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ABSTRACT 

Empirical observation has shown that substantial improvements in speaker-independent 

recognition using HM-Nets can be achieved, if all the variances in the HM-Net are spread by a 

same factor. Optimal choice of the value of this factor can increase the recognition rate by as 

much a・s 20 percent. However, the v~lue of the factor is currently determined heuristically for 

each speaker, which undermines the usefulness of this adaptation method. The purpose of the 

study presented in this report was to investigate the underlying parameters in the speech signal 

(which determine the optimal spread factor value, in order to devise a more robust procedure 

for speaker-adaptation. The study concentrated on finding a correlation between the optimal 

spread factor value and the difference between the parameter distributions of the HM-Net, 

and those determined directly from the speaker's speech data. The data from five out of six 

speakers showed a correlation between Bhatacharyya distance, which is a measure of both 

mean and variance difference, and optimal spread factor value. 

ATR Interpreting Telephony Research Labs. 

ATR自動翻訳電話研究所



INDEX 

1 Introduction 

1.1 Speaker independent recognition with HM-Net systems . . . . . . . . . .... 

1.2 An empirical observation : spreading the variances for better recognition in 

Hidden J¥tlarkov Networks . . . . . . . . . . . . . . . . . ......... . 

3

3

 

4
 

,~, 

2 First stage : Heuristic determination of the Variance Spread Factor 5 

2.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

2.2 Rest1lts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

＾ 

3 Direct Variance Calculation 

3.1 Principle . . . . . . . . 

3.2 Experimental Results . 

3.3 C onclus1on . . . . . . . . . .. 

4 Mahalanobis Distance Calculation 

4 .1 Principle . . . . . . . . . . . 

(4.1.1) Definition of the Mahalanobis distance 

4.2 Experimental Results . 

4.3 C onclus1on ... 

7

7

7

9

9

9

9

9

1

 

5 Bhattacharyya Distance Calculation 

5.1 Principle ........ . 

(5.1.1) Definition of the Bhattacharyya distance 

5.2 Experimental results 

5.3 C onclus1on ... 

’ 
6 Studying the Log-Likelihood 

6.1 Principle . . . . . . . 

6.2 Experimental results 

7 Conclusion 

11 

11 

11 

12 

12 

14 

14 

14 

15 

£_i 

2
 



.
J
 

1 Introduction 

1.1 Speaker independent recognition with HM-Net・syste1ns 

The stochastic properties of Hidden Markov Networks (HM-Nets) [7] make the1n a powerful 

tool for speech recognition, because they can account for the variations in phoneme elocution 

encountered in everyday speech. The process of determining the probability distributions of 

the HNI-Net is called model training [4]. If the model is suitably trained, it is possible to achieve 

high recognition rates (greater than 90 percent) for speaker-specific systems. However, this 

performance is strongly degraded and can be as low as 20 percent if this same model is used 

to recognise a different speaker's speech, as is the case for speaker-independent recognition. 

This is simply because the stochastic properties of the model no longer describe the speaker's 

phones accurately, and it illustrates the importance of model training. 

＾ 
Model Design 

The internal structure of the瞑 -Netis def med 
such as phoneme representation, number of states 
and speech parameters. 

―
―
―
―
-
．
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Model Training 

Using a large amount of speech data, the distributions 
of the individual states and transitions are established, 
usually using supervised training. 

-

9

 

~ Model Retraining 

For speaker-independent systems, an-mixture model is 
created by retraining the initial mcxtel with n different 
speakers, using a medium-sized vocabulary. 

I 
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ー Model Adaptation 

The mixture model is adapted to each speaker, using as little 
data as possible, by using a suitable adaptation technique. 

Figure 1. The main steps in the design of a speaker-independent recognition system using Hl¥!I-Nets 

In the case of speaker-independent recognition, it is no longer possible to train the model to 

the speech characteristics of every user. To achieve high recognition rates, the initial training 

has to produce a fairly'neutral'stochastic model of phoneme elocution. To achieve this, 
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it is common to train n different HM-Nets using n different speakers, and to combine their 

properties into one'super-HM-Net', which is then called an n-m紐fore HM-Net [5]. This 

way higher recognition rates can be achieved. However, the specific characteristics of each 

individual speaker will still strongly influence the overall performance. 

The usual way of circumventing this problem is to use the actual speech data produced by 

the user to adapt the model to his voice. The idea is to use as little data as possible for the 

adaptation, so that the system remains practical to use. Various adaptation techniques have 

been successfully implemented and provide good results (Vector Field Smoothing [6], Speaker-

tied weight training [5], Fixed weight training [5]). The adaptation technique discussed here 

is the so-called variance spread adaptation, which is a simple and efficient means of initially 

adapting mixture HM-Nets. It is discussed in more detail in the following section. Figure 1 

reviews the different stages in the design of a speaker-independent speech recogniser. 

1.2 An empirical observation : spreading the variances for better recognition in 

Hidden Markov Networks 

The principle of variance spread adaptation is very simple : inter-speaker differences are 

ironed out by broadening the distributions in the HM-Net. This is illustrated in figure 2. 

The model's distribution and the'true'distribution differ both in mean and variance. The 

black regions show the joint probability of the two distributions (Pl(x)nP2(x)). By increasing 

the variance of the model's distribution, this region is increased, hence the probability of 

recognising the actual speaker's speech is also increased. However, the distribution becomes 

less sharp. 

The adaptation is carried out by defining a single factor, the spread factor, by which we 

multiply every distribution in the model. This has obvious limitations : if the factor is too 

small, the adaptation is insufficient, if it is too big, there is no discrimination between the state 

outputs and the recognition is worse. No distinction is made between speech parameters, so 

the adaptation would seem to be coarse and ineffective. 

Pl(x) 

Speaker distribution 
/ 
し P2(x)

'F/auened'model distrib111io11 

＼ 
Pl'(x) 

Speaker distribution 
/ 

P2(x) 

.＇‘ 

Origin:il distributions Dist,ihutions after adaptation 

Figure 2. Principle of variance spread adaptation 

However, experience has shown that an optimal choice of spread factor can actually lead to 

improvements of up to 20 percent in the recognition rate for speakers. It is therefore on the 

contrary very effective, which together with its extreme simplicity make it very attractive as 
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an initial adaptation technique. 

The current method results from empirical observation, and the actual spread factor used 

is derived heuristically. ¥Ve do not know how to obtain the optimal spread value fron1 speaker 

input data, so a heuristic value is chosen and applied for every speaker. This method is far 

from satisfactory for many reasons of which the following are the most important : 

• the optimal factor value varies substantially from speaker to speaker, and there is no a 

prio・ri means of deriving it. 

• there is no discrimation between parameter type, i.e. the same factor is applied to every 

distribution, regardless of the actual differences between model and speaker distributions. 

• the heuristic value is always sub-optimal. 

In order the remove these limitations, it would be extremely interesting to look into the 

precise characteristics of the speech data which determine the spread factor value, for the 

＾ヽ followingreasons : 

Reason 1 variance spreading is a simple means of adaptation, which enables high recognition 

rates to be achieved. If it can be derived directly from the input speech data, it could prove 

to be powerful adaptation technique for independent speech recognition using Hl¥tI-Nets. 

Reason 2 the method is currently very crude, so its analysis could reveal a more sophisticated 

method of adapting the model, producing better results. 

Reason 3 the current method relies on heuristics, so is of limited interest for robust system 

design. 

This report investigates the variance spread adaptation technique, by studying the corre-

lation between the optimal spread factor value and the dissemblance between the model and 

speaker-based distributions. 

~The research was carried out using 6 male speakers, uttering phrased speech. A heuristic 

procedure to determine the optimal spread factor value for each of these speakers was first 

carried out. This is the topic of the next section. The next four sections present the four 

different procedures for automatic estimation of the spread factor which were studied : direct 

variance calculation, J¥tlahalanobis distance, Bhatacharyya distance and log likelihood. 

・ー.

2 First stage : Heuristic deter111ination of the Variance Spread Factor 

2.1 General Description 

To establish the optimal value for the spread factor for each speaker, the following procedure 

was adopted : for each speaker in turn, we adapted the model using spre~d values ranging 

from 1.0 (no adaptation) to :3.0, the usual heuristic optimum being normally situated around 

2.0. We tested each adapted model using the same test data, and plotted the recognition rate 

for each value. The optimal value is then the value which achieves the highest recognition rate. 

The experimental conditions are the following : 
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n1odel used 12-mixture H:t¥1-Net, consisting of 200 states, with 2 to 4 states per phoneme. 

speech paran1eters :34 parameters are used : log power + 16 cepstral coefficients, and the 
associated delta coefficients. 

training data phrased speech, uttered by six professional male speakers (code nan1es : l¥1MS, 

l¥1NIY, MSH, lVIAU, l¥tIHT, MTT). 

test data 279 phrases, uttered by the same professional male speakers 

test software left-right phrase parser (SSS-LR, ATR laboratories) 

2.2 Results 

The results are plotted in figure 3. The optimal spread factor values are tabulated below : 

Speakers I MMS I MMY I MSH I MAU I MHT I MTT 
~ 

Spread Factor 2.4 

Recognition Rate 80.58 1!:~。 I 1~:!2 I 1~:!1 I s~:!1 I s~:~1 
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Figure 3. Heuristic determination of the optimal spread factor 
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As can be seen, the optimal spread factor values vary from speaker to speaker : 1.4 for 

lVISH, 2.6 for MTT. These values are used as the reference data for evaluation of the procedures 

described in the next four sections. 

・9
ー(

3 Direct Variance Calculation 

3.1 Principle 

The idea in this method is to use the speaker's training data to calculate directly a new 

variance value a;pea.ker, which is computed for each distribution as follows : 

1 N 
2 

O'speaker = N L (叩一 μmodel)2
i=l 

whereμmodel is the mean of the model's distribution and the Xi are the new data values. 

Since the distrib.utions are, in general, slightly offset, we could expect this new variance value to 

~be representative of the dissimilarity between the distributions. The overall factor is computed 

as : 
1 M 尻

F= —I:(~ 竺
JV] i=l 0-[model) 

3.2 Experimental Results 

The original program for matrix adaptation, Adapt.sh, was modified to implement this 

method of variance factor calculation. The new program was called Va1・-adapt.sh. It was 

.., 

＾ ＂ 

・
ー

d

゜

optimal spread factor 

mean如 tor

Figure 4. Parameter factors for speaker MMS 
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＾ 
Figure 5. Parameter factors for speaker MSH 

tested and ran on all six speakers, using 50 phrases to train the model, to ensure sufficient 

data. The results were very poor : 

• the computed factors were all close to 1.0, which is way below the heuristic optimal values. 

• there・was no correlation between computed value and observed value. 

So the method had to be altered. We noted that the method averages the与土 竺 over
model 

all states and over all parameters. It is unlikely that all parameters are equally strongly 

influenced by new speaker data. vVe also computed (]';pea知foreach state that was accessed in 

the model, regardless of the number of new data samples available. It is obvious that a (J';peaker 

obtained using, say, 2 samples is statistically unsound. To investigate the influence of these 

two points, we imposed a minimum of 50 samples for variance calculations and averaged over 

states, but not over parameters. The results were equally poor, showing no correlation between 

the calculated values and the observed ones. This was the case for all speakers. Figures 4 and 

5 show the results for speakers MMS and MNIY. 

The results for the other speakers were similar to those in figures 4 and 5. The table below 

summarises the results for direct variance calculation. 

＾ 
q¥‘ 

I
鼻＿

Speakers MMS lvIMY NISH MAU MHT MTT 

Optimal Factor 2.4 ?? -・ 幽．、 1.4 2.4 2.2 2.6 

Computed Factor 0.988 1.269 0.998 1.578 1.138 1.417 
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3.3 Co11clus1on 

¥Ve can conclude that there is no correlation between any one parameter factor and the 

optimal spread factor, nor is the mean of all such factors a good estimate for the variance 

spread factor. Another method must be used. 

4 Mahalanobis Distance Calculation 

4.1 Principle 

The previous method was derived rather haphazardly, which could explain the poor results. 

The method presented here and in the next section rely both on statistical analysis of the two 

distributions (model and speaker) for each parameter in each state. The hypothesis we are 

trying to justify is still that the spread factor is linked with the extent in which the distributions 

are dissimilar. The first assumption we m~ke is that the distribution have the same shape, but 

that their means are different. If this is the case, then a statistical measure of mean difference 

should correlate with spread factor value. The Mahalanobis distance (2, pages 22-24] [1, pages 

204-208]is such a measure. 

(4.1.1) Definition of the Mahalanobis distance 

The general definition of the Mahanalobis distance r between two multivariate Gaussian 

distributions is the following : 

r2 = (μ1 -μ 予炉（四—匝）

whereμ1 and Jt2 are the mean vectors and :E is the covariance matrix. The lVIahalanobis 

metric assumes both distributions share covariance matrix. 

In our case, we are dealing with univariate, independent distributions, so the distance 

simplifies to : 

2 
r = 

伽ー四）2

a 2 
model 

so the distance becomes simply the difference in means, normalised in terms of the variance 

of the model's distribution. 

曇

l
-

4.2 Experin1ental Results 

A procedure to compute the Mahalanobis distance was included in the Var-adapt.sh pro-

gram. The results are tabulated below : 

Speakers I MMS I :WIMY I MSH I MAU I MHT I lVlTT 

Optimal Factor 2.4 

M-distance 0.011 。~~:21 。 ~~~51 。~~~71 。~~~61 。~~~9

，
 



!
i
l
O
"
O
 

0
1
0
・
0
 §

a
,マ
n

§.o 

o・o 

゜
9

-

o

-

（さ

sago弓
6
§
uそ
8
8
g
-

11'1 

゜

t
ー

、

'i-

MMS M~ MSH MAU MHT MTT 

＾ 
Figure 6. Average Mahalanobis distance for each speaker 

＾ 
M祖 MMV MSH MAU 叩 MTT 

,i-

ǹ̀'‘“ 

Figure 7. Increase in recognition rate achieved when using the opti_mal spread factor value 

So again no direct correlation was observed. The average lVIahalanobis distance for all 

speakers in shown in figure 6. It is interesting to compare these distances with the increase in 

recognition rate achieved using the optimal spread factor for each speaker. This is represented 
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in figure 7. As can be seen, there exists a strong correlation between the two for speakers lvil¥11S, 

lvIMY, l¥lISH, MAU and l¥lIHT. In other words, this means that the greater the normalised 

mean difference, the more efficient the variance adaptation. However, the value obtained for 

speaker MTT does not correspond to the expected value, and the initial recognition rate for 

an unadapted model is・not related to the distance. 

4.3 Conclusion 

The Mahalanobis distance is not correlated with the variance spread factor. It does seem to 

show some correlation with the increase in recognition rate, but this was contradicted totally 

by one of the speak紅s.The correlation is therefore weak, if it exists at all. However, a.s stated 

above, we assumed both distribution to have the same variance. We should now question this 

assumption, by using a measure which incorporates both mean and variance differences. This 

is the topic of the next section. 

， 

＾ 
[
-

5 Bhattacharyya Distance Calculation 

5.1 Principle 

The Bhattacharyya distance is a popular measure of the separability of two distributions 

(3, pages 188-201]. Its value depends both on mean and variance differences, so it seems well 

suited to describe the general difference between model and speaker characteristics. 

(5.1.1) Definition of the Bhattacharyya distance 

The Bhattacharyya distance is often considered as a upper bound for the Bayes error, 

less accurate but simpler than the Chernoff distance (3, pages 99-110]. For this reason it is 

sometimes ref erred to as the Bhattacharyya bound. Its expression is : 

-1 
1 T :E1 +均

が=g(M2 -M1) (2) (M2 -M1) + -In 
1 I号判
2 添添

where the symbols have their usual meaning (cf. Mahanalobis distance). 

The distance consists therefore of two terms. The first one depends on the means, and 

cancels out if they are~qual. The second term is a function of variances only, and also cancels 

out if these are equal. It is interesting to note that if the variances are equal, the equation 

becomes: 

1 1 
が＝ー(M2-M1)T炉 (M2-M1) = -r2 

8 8 

where r is the Mahalanobis distance. 

In our case the distributions are univariate independent Gaussian distributions, so the 

Bhattacharyya distance simplifies to : 

1 (μ2 -μi)2 1 2 
が＝—+ ln 

0"1 +咤

4 叶＋び~2 2び1び2
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5.2 Experin1ental results 

A procedure to calculate the average Bhattacharyya distance for each parameter was in1-

plemented in program Va1・-adapt.sh. The overall distance was computed by first calculating 

the average distance over all states for each parameter, then taking the average of these 34 

distances. The results are summarised below : 

Speakers MMS MMY MSH MAU l¥tIHT NlTT 

Optimal Factor 

B-distance 

2.4 

0.054 

2.2 

0.031 

1.4 

0.040 

2.4 

0.057 

2.2 

0.052 

2.6 

0.059 

These results appear in figure 8. The correlation between spread factor and B-distance is 

promising for speakers MMS, MSH, MAU, MHT and MTT. However, speaker MMY contra-

dicts the correlation. 
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0
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0.o 
MMS MMV MSH MAU t.t-lT MTT 

Figure 8. Average Bhattacharyya distance for each speaker 

Figures 9 and 10 show the average first term and second term respectively. These have been 

included to show the difference from speaker to speaker. They confirn1 that the Nlahalanobis 

distance, which assumed variances to be equal, was not well suited, since figure 9 is very 

different from figure 6. 
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5.3 Conclusion 

The Bhattacharyya measure has so far been the closest to correlating with the optimal 

spread factor value. It has also confirmed that the speaker distributions differ from the model's 
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Figure 9. Average first term of the Bhattacharyya distance for each speaker 
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Figure 10. Average second term of the Bhattacharyya distance for each speaker 
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ones both in mean and variance. This would mean that the variance spreading adaptation 

method could perhaps be in1proved, if some measure was taken concerning the means of the 

However, there is still one speaker for which there was no correlation, so the 

problem of robust spread factor determination still remains. 

distributions. 
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Studying the Log-Likelihood 

Principle 
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The final criterion for spread factor estimation that we studied was the correlation between 

the log-likelihood for each recognised phrase. We therefore check the output from the recogniser 

for different spread factor values. The idea is that the more a speaker differs from the model, 

the less likely the recognition will be. 

ere 
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1.0 1.5 2.0 

Varlanco spread factor 

2.5 

＾ Figure 11. Log-likelihood of the first ten phrases for each speaker, for different spread factor values 

6.2 Experimental results 

The log-likelihood for each phrase is directly computed by the recognition algorithm, the 

SSS-LR program, and we calculated the average log-likelihood of the first ten phrases for each 

speaker. Figure 11 shows the resulting curves. 

The results show that no correlation could be observed. 
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7 Conclusion 

The aim of the study was to investigate the characteristics of speaker and model distribu-

tions which would explain the excellent performえneeachieved by variance spread adaptation. 

We tested four cl:i仔erentto compute the optimal spread factor value using the available speech 

data: 

● direct calculation of the variance factor 

• correlation with the average Mahalanobis distance between distributions 

• correlation with the average Bhattacharyya distance between distributions 

• correlation with the log-likelihood of recognition 

None of these produced satisfactory results.・In all four cases we calculated a general average 

value, but this is justified by the fact that the spread factor is applied to all distributions, so 

its performance is the result of the overall accuracy of this procedure. This general method is 

however questionable, since it is unlikely that all distributions need to be changed in a similar 

1nanner. 

It appeared from the study that the optimal spread factor is not a simple function of 

distribution separability, but depends on extra parameters which still need to be determined. 

The results obtained using the Bhattacharyya distance showed that the means and variances 

of speaker data differ substantially from model distributions, so the simple spreading of the 

variances may not lead to the most efficient results. In any case, the study used 6 speakers to 

test the results, which is insufficient. It would be interesting to investigate the Bhattacharyya 

distance using many more speakers, and to check the overall correlation with the optimal 

spread factor value. Another useful further study would be to actually adapt the model using 

a method based on the Bhattacharyya distance, to observe how efficient this technique could 

be. 

It is quite clear that the heuristic nature of the variance spread adaptation method and the 

coarse manner in which the adaptation is carried out are both unsatisfactory. Further study 

should enable a more sophisticated method of adaptation, based on distribution separability, 

to be derived. 
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