easurements. Therefore, this should cancel out automatically, leaving no error.

7

somehow is including some kind of multi-tasking heart-beat-scheduled swapping, whereas
the low-level lisps inside activated lwps run relatively clean, without this swapping.

It is possible to draw a conclusion from this observation. If an application's code is to
run as fast as possible, then a programmer should make the program so that it only sets
things up inside the code at the top level and then calls start-lwps as fast as possible.
Use a running spawned lwp to initialize things and set up the other lwps, if possible.

In order to test the routines properly, it was thus necessary to perform the tests in
subprocesses that were running at a lower level. This is the level that will most often be
used for actual programs. This current report presents only a few results from running
compiled routines at the monitor level, in Section 6.

Timing differences in compiled vs. interpreted code. Note that there is also
obviously a hugh difference between running compiled and interpreted code. Interpreted
code is significantly slower than compiled code. Most programmers will only run compiled
code, and at present no statistics are available for interpreted code.

，

，

8 6 MONITOR LEVEL TIMINGS

6 Monitor Level Timings

The following brief results are for compiled code run at the monitor level. Notice that
most commands are significantly longer in duration than the same commands when run
in a subprocess. Most progran1mers will run applications only in subprocesses,
and should use the other tables which contain data for subprocesses. T~1ey
will probably not need the data in this table. The table is included for comparison
purposes. Only a few runs were made, so the data in this table is not very reliable.

(CAR A): 47 musec
(CDR A): 47 musec
(CONS'A'B): 2 musec
(LIST'A) : 2 musec
(RPLACD A'B): 47 musec
(FIRST A): 47 musec
(SECOND A): 47 musec
(THIRD A) : 48 musec
(FOURTH A) : 48 musec
(FIFTH A): 49 musec
(SIXTH A) : 49 musec
(SEVENTH A) : 50 musec
(EIGHTH A) : 63 musec
(NINTH A) : 60 musec
(TENTH A) : 51 musec
(NTH 1 A) : 4 7 musec
(NTH 5 A) : 58 musec
(NTH 10 A): 90 musec
(NTH 100 A): 340 musec
(MAKE-STRUCT A) : 15 musec
(SETQ STRUCTB (MAKE-STRUCT A)) : 68 musec
(SETF (STRUCTA-SLOT1 STRUCTB) NIL): 58 musec
(SETF (STRUCTA-SLOT2 STRUCTB) NIL): 63 musec
(SETF (STRUCTA-SLOT3 STRUCTB) NIL): 57 musec
(AREF ARRAY! 0): 51 musec
(AREF ARRAY10 0): 51 musec
(AREF ARRAY100 0): 56 musec
(AREF ARRAY1000 0): 51 musec
(AREF ARRAY10 9): 51 musec
(AREF ARRAY100 9): 51 musec
(AREF ARRAY1000 9): 56 musec
(AREF ARRAY100 99): 51 musec
(AREF ARRAY1000 99): 51 musec
(AREF ARRAY1000 999): 51 musec
(DIV2 15) : 16 musec
(MAKE-MAILBOX): 14 musec
(MB-SEND NIL MAILBOXA): 200 musec
(MB-RECEIVE MAILBOXA): 230 musec
(PROGN (MB-SEND NIL MAILBOXA) (MB-RECEIVE MAILBOXA)):

―̀

＾

，

380 rnusec

｀

，

7 Durations Ranked by Topic

The following results are for compiled code run in a subprocess.

Results are ordered in groups by the type of instruction.

A microsecond (abbreviated "musec'') is 0.000001 second.
Timing results under 1 musec are probably not reliable.
Standard significant-digit conventions are followed in representing the timing informa-

tion. All significant digits are shown. Partially significant digits are represented as a

trailing O or 5 (i.e., +/-0.25). A trailing decimal point means the estimate is accurate to

about +/-0.5; no trailing decimal indicates the estimate is accurate to +/-2. or more.

7.1 Common Lisp

(DOTIMES (I iteration-count)): 1.925 musec [once through the iteratio1

~

A

A

，

0.01 musec Estimated.

6 musec Estimated.

•'

(RANDOM 10): 938 musec
(SETQ A 1): 6.33 rnusec

(SETQ A 0.111): 13.4 musec
(SETQ A'B): 7.2 musec
(SETQ AB): 14 musec [B = ' A , o r 5 , o r 0 . 1 2 3 4 5 6 7 8 9 0 一一

(LET ((A 1B) (C 1D))): 2.7 musec

(PROGN NIL): 0.1 musec

(PROGN NIL NIL): 0.1 musec

(PROGN'A): 0.1 musec (?)

(PROGN'A'B): 0.1 musec (?)

(PROGN'A'B'C'D'E'F'G'H'I'J): 0.05 musec (?!)

(PROGN'A'B'C'D'E'F'G'H'I'J

'A'B'C'D'E'F'G'H'I'J

'A'B'C'D'E'F'G'H'I'J

'A'B'C'D'E'F'G'H'I・'J ， 'A'B'C'D'E'F'G'H'I'J

'A'B'C'D'E'F'G'H'I'J

'A'B'C'D'E'F'G'H'I'J

'A'B'C'D'E'F'G'H'I'J

'A'B'C'D'E'F'G'H'I'J

'A'B'C'D'E'F'G'H'I'J) : 0. 05 rnusec (? !)

(PROGN A): 5.90 musec

(PROGN ABC DEF G HI J): 63 musec

(PROGN *THIS-LWP*): 5.90 musec

(PROGN (PROGN (PROGN (PROGN (PROGN (PROGN (PROGN (PROGN

(PROGN (PROGN *THIS-LWP*)))))))))): 6.02 musec
(IF A'B'C) [A = NIL]: 8.0 musec
(IF A'B'C) [A = T] : 6.6 rnusec

10 7 DURATIONS RANI<ED BY TOPIC

(WHEN A'B)

(WHEN A'B)

(OR A A A):

(AND A A A):

(CAR A):

(CDR A):

[A = NIL]:

[A = T]:

[A = NIL]:

[A = T] :

7.1 musec

6.4 musec

24 musec

22 musec

6.70 musec

6.65 musec

(CONS'A'B): 1.8 musec

(LIST'A) : 1 . 6 musec

(LIST NIL NIL NIL NIL NIL NIL NIL): 15 musec

(LIST'NIL'NIL'NIL'NIL'NIL'NIL'NIL): 14 musec

(RPLACD A'B): 7. 5 musec

(DOLIST (I A)): 29.1 rnusec [A='(1 2 3 4 5 6 7 8 9 10)]

(DOTIMES (I 10)): 18 musec

(EVAL B): 44.0 musec

(EVAL (EVAL (EVAL (EVAL (EVAL (EVAL (EVAL

(EVAL (EVAL (EVAL A)))))))))): 450. musec

(PUSH'BA): 21. musec

(POP A): 20. musec Estimate.

(PROGN (PUSH'BA) (SETQ A'NIL)): 28. musec

(PRDGN (PUSH'BA) (POP A)): 43 musec

(PROGN (PUSH'BA)): 30 musec [A fills up]

(PROGN (POP A)): [A is NIL] 20.5 musec

(PROGN (POP A)): [A is full] 27.5 musec

(DIV2 15): 17 musec

(<= C 0): 7.5 musec [C = 5] ;Possibly= 0.

(<= C 2.38): 28.0 musec [C = 5] ;Floating.

(<= C 3): 6.8 musec [C = 5]

(<= C 5): 6.8 musec [C = 5]

(<= C 10): 6.8 musec [C = 5]

(< C 0): 6.8 musec [C = 5]

(< C 3): 6.8 musec [C = 5]

(< C 10): 6.8 musec [C = 5]

(> C 0): 6.8 musec [C = 5]

(> C 5): 6.8 musec [C = 5]

(> C 10): 6.8 musec [C = 5]

(EQ'A'A) : 0.22 musec

(EQ'A'NOT-A): 0.22 musec

(EQUAL'A'A): 0.15 musec

(EQUAL'A'NOT-A): 0.25 musec

(EQUAL'(ABC)'(ABC)): 46.5 musec

(MAKE-HASH-TABLE): 223 musec [Depends on swapping.]

(MAKE-HASH-TABLE TEST'EQUAL): 259 musec [Depends on swapping.]

(GETHASH'NOT-THERE HASH-EQL): 137 musec ;Hash table empty.

(SETF (GETHASH'ONLY-ONE-THERE HASH-EQL)'A): 150. rnusec ;Table:One entry

ー、

，

~

・ヽ

7.1 Common Lisp 11

(GETHASH'ONLY-ONE-THERE HASH-EQL): 145 musec

(GETHASH'NOT-THERE HASH-EQUAL): 133 musec

(SETF (GETHASH'ONLY-ONE-THERE HASH-EQUAL)'A): 150. musec ;Table:One entry

(GETHASH'ONLY-ONE-THERE HASH-EQUAL): 148 musec

疇ヽ

(MAKE-ARRAY 1): 60 musec [Depends on swapping.]

(MAKE-ARRAY 1 INITIAL-ELEMENT 0): 120 musec [Depends on swapping.]

(MAKE-ARRAY 10): 65 musec [Depends on swapping.]

(MAKE-ARRAY 10 INITIAL-ELEMENT 0): 130 musec [Depends on swapping. J
(MAKE-ARRAY 100): 125 musec [Depends on swapping. J
(MAKE-ARRAY 100 INITIAL-ELEMENT 0): 190 musec [Depends on swapping.]

(MAKE-ARRAY'(10 10)): 335 musec [Depends on swapping.]

(MAKE-ARRAY'(10 10) INITIAL-ELEMENT 0): 420 musec [Depends on swapping.]

~

＾

(AREF ARRAY1 0):

(AREF ARRAY10 0):

(AREF ARRAY10 9):

(AREF ARRAY100 0):

(AREF ARRAY100 9):

(AREF ARRAY100 99):

(AREF ARRAY1000 0):

(AREF ARRAY1000 9):

(AREF ARRAY1000 99):

(AREF ARRAY1000 999):

(SETF (AREF ARRAY1 0) 1):

(SETF (AREF ARRAY10 0) 1):

(SETF (AREF ARRAY10 9) 1):

(SETF (AREF ARRAY100 0) 1):

(SETF (AREF ARRAY100 9) 1):

(SETF (AREF ARRAY100 99) 1):

(SETF (AREF ARRAY1000 0) 1):

(SETF (AREF ARRAY1000 9) 1):

(SETF (AREF ARRAY1000 99) 1):

(SETF (AREF ARRAY1000 999) 1):

｀`

(MAKE-STRUCTA):

(STRUCTA-SLOT1 STRUCTB):

(STRUCTA-SLOT2 STRUCTB):

(STRUCTA-SLOT3 STRUCTB):

11.5 musec

11.5 musec

11.5 musec

11.0 musec

11.5 musec

11.5 musec

11.5 musec

11.0 musec

12.1 musec

11.4 musec

11.7 musec

11.9, 13.3 musec

11.7 musec

11.7 rnusec

11.9, 13.3 rnusec

11.8 rnusec

11.8 rnusec

11.7 rnusec

11.5 musec

11 . 5 , 13 . 3 mus ec

15 rnusec [Depends on swapping.]

16.5 musec

16.5 musec

16.5 musec

12 7 DURATIONS RANI(ED BY TOPIC

(SETF (STRUCTA-SLDT1 STRUCTB) NIL): 16.5 musec

(SETF (STRUCTA-SLDT2 STRUCTB) NIL): 16.5 musec

(SETF (STRUCTA-SLOT3 STRUCTB) NIL): 16.5 musec

7.2 CLiP Parallel Commands

(MAKE-SPIN-LOCK):

(MAKE-SLEEPY-LOCK):

(WITH-SPIN-LOCK SP-LOCKA NIL):

(PROGN (ACQUIRE-SPIN-LOCK SP-LOCKA)

NIL

(RELEASE-SPIN-LOCK SP-LOCKA)):

(MAKE-MAILBOX):

(MB-SEND NIL MAILBOXA):

(MB-RECEIVE MAILBOXA):

(PROGN (MB-SEND NIL MAILBOXA)

(MB-RECEIVE MAILBOXA)):

13

17

23

musec

musec

musec

[Depends on swapping.]

[Depends on swapping.]

こ『

30 musec

14 musec [Depends on swapping.]

140-200 musec [Depends on swapping.]

140 musec [Apparently varies with swapping.]

300 musec [with 0, 5, or 10 in queue]

THIS-LWP: 5.8 musec Estimated. ~

7 .3 Beholder Toolbox Commands

(++ E):

(++LE SP-LOCKA):

(GET-TIME):

(RAND 10):

(BURN-CYCLES 500):

(BURN-CYCLES 1000):

(MY-STRING A):

[A ='i]

(STRING-APPEND A A):

[A ='i]

(MY-STRING A):

[A ='ten-charst]

(STRING-APPEND A A):

[A ='ten-charst]

(MY-STRING A):

(STRING-APPEND A A):

(PFORMAT NIL "A short message."):

(PFORMAT NIL "A long message, -A -A

BC BC B):

(MAKE-FORK):

(MAKE-FMAILBOX):

(FMB-RECEIVE MAILBOXB):

(FMB-SEND NIL MAILBOXB): 100-190 musec [Depends on swapping.]

(PROGN (FMB-SEND NIL MAILBOXB) (FMB-RECEIVE MAILBOXB)): 110 musec (?!)

14.6 musec

38 musec

159. musec

985 musec

1006.5 musec

2009.5 musec

1295 musec

190 musec

1560 musec

415 musec

＾ 4230 rnusec

2670 musec

415 musec

-A -A -A with five evaluations."

1925 musec

27 musec [Depends on swapping.]

35 musec [Depends on swapping.]

90 musec

‘

，

＾

7.4 List, Array, a.nd Structure Reference Commands

7.4 List, Array, and Structure Reference Commands

(FIRST A) : ・ 6. 7 musec

(SECOND A) : 7. musec

(THIRD A): 7.5 musec

(FOURTH A) : 8. musec

(FIFTH A): 8. 5 musec

(SIXTH A) : 9. musec

(SEVENTH A): 9. 5 musec

(EIGHTH A) : 10. musec

(NINTH A) : 10. 5 musec

(TENTH A): 11. musec

(NTH 1 A):

(NTH 2 A):

(NTH 3 A):

(NTH 4 A):

(NTH 5 A):

(NTH 6 A):

(NTH 7 A):

(NTH 8 A):

(NTH 9 A):

(NTH 10 A):

(NTH 100 A):

(AREF ARRAY1 0):

(AREF ARRAY10 0):

(AREF ARRAY10 9):

(AREF ARRAY100 0):

(AREF ARRAY100 9):

(AREF ARRAY100 99):

(AREF ARRAY1000 0):

(AREF ARRAY1000 9):

(AREF ARRAY1000 99):

(AREF ARRAY1000 999):

(STRUCTA-SLOT1 STRUCTB):

(STRUCTA-SLOT2 STRUCTB):

(STRUCTA-SLOT3 STRUCTB):

(SETF (STRUCTA-SLOT1 STRUCTB) NIL):

(SETF (STRUCTA-SLOT2 STRUCTB) NIL):

(SETF (STRUCTA-SLOT3 STRUCTB) NIL):

7.2 musec

7.5 musec

8. musec

8.5 musec

8.8 musec

9.1 musec

9.7 musec

10. musec

10.5 musec

40. musec

299. musec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

16.5 musec

16.5 musec

16.5 musec

16.5 musec

16.5 musec

16.5 musec

;All slots the same.

13

14 8 DISCUSSION AND COM1vIENTS

s o・ 1scuss1on and Comments

8.1 Conditionals

One surprising result was that there is a significant difference in the time taken to execute
a conditional branch depending upon whether the branch test is positive or negative.

If the branch test is positive, the execution time is shorter than if the branch test is
negative. For the (IF A'B'C) statement, when A is positive (T), the statement takes

6.6 microseconds to evaluate (to'B), whereas when A is negative (NIL), it takes 8.0
microseconds to evaluate (to'C). For the (WHEN A'B) statement, when A is positive (T
)， the statement takes 6.4 microseconds to evaluate (to'B), whereas when A is negative (

NIL), it takes 7.1 microseconds to evaluate (to NIL). Note that it apparently takes about
0.05 microseconds or less to evaluate'B. The evaluation is about 20% or 10% longer if a
negative branch is used rather than a positive branch. This is apparently due to an extra

branch needed in the microcode. The conclusion is that if a programmer is designing tight
inner-loop code containing a conditional, then he or she should make sure that the positive
test represents the situation that is expected to happen more often.

.."-

＾
8.2 Structures, Arrays, and Lists

One of the most important design decisions in writing a computer program is how to
represent the data. There are three methods that are quite similar for representing a set of
data: lists, arrays, and structures. At a low level of coding, it would normally be acceptable

to use any one of these. Times for storing and accessing these data structures were tested.

The time for accessing an array reference was constant at about 11.4 microseconds, no
matter how large the array, or which item was required. This is because an array reference
is computed by multiplying the index times the size of an array entry, adding the address
of the start of the array, and pulling the contents of the resulting address out directly.
The time for setting an array reference was also constant, at about 11.7 microseconds,

indicating about 0.3 microseconds for the SETF.
There are two methods of accessing entries in a list. The first uses the FIRST, SECOND,

THIRD series, which are more understandable aliases for the old CAR, CADR, CADDR series.
The second method uses NTH and a numerical index. A list entry is normally accessed by
counting down the list, i.e. sequentially taking the CAR of the list until the desired entry
is reached. The first n1ethod normally does this in a compiled way by sequentially listing
CAR's inside the routine, e.g. SEVENTH would have seven nested CAR's. The second, NTH
method normally does this by using a DOT IMES loop around a CAR. However, apparently
the Sequent's NTH operator first tests to see whether the argument is nine or under, and if
so then goes ahead with a CASE dispatch and uses the faster FIRST, SECOND, etc. series.
Thus, the time for both methods is expected to be order n, with the NTH access n1ethocl

taking slightly longer than the hard-compiled sequential method.
The results of the tests show that the FIRST, SECOND series takes roughly 6.0 + 0.5n

microseconds to perforn1, where n is the order in the list. The NTH command takes an
additional 4.5 n1icroseconds or so to perform, if the argument is 1st through 9nth, for
about 10.5 microseconds for (NTH 9 list). The timing then takes a big jump at lOnth to
40 microseconds. .

Thus, the FIRST, SECOND n1ethocls are in fact faster than the NTH 1nethocls. As ex-
pected, data that is stored as the first entry in a list is the fastest to access, followed by

＾

｀

＾

＾

15

the second. This means that critical data, which is expected to be accessed the most often,
should be stored at the front of the list.

The third method of represe~ting information in a set is the use of structures. Structures
are currently implemented as arrays in the present version of Clip. The O'th index stores
the structure type; the other indicies store the structure slots, in order. This means that
the time to access a structure entry is also constant, as with the array. However, this time
was measured at about 16 microseconds per access, the slowest of the three representational
methods. Apparently the structure reference is performing a type-check to make sure that
the structure is of the correct type before accessing the entry.

Note, because structures are actually implemented as arrays, th~t it is thus possible to
access structure slots by using aref, if you can find out the index location of the particular
slot that you want to get. If a constant is used for the entry index, this unsupported
method of accessing structures is faster than using the normal structure reference method.
However, if the entry index has to be computed, this must be taken into account, as the
normal structure reference uses a constant for its array reference that depends on the name
of the slot-access function.

One of the main reasons for using structures is that they are tagged with a type. A piece
of data can be tested as to what kind of information it represents_. When the structure is
printed out, the operating system can use a special format to identify the type of structure,
communicate this information and print the structure out beautifully. This must be given
up if the information is represented in another format, such as a list or an array.

The results of this research show that lists under ten items long are significantly faster
than both arrays and structures. H only the first item in a list is used, the紅 rayrepresen-
tational method takes about 75% longer than the list method, and structures take about
an extra 140%, more than twice as much. In other words, the time taken to reference
data can be cut in half or more, if structures are converted into properly-ordered lists and
the corresponding structure reference calls are converted into FIRST, SECOND etc. calls.
In time—critical code, such as that required to lock and unlock spinlocks, this apparently
small savings can have a significant effect on the overall runtime of application programs.

9 Results

The information presented in this report, combined with the theory of how agendas and
queueing processes (used by all parallel-process systems) work which was presented on
pp. 44-4 7 of [Mye92], can be used to significantly speed up parallel-process application
programs. Using the results of this report, the following improvements have been made: a
fast spin-lock system, a fast mailbox system, a fast~orker-agenda system, and a parallel
do-loop system. These will be presented in a companion report.

10 Conclusion

If a progra1nn1er wants to make code that runs as fast as possible, it is in1portant to
know how fast each component instruction runs, and understand how fast his or her code
should run. Then, and only then, can the programmer fine-tune the code so as to get the
best performance. Although timing the durations of individual instructions seems like a
task that has no end, this report has attempted to cover n1ost of the main instructions

16 REFERE1VCES

that have the highest importance. The timing macros that have been constructed and are
presented in the code listing in the appendix are simple, reliable, and easy to use. If further
instruction timings are required, the programmer can easily use these macros to perform
timings himself or herself. The results of this report are already being used to speed up
programs on the Sequent.

i 1 References

References

[Inc89] Franz Inc. Allegro Common Lisp User Guide, Release 3.1. Number D-U-00-000-
01-91120-0-0. Franz Inc., Berkely, CA, November 1989.

[Mye92] John I{. Myers. The beholder toolbox manual, part 1. Technical Report TR-1-
0247, ATR Interpreting Telephony Research Laboratories, Kyoto, Japan, March
1992.

●^，

＾

~

.,.

17

A Listing of Test Program

3

'''
-*-Mode: LISP; Syntax: Common-lisp; Package: USER; Base: 10 -*一

3
-

'''
J J J

―- '''
1 1 1

J J J

, , ,

1 1 1

, , ,
. . .
)))

J , ,

．．． ， , , ,
. . . ', ,
, , ,
．．．
)))

''' . . . , , ,
. . .
''' . . . , , ,
. . . , , ,
. . . , , ,

'''
','
',' . . .
'''
'''
, , J

r~
, , ,
. . . , , ,

, , ,
, , ,
. . .
'''
, ,'

'''
, , ,

, , ,

NAME: TEST-TIMING-BENCH-1

PATH: SQ: /usr2/myers/nl/test-timing-bench-1. lisp, . fasl

VERSION: 1.1

WHAT IT DOES: Benchinarks operations on the Sequent.

PROBLEMS IT: How fast does the Sequent run different things?

IS DESIGNED

TD SOLVE

曲 ATYOU NEED: This package can now stand on its own,

except for the Beholder Toolbox process commands SPAWN and PFORMAT

and the commands that are getting timed.

For instance, if you want to time Fast Mailboxes, you have to

include beholder-3.

Timing routines have been copied from the Beholder package.

USR INTERFACES: (benchtest1) ;Runs all the timing programs.

HOW IT WORKS: The program forks off a child subprocess and then

executes things in the subprocess.

First, an empty loop is timed. Previous results have shown that

empty loop durations are quite stable.

Next, full loop durations are timed, and the results h~ve the empty
loop duration subtracted before dividing by the loop count.

Results are printed out on the OS stream.

The macro OPEN-FILE channels the OS stream to a file; this should be

done separately.

It is important to make sure that there are no print statements or

other unnecessary instructions inside the timing loop.

'''

_,

3This program uses the Beholder Toolbox queued asynchronous parallel output facility pforrnat for
reporting output. If pforrnat is not available, format can be used, with the normal caveat that characters
can be dropped or rendered out of order. Apart from this, and the process spawn command (ba..:;ically a
cleaner "make-lwp"), care has been taken to make the benchmarks stand-alone, without other include
files required.

18 A

LISTING OF TEST PROGRAM

1 1 1

The clock is

; ; ; get things

''' . . .
'',
; ; ； FUTURE EXTNS . :
．．．
'''
; ; ； HISTORY
．．．
','
; ; ； Jan 8
．．．
'',
Jan 8

only

up

'92

'92

accurate

in the

to a few milliseconds. It is thus necessaェyto

sub-second range in order to get precise timings.

;

Created.

DON'T USE FLOAT. FLOAT IS SINGLE-PRECISION. USE 6F FOR FORMATS.

J J J

June '92 Note that (super-time-routine'A)

the compiler interprets the'A to be a *tag*,

It is necessary to use (PROGN'A).

．．．
''' . . .
''' ．．．
J J'

．．．
J'J

; ; ； To Do
. ，

does not work, because

not a statement.

，

;;;;CDR-CDDING????????

＾

‘-

19

'''
, , , VARIABLES

,''

à

-—

;This variable is used to control where the printed output gets sent to.

; If it is T, the output gets sent to the computer screen.

; If it is an open file (using Beholder command "use-file"),

; the output gets sent to the file.

(defvar OS T) ; Output Stream

;These are internal variables used by the timing routines.

;Basic number of times through the loop

(defvar *iteration-count* 100000)

~;Basic number of times through the loop per microsecond
(defvar *iteration-count-per-mu*(/ *iteration-count* 1000000))

; Total time taken to execute the entire loop

(defvar total-time)

; Time (in microseconds) each instruction takes to go once through

(defvar tirne-per-instruction-in-musec)

; Total time taken to run the LOOP ITSELF, and NOT the instruction

; inside the loop

(defvar *loop-duration*)

; Time (in seconds) that a single iteration of the LOOP ITSELF takes.

(defvar *secs-per-iteration* 0.000001925)

＾
;These are register variables used by some of the instructions to be timed.

; They don't have fancy names, because they aren't important at all.

゜

(defvar A)

(defvar B'A)

(defvar c 5)

(defvar D 85.1234567890)

(defvar E 0)

(defvar sp-lockA (make-spin-lock))

(defvar arrayl (make-array 1))

(defvar arraylO (make-array 10))

(defvar arraylOO (make-array 100))

(defvar arraylOOO (make-array 1000))

(defvar MailBoxA (make-mailbox))

;A generic variable.

; A variable storing a quoted variable.

; A variable storing an integer.

; A variable storing a floating-point nurn.

; A variable storing zero.

; A generic spin-lock.

; An array of only one element.

; A 1-D array of ten elements.

; A 1-D array 100 elements long.

; A 1-D array 1000 elements long.

; A generic mailbox.

20 A LISTING OF TEST PROGRAM

(defvar f)

(defvar g)

(defvar h)

(defvar i)

(defvar j)

;Generic variables.

;(defvar MailBoxB (make-fmailbox)) ;This is a Beholder Fast Mailbox.

;Here is a generic structure, with three slots in it.

(def struct (StructA

(:print-function (lambda (node stream ignore)

(format stream 11#Struct<-A>11 node)))

: named)

(slot!)

(slot2)

(slot3)

↑̀-

‘,ノ

~
;This is an instance of a generic structure.

(defvar structB (rnake-structA))

＾

-．

ヽ

21

'''
I I I REQUIRED MACROS

, , ,

, , ,

a
、

, , , These are the macros that will be used to perform timing.

1 1 1

, , , The following macros are internal (not used by the user in this case).

-―

'''

，

;This routine gets the current CLOCK time.

; Although the time is reported in microseconds or so,

; the results are not accurate!!!!!!!

; The results are only accurate to a few HUNDRETHS of a second! ! ! !

(defmacro get-time()

"Time in internal-real-time ticks. Accurate to a few hundreths of a second."

'(get-internal-real-time))

; ; ;This macro takes a bunch of code as an argument.

; ; ； Before it runs this routine, it uses get-time to get the absolute clock time.

; ; ； It then runs the routine, and then uses get-time to get the new absolute clock

; ; ； time. These are subtracted to get the relative duration time.

, , , The subtraction is performed on the stack, so that it is not necessary

; ; ； to use the time to store the first clock-time into a variable and then

; ; ； pull it out again to subtract it. This is the fastest way.

; ; ； The subtracted result is divided by internal-time-units to convert from

; ; ； internal ticks into seconds.

, , ,

(defmacro time-it (routine)

"Executes and times the given routine.

Returns the resulting duration in SECONDS.

Only accurate to a few hundreths of a second.

＂^ '(/ (-(get-time) (progn ,routine (get-time)))

, (-internal-time-units-per-second)))

, ,

,,, This routine is exactly the same as the previous routine,

,,, except that it returns its results in milliseconds (ticks)

, , , ュnsteadof in seconds.

露

1 1 1

(defmacro time-it-in-ticks (routine)

"Executes and times the given routine.

Returns the resulting duration in MILLISECONDS.

Only accurate to a few hundreths of a second.

22 A

LISTING OF TEST PROGRAM

II

＇（一 （一 (get-time) (progn ,routine (get-time)))))

•9.

,.,.,.,.,
•9.
,.,.,.,.,

•9.
,
•9.
,.,.,

These are the user-interface routines for actually timing instructions.

•9.
,

•9.

,

•9.

,
•9.

,.,.,.,.,.,
•9.

,.,.,.,.,.,
•9.

,.,.,.,.,.,

The reasons why there are many different versions is that both the physical

duration of the timing routine varies, and also the precision of the

results varies accordingly.

It is important to get a timing run that lasts about 1-10 minutes for

one instruction in order to get good precision. It is important not

to'have a timing run that lasts two hours for one instruction, because

the operator will become bored, and if th~re is a mistake, the run has

to be performed again. Most runs were performed several times and then

averaged anァayto get the results shown in the paper.

It is important not to get a run that lasts only a few tenths of seconds,

because then precision is lost due to the poor precision of the clock.

Because the duration depends both on the estimated duration of the instruction

itself, as well as on the number of iterations, many different versions

of the timing routine are offered.

＾
This is the

It is only

, , ,
. . . , , ,
．．． , , ,

(defmacro time-routine

'(progn

(setq total-time (time-it

; ---------TIMED FUNCTION--------------------

(dotimes (i *iteration-count*)

， routine
）

, ---
））

simple vanilla version.

useful for routines that take about 100-1000 microseconds to run.

(routine)

;in seconds

~

(setq total-time (-total-time *loop-duration*))

(setq time-per-instruction-in-rnusec

（／ total-time *iteration-count-per-mu*))

(pformat OS 11-A: -12F musec (total -12F secs for -A iterations) . 一%II

, routine

time-per-instruction-in-musec

total-time

●

,
.
I

23

iteration-count

‘,/
‘,ノ‘,ノ

, , ,
:,

'''
'''

This is the enhanced version.

It is useful for routines that take about 10-100 microseconds to run.

THIS VERSION IS THE STANDARD VERSION USED FOR MOST INSTRUCTION TIMINGS.

・ー
'''
（ defmacro extra-time-routine (routine)

'(let ((local-iteration-count (* *iteration-count* 100)))

(setq total-time (time-it

; ---------TIMED FUNCTION--------------------

(dotimes (i local-iteration-count)

routine

）

;in seconds

;---
~ ））

(setq total-time (-total-time(* *loop-duration* 100)))

(setq time-per-instruction-in-musec

(/total-time(* *iteration-count-per-mu* 100)))

(pformat OS "-A: -1-2F musec EXTRA(total -12F secs for -A iterations).-%"

',routine

time-per-instruction-in-musec

total-time

local-iteration-count

）

））

＾
'''
1 1 1

This version goes in the other direction.

It is useful for routines that take 1000 or more microseconds to run.

'''
(defmacro low-time-routine (routine)

'(let ((local-iteration-count (* *iteration-count* .1)))

(setq total-time (time-it

TIMED FUNCTION ・--------- --------------------
(dotimes (i local-iteration-count)

, routine

）

;in seconds

;---

゜
））

(setq total-time (-total-time (* *loop-duration* .1)))
'ヽ

24 A LISTING OF TEST PROGRAM

(setq time-per-instruction-in-musec

(/ total-time (* *iteration-count-per-mu* .1)))

(pformat OS "-A: -12F musec LOW(total -12F secs for -A iterations).-%"

',routine

time-per-instruction-in-musec

total-time

local-iteration-count

）

））

'''
, , ,

This is the ultra-enhanced version.

It is useful for routines that take .1-10 microseconds to run.

, , ,
(defmacro super-time-routine (routine)

'(let ((local-iteration-count(* *iteration-count* 1000)))

(setq total-time (time-it

・---------TIMED FUNCTION--------------------
(dotimes (i local-iteration-count)

routュne

）

;in seconds ，

;---
））

(setq total-time (-total-time (* *loop-duration* 1000)))

（ setq time-per-instruction-in-musec

(/total-time(* *iteration-count-per-mu* 1000)))

(pformat OS 11-A: ―12F musec SUPER(total -12F secs for -A iterations).-%"
， ， routine

time-per-instruction-in-musec

total-time

local-iteration-count

）

））

，

, , ,
, , ,

I I I

, , ,

UTILITY FUNCTIONS

L・

These internal functions are necessary to set up the variables

，

＾

w"

,,, *loop-duration* and time-per-instruction-in-musec

so that the timing routines can work properly. , , ,

(defun time-loop-by-itself ()

(let ((local-iteration-count (* *iteration-count* 100)))

(setq total-time (time-it

-----------， ・---------TIMED FUNCTION---------

(dotimes (i local-iteration-count)

）

；

））

25

;in seconds

(setq time-per-instruction-in-musec (/ total-time local-iteration-count . oooooi:
(pformat OS

"LOOP DURATION time (dotimes (i *iteration-count*)):

―12F musec (total -12F secs for -A iterations).-%"

time-per-instruction-in-musec

total-time

iteration-count

）

(setq *loop-duration* (/ total-time 100))

））

, , , This routine is the same as the last,

, , , it just runs through more iterations
, , , to make sure .

(defun extra-time-loop-by-itself()

(let ((local-iteration-count (* *iteration-count* 1000)))

(setq total-time (time-it

・---------TIMED FUNCTION--------------------

(dotimes (i local-iteration-count)

）

;---
））

;in seconds

(setq tirne-per-instruction-in-rnusec (/ total-time local-:iteration-count .oooooi:
(pformat OS

"EXTRA LOOP DURATION time (dotimes (i *iteration-count*)):

-12F musec (total―12F secs for -A iterations).-%。II

tirne-per-instruction-in-musec

total-time

iteration-count

26 A LISTING OF TEST PROGRAM

）

(setq *loop-duration*(/ total-time 1000))

））

~

, , , This routine fills the arrays and variables with values.

, , , It is useful in case these values get changed between runs.

J J J

(defun init-arrays ()

(setf (aref array! 0) 1)

(setf (aref array10 0) 1)

(setf (aref array100 0) 1)

(setf (aref array1000 0) 1)

(setf (aref array10 9) 1)

(setf (aref array100 9) 1)

(setf (aref array1000 9) 1)

(setf (aref array100 99) 1)

(setf (aref array1000 99) 1)

(setf (aref array1000 999) 1)

．｝

＾
(setq B , A)

(setq c 5)

(setq D 85.1234567890)

(setq E 0)

‘,'‘

~'

27

9

.

，．，

9.,.,

9

.

，
．
,

THE MAIN TEST ROUTINE: TIMINGS

'''
; ; ****** Uncomment
．．．
, J ,

out any routines that you want tested. *******

;This single routine is the important

; It sets up the arrays, initializes

; and then starts timing routines.

part of the main program.

the important variables,

~

(defun benchtest1-routine ()

"This routine times the execution durations of
II

important instruction types.

;First

; will

of all, set up the

work properly.

internal variables so that the timing routines

;Sets up the scaling variable.

(setq *iteration-count-per-mu*(/ *iteration-count*

; Not used; replaced by set in time-loop.

(setq *loop-duration*(* *iteration-count* *secs-per-iteration*))

1000000))

(ini t-arrays)

(time-loop-by-itself)

(extra-time-loop-by-itself)

~

9
.
,

9

.

，

9

.

，

Here are some routines to be timed that DON'T work!!!

Don't try them again ! ! !

•9.

,.,.,.,.,.,.,

•9.

,.,.,.,.,.,.,

•9.

,.,.,.,.,.,.,

n
-
'
1
,
＇

（ super-t1me-rout1ne NIL)

Doesn't work for some reason ... unclear why.

（ super-t1me-rout1ne'A)

error: "Warning: Tag A is never referenced."

（ super-t1rne-rout1ne 1)

error: "Warning: Tag 1 is never referenced."

(super-time-routine 1.1)

error: "illegal Tag-body 1.111

28 A LISTING OF TEST PROGRAM

;;;! ! (time-routine (setq a 0.111111111111111111111111111111111111111))

; ; ; error: The SEQUENT does not support entering bignums ! ! ! ! Number too long! ! !

;Note: Extra-time is the default, for routines from 1 musec to 100 musec.

, , Here we find out whether there is a difference in the SETQ time

, , between assigning different things to a variable.

J J

J J

, ,

J J

J J

(extra-time-routine (setq a'b)

(extra-time-routine (setq ab)

（ extra-time-routine (setq a c)

(extra-time-routine (setq ad)

‘,/
‘'ノ、`
‘‘‘,ノ

;Assign a quoted constant.

; Assign a quoted constant in a variable.

; Assign an integer in a variable.

; Assign a float in a variable.

; ; Here we start to find out about how progn works.

, , ，
ヽ`ノ、’ノ

、’ノ、’ノ
a

a

，

n

n

g

g

0

0

r

r

p

p

（

（

e

e

n

n

.
l
.
l

t

t

u

u

0

0

r

r

ヽ
ノ
ー
一

e

e

m

m

L

ーN
i
.
1

t

t

A

-

―

a

a

q
r
r

t

t

t

e
x
x

s

e

e

（

（

（

''
J J

, ,

Here we find out about logic statements.

Note that each logic statement is executed all the way through in both cases.

This is different from, say, (or a a a) when A is T, or (and a a a) when A is NIL.

, ,
(setq A NIL)

（ extra-time-routine (or a a a))

(setq A T)

（ extra-time-routine (and a a a))

~

,, Here we try to find out how long different primitive commands take,

; ; such as'A, an integer 1, a float 1.1, or NIL.

,, Because it is impossible to time these instructions by themselves,

, , it is necessary to encase them in a progn.

, J

(super-time-routine (progn))

(super-time-routine (progn ()))

(super-time-routine (progn *this-1守 ＊））

（ super-time-routine (progn 1))

(super-time-routine (progn 1.1))

29

(super-time-routine (progn (progn'a)))

(super-time-routine (progn () ()))

(super-time-routine (progn'a'b))

（ extra-time-routュne (progn'a))

(super-time-routine (progn'a))

(extra-time-routine (progn NIL))

(extra-time-routine (progn NIL NIL))

-b

Here we try to pin down how long it takes to execute a single

quoted vaェiable. A quoted variable is repeated 2 times, 5 times,

10 times, and 100 times. The 100 times version should override

the side-effect of having a progn at the beginning.

~

J J

..
J J

．．
J J

．．
J J

..
J J

; (extra-time-routine (progn

; (extra-time-routine (progn
, （ ・extra-time-routine (progn

; (extra-time-routine (progn

;'a'b'c'd'e'f'g'h'i'j

;'a'b'c'd'e'f'g ., h'i'j

;'a'b'c'd'e'f'g'h'i'j

;'a'b'c'd'e'f'g'h'i'j

;'a'b'c'd'e'f'g'h'i'j

;'a'b'c'd'e'f'g'h'i'j

;'a'b'c'd'e'f'g'h'i'j

;'a'b'c'd'e'f'g'h'i'j

;'a'b'c'd'e'f'g'h'i'j

;)）

'a'b))

'a'b'c'd'e))

'a'b'c'd'e'f'g'h'i'j)

'a'b'c'd'e'f'g'h'i'j
‘,'‘

, , How long does it take to execute a progn?

',

，

extra-time-routュne
(progn(progn(progn(progn(progn(progn(progn(progn(progn(progn *this-lwp*))))));

, , Here we start to work with lists.

, , Let's try to find out the difference between CAR and CDR.

; ; Is there any difference in precision between timing the routines

; ； with time-and with extra-time-? [Yes, there is.]

(setq a'(1 2 3 4 5 6 7 8 9 10))

(time-routine (car A))

30 A LISTING OF TEST PROGRAM

（ extra-time-routine (car A)
（・time-routine (cdr A))

（ extra-time-routine (cdr A)

‘
,
／
ヽ
'

, , Here we explore how long it takes to access various parts of a list.

,, It turns out that this number varies, depending upon the rank in the list.

, , This will be important when we compare it against structures and arrays later.

(setq a'(1 2 3 4 5 6 7 8 9 10))

(extra-time-routine (first A)

(extra-time-routine (second A)

(extra-time-routine (third A)

（ extra-time-routine (fourth A)

(extra-time-routine (fifth A)

（ extra-time-routine (sixth A)

(extra-time-routine (seventh A)

(extra-time-routine (eighth A)

（ extra-time-routine (ninth A)

, , Here are some more list instructions.

J J

(super-time-routine

(super-time-routine

（ extra-time-routine

（ extra-time-routine

(setq a (list'c))

(super-time-routine

‘‘/

、
~
‘
＇
ノ
、

l
/

ヽ
＇
ノ

、
’
ノ
、
’
ノ
‘
,
／
‘
,
、

(cons'a'b)

(list'a))

(list nil nil nil nil nil nil nil))

(list'nil'nil'nil'nil'nil'nil'nil)

(rplacd a'b)

＾
‘,ノ

‘,ノ

‘,ノ

, , How about DOTIMES?

''
，
，
，

(super-time-routine

(super-time-routine

(extra-time-routine

This is extremely fast, so use a super-time-routine.

(dotimes (i 0)))

(dotimes (i 1)))

(dotimes (i 10))) ~

; ; Let's test a dolist also.

'1

, (set q a'(1 2 3 4 5 6 7 8 9 10))

，
, (time-routine (dolist (i A)))

; ; Here we start to look at a LET.

J J

, (extra-time-routine (let ((a'b))))

疇

I
I

31

(extra-time-routine (let ((a'b) (c'd))))

''
How about the Beholder routines++ and--?

''

二

".

(setq E 0)

（ extra-time-routine

（ extra-time-routュne
(setq E 0)

助

助

十

一

十

一
（

（

‘,‘,‘,‘、

;Note that this can get quite large.

; And this one can get quite small.

This stays around 0. Does it make a difference? (No).

(extra-time-routine (progn (++ E)(--E)))

(setq E 0)

(extra-time-routine (++l E sp-lockA))

How about incrementing with a spin-lock?

, , Here we look at more Beholder routines.

＾
''

(time-routine (get-time))

(time-routine (random 10))

(time-routine (rand 10))

, , Here we look at how long it takes to use a spin-lock.

'J
(time-routine (with-spin-lock sp-lockA ()))

(extra-time-routine (with-spin-lock sp-lockA ()))

,, What happens if with-spin-lock is broken out into its important parts?

''

＾
(time-routine (progn (pp::acquire-spin-lock sp-lockA) ()

(pp: : release-spin-lock sp-lockA)))

(extra-time-routine (progn (pp::acquire-spin-lock sp-lockA) ()

(pp::release-spin-lock sp-lockA)))

''
, ,

Here we look at some conditionals.

There are various different ways of switching control in a program.

, ,
(setq A nil)

（ extra-time-routine (if a'b'c) ）

（ extra-time-routine (when a'b) ）

（ extra-tュme-routine (and a) ）

（ extra-time-routine (and a a) ）

（ extra-time-routine (and a a a) ）
.:

（ extra-time-routine (or a) ）

（ extra-time-routine (or a a) ）

32 A

LISTING OF TEST PROGRA1v!

（ extra-tュme-routine (or a a a) ‘,ノ

•9.

,.,.,.,

•9.,.,.,•9.,•9.,.,.,.,.,.,., These are more conditionals.

Does it matter if the conditional

(setq A T)

（ extra-tュme-routine
（ extra-time-routine

（ extra-time-routine

(extra-time-routine・

(extra-time-routine

（ extra-time-routine

（ extra-tュme-routine
（ extra-tュme-routュne

(if a'b'c)

(when a'b)

(and a)

(and a a)

(and a a a)

(or a)

(or a a)

(or a a a)

argument A is true or false?

‘,／

‘,‘.、’ノ

‘
,
‘
‘
,
／
ヽ
J
‘
,
、

‘,ノ

1
-

[Surprise! It does matter--the times are quite different.]

9

.

，

9

.

，．，.,．，

Let's test the burn-cycles routine from Beholder~

（・time-routine
（・time-routine

(burn-cycles 500)

(burn-cycles 1000) ＾ ヽ
~

ヽ`＇‘

; ;Here we set A to a list that
. . , ,

is 100 elements long.

(setq a'(1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10))

; ； Let's look at the function NTH.

; ; from FIRST, SECOND, etc.?
．．
''
，
，

(extra-time-routine

（ extra-tュme-rout1ne
(extra-time-routine

(extra-time-routine

（ extra-tュme-routine
(extra-time-routine

(nth 1

(nth 2

(nth 3

(nth 4

(nth 5

(nth 6

How is it

，

different

、
’
ノ
、
’
ノ
、
~
ヽ
ノ
、
’
ノ
、
~

A

A

A

A

A

A

、ヽ
ノ‘,、ヽ
ノヽ
ノ、’ヽ

ーヽ、

33

（ extra-time-routine

（ extra-time-routine

（ extra-time-routine

（ extra-time-routine

（ extra-time-routine

(nth 7 A)

(nth 8 A)

(nth 9 A)

(nth 10 A)

(nth 100 A) ‘,／

‘＇ノ‘,ノ、’‘、’‘

''
''

How is NTH 100 different from AREF 100? (See the text).

＾

Does the length of the list make any difference when referencing

parts of the list?

(extra-time-rout江e

（ extra-time-routine

(extra-time-routine

(extra-time-routine

（ extra-time-routine

（ extra-time-routュne
（ extra-time-routュne
(extra-time-routjne

（ extra-time-routュne
（ extra-time-routine

[No.]

(first A)

(second A)

(third A)

(fourth A)

(fifth A)

(sixth A)

(seventh A)

(eighth A)

(ninth A)

(tenth A)

‘
,
ノ
-
、
J

、
J
、
＇
ノ
、
J

ノヽ

‘,ノ

‘,、、J‘,ノ

1 1 Here we look at the difference between EQUAL and EQ,

1 1 and also between true and false tests.

''

＾

(super-time-routine (equal'A'A))

(super-time-routine (equal'A'NOT-A))

(super-time-routine (eq'A'A))

(super-time-routine (eq'A'NOT-A))

(extra-time-routine (equal'(A B C)'(A B C)))

What if a list of length 3 is used?

, , Here we test variables being evaluated to their contents,

, , when the contents are simple quoted atoms.

Ten evaluations are done inside a PROGN. , ,

, J

[remember this is the same as (setq a'b) (setq b'c) (setq c'd) etc.]

(setq a'b b'c c'd d'e e'f f'g g'h h'i i'j j'k)

(extra-time-routine (progn ABC DEF G HI J))

'' ▼

l
 , ,

Here we test the EVAL routine on a nesting of atoms 10 deep.

(The results of the routine are K).

''

34 A

LISTING OF TEST PROGRAM

•9

9

.

，
．
,
．
,
．
,
．
，
．
,

(extra-time-routine

How about

(eval(eval(eval(eval(eval(eval(eval

(eval(eval(eval A)))))))))))

a single EVAL?

(setq b'a)

(time-routine (eval b) ‘,ノ
~

Here we check out normal hash-tables based on eql,

and special hash-tables based on equal.
''
''
''
; (extra-time-routine (make-hash-table))

; Default is eql, which doesn't do lists.

; (extra-time-routine (make-hash-table

; Default is eql, which doesn't do lists.

:test 'equal))

•9.,.,.,.,.,.,., •9.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,., Let's do some more tests on these.kinds of hash-tables.

Does it make any difference if we are searching for something that is there,

or something that is not there? How about if we keep entering an entry in the

table, that is already there? (It would also make a good test

to fill up the hashtable

with 100 or 1000 entries, and then run the same tests.

＾
Do this next time.)

(defvar hash-eql)

(setq hash-eql (make-hash-table))

(extra-time-routine (gethash'NOT-THERE hash-eql))

(extra-time-routine (setf (gethash'ONLY-ONE-THERE hash-eql)

(extra-time-routine (gethash'ONLY-ONE-THERE hash-eql))

'A))

(defvar hash-equal)

(setq hash-equal (make-hash-table))

(extra-time-routine (gethash'NOT-THERE hash-equal))

(extra-time-routine (setf (gethash'ONLY-ONE-THERE hash-equal)

(extra-time-routine (gethash'ONLY-ONE-THERE hash-equal))

'A))

＾
9

.

，
．
，
．
,
．
,

9

.

，
．
，
．
,
．
，
．
，
．
，
．
,
．
，

Here we st art

（・time-routine

(setq MailboxA
（・time-routine

to test mailboxes.

(make-mailbox) ‘,ノ

How long does it take to use an empty mailbox?

(make-mail box))

(progn (mb-send NIL MailboxA)

(mb-receive MailboxA)))

35

, , Here we test the Beholder fast mailboxes.

(time-routine (make-fmailbox))

(setq MailboxB (make-fmailbox))

(time-routine (progn (fnib-send NIL MailboxB)

(fmb-receive MailboxB)))

, , Here we test how long it takes to send 10,000 messages to a fast mailbox

, , that staェtsout empty.

1 1

(low-time-routine (fmb-send NIL MailboxB))

How about if it starts out with 10,000 messages in it?

(low-time-routine (fmb-send NIL MailboxB))

~

J J

, ,

, , Here we test how long it takes to receive messages

from a 20,000-message mailbox.

(low-time-routine (fmb-receive MailboxB))

Or one with 10,000 messages in it.

(low-time-routine (fmb-receive MailboxB))

, , These are the same tests, except with the regular mailboxes, (not fast).

, ,
(low-time-routine

(low-time-routine

(low-time-routine

(low-time-routine

(mb-send NIL MailboxA)

(mb-send NIL MailboxA)

(rob-receive MailboxA))

(rob-receive MailboxA))

、̀'‘、’ノ

＾ , , Here we test popping a null list a couple thousand times.

''
(setq a'())

(extra-time-routine (progn (pop a)))

''
''

, , Here we test pushing 100,000 atoms onto a stack.
(setq a'())

(time-routine (push'b a))

''
, , Here we test pushing an atom onto a stack and then clearing the stack.

(setq a'())

(time-routine (progn (push'b a) (setq a'())))

Pushing an atom onto the stack and then popping the stack.

''
''
J J

36 A

LISTING OF TEST PROGRAM

•9•9.

,.,.,

•9.

,.,.,.,
(time-routine (progn (push'b a) (pop a)))

Pushing 10,000 atoms onto the stack.

(time-routine (progn (push'b a)))

Popping 10,000 atoms off of the stack.

(time-routine (progn (pop a)))

，

9

.

，．，.，．，

Get extra precision by repeating the previous tests more times.

(extra-time-routine (progn (push'b a) (setq a'())))

(extra-time-routine (progn (push'b a) (pop a)))

(extra-time-routine (progn (push'b a)))

(extra-time-routine (progn (pop a)))

':"

•9.,

.,.,.,

•9.
,.,.,.,.,.,.,.,.,.,.,.,.,., Here we test basic math comparison routines.

Does it matter whether<,<=, or> is used?

Does it matter whether the test constant is zero,

a non-zero integer, or a floating-point number?

~

•9.

,.,.

,•9.

,

•9.

,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,

(setq c 5)

（ extra-time-routine

（ extra-time-routine

（ extra-time-routine

（ extra-time-routine

（ extra-time-routine

（ extra-time-routュne
（ extra-time-routine

（ extra-time-routine

（ extra-time-routine

（ extra-time-routine

（ extra-time-routine

(<= C 0))

(<= C 3))

(<= C 5))

(<= C 10))

(< C 0))

(< C 3))

(< C 10))

(> C 0))

(> C 5))

(> C 10))

(<= C 2.38))

Here we test the Beholder routine my-string and the string-append routine,

with a string n血ethat is one character long.
~

(setq a'i)

(time-routine (my-string a))

(setq a (my-string a))

(time-routine (string-append a a))

Same test, ten characters long.

(setq a'ten-charst)

(time-routine (my-string a))

(setq a (my-string a))

(time-routine (string-append a a))
『.,＇

Same test, 100 characters long.

37

; (setq a

;'a-string-that-is-one-hundred-characters-long-and-takes-up-a-lot-of-space-abcdef~
; (time-routine (my-string a))

; (setq a (my-string a))

, （ ・time-routine (strュng-appenda a))

，
，

9

.

，．,．,．，

How about the Beholder PFORMAT command, with short and long messages?

(time-routine (pformat NIL "A short message. 11))

(time-routine (pformat NIL

"A long message, -A―A―A―A -A with five evaluations. 11 b c b c b))

Here we test some

(extra-time-routine

(extra-time-routine

(extra-time-routine

（ extra-time-routine

of the CLiP routines.

(progn *this-1守＊））
(make-spin-lock))

(make-sleepy-lock))

(make-fork))

＾

•9.
,

•9.,

.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,

Here we investigate structures.

Making a structure.

(extra-time-routine (make-structA))

Making a structure and assigning it to something.

(extra-time-routine (setq structB (make-structA)))

Testing for structure type.

(extra-time-routine (structA-p structB))

Referencing the contents of the structure.

Does it matter which structure slot is used?

(extra-time-routine (structA-slot1 structB)

(extra-time-routine (structA-slot2 structB)

(extra-time-routine (structA-slot3 structB)

J
 ．
 ゚

z

r
L
‘
ノ
、
ノ
）

Setting the contents of the structure.

Does it matter which structure slot is used? [No.]

(extra-time-routine (setf (structA-slot1 structB) NIL))

(extra-time-routine (setf (structA-slot2 structB) NIL))

(extra-time-routine (setf (structA-slot3 structB) NIL))

‘,/

38 A LISTING OF TEST PROGRAM

J , J

J J J THE ACTUAL PROGRAM CALLED BY THE USER

'''

'f

, , This routine forks a process to take care of the timing.

, , It then runs this process.

(defun benchtest1 ()

(spawn-lwp (benchtest1-routine))

(start-lwps)

）

~

＾

『

l

|

．．

＾

＾

B Sample Run of Program

% cd /usr2/myers/nl

% clip

Allegro CLiP 3.0.3 [sequent] (6/27/91 12:37)

Copyright (C) 1985-1990, Franz Inc., Berkeley, CA, USA

; Fast loading /usr/local/lib/clip/code/flavors.fasl.

39

==
This is a revised implementation of Franz Inc Allegro Common Lisp Flavors:

-Eliminates problems with compile-time flavor definitions altering

flavor definitions in the running lisp.

-Provides the :ALTERNATE-COMPONENT-ORDERING option to DEFFLAVOR.

If specified, that flavor (but not necessarily its descendents) will

emulate the flavor component ordering of Symbolics Genera 7 flavors.

This feature may be enabled globally by setting the variable

FLA::*ALTERNATE-COMPONENT-ORDERING* to T.

This software is in beta release:

Report all problems, bugs, and questions about this beta version to

cl-bugs%franz.uucpcberkeley.edu, (415) 548-3600.

==
; Fast loading /usr/local/lib/clip/code/vanilla.fasl.

; Fast loading /usr2/myers/nl/system.fasl.

; Fast loading /usr2/rnyers/nl/behold.er-2C. f asl.

; Fast loading /usr/local/lib/clip/code/spurlisp.fasl.

; Fast loading /usr2/rnyers/nl/heap.fasl.

; Fast loading /usr2/rnyers/nl/new-flavors.fasl.

; Fast loading /usr/local/lib/clip/code/trace.fasl.

; Fast loading /usr2/rnyers/nl/lf-gen-sq.fasl.

; Loading /usr2/myers/nl/agent-nl.lisp.

; Fast loading /usr2/rnyers/nl/okuma/tdmt/patches/patch-for-setq-default.fasl.

; Fast loading /usr2/rnyers/nl/okuma/tdmt/patches/patch-for-readtable.fasl.

<Initial lwp>

<Initial 1叩> :cl test-timing-bench-1

---Compiling file /usr2/myers/nl/test-timing-bench-1.lisp ---

Compiling MAKE-STRUCTA

Compiling STRUCTA-P

Compiling GET-TIME

Compiling TIME-IT

Compiling TIME-IT-IN-TICKS

Compiling TIME-ROUTINE

Compiling EXTRA-TIME-ROUTINE

Compiling LOW-TIME-ROUTINE

Compiling SUPER-TIME-ROUTINE

40 B SAMPLE RUN OF PROGRAM

Compiling TIME-LOOP-BY-ITSELF

Compiling EXTRA-TIME-LOOP-BY-ITSELF

Compiling INIT-ARRAYS

Compiling BENCHTEST1-ROUTINE

Compiling BENCHTEST1

Writing fasl file 11/usr2/myers/nl/test-timing-bench-1.fasl"

Fasl write complete

Fast loading /usr2/myers/nl/test-timing-bench-1.fasl.

Warning: redefining'GET-TIME', originally defined in /usr2/myers/nl/beholder-2C.lisp

Waェning:redefining'TIME-IT', originally defined in /usr2/myers/nl/beholder-2C.lisp

Warning: redefining'TIME-IT-IN-TICKS', originally def1ned in /usr2/myers/nl/beholder-2C

<Initial 1町）＞

．

<Initial lwp> (benchtest1)

Using 1 processor

LOOP DURATION time (dotimes (i *iteration-count*)):

1 . 925 musec (total

0 .161 mus~c EXTRA(total

8.302 musec EXTRA(total

23.742 musec EXTRA(total

21.937 musec EXTRA(total

(1) live lwps are on wait queue

(PROGN'A):

(PROGN A):

(OR A A A):

(AND A A A):

Warning: All

19.25 secs for 100000 iterations).

1. 61. secs for 10000000 iterations) .

83.02 secs for 10000000 iterations).

237.42 secs for 10000000 iterations).

219.37 secs for 10000000 iterations).

，

NIL

<Initial 1町）＞

fヽ

＼
＇

41

C Durations Ranked by Command Name

The following results are for compiled code run in a subprocess.

Results are ordered alphabetically by the name of the main command. Some results,

with (PROGN COMMAND), are entered twice, once under progn and once under command.

A microsecond (abbreviated "musec'') is O .000001 second.
Timing results under 1 musec are probably not reliable.
Standard significant-digit conventions are followed in representing the timing informa—

tion. All significant digits are shown. Partially significant digits are represented as a

trailing O or 5 (i.e., +/-0.25). A trailing decimal point means the estimate is accurate to

about +/-0.5; no trailing decimal indicates the estimate is accurate・to+/-2. or more.

＾

(<= C 0):

(<= C 2.38):

(<= C 3):

(<= C 5):

(<= C 10):

(< -C 0) :

(< C 3):

(< C 10):

(> C 0):

(> C 5):

(> C 10):

(++ E):

(++LE SP-LOCKA):

THIS-LWP:

'A

7.5 musec [C = 5] ;Possibly= 0.

28.0 musec [C = 5] ;Floating.

6.8 musec [C = 5]

6.8 musec [C = 5]

6.8 musec [C = 5]

6.8 musec [C = 5]

6.8 musec [C = 5]

6.8 musec [C = 5]

6.8 musec [C = 5]

6.8 musec [C = 5]

6.8 musec [C = 5]

14.6 musec

38 musec

0.2 musec

0.01 musec Estimated.

6 musec Estimated.

＾

,
7

A

(PROGN (ACQUIRE-SPIN-LOCK SP-LOCKA)

NIL

(RELEASE-SPIN-LOCK SP-LOCKA)): 30

(AND A A A): [A= T]:

(AREF ARRAY1 0):

(AREF ARRAY10 0):

(AREF ARRAY10 9):

(AREF ARRAY100 0):

(AREF ARRAY100 9):

(AREF ARRAY100 99):

(AREF ARRAY1000 0):

(AREF ARRAY1000 9):

(AREF ARRAY1000 99):

(AREF ARRAY1000 999):

(BURN-CYCLES 500):

(BURN-CYCLES 1000):

(CAR A):

(CONS'A'B):

(CDR A):

musec

22 musec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

11.5 musec

1006.5 musec

2009.5 musec

6.70 musec

1.8 musec

6.65 musec

42 C DURATIOl'vS RANI(ED BY COMMAND NAME

(DIV2 15):

(DOLIST (I A)):

(DOTIMES (I 0)):

(DOTIMES (I 1)):

(DOTIMES (I 10)):

(DOTIMES (I 10)):

(DOTIMES (I iteration-count)):

[once through the iteration]

17 musec

29.1 musec

1.46 musec

2.7 musec

17.5 musec

18.675 musec

1.925 musec

(EIGHTH A) : 10. musec

(EQ'A'A) : 0 . 22 musec

(EQ'A'NOT-A): 0.22 musec

(EQUAL'A'A) : 0. 15 musec

(EQUAL'A'NOT-A): 0.25 musec

(EQUAL'(A B C)'(A B C)) : 46. 5 musec

(EVAL B) : 44. 0 musec

(EVAL (EVAL (EVAL (EVAL (EVAL (EVAL (EVAL

(EVAL (EVAL (EVAL A)))))))))): 450. musec

(FIFTH A) : 8. 5 musec

(FIRST A) : 6. 7 musec

(FMB-RECEIVE MAILBOXB): 90 musec

[A ='(1 2 3 4 5 6 7 8 9 10)]

(FMB-SEND NIL MAILBOXB) : 100-190 musec [Depends on swapping.]

・(PROGN (FMB-SEND NIL MAILBOXB) (FMB-RECEIVE MAILBOXB)): 110 musec (? !)

(FOURTH A) : 8. musec

(GETHASH'NOT-THERE HASH-EQL): 137 musec ;Hash table empty.

(SETF (GETHASH'ONLY-ONE-THERE HASH-EQL)'A): 150 musec ; Table: One entry.

(GET-TIME) : 159. musec

(IF A'B'C) [A = NIL]: 8.0 musec

(IF A'B'C) [A = T]: 6.6 musec

(LET ((A'B))): 2.4 musec

(LET ((A'B) (C'D))): 2.7 musec

(LIST'A) : 1 . 6 musec

(LIST'NIL'NIL'NIL'NIL'NIL'NIL'NIL): 14 rnusec

(LIST NIL NIL NIL NIL NIL NIL NIL): 15 musec

(MAKE-ARRAY 1): 60 musec [Depends on swapping.]

(MAKE-ARRAY 1 INITIAL-ELEMENT 0): 120 musec [Depends on swapping.]

(MAKE-ARRAY 10): 65 musec [Depends on swapping.]

(MAKE-ARRAY 10 INITIAL-ELEMENT 0): 130 musec [Depends on swapping.]

(MAKE-ARRAY 100): 125 musec [Depends on swapping.]

(MAKE-ARRAY 100 INITIAL-ELEMENT 0): 190 musec [Depends on swapping.]

(MAKE-ARRAY'(10 10)): 335 musec [Depends on swapping.]

(MAKE-ARRAY'(10 10) INITIAL-ELEMENT 0): 420 musec [Depends on swapping.]

(MAKE-FMAILBOX): 35 musec [Depends on swapping.]

(MAKE-FORK) : 27 musec [Depends on swapping.]

(MAKE-HASH-TABLE): 223 rnusec [Depends on swapping.]

(MAKE-HASH-TABLE TEST'EQUAL): 259 musec [Depends on swapping.]

(MAKE-MAILBOX): 14 musec [Depends on swapping.]

(MAKE-SLEEPY-LOCK): 17 musec [Depends on swapping.]

~

たヽ

＼

43

(MAKE-SPIN-LOCK):

(MAKE-STRUCTA):

(MB-RECEIVE MAILBOXA):

(MB-SEND NIL MAILBOXA):

(PROGN (MB-SEND NIL MAILBOXA)

(MB-RECEIVE MAILBOXA)):

(MY-STRING A):

(MY-STRING A):

(MY-STRING A):

(NINTH A):

(NTH 1 A) : 7 .15 musec

(NTH 2 A) : 7. 40 musec

(NTH 3 A) : 7. 90 musec

(NTH 4 A): 8.9 musec

(NTH 5 A): 8.8 musec

(NTH 6 A) : 9 . 2 mus ec

(NTH 7 A) : 10. 6 musec

(NTH 8 A): 10.0 musec

(NTH 9 A): 10.3 musec

(NTH 10 A) : 40 . 877 musec

(NTH 100 A): 300.068 musec

(NTH 1 A): 7 .2 musec

(NTH 5 A): 8 .8 musec

(NTH 10 A) : 40. musec

(NTH 100 A) : 299. musec

(OR A A A): [A = NIL] 24 musec

(PFORMAT NIL "A short message."): 415 musec

(PFORMAT NIL "A long message, -A -A -A -A -A with five evaluations."

BC BC B): 1925 musec

(PROGN *THIS-LWP*): 5.90 musec

(PROGN (PROGN (PROGN (PROGN (PROGN (PROGN (PROGN (PROGN

(PROGN (PROGN *THIS-LWP*)))))))))): 6.02 musec

(POP A): 20. musec Estimate.

(PROGN (POP A)) : [A is NIL] 20. 5 musec

(PROGN (POP A)) : [A is full] 27. 5 musec

(PROGN A) : 5. 90 musec

(PROGN'A): 0.1 musec (?)

(PROGN'A'B): 0 .1 musec (?)

(PROGN'A'B'C'D'E'F'G'H'I'J): 0.05 musec (?!)

(PROGN'A'B'C'D'E'F'G'H'I'J
, I , J

13

15

musec

musec

140 musec

140-200 musec

[Depends on swapping.]

[Depends on swapping.]

[Apparently varies with swappinE

[Depends on swapping.]

300 musec [with 0, 5, or 10 in queue]

1295 musec [A ='i]

1560 musec [A ='ten-charst]

4230 musec [A is 100 chars long]

10.5 musec

＾

＾
'A'B'C'D'E'F'G'H

'A'B'C'D'E'F'G'H

'A'B'C'D'E'F'G'H

'A'B'C'D'E'F'G'H

(
'A'B'C'D'E'F'G'H

'A'B'C'D'E'F'G'H

'A'B'C'D'E'F'G'H
.¢

J

J

J

J

J

J

9

9

9

9

9

9

I

I

I

I

I

I

9

9

9

9

9

`

‘

44 C DURATIONS RANI(ED BY COMMAND NAME

'A'B'C'D'E'F'G'H'I'J

'A'B'C'D'E'F'G'H'I'J): 0.05 musec (?!)

(PROGN (ACQUIRE-SPIN-LOCK SP-LOCKA)

NIL

(RELEASE-SPIN-LOCK SP-LOCKA)): 30 musec

(PROGN (MB-SEND NIL MAILBOXA)

(MB-RECEIVE MAILBOXA)) : 300 musec [with O, 5, or 10 in queue]

(PROGN NIL) : 0 • 2 musec

(PROGN NIL NIL): 0.12, 0.200 musec

(PROGN (POP A)): [A is NIL] 20.5 musec

(PROGN (pop・A)): [A is full] 27.5 musec

(PROGN (PUSH'B A) (POP A)) : 43 musec

(PROGN (PUSH'B A) (SETQ A'NIL)) : 28. . musec

(PROGN (PUSH'B A)) : 30 musec

(PUSH'B A) : 21. musec

(PROGN (PUSH'BA) (POP A)): 43 musec

(PROGN (PUSH'BA) (SETQ A'NIL)): 28. musec

(RAND 10) : 985 mus ec

(RANDOM 10): 938 musec

(RPLACD A'B): 7. 5 musec

(SECOND A) 7. musec

(SETF (AREF ARRAY1 0) 1): 11.7 musec

(SETF (AREF ARRAY10 0) 1): 11.9, 13.3 musec

(SETF (AREF ARRAY10 9) 1): 11.7 musec

(SETF (AREF ARRAY100 0) 1): 11.7 musec

(SETF (AREF ARRAY100 9) 1): 11.9, 13.3 musec

(SETF (AREF ARRAY100 99) 1): 11.8 musec

(SETF (AREF ARRAY1000 0) 1): 11.8 musec

(SETF (AREF ARRAY1000 9) 1): 11.7 musec

(SETF (AREF ARRAY1000 99) 1): 11.5 musec

(SETF (AREF ARRAY1000 999) 1): 11.5, 13.3 musec

(SETF (GETHASH'ONLY-ONE-THERE HASH-EQL)'A): 150 musec ;Table: One entry.

(SETF (STRUCTA-SLOT1 STRUCTB) NIL): 16.5 musec

(SETF (STRUCTA-SLOT2 STRUCTB) NIL): 16.5 musec

(SETF (STRUCTA-SLOT3 STRUCTB) NIL): 16.5 musec

(SETQ A 1) : 6. 4 musec

(SETQ A O .111): 13 .4 musec

(SETQ A'B): 7 .2 musec

(SETQ A B) : 14 rnusec

(SEVENTH A): 9. 5 rnusec

(SIXTH A) : 9. musec

(STRING-APPEND A A): 190 musec

(STRING-APPEND A A): 415 musec

(STRING-APPEND A A): 2670 musec

(STRUCTA-SLOT1 STRUCTB): 16.5 rnusec

(STRUCTA-SLOT2 STRUCTB): 16.5 rnusec

(STRUCTA-SLOT3 STRUCTB): 16.5 musec

[A fills up]

＾

[B ='A, or 5, or O .1234567890]

;A is 1 char long

; A is 10 chars long

; A is 100 chars long

; All slots the same.

＾

＇ヽ

45

(TENTH A):

(THIRD A):

THIS-LWP:

(WHEN A'B) [A= NIL]:

(WHEN A'B) [A= T]:

(WITH-SPIN-LOCK SP-LOCKA NIL):

11. musec

7.5 musec

0.2 musec

7.1 musec

6.4 musec

23 musec

．

．

	0297_cont
	cont_01
	cont_02

	covers

