Internal Use Only (JE/AB)

TR-1-0293
Fasier C programming
Input/output facilities

Yves Lepage
November 1991

Abstract

This report describes the input/output facilities developed
for our studies of distances between linguistic objects. We pro-
pose two general functions, similar to the standard C library
functions fscanf and fprintf. For input, description of an
object syntax is possible, thanks to a set of macros which al-
low one to transform a BN description into a fragment of C
code. For interpretation, a backtracking mechanism has been
implemented.

Keywords

Programming in C, input, output, BNF, backtracking mechanism.

©ATR Interpreting Telephony Research Laboratories

Contents

Introduction

1 Input/output facilities

1.1
1.2

2 The

S
N =~

23

The predefined C functions
Extending the C functions
1.2.1 Class designators
1.2.2 The fscan and fprint functions
1.2.3 The char2file function
1.24 The #include directive.

grammar facility

Anexample oo
The backtracking mechanism. P
2.2.1 The global variables
222 The raz_alignfunction
2.2.3 The set_alignfunction
224 Thermalignfunction
22,5 ‘The alignfunction
22,6 The fget function
227 Theshiftfunction
The grammar facility macros
23.1 General principle
2.3.2 The rule and end_rule macros
2.3.3 The rhs and end_rhs macros
234 The ruleOptn and end_ruleOptn macros
2.3.5 The ruleStar and end_ruleStar macros
2.3.6 The generatedcode

Conclusion

Bibliography

Index

17
17
20
20
21
22
23
24
25
26
27
27
28
29
30
31
32

35
37

39

. .

. . PR .
-y

(1]

List of Figures

1 Content of the file tree.data .
2 Content of the file string.data
3 Content of the file board.data

..............

..............

1)

Introduction

This report describes part of the implementation work done in the
frame of a more general study. The aim of the general study is to im-
plement basic objects and functions to allow experiments with pattern
matching and distance calculation on trees and strings.

The report describes the basic input/output functions which have
been implemented. They allow one to program more quickly the var-
lous read/write functions needed for each class of objects. The input
facility accepts grammar descriptions in a form equivalent to that of
BNF grammars.

The advantages of such facilities are:

In

the simplicity of use of the input/output functions. The burden
of calling different read/write functions for each different object
has been eliminated by proposing general functions which respect
the spirit of the standard C library functions;

direct transcription of BNF grammars, which are are simple and
immediately understandable;

elimination of the burden of writing small ad hoc parsers for each
new small grammar. Writing such small parsers often hinders
quick design of new objects;

no increase in the number of code pieces. Using such programs
as YACC [Johnson 79] or LEX [Lesk & Schmidt 79] (or even GA
[Lepage 88]!) unnecessarily increases the number of files for an
application;

compatibility between the relative simplicity of input format for
basic objects and the simplicity of the facility. The complexity of
the LEX and YACC programming languages is not justified for
the facilities proposed here;

drastic reduction in development time stemming from simplicity
of use.

the following, we first describe the input/output functions pro-

posed, and then the input facility for grammar descriptions. This latter
is illustrated using examples. Its backtracking mechanism is detailed
and the macros for it are defined.

-~

1 Input/output facilities

In this section, we describe the programming work intended to facili-
tate the input and output of the objects we manipulate. First, we recall
the functions which the C programming language offers, and then we
show how we programmed similar general functions.

1.1 The predefined C functions

The usual functions for input and output in C (see for reference
[Kernighan & Ritchie 88, pages 243-246]) are fscanf and fprintf, and
their variants scanf, sscanf, ... The two first functions have the
general format:

function(FILE #*stream, const char *format, ...)

where stream is the stream from which to read or on which to write,
format is the format string, and the remaining parameters are the C
variables read or written. : ’

The format string contains two types of objects: ordinary char-
acters, which are copied to the output stream or expected to match
exactly the input stream, and conversion specifications. Conversion
specifications begin with the character % and end with a conversion
character. Between the two, one can define adjustment, field length,
precision, and so on. We are only interested in the simplest form: %
followed by a conversion character.

1.2 Extending the C functions

We propose to extend (and limit) the previous functions in the fol-
lowing way. The new input and output functions are called fscan and
fprint and their variants for the standard streams stdin and stdout
are called scan and print. They will accept the simplest form of the
conversion specifications of fscanf and fprintf, but, in addition, they
will also accept conversion specifications in the syntax < a > where a
is a predefined class designator.

1.2.1 Class designators

For each object class created for our application, we have defined a
class designator. Here is the list of the class designators defined so far
(see also [Lepage 92b] for a description of these classes:

e b for booleans (class BOOLEAN). Two printed values are possible:
TRUE and FALSE;

a for atoms (class ATOM). a, 12, HEARER-SIDE, + are atoms;

L for lists (class LIST), e.g. (a,b,c);

S for sets (class SET), e.g. {a,b,c};

A for strings (not C strings, but strings of class STR), e.g. "Is
this the conference office ’7’" wherels, ..., office, ’'?’
are atoms.

T for trees (of class TREE) in the parenthesised form, e.g.

SEM(RELN(PHATIC)

JAGEN('X1)

,RECP(!X2)

,0BJE(RELN (HALLO-INTERJ)
,ASPT(-)
,TENSE(PRESENT)
,AGEN('X1)
,RECP(!X2)))

e D for trees in the drawn form, e.g.

SEM
_______________________ o
RELN AGEN RECP OBJE
I I I . e
PHATIC !X1 X2 RELN ASPT TENSE AGEN RECP
I I | I |
HALLO-INTERJ - PRESENT !X1 !'X2

e R for tree transformational rules (represented with class TREE),
e.g.

10

>

:root (RELN(:reln),$1) == :reln($1)
e F for feature structures (same class as trees, TREE), e.g.

[[SEM [[RELN PHATIC]
[AGEN 'X1([]]
[RECP !X2[]]
[OBJE [[RELN HALLO-INTERJ]

[ASPT -]
[TENSE PRESENT]
[AGEN !X1]

[RECP !X211]1]]

e B for boards (class BOARD), a pair consisting of a tree and a string.
When displayed, the tree is drawn, e.g.

SEM
_______________________ oo
RELN AGEN RECP OBJE
I l I e C | e
PHATIC !X1 !X2 RELN ASPT TENSE AGEN RECP
l l I | I
HALLO-INTERJ - PRESENT !X1 !X2

IlHello) . Rl

e W for woods (class WOOD). For example: a(<b=c=d>) represents a
wood with root a dominating b or ¢ or d.

e O for objects, only in use in the predefined functions fscan and
fprint. '

As an example of use of the scan and print functions, consider the
following program fragment. The user is asked to input a boolean, a
set and a parenthesised tree. The program outputs them respectively
in the form of a boolean, a list and a drawn tree. The output of the set
as a list is possible because sets are constrained lists.

BOOLEAN boolean = FALSE ;
SET *set = NULL ;

11

TREE #*tree = NULL ;

scan(", <S>, <T>", &boolean, &set, &tree) ;
print("values: ,\n<L>,\n<D>",boolean,set,tree) ;

If the users types in the following line:
TRUE, {a, b}, a(b,c(d,e))
the output is:

values: TRUE,
(a, b),
a

.
P c
-l
de
This program fragment shows that the constant string format accepts
the usual codes for line feed, tabulations, . ..as in standard C.

1.2.2 The fscan and fprint functions

The fscan and fprint functions handle the format string in the fol-
lowing way. On a normal character, they just call standard C library
functions; on a < character, an object of class 0BJECT is created. It con-
tains the type of the object to be read or written. This type is given by
the class designator following the < character. The specialised functions
for reading and writing objects of type OBJECT, i.e. readObject and
writeObject, are then called.

These functions manage the choice of the specialised functions for
the definite object class using a switch instruction on the type class.

13

1.2.3 The char2file function

No direct equivalent for sscanf and sprintf is provided. However,
a general function is available which allows one to ”transform” a string
into a file. It is called char2file and takes a constant string as its first
argument. It returns an opened stream.
With this function the equivalent of a call to sscanf is written in
the following way: '

fscan(char2file("foo"),"<a>" ,&atom) ;

Because the number of opened streams is limited, a safer program-
ming style would be:

FILE *tmp = NULL ;

I

fscan(tmp = char2file("foo"),"<a>",&atom) ;

fclose(tmp) ;

14

{9

1y

1.2.4 The #include directive

In order to allow sharing of data from different files, the functions
fscan and scan interpret the #include directive.
To illustrate this facility, suppose we have stored the displayed form
of a tree in the file tree.data and a string in the file string.data (see
figure 1 and figure 2).

SEM

_______________________ e C

RELN AGEN RECP OBJE
l I I o | =
PHATIC !X1 !X2 RELN ASPT TENSE AGEN RECP
I I I ! l
HALLO-INTERJ - PRESENT !X1 !X2

Figure 1: Content of the file tree.data

"Hello ’.’"

Figure 2: Content of the file string.data
The file board.data may contain references to these two files (see

figure 3).

#include "tree.data"
#include "string.data"

Figure 3: Content of the file board.data

In a C program, the set of instructions

FILE *stream = NULL;
BOARD *board = NULL;

stream = fopen(''board.data","r");
fscanf (stream,"",&board);

15

will have the expected effect. It will assign the tree contained in the
file tree.data to the tree part of the variable board and the string
contained in the file string.data to its string member.

16

n

2 The grammar facility

A set of macros, using predefined functions which implement a back-
tracking mechanism, allows the description of grammars along with
the description of actions written in C code. This section describes
this facility. The backtracking mechanism will be described in the next
section.

2.1 An example

The input function readList for the class 1ist describes the syntax
a list has to follow and specifies the actions to be performed for the
actual creation of the list.
A list is noted as a sequence of elements separated by commas.
The whole sequence itself is enclosed in parentheses. Using the BNF
notation, this definition can be noted as follows:

<list>u=([<element>,]* <element>)

It would be convenient to automatically replace the BNF symbols
(==, [,],]*, etc.) by predefined C-code pieces. Unfortunately, this
is not possible, because the ANSI-C preprocessor allows the directive
#define to be applied only on identifiers.

Thus it is necessary to transcribe the BNF notation into an equiv-
alent one. The grammar facility proposes the following transcriptions:

n=... 1srewritten as rule ...end_rule ;

R P rhs ...end.rhs rhs ...end_rhs
[-..] ruleOptn ...end_ruleOptn
[...] ruleStar ...end ruleStar

Each non-terminal or terminal has to be replaced by the adequate
function for its reading. These calls are separated by &&. The tran-
scription of the grammar for list gives the following program fragment:

17

rule
rhs fscan(stream," (") &&
rulelptn
rhs
ruleStar
rhs readElt(stream,&elt) &&
fscan(stream," ,")
end_rhs
end_ruleStar &&
readElt (stream,&elt)
end_rhs
end_ruleOptn &%
fscan(stream,")")
end_rhs
end_rule ;

The rule ...end._rule ; expression yields a boolean value. A TRUE
value means that the input has been read correctly according to the
grammar. The next reading operation will start after the portion of in-
put read. A FALSE value means that the attempt to read on the input
according to the grammar has failed. The input pointer is backtracked
to the position it had before the attempt, and the next reading attempt
will start from there. This backtrack mechanism will be described be-
low.

For the completion of our example, C code has to be inserted in
the previous code in order to actually create the objects. A function
addtoList, which adds an element to a possibly empty list, suffices for
this.

C code can be added only after the end_rhs key-word and must
respect the syntax of a C statement. Using this possiblity, the input of
a list can be completely programmed. It is as follows:

18

Q)

v

BOOLEAN readList(FILE *stream, LIST **list)
{

BOOLEAN result = FALSE ;

ELT *elt = NULL ;

*1ist = NULL ;
result = rule
rhs fscan(stream," (") &%
ruleOptn
rhs
ruleStar
rhs readElt(stream,&elt) &%
fscan(stream," ,")
end_rhs
*1ist = addtoList(elt,*1list) ;
end_ruleStar &&
readElt(stream,&elt)
end_rhs
*1ist = addtoList(elt,*list) ;
end_ruleOptn &&
fscan(stream,")'")
end_rhs
end_rule ;

return result ;

19

2.2 The backtracking mechanism

We now describe the backtracking mechanism implemented for the
grammar facility. Its source code can be found in the gram module.

2.2.1 The global variables

The backtracking mechanism requires the memorisation of the char-
acters of the input stream in a buffer so that they can be reused several
times. It is also necessary to stack the backtracking points in a stack.
At any time in the computation, one can handle the stack if one knows
the position of the next character to be read, and the last character
in the buffer. In addition, the top variable gives the last backtracking
point pushed onto the stack.

@

2.2.2 The raz_align function

This function resets the values of all the global variables. It has been
implemented for consistency but it is not used in the grammar facility.

void raz_align(void)
{
buffer[0] = 0 ;
stack[0] = 0 ;

next = 0 ;
last = -1 ;
top = -1 ;

2.2.3 The set_align function

This function is called when a new backtracking point is created. It
corresponds to the rule keyword in the grammar facility.

This function basically adds the position of the next character to be
read as a new backtracking point in the stack. Of course, this action is
impossible if the stack is full. In this case, the stack is cleaned up by
eliminating all the position values which are no longer relevant. These
positions are recognised because they have become negative during ex-
ecution (see the shift function). If this cleaning of the stack cannot
be completed, an error occurs.

void set_align(void)

{
int shift = 0, 1 =0 ;

if (++top < MAX)
stack[top] = next ;
else
{
for (shift = 0 ;
(shift < MAX) && (stack[shift] < 0) ;

shift++) ;
if (shift > 0)
{
for (1 = shift ; i < top ; i++)
stack[i-shift] = stack[i] ;
top -= shift ;
stack[top] = next ;
}
else
error(MDDULE,"set_align“,ERR_STACKOVF) ;
}

Q]
(8]

2.2.4 The rm_align function

Y

This function is called when the input stream has been successfully
analysed according to a rule description using the grammar facility. It
corresponds to the end_rule keyword, and is also the last action to be
taken by end_ruleOptn and end_ruleStar.

This function removes the last backtracking point from the stack.
For its successful operation, of course, the stack must not be empty.

void rm_align(void)

{
if (top < 0)
error (MODULE, "rm_align'",ERR_STACKEMPTY) ;
else
top-- ;
}

2.2.5 The align function

This function is called when a new right-hand side is tried. It cor-
responds to the rhs keyword of the grammar facility, which introduces
alternative right-hand sides in rules. As ruleOptn and ruleStar are
factored alternatives, they also call this function.

This function performs backtracking. The position of the next char-
acter to be read on the buffer is given by the top of the backtracking
stack. This function is considered as a function reading an empty string
on the input stream. This is why:

e it returns the boolean value TRUE because it always succeeds.

e the backtracking point is not removed from the stack; if removed,
it would only be popped from and immediately pushed back on
the stack.

BOOLEAN align(void)
{
if (stack[top] < 0)
error (MODULE,"align" ,ERR_BACKTRACK) ;
else
next = stack[top] ;
return TRUE ;

2.2.6 The fget function

The communication between the stream and the buffer is established
through the fget function. This function is used in the basic functions
of the char module for skipping blanks, comments, reading until a
character or a word, reading a word, an integer, kanji strings, and so
on.

This function reads one character from the buffer. If there are no
more characters in the buffer, the next character on the stream is read
using a call to the C-library function fgetc, and is moved into the
buffer. This function may call the shift function, described below, if
no more space is available in the buffer.

int fget(FILE *stream)

{
if (next > last)
{
if (! (last+1l < MAX))
shift() ;
buffer[last+1] = fgetc(stream) ;
next = ++last ;
}
return buffer[next++] ;
}

[()
(@]

2.2.7 The shift function

This function is called when the buffer is full. It creates space in the
buffer by shifting all characters in the buffer by a certain offset SHIFT.
The values of the next character to be read and of the last character
in the buffer have to be modified appropriately. Also, the values in the
stack, representing the backtracking points on the buffer, have to be
decremented by the value of the offset. They may become negative,
which means they have no more relevant values.

static void shift(void)
{

int i =0 ;

for (i = SHIFT ; i < MAX ; i++)
buffer [i-SHIFT] = buffer(i] ;

next -= SHIFT ;

last -= SHIFT ;

for (1 =0 ; i < MAX ; i++)
stack[i] -= SHIFT ;

2.3 The grammar facility macros
2.3.1 General principle

The keywords defined for the grammar facilities are grouped by pairs.
For each opening keyword, there is a closing keyword.

The keyword pairs containing the word rule define boolean values.
A TRUE value means that the input has been correctly analysed by the
grammar section enclosed between the beginning and ending keywords.
An opening keyword containing rule opens a condition, and its corre-
sponding closing keyword ends a statement.

A rhs keyword pair is supposed to be placed in the middle of a
rule keyword pair. Consequently, the rhs keyword ends a statement
and opens an else if condition, whereas end_rhs closes a condition
and opens a statement.

The C syntax allows one to enclose a sequence of statements in
curly brackets to form a compound statement. Moreover, a statement
enclosed in parentheses returns a value which is the value of the last
statement of the sequence. The following macros make extensive use of
these possibilities.

2.3.2 The rule and end_rule macros

Before a rule is invoked, a backtracking point is memorised by call-
ing the set_align function. The exploration of the different right-
hand sides is done as a sequence of if ...else if. At the end, the
backtracking point is removed. If none of the alternatives applied, the
backtracking point is also removed, but the current function is exited
by returning FALSE (recall that a rule ...end_rule sequence returns
a boolean value). ‘

The definition of the rule and end_rule macros is as follows:

#define rule «{ \
set_align() ;
if (FALSE)

{

~

#define end_rule }
else
{
rm_align() ;
return FALSE ;
Y
rm_align() ;
TRUE ;

P Pl P P g

b

2.3.3 The rhs and end_rhs macros

Before trying a new alternative, backtracking is performed by calling
the align function. The result of reading a right-hand side is a boolean
value returned to an if instruction. If it is true, i.e. the input has
been correctly read according to the right-hand side, the actions can
be executed.

The interpretation of the rhs and end_rhs macros is as follows:

#define rhs } else if (align() &%

#define end_rhs) {

2.3.4 The ruleOptn and end_ruleOptn macros

Before exploring an optional sequence in the grammar, a backtrack-
ing point has to be memorised. The ruleOptn is thus the same as a
rule keyword. But leaving a ruleOptn section with end_ruleOptn is
slightly different from a end_rule keyword. An eventual failure must
not be taken into consideration, because the grammar section is op-
tional. Thus, in any case, a TRUE value must be returned.

Consequently, the interpretation of the ruleOptn and end_ruleOptn
macros is as follows:

#define ruleOptn rule

#define end_ruleOptn }
else if (align()) {} ;
rm_align() ;
TRUE ;
b

~

30

2.3.5 The ruleStar and end_ruleStar macros

The ruleStar keyword invokes a while loop. So the same grammar
section and actions are executed until the input cannot be analysed by -
the grammar section. Then, the end_ruleStar keyword has to remove
the backtracking point and return TRUE in any case.

The definition of the ruleStar and end_ruleStar macros is thus
as follows:

#define ruleStar ({ while (rule

#define end_ruleStar ¥
else if (align())
{
break ;

L
rm_align() ;
TRUE ;

D)

TRUE ;

Pl A A

i)

31

2.3.6 The generated code

We illustrate the previous definitions of the grammar facility macros
using an example. Consider the following grammar fragment,

begin[one|two]end

where either one or two must be read.

Suppose we want certain variables to be assigned values according
to the integer read. This can be translated in the following program
fragment:

return
rule
rhs scan(" begin") &&
rule ,
rhs scan(" one") end_rhs
i=1;
rhs scan(" two") end_rhs
{i=2;3=0;1
end_rule &&
scan(" end")
end_rhs
{ printf("i = %d\n",i) ; }
end_rule ;

The code generated by the application of the macros is as follows:

return
({ set_align() ;
if (FALSE) { }
else if (align() && scan(" begin") &&
({ set_align() ; if (FALSE) { }
else if (align() &% scan(" one"))
{i=1;1}%
else if (align() && scan(" two"))
{{i=2;3=0;1}1}
else
{ rm_align() ; return FALSE ; } ;
rm_align() ; TRUE ;
1) &

(v

scan(" end"))
)
{ printf("i = %d\n",i) ; }
else { rm_align() ; return FALSE ; } ;
rm_align() ; TRUE ;
b

The example code demonstates that a rule returns a boolean function,
and that the application of alternatives is realised by a sequence of if
...else if instructions. At each of these if or else points, backtrack-
ing functions are called.

33

taty

Conclusion

This report has described general functions which allow objects to be
input and output more easily than with standard C library functions.
It has also described a grammar facility for the rapid description of
input formats for objects.

These facilities have been used to implement the read/write func-
tions of the objects we work on: atoms, lists, strings, sets, trees (or
forests), woods.

They have proved to be simple to use and of great utility for the
rapid implementation of new objects, as they make overly specific func-
tions unnecessary and eliminate the burden of programming small spe-
cialised parsers for simple input formats.

35

36

References

[Johnson 79] Stephen C. Johnson
YACC Yet Another Compiler-Compiler
UNIX Programmer’s Manual, Seventh Edition, Volume 2B
Bell Telephone Laboratories Murray Hill, New-Jersey, Jan-
uary 1979.

[Kernighan & Ritchie 88] Brian W. Kernighan and Dennis M. Ritchie
The C programming language, 2nd Ed.
Prentice Hall, Inc, 1988.

[Lepage 88] Yves Lepage
GA Un générateur d’analyseurs (version 2.1)
Document interne GETA, Grenoble, janvier 1988.

[Lepage 92b] Yves Lepage
Easier C programming
Some useful objects
ATR report TR-1-0294, Kyoto, November 1992.

[Lesk & Schmidt 79] M.E. Lesk and E. Schmidt
LEX A Lexical Analyzer Generator
UNIX Programmer’s Manual, Seventh Edition, Volume 2B
Bell Telephone Laboratories Murray Hill, New-Jersey, Jan-
uary 1979.

37

Index

align, 24
atom, 10

backtrack, 17, 20
board, 11
boolean, 10

char2file;14
class designator, 10
conversion character, 9

end_rhs, 29
end.rule, 28
end.ruleQptn, 30
end_ruleStar, 31

feature structure, 11
fget, 25
fprint, 9, 13
fprintf, 9
fscan, 9, 13
fscanf, 9

#include, 15

list, 10
list, 17

object, 11, 13
print, 9

raz.align, 21
readList, 18
readlList, 17
rhs, 29
rm_align, 23
rule, 28
ruleOptn, 30

39

ruleStar, 31

scan, 9
scanf, 9

set, 10
set_align, 22
shift, 26
sscanf, 9
stdin, 9
stdout, 9
string, 10

tree, 10
transformational rule, 10

wood, 11

	0293_cont
	0293cv

