Internal Use Only (3E/AR)

TR-1-0295
Fasier C programming
Dynamic programming

Yves Lepage

November 1992

Abstract

This report describes the dynamic programming facility de-
veloped for our programming work on distances among compu-
tational linguistics objects. We propose a set of functions to
implement a simple database. The search and retrieve method
uses AVL trees. Using this simple database structure, any func-
tion with two arguments of any type can be declared as a "dy-
namic” function. This is done using predefined macros. As an
example, we applied the dynamic programming facility to the
implementation of a general distance.

Keywords

Programming in C, dynamic programming, distance calculation.

(©ATR Interpreting Telephony Research Laboratories

Contents

Introduction 7
1 Dynamic programming 9
1.1 Principle 9
1.2 First example: combinations 10
1.3 Second example: string distances 11
1.3.1 Definition 11

1.3.2 Behaviour of a direct algorithm 11

1.3.3 Behaviour of a dynamic programming algorithm . 12

1.34 Discussion 13

2 The dynamic programming facility 15
21 Anexample 15
2.2 The dynamic programming facility macro 16
23 Relations. 17
2.4 AVLtrees s 18
2.4.1 Definition 18

2.42 Rotations 19

243 TheAVLmodule. 21
Conclusion 23

A Annex: Asymptotic behavior of the recursive algorithm

for the Wagner and Fischer distance 25
Al Theproblem. 25
A2 Alowerboundfor f 27
A3 Anupperboundfor f, 29
A4 Fmalresult 31
Bibliography 33
Index 35

List of Figures

1 Examplesof AVL-trees 18
2 Counter-examples for AVL-trees 19
3 Orderingin AVLtrees 19
4 Singlerotation. 20
5 Doublerotation 21

. : . o A
: I . .
Y . :
. ' - .
i
. : i :
' “ B . . B ‘e . .) N t : : .
. fmt ey .)

LT , . R s
i haned " R N

.o

Introduction

This report describes the implementation of a dynamic programming
facility. Dynamic programming is a technique with a very simple princi-
ple: storing intermediate results avoids recomputing them several times.
Implementation requires a definite data structure for the storage of the
results and good retrieval techniques.

For our work on distances among objects for natural language pro-
cessing, we have found it possible (and elegant) to implement a general
algorithm for distance calculation using this technique.

e

1 Dynamic programming

This section explains the principle of dynamic programming. It is
illustrated on the computation of a mathematical function, and then
on the computation of distances, which constituted the reason for this
implementation.

1.1 Principle

The goal of the dynamic programming method is to reduce the com-
putation time of some functions. Of course, this advantage is balanced
by an increased use of space. The basic idea is to store intermediate
results in a database. These intermediate results are solutions of sub-
problems similar to the general problem!. When a new computation
is required, the database is first consulted. If the computation has al-
ready been performed and its result has been stored in the database,
no further computation is required; else the computation is performed
and its result is stored in the database.

Applying dynamic programming is interesting if the following condi-
tion is verified on the average:

the retrieval time from the database is less than the compu-
tation time of the function.

'A description of dynamic programming was announced in [Knuth 73, p. 435]
for Chapter 7. Unfortunately Volume 4, which would have included Chapter 7,
seems to have never been published!

1.2 First example: combinations

In order to understand the dynamic programming technique, suppose
we want to compute the number of combinations? for two non-negative
integers. This number is given by this well-known following formula
(for n > m):

n!
Cnt= ——— 1
" ml(n—m)! (1)
Suppose the computation of n! is performed using the recursive
definition of factorial:

nl=n.(n—1)! (2)

With this definition, since n > m and n > (n — m), computing n!
entails computing m! and (rn — m)!. Thus, in the computation of CT*,
these values will be computed twice and, as a consequence, the number
of calls to the function factorial will be 2n + 3.

Now, if intermediate results are stored, m! and (n — m)! are com-
puted only once and the number of calls to the function factorial is
n+1.

If retrieving intermediate results is of less cost than computing them
again, then this technique decreases the computation time.

2The number of combinations of two integers n and m is the number of possible
selections of m objects among n, without any regard to the order.

10

e

1.3 Second example: string distances

In this section, we show the advantage of the dynamic programming
method for our intended application. This is the computation of dis-
tances between strings. We compare the asymptotic behaviour of two
algorithms for the calculation of the distance: the first one is a direct
application of the recursive definition, and the second one is the ap-
plication of dynamic programming to this definition. This comparison
shows that dynamic programming should drastically reduce computa-
tion time.

1.3.1 Definition

The dynamic programming technique is typically used for functions
computed on arrays. For such functions, the final value of the function
is the value of the rightmost lowermost cell in the array, the value of a
cell in the array being obtained from the values of the preceding cells.
Let A be the name of the array. Then for all 7, 7 Equation 3 holds for
cell A[z, j] where f is some function:

A[z1.7] =f(A[z_11]]7A[2_17.7""1]1A[Z7J—1]) (3)

The Wagner and Fischer distance [Wagner & Fischer 74] between
two strings ¢ and ¢ is a function computed on an array. Each cell
Az, j] contains the value of the distance between the substrings ¢[1——1]
and ([l — —j]. If we note the length of the string ¢ as len(c), the
distance between strings ¢ and ¢’ is given by Allen(c),len(c’)], i.e. the
bottom right cell in the array. For the Wagner and Fischer distance,
the following formula gives the value of each cell:

A[i,j] = min(A[i -1,7-1] + dist(c[i], c'[j]),
Ali—17] + weight(eli), @
Ali,7 —1] + weight(c'[5]))

1.3.2 Behaviour of a direct algorithm

An implementation of the Wagner and Fischer distance making direct
use of this recusive definition will compute the value of each cell many
times. More precisely, A[z,7] is recomputed for all #/ > ¢ and 3’ > j
when computing A[¢’, j']. Let us call f(n,m) the number of accesses to
cells needed to compute A[n,m].

11

When either n or m is zero, the algorithm is linear in the length of
the non-zero argument. But this case has no significance.

For m,n > 1, we have shown that there exist a lower bound and
an upper bound for the function f. More precisely, f can be framed in
the following way for m,n > 1 (see Annex A for a proof):

Y(n,m), mn(1 +9\/§> < f(m,n) < mn (\/é)m+n

4

This result shows that, in the general case, the asymptotic behaviour
of this algorithm is exponential in the sum of the lengths of the strings.

1.3.3 Behaviour of a dynamic programming algorithm

If dynamic programming is used, the value of each cell is computed
only once and is accessed twice®. This is explained by the fact that each
cell Af7, 7] enters in the computation of its three neighbours Az + 1, 7],
Ali +1,7 + 1), Af¢,7 + 1). The first time it is needed, it is computed
and stored; the two next times, it will be retrieved from the database,
according to the principle of dynamic programming. Hence, if we note
as f’ the function denoting the number of computations really needed
in the dynamic prograrnming algorithm, we have:

Amn < f'(m,n)

where A is a constant. If we compare the two functions f and f’, we
see that the ratio:)
A _ flmn)

(V&)™ T flm,n)

decreases as an exponential function. Clearly, the dynamic program-
ming method entails a dramatic reduction of time during computation.

3For simplification, we neglect the case of the cells on the rightmost and lower-
most edges of the array, which are computed once and not accessed again.

12

1.3.4 Discussion

One could argue that the original algorithm given by Wagner and Fis-
cher for the computation of their distance is equivalent to the algorithm
with dynamic programming: its asymptotic behaviour is O(len(c) x
len(¢')) and, as the whole array is stored, the space required is len(c) x
len(¢’). Moreover, we were able to improve this algorithm by reducing
the space required to min(len(c),len(c’)) + 1. In fact, this implementa-
tion was the first one we used.

But there are good arguments for preferring dynamic programming.
They are twofold:

e simplicity. The dynamic programming facility allows one to keep
the elegance of recursive definitions. By contrast, dedicated al-
gorithms often depart considerably from the formal definitions of
the functions they are supposed to compute;

e efficiency of implementation. It is not always obvious to design
an algorithm like the one for the Wagner and Fischer distance,
and to improve it. The use of the dynamic programming facility
delivers an efficient program, without any effort.

These qualities are ideal qualities from the programmer’s point of
view: the source code is easily readible and the compiled code is effi-
cient.

13

2 The dynamic programming facility

The facility we have implemented allows a C programmer to declare a
two-argument function to be a dynamic function. This means that the
function will have a dynamic behaviour when called: each new value
is stored in a database, and a new call to the function first checks the
database for the result. This is made possible by a set of macros and
by the use of two separate modules. The first one defines the basic
functions for comparing relations, and the second one implements a
good store-and-retrieve algorithm using AVL trees.

2.1 An example

Le us reconsider the previous example concerning distances. We will
define a function dist returning an int to implement the computation
of the distance. Its arguments have a predefined type STR *, which is
a pointer to a string. The normal definition of this function in C would
be:

int dist(STR *argl, STR *arg2)
{

}.

Using the dynamic programming facility, the definition of the func-
tion will read as follows:

#define dist(argl,arg2) (int) _reln_(dist,argl,arg2)

int dynamic(dist) (STR *argl, STR *arg2)
{

The #define line can be seen as the declaration of a relation com-
posed of the name of the function and its two arguments (relations are
defined throughout the next section). The dynamic keyword can be
seen as a functional: it applies to a function and creates a new function
from its argument. This is explained in the next subsection.

15

2.2 The dynamic programming facility macro

The keyword dynamic is in fact a macro. It takes a function name
as an argument and creates the name of another function, the use of
which will be explained shortly.

The definition of this macro uses the ## operator of the ANSI-C
preprocessor. It is as follows:

#define dynamic_prime(fct) _static_ ## fct
#define dynamic(fct) dynamic_prime(fct)

For our example, the name of the new function is _static_dist.
This name (_static_) is used because this function performs the actual
computation and does not access the database.

The macro definition for the relation hides a call to a specific func-
tion with specific objects. _reln_ itself is defined as a macro. It
implements the search in the database before any actual call to the
function. It is defined as follows:

#define _reln_(fct,genl,gen2) \

(((RELN #*) args2Reln(dynamic(fct), \
genl, \
genz2, \
NULL))->arg3)

Keeping in mind that RELN and args2Reln are respectively a type
and a function defined in the reln module, the interpretation is as
follows:

e construct a relation with four elements: the name of the function,
its two arguments, and a NULL in the fourth position, for the still
unknown result;

e look for the database of relations for this uncomplete relation and
return the value of the last position. The function args2Reln

— either finds the relation in the database and can return the
result;

— or performs an actual call to the function, stores the com-
plete relation, and returns the result.

This macro replaces any call dist(argl,arg2) by a corresponding
call to args2Reln throughout the source code.

16

2.3 Relations

The reln module defines a class of objects representing relations.
Relations can be used for any purpose. However, for the dynamic pro-
gramming facility, a particular interpretation has been retained.

A relation has four positions. In the interpretation for the dynamic
programming facility, the first position stores a pointer to the function,
the two following positions point to the two arguments of the function,
and the last position represents the result of the application of the
function to the arguments.

The set of all relations can be seen as a simple database into which
it is possible to store new relations and from which one can retrieve
stored relations. '

17

2.4 AVL trees

Access to the relations stored in the database must be fast. In our
implementation, we have chosen the AVL-tree method, because it meets
the speed requirement, and it is elegant and compatible with our incli-
nation toward tree structures.

In our general implementation work, this technique is not reserved
for relations. All other stored objects (ATOMs, LISTs, TREEs) are stored
and accessed through the same technique. Consequently, the imple-
mentation of this technique has been carried out in a separate module.

2.4.1 Definition

AVL-trees have been defined by [Adel’son-Velskii & Landis 62]%. De-
scriptions of the algorithms for storing and retrieving on this data struc-
ture can be found in [Aho & al. 74, pp. 166-167] and [Knuth 73, pp.
451-461). Another simple presentation is to be found in [Alagar 89, p.
494-502)

AVL-trees are balanced binary trees: for any node in the tree, the
difference between the heights of the left and the right subtrees is at

most 1. See Figure 1 for examples of AVL trees, and Figure 2 for
counter-examples.

Mon Mon
——— . __ |
Tue Fri Tue Fri
I . l__
Wed Thu Sat Sun Wed Thu
| _
Holy

Figure 1: Examples of AVL-trees

4This reference renders unto Caesar the things which are Caesar’s, but I must
confess I have never read this original paper.

18

s

Tue Fri Tue Wed

[. P
Wed Sat Sun Thu Fri

I S
Thu Sat Sun

Figure 2: Counter-examples for AVL-trees

When used for ordering purposes, the nodes in an AVL trees are
positioned in such a way that their projection renders the ordering (as
in Figure 3).

Mon < Tue < Wed < Thu < Fri < Sat < Sun

Figure 3: Ordering in AVL trees

An interesting property of this storage data is that the search for
an element is in log(n), n being the number of objects stored. This
property is a direct consequence of the binary structure.

2.4.2 Rotations

When we insert a new node new-node in the tree, the tree may
become unbalanced. In that case, a transformation has to be performed
in order to rebalance it. It has been shown that, in all cases, one of
two transformations, called rotations, suffice. They restore to the tree
a balanced binary structure, and conserve the ordering which the tree
accounts for. This remarkable property constitutes the elegance of AVL

19

trees. In the following, we just describe the rotations, without giving

(=]
any formal justification.

Single rotation The simplest rotation is applied when a situation as
shown in Figure 4 is encountered. In this configuration, according to
the comparison function, the new-node has to be added under the tree
rooted in :3. This would unbalance the tree, because the difference in
height between the leftmost and the righmost subtrees becomes 2. The
whole tree would then be unbalanced. The transformation shown in
Figure 4 ensures the conservation of balance.

old-root
o .-
:1 new-root ===> new-root
/\ S [
/__\ :2 :3 old-root :3
/\ /\ S P /\
/__\N /__\ :1 :2 /__\
I /N /N l
new-node /__\ /__\ new-node

Figure 4: Single rotation

Double rotation This transformation must be applied when the
node to be added provokes an imbalance as illustrated in Figure 5.
We elevate a central node (here called new-root) as the root of all the
transformed subtree; and link its right subtree to its new left daughter
and its left subtree to its new right daughter.

20

e

:1 mid-root
/N oo
/ \ new-root 14 ===)> new-root
/ \ S B /N . |
J e _ \ 2 :3 / \ old-root mid-root
/\ /\ / \ S o __
/N .\ [______ \ 1 :2 :3 14
I /\ /\ /\ /\
new-node /N /N /__\ / \
/ \ | / \
J e _ \ new-node /______

Figure 5: Double rotation

In order to know where in the tree a transformation has to be applied
and which one, the nodes in the AVL tree must retain a balance factor
which is the difference in height between the left and right subtrees.

2.4.3 The AVL module

The interface of the AVL tree module we have implemented proposes
two functions, one for lookup, and the other one for storing:

void *findinAvl(void *, AVLCMP, AVL *x) ;
void *addinAvl (void *, AVLCMP, AVL *x*) ;

These two functions take three arguments
e the object to be looked up or added to the AVL tree;

e the comparison method for the object type. It must yield —1 or
1 if two compared objects are not equal and 0 otherwise;

e the AVL tree for the object type.

As output, the lookup function returns the object if it was found and
NULL if the object was not found. The storing functions returns the
address of the object stored.

21

-

These two functions are general. Hence, in the framework of our
studies on distances and pattern-matching on strings and trees, we use
them for a range of different objects: atoms, strings, trees, boards and
relations [Lepage 92b].

[S)
o

—

(b ="

Conclusion

This report has presented a facility which eases programming in C:
a set of macros transforming a two argument function into a dynamic
function.

We have shown using examples that this facility allows the program-
mer to keep the simplicity of a recursive definition, and, at the same
time, that the computation times are drastically reduced.

For our application to string distances, use of the facility divides the
time by an exponential in the sum of the data limits! Thus, it yields
performances which are comparable to the ones given by a dedicated
algorithm.

The implementation of the dynamic programming facility entailed
the definition of a special object called a relation. We use it to store
the results of a computation in the database.

Storing into and retrieving from this database are realised through a
well-known technique: using AVL trees. Our implementation is general
and is consequently used to store all of the objects we have defined in
our studies on distances and pattern-matching on linguistic objects.

r——

A Annex: Asymptotic behavior of the
recursive algorithm for the Wagner and
Fischer distance

We consider an array A of size M x N. Each cell in the array contains
a value which is a function of the three previous cells:

Alm +1,n + 1] = g(Alm,n + 1], A[m + 1,n], A[m, n])

where ¢ is some function. A cell on the edges is a function of the
previous cell on the same edge:

Al0,n +1] = ¢'(A[0,n]) and A[m + 1,0] = ¢'(A[m,0])

Moreover, the first cell A[0,0] is given.

This definition of functions on an array is a generalisation of the
recursive function defining the Wagner and Fischer distance between
strings.

A.1 The problem

We want to compute, or at least to estimate, the number of accesses
to cells when computing cell A[m,n] through a direct application of the
recursive definition. We call this number f(m,n).

Commutativity First, we observe that the function f is commuta-
tive, because the problem is symmetrical relative to the first diagonal:

¥(m,n), f(m,n) = f(n,m)

Value of f(0,0) As the first cell A[0,0] is a given, its “computation”
consists in just one read operation. Hence:

f(0,0) =1
First row On the edges, we have:

Vn, f(0,n+1)= f(0,n)+1 and f(n+1,0)= f(n,0)+1
With the value of f(0,0) known, we get:
Vn, f(0,n) = f(n,0)=n+1

25

Second row Using the previous result, we can compute the formula
for the cases where m =1 or n = 1. We consider m = 1. The value of
f(1,n) is computed from the preceding cell on the same row, plus the
two preceding cells on the first row. Moreover the cell itself is accessed
once. This yields the formula:

f,n)=f(1,n=1)+ f(0,n) + F(O,n —1) +1
Using the result obtained for the first row, we get:
f(Ln)=f(lyn=1)+n+14+n+1l=f(l,n—-1)+2(n+1)

This formula can apply from n down to 1. By summing up the lines,
and by replacing f(1,0) with its value, we get:

f(1,n) = f(l,n-1) + 2(n+1)
f,n=-1) = f(l,n-2) + 2n

£(1,1) £(1,0) + o2x2

fm = f00) 4 2w+
= 2 4 on(n+1)+2n

(n+1)(n +2)

As a result, we have:

Vo, f(1,n) = f(n,1) = (n + 1)(n +2)

General case When computing cell A[m + 1,n + 1] for m > 0 and
n > 0, we access this cell once and we must count the number of
accesses in the computation of all three previous cells. Noting this, we
write the following general formula:

f(m+1n+1)=14 f(mn+1)+ f(m+1,n)+ f(m,n)
Conjecture on the asymptotic behaviour In order to estimate
the asymptotic behaviour of the function f, we did some experiments

which led us to conjecture that there must exist some o, 8 > 1 such
that, for all m,n > 0,

nma™™ < f(m,n) < mnp™t"

The remainder of this appendix proves that « and 3 exist.

26

A.2 A lower bound for f

We first try to determine the value of a. We will use noetherian
induction to prove the following proposition, for all m, n:

Proposition 1

mna™" < f(m,n)

This proposition can be proved for all m,n > 0.

Ordering on pairs As noetherian order on the pairs (m,n), we take
the lexicographic order defined as follows:

(n,m) < (m',n") & (m<m)V(m=m'An<n)

With this order, the following implications are verified:

Proposition 2

m<m+1 = (myn+l) < (m+1l,n+1)
m+l=m+1l An<n+l = (m+1,n) < (m+1,n+1)
m<m+1 = (m,n) < (m+1,n+1)

Induction Suppose that Proposition 1 is true for all (p, q) < (m’,n’).
We will prove that it holds for (m’,n’).

First row If m’ = 0 or n’ = 0, we use the first row formula. As
commutativity holds, we consider only the case m’ = 0. Obviously,

Oxn'xa®™ =0 < f(0,n)=n"+1

is true for all n’.

(SV]
-1

General case If neither m' nor n’ is zero, then m' = m 4+ 1 and
n’ = n+1 withm > 0 and n > 0. Suppose that Proposition 1 is
true for all ranks lower that (m + 1,n+1). The orderings results given
in Proposition 2 imply that Proposition 1 holds for ranks (m,n + 1),
(m 4+ 1,n) and (m,n). Then, by summing up the first four following
inequations and by definition of f, we get:

1
m(n + 1)o™+"+!

(m + l)nam+n+1
m4n

1
f(m,n+1)
f(m +1,n)
f(m,n)

IANIN IN IA

mno

IN

1+ ((m(n+1)+ (m+1)n)a + mn)a™t" fm+1,n+1)

For Proposition 1 to be true at rank (n+ 1,m + 1), it is sufficient that:
(m+1)(n+ D™ < 14 ((m(n+1)+ (m+1)n)a+mn)a™™

which is equivalent to

0 <1+ (—(m +1D(n+1)?+ (mn+1)+(m+1)n)a+ mn) a™ttm

If we posit that @ > 0, then &®*™ > 0, and we can divide by this
quantity without changing the sense of the inequality:

1

qnrtm

0 <

—(m+Dn+1)a?+(m(n+1)+ (m+1n)a+mn

We put the polynomial in « on the left side of the inequality to get:

(m+1)(n+1)e® = (m(n+1) +(m+1)n)a—mn < 1

- an+m

It suffices that this proposition hold for all m, n, i.e. for the lower
bound of —i=. If we posit & > 1, 0 is the lower bound and we have:

m+Dn+De?=(mnr+1)+m+1)n)a—mn < 0

As the coefficient of a? is positive, this is true for a; < a < a, where
oy and a9 are the two solutions of the equation

I
o

(m+1)(n+1)e? = (m(n +1) + (m + 1)n)a — mn

28

-

Their values are

a_lxm+n\/(m+n)2+4mn
1= 3 m+1 n+1 m+1 n+1l m+1ln+1

and

a_lxm+n+\/(m+n)2+4mn
2= 3 m+1 n+1l m+1 n+1l m+1ln<+1

We posited a > 1. As «; is negative, it is sufficient to find the minimum
value of oy for m and n such that a; > 1, but we have to verify the
property for those m, n for which o, would be inferior to that minimum.

a2 is a non-decreasing function of n (and of m), so we explore starting
from (0, 0).

@(0,0) = 0 <1
02(0,1) = % S_ 1
ao(l,1) = B2 5

For (0,0) and (0,1), Proposition 1 holds according to the first row case.
So we can choose a = 1—422‘/—5 Hence, as a first partial result, we have
proved that:

V(m,m), *fz)m“ < fm,n)

<

A.3 An upper bound for f

In exactly the same way, we can look for an upper bound for f, that
is for a B such that

Proposition 3

f(m,n) < mngm™t"

We will prove this proposition only for m,n > 1.

29

Second row We want to find 3 such that:

or X 0 '31+n
n 4 2
- +n S nF1

An upper bound for 1+;2; is given with n = 1. It is 3. Hence, it suffices
to find a B such that 3 < &= B2 is a non-decreasing function for

ntl " n+tl
n > 1if B> 3/2 because:

m+ 2 3 ﬂm+2

S5;s8= ﬁm+1

3
—<B = Vn>1, 1153

5 =

3

Hence: ﬁm+1 ‘Bm+2

<
Vn > 1, +1—m+2

Hence, taking the minimum value of which is obtained for m = 1,

we get:

+1)
2
3L > = V6 <B
As /6 > 3/2, we can now look for a 8 > /6 for the general case.

General case If we follow the same rationale as for a, and considering
that 8 > 1 since we want 8 > /6, we end up with the inequality:

g S (m+1)(n+ DB~ (m(n+1) + (m+ 1n) B+ mn

If it is true for all m,n > 1, then it must be true for an upper bound
of zarw, 1 for example. Hence:

1 < (m+1)n+1)-(mr+1)+(m+1)n)B—mn
which yields
0 < (m+)n+1)B=(mn+1)+(m+1)n)B—mn—1
This inequation is verified for
B<Pr or <P

30

where £, and 3, are the two solutions of the equation
m+Dn+1)F-(mh+1)+m+1)n)f—mn—-1 = 0

Their values are:

IB_lxm_*_n_(m_*_n)?_*_4 mn + 1
YT 2 m+l n+1 m+1 n+l (m+1)(n+1)

and

ﬂ_lxm+n+(m+n)‘-’+4 mn +1
2T 27 m+1 T+l m+1 n+l (m+1)(n+1)

We want 8 > V6. As B is negative, we must only consider 8, < 8. It
can be easily proved that §, is a non-decreasing function of m (and of
n). So, we explore the possible values from (1,1):

Ba(1,1) = B < 6

As f2(1,1) is already less than V6, we must take 8 = /6. Hence, as a
second partial result, we have proved that:
m+n

Y(n,m), f(m,n) <mn (\/6)

A.4 Final result

By combining the two previous partial results, we have shown that
f can be framed between two exponential functions:

2

m+n
Y(n,m), mn(l + ﬁ) < f(m,n) £ mn(\/(_i)m+n

To conclude, the asymptotic behaviour of the function f is exponential
in the sum of the size of the givens of the problem.

31

References

[Adel’son-Velskif & Landis 62] Georgii Maksimovich Adel’son-Velskif
and Evgenii Mikhailovich Landis
An algorithm for the organization of information
Dokl. Akad. Nauk SSSR, 146, 263-266, 1962.
English translation in Soviet Math. 3, 1259-1263.

[Aho & al. 74] Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman
The Design and Analysis of Computer Algorithms
Addison-Wesley Publishing Company, 1974.

[Alagar 89] Vangalur S. Alagar
Fundamentals of computing
Prentice-Hall International Editions, 1989.

[Kernighan & Ritchie 88] Brian W. Kernighan and Dennis M. Ritchie
The C programming language, 2nd Ed.
Prentice Hall, Inc, 1988.

[Knuth 73] Donald E. Knuth
The art of computer programming
Volume 3/Sorting and Searching
Addison-Wesley Publishing Company, 1973.

[Lepage 92b] Yves Lepage
Easier C programming
Some useful objects
ATR report TR-I1-0294, Kyoto, November 1992.

[Lowrance & Wagner 73] Roy Lowrance and Robert A. Wagner
An Extension of the String-to-String Correction Problem
Journal for the Association of Computing Machinery, Vol. 22,
No. 2, April 1975, pp. 177-183.

[Selkow 77] Stanley M. Selkow
The Tree-to-Tree Editing Problem
Information Processing Letters, Vol. 6, No. 6, December 1977,
pp. 184-186.

[Tai 77] Kuo-Chung Tai
The Tree-to-Tree Correction Problem

33

Journal for the Association of Computing Machinery, Vol. 26,
No. 3, July 1979, pp. 422-433.

[Wagner & Fischer 74] Robert A. Wagner and Michael J. Fischer
The String-to-String Correction Problem
Journal for the Association of Computing Machinery, Vol. 21,
No. 1, January 1974, pp. 168-173.

34

Ry

;-

Index

addinAvl, 21
AVL trees, 18-21

combination, 10
dynamic programming, 9

factorial, 10
findinAvl, 21

macro
dynamic, 15-16
-reln_, 15-16
module
AVL, 21
reln, 17

relations, 17

rotation
double, 20
single, 20

rotations, 19

string distance, 11

	cover
	0295_cont
	last

