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Abstract 

The first part of this paper presents a basic introduction to second-order 
probability theory: what it is, and what kinds of problems it is used to solve. 
The remaining parts of this paper introduce a system of theories and 
implementations for planning and meta-decision-making with uncertain-outcome 
actions represented using secon.d-order probabilities. A situation-based theory of 

representing states, situations, and nondeterministic actions is implemented by 
the ATMS-based B-SURE system, which supports uncertain-action planning. A 
second-order probability theory allows an agent to model a probable continuum of 
universes, only one of which is correct; each universe describes a set of possible 
worlds labeled with probabilities. This represents the difference between the 
likelihood of an outcome and the confidence with which that likelihood is 
believed. Confidence is shown to govern meta-decision making, particularly 
meta-decisions concerning the gathering of information to clarify outcomes' 
likelihoods. Second-order probabilities are defined over partitions and individual 
events. Event distributions are convenient but cannot be used for accurate union 

nor expectation-distribution conputation. Partition and event distributions are 
initialized using maximum-entropy methods which significantly do not require 
prior frequency information, and are updated using Bayesian methods. Value of 
Information equations are defined, which support meta-decisions. A simple 
example demonstrates meta-decision-making with the implemented system. No 
other system has used second-order partition probabilities for planning or meta-
decision-making. 
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1 Basic Introduction 

This paper preseqts~n _introduction to fhe theory of~econ4-~r~er pro~ability, 
and how it can be useμin uncerta~n planning, pec_i_sion-rp吐jng,an~meta~ 
decision-making. ・ 

1.1 The PrpbJe~s 

In order to under~ta.nd~econd-order pr~ba.bility wellt it is lls~f1:1l .to reyie'Yf the 
kinds of problem~it~as designed to so~ve. 

1.1.1 Represep.ti~g Uncertainty Jμxplicitly.: :qegre~s qf Confid~nc~ 

A friend asks yol:l to play some ga.~es with bet~ing on a. ~oi~flip, wh~ther 
it lands "heads" pr "tails". The coin could be weigpted, ~o yo~flip it twic<:; 
to test it out-it co~es up heads op.ce, and tail;, o~ce. 蜘uconclu_de that 
the probability o~he~ds is 0.5. HoVfever, this t笞tqpes not s~e~to be very 
satisfying-you wq.nt~o test the coin out some mpre. In f~ct, Y?U m~gh~not 
want to play with th'r coin unless yqu are alloweq to test i~ ~~'r~. Af~er 1000 
flips, you find that the coin landed heads 500 tim~s, ゃndt~il~ ~09 tim~. Now 
you are quite confident that the pro~ability of he~ds~s 0.5, 紐~Y,OU a~·e If!ady 
to start betting with・your friend. 

What h邸 changeμhere?In both the "before?'c邸ean~t~e "aft虹"~ase,
the probability estim~te is the same.・However, th~c邸es s~e~n q1:1ite diffe~ent, 
based on what you ar~willing to do. The differenc~ca;p. be cp~r~c~erizeµby the 
confidence in the pro~ability estimat~. How can t~is~e rep芯；eµt~d explicitly? 

1.1.2 Estimating Probabilities with Few S.aII?-ples 

Your friend asks you to play a game with a 6-side,d d~_e. The dieμefinitel)t has 
six sid邸， butit coul~be weighted. You throw if t~~ice t~ ~h~c~it qut, and 
get a two and a six. Remembering from basic~at~.emat年s t恥tproba~ility 
should be estimated~y~'the numb~r of observe~o~currer_tces d~vide~b-:t the 
number of observatiop.s, you conclude that this di~will roll twC?s½of~he time 
and sixes½of the tirpe, and ones, threes, fours, 弁nd・fives'({f11 n~ver~ome up 
(zero probability). 

After rolling the die for 1000~imes, you c~n~ell t~a.t it defiJ:?-ite~y is 
weighted, because the "one" has only come up~ti:1:Des. Yp~conclude that 
the probability of getting a one is幸
¥1/hat is wrong with estimating probability in thi~way? 

1.1.3 Deciding When To Stop 

A scheduling progran1 is overseeing the processing of a list of~large number 
of alternatives, whic~are ranked by quality esti~nat芦. T~ere are too many 
alternatives and they take too long to process for~he~ched1:1ler to comfortably 
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process them all. In addition, the best alternative is probably somewhere a~ 
the top of the list, and it is a waste of time to process all of the remainipg 
alternatives, since only the best one will be chosen. At any one time, it is e蕊
to pick the best result out of all the alternatives that have been processed SC? 
far-this is a decision problem. It is not so easy to determine when to stpP. 
processing alternatives and choose the best one, or whether to keep going-t~1i~ 
is a meta-decision problem. How can this problem be formulated, and w氾
information is needed to solve it? 

1.1.4 Uncertain Planning 

Given actions that have uncertain outcomes with chances that are not known 
well, how can an agent plan what course of action to take? And, how c呵令
computer recognize and predict the plans of that agent? 

How is Second-Order Probability Useful? In summary: Second-order 
probability is useful for the following tasks: 

• Representing uncertainty in a precise and accurate manner 

• Correctly representing probabilities derived from information obtaineq 
from a low number of sampling experiments, or a low number of succe~s7 
ful outcomes 

• Planning with uncertain actions, and performing plan recognition oq 
people planning with uncertain actions 

• Decision-making with uncertain quantities 

• Meta-decision-making about whether it is time to stop and make a 1e: 
cision now, or whether it is important to continue to gather informati,oq 
about probabilities 

愕’

＾ 

1.2 The Most Important Formula 

The si~plest and most important result of second-order probability theqry 
has to do with first-order probability. Based on results shown using seco1td: 
order confidences, maximum-entropy initializations, and average (effecti~e) 
probability, the following results can be proven: 

Given a situation in which n outcomes A1…An are definitely known 
a priori to be possible 
and nothing else is known about the situation 
and a total of m trial experiments have already been performed 
and the Ai'th outcome has definitely been observed to occur ki 
times 

＾ 
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(and other outcomes have definitely been observed to occur (m-ki) 
times) 
then the best current estimate for the probability p(Ai) of the Ai'th 
outcome occuring on the next trial is: 

p(A,) 
ki + 1 

. ='  
m+n  

(1) 

曹
a

＾ 

For instance, this shows that the current estimated probability of a two or 
a six in the previous dice problem is 1 a.piece, and the estimated probability 
of a one, three, four, or five is½apiece. The estimated probability of rolling a 
one is 幸 ~0.0040 in the other problem, not 0.0030. 
The estimation is optimal in the sense that it is the center of gravity of all 
probable estimations, given all the information that is available at the moment. 
This result is significantly different from the customary l.. estimate when m 

m 

is small or when k is sm~l (under 10). A person who bets using this estimator 
will make more money in the long run than a person who bets using the old 
estimator. Note that both estimators approach the same limit as m approaches 
infinity. 

~ 

1.3 What Is Second-Order Probability Theory? 

Second-order probability theory basically consists of five things: 

1. A theory of what probability is, and how it is used; 

2. A method・of representing probability, based on a continuous function 
that represents the (second-order) probability that any one particular 
(first-order) probability is real; 

3. A method of initializing the representation in (2) before performing any 
experiments, and of updating a representation based on the known re-
sults of experiments; 

4. An interpretation of the mathematics in (2) and (3), that says that 
the first-order probability should be interpreted as an estimate of the 
likelihood that an action will have a particular outcome, the second-
order probability should be interpreted邸 theconfidence with which this 
estimate is believed, 

5. A series of formulas that show how to use the mathematics in (2) and 
(3) for problems in search, planning, and decision-making. 

These points will be briefly discussed, in order, in the following sections. 
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1.4 What Is Probability, and How is it Used?-

Probability, and second-order probability, were both d~v~lop,ed fO~e<;il pri-
marily with uncertain outcomes that occur when a no~d~ter~i~isti~f1Cti<?n 
is performed. A "nondeterministic" action is an actio~t~at do~J:lO~haye 
one fixed outcome that can be determined ahead of time: befor~th~fl,Cti<?n 
is performed. Second-order probability theory is based o~the follpwiμg basic 
assumptions: 

1. A nondeterministic action is in fact nondeterministic; TherE; ar~s,ever~l 
possible outcomes to the action, each of which in f~c~could ha11p~n. 

2. A nondeterministic action has a fixed, constant, ~ 位tioflarynumerical 
probability for each outcome, that corresponds to the a~tu¥like~ihoqd 
that the outcome will occur if the action is exec1;1t~d.1 This n'l:1-mb虹
exists and is unique. 

This number is known as the real probability. It is~ypicallyµnknqwable 
with complete accuracy. Note that it is not necessary fqr t~e act~on~o 
be performed many times, or even to be performed at a~, in orde~·for a 
real probability to exist. 

3. Based on all information known about the system, aμideal (unlimite~) 
observer can determine estimates of the real prob社~lity: S~ch an es~i­
mate is known as a believed probability because it js an t1ge1:1t's opini(?n 
of the real probability, not the real probability itse~. An~d呼1observer's 
opinion is called a normative probability, and it correspon~s tq what eve~y 
agent ideally should believe about the probability qf紐斗cti(?n-Becau~e 
the real probability exists in all cases, normative pr?ba~ility estimat蕊
should exist in all cases. 

4. An actual human observer may or may not have an opinipn~bout a re~l 
probability. Such a believed probability is called a doxa~tic probability, 
because it describes what the person actually beli~v包 µot what he ?r 
she should believe. 

It is possible to weaken assumption 1 to a relativi~ti~v~rsi?n, witho迅
apparent damage to the rest of the system: 

IA A . nondeterrmn1st1c action is nondeter皿 n1st1cto the perform-
ing/deciding agent. As far as this observing person c斗nd,etermine, 
there are several possible outcomes to the action, eゃchof which 
could happen. 

Since the system is concerned with believed probabilities, it apparently do~s 
not matter whether the action is "in fact" nondeterminist_ic, or~sonly believed 
to be nondeterministic by the observer.2 

1Nonstationary processes are not treated by this theory yet. 
2Interesting possibilities occur when observers have access to d~fferent information, and 
one observer believes the system is nondeterministic while anoth~r pbserver believes it・is 
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1.4.1 Other theories 

It is interesting and useful to compare this theory of probability a~ainst othf!r 
prevalent theories. 

The Frequency Definition. One main definition of probability is the nu1:11-
her that results from taking the limit of the relative frequency of observatioμs 
versus the total number of experiments as the number of expeこimentsa -
proaches infinity [vM57, p.15.,221] (Fre71, p.36]. This interpretation is wefi-
grounded in reality. 
The main problem with this definition is that the probability of an expe~i­
ment that cannot be repeated a large number of times is undefined_. Also, it is 
necessary to perform the experiment a "large number" of times bef~re an aceμ-
rate probability can be determined. Finally, a completely accurate proba.bilify 
cannot be determined without repeating the experiment an infinitE? number pf 
times. 

＾ 

＾ 

The Subjective Definition. A second main definition of probability is the 
percentage that a person would feel comfortable with when asked tq bet mon~y 
on the outcome of the experiment [Fre71, p.36]. 
This definition seems to be equivalent to our doxastic probabi~ities. Ho¥v-
ever, it ignores the fact that doxastic probabilities depend on the w.ay that t~1e 
problem is defined, and do not have to be unique. The person Il}ay not f~el 
comfortable betting at all. The main problem with this definition is that a sup-
jective probability can vary arbitrarily from person to person, and~ven with~n 
the same person from moment to moment. There is no objective 4efinition. 

The Set-Theoretic Definition. A third main definition of prpbability is 
grounded in mathematics. Sets are divided up into subsets and elen:ients corre-
sponding with events; these are assigned numbers which are called "probabilify 
measures". A probability is a number that is assigned to a set. A忠etof thr~e 
axioms allows derivation of useful equations for working with the numbers. 
This system only tells how to compute with probabilities; it does nc_>t say wh~t 
they are, or .where they come from. In particular, it does not determine hqw 
to derive the probability measures in the first place [Fre71, p. 39] .・ 
The main problem with this system is that probabilities cann~t be det~ — 

mined in the system; it is necessary to reach outside of the system to initiali怨
the probability measures. Probabilities are not grounded in the r叫 world.~n 
addition, there is no way to represent confidence. 

1.5 How is Second-Order Probability Repres~nted? 

A second-order probability representation is quite simple to unde~·stand. Fpr 
any one problem, there is a known set of n possible outcomes A1 .. An. Each 

deterministic. These situations will not be covered in this paper. 
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outcome can, in theory, have any probability bet~:een 0.0 apd 1.0. Sq t~i~forms 
an n-dimensional problem space, where each a~_is r~pr怨en~s a prqb?'b出tyof 
an outcome, and ea.ch axis only varies froqi 0.0 to 1_ .0. For instan~e, it there 
are three possible outcomes, this forms a three::d面en9ionalspace. Aμy one 
point in the space corresponds to a definite~abel1ng qf t4e probabili~i~s~~each 
of the three outcomes. Of course, if we wa1:1t to pay 11tt~ntiqn to the fa~t: that 
all of the probabilities have to add up to one, thゃn~ot~11of the PC?iJ.?-tS in the 
space will be valid-most will be invalid, a~~the only u~apl~points Vyill lie on 
the surface of an equilateral triangle (in t~ree-djmetjsio匝1S,Pace). 
Of course, a point can also be consider~µto~ea ve~tqr. We will lik~some 
of these probability assignments better th呵 oth~as~ig~ID:en_t point~(vectors), 
and so we will assign a function to each P?int tp grp,d~how much'Ye like it. 
This will be a vector density function, th~t ma:ps each: ROi~t (vectqr) in the 
space into a scalar, which represents confid~nce. For co11v~ni_ence, thi~ 皿mber
will also be a probability (i.e. the function is a~pntinuqu~probability d~nsity 
function) that measures the likelihood or t~e coI\~de~ce wit~which w.e b~lieve 
this probability estimate could be true. l3eca呻sethis i~ ~probabjlity of a 
probability, the theory is called "second-or~er p叫:obahility".
Explicitly representing an entire space like t~1is (cal\e~the partition prob-
ability distribution function) would be too diffi.~ult to d<:> inside prE?5ent-day 
computers-it would take up too much space. E".ent~ally 1t y,,ill be P?ssi~le to 
work directly with equations, and not have to wq!ry~boµt n1:1merical reptesen-
tations. However, at present, it is necessary to u~e a con~ens~d repr~~nt~tion. 
For this reason, the space is projected onto ea~h of t~e n axes, an~then n 
separate one-dimensional functions, called event, prqbaqility distribu~ion~, are 
represented using arrays. This representation is exa~t f?r some prob~e~, but 
loses information for other problems. 
Thus, there are two representations for secopd-o!de~probability, th~par­
tition distribution and the event distribution. It will b~necessary t(? develop 
formulas for ea.ch type of representation. 
The normal first-order probability of an out.~om~c四 be found~y taking 
the average of the outcome's event distribution. ~owev~r, it is possib:le to find 
other, more important information by using th~se qist~·i~utions, tha:t cannot 
be found using normal scalar probabilities. 

1.6 How is Second-Order Probaqili~y~nitialize~? 

Second-order probability should be initialized usjng ma泣J?UIDentropy theory. 
Maximum entropy says that there are all these possjble values that~he prob-
abilities could take on, but at the beginning the~·e is no~~own reaso11 to favor 
any one estimate over any other estimate. We are equal~y ignorant 01:1 all esti-
mates. So, the best thing to do is to act as if they ar~eqµa:lly likely. Qf course, 
this is just an estimate; we do not believe they actµal~y ARE eq叫lylikely, 
we just don't have any information to tell us w~ich ones~re more important. 
As a matter of fact, the mathematics tells us this-we haYe an extrepi.ely low 

-“, 
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confidence in a¥1 es~imates. 
In order to spt・up a prob~em likp this, ~t is fir~t importa~t to f?it down 
and decide wpich outcomes a~e p~ssjbJe, a:nfl whic~are impos~ible. ・I叫叫
all the possible o函， andleav~ouf a~ ~he i_~P?Ssibl~ones. Thi~fs impp! 坪nt
information f<?r the~y.stem-anq, as a xp.a:tter o~f~ct, the mathem斗t年sp_r翁e叫叫
here assumes tha:t th~s is all tqe informatio~t~at you have. 
As we ma~~ μ:iore and mofe exp~ri:111ents, ~he p~obabilities a1just, 紐~~
hill grows so~~V\~h~r~in the~ddle of eae:h eyent~istribution. We beF0:111P 
more and mo~e cprta¥n about~he pro悼bili~y~timates of each <?Ufco~e 邸咋
gather more~~ 紐.~ut, we c紐 alway~be s~rprised_. The dist~iquti?n 1:1eY虹
goes completely to~e!o at any one pqiI¥t (e?C~ept at :p=l, the e~dI?oi11:t):-th~rp 
is always a pos~ipility that th~curre1:1t distribtftion蕊timatecoul~be W!O~&, 
and the hill could shift over. 

， 
1. 7 Inte~·p~e}~tion: ~ikel~hoo1 v:s. qonfidenr:~ 

Once a disti~cti?n 4as been prawn b~tweeµthe li~elihood tha~somt!thjng 
will happen, ~J?-d tl:i~confiden~e wit~y,hich we believe that likel_ihood, t~e~ 
certain probl~~s can be seen tp depepd on life~ihoo4, while other~dep~nd 01:1 
confidence. ・ 
It is still a r~earch issue to separate these put and to pin down how . . they 
can be used i~g~n~ 叫situatiqns.Certain sHe~ific situations are preseI\te~11:1 
the paper. ・ 

1.8 The Fqr~Drulas 

The formulas are p~~ 苓entedin fhe ma~n body o~the }?aper. It is nqt impprt~nt 
to understanq the~ ~nless yo~want to use th~m. 

， 
1.9 Discus~io~: Wp.y i~Secp:p.d-Order Pr'?baqilit-y 

mor~im~ortant tha~First-:Order Probability .o:r 
Inte:a;vcJ.l・Bro bab~lities? 

Simple first-o~def pr<_>babilityμas be~n used for a long time to represent un-
certainty aboμt est~mates of~n acti~n's out,co!Iles・However, in・the past·2~ 
years, people-~av.e grpwn dissatisfied with th~s representation, mo~tly beca~s~ 
they feel tha~it d~e~not rep!esent all that t~ey know about t~e estim巫
In particular, some~ 加espeop~e feel quite cq呻dentabout a prob.ability e~ti­
mate, and sometim~they do not feel confiqent at all. Thus, on~numbe~i~ 
insufficient informati~n to rep~esent this phepo.menon. 
It is easy to give an example to illustrate this. If I flip a coin two times, 
and it comes up "he~ds,, once and "tails', o加c~, then I can say that I believe 
that the probability of heads is 0.50. Howeve~, I do not feel very confident 
about this-I would n~t want to bet a lot of mofley on whether the coin comes 
up heads 5 times out of 10.'the coin could b~biased, and I might lose. If, 
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恥wev~~, I~ip t~e coin 1000 times, and 500 times it comes up "heads" while 
噸 tir1:1翌斗 cq~es up "tails", then I would feel quite confident-about betting 
oμ. the cojn: I~t~ll think the probability of heads is 0.50, but the two situations 
a~e di釦r~咄 ~omething else is needed in order to represent confidence. 
Peq?lf! ~~v~tried using interval probabilities to represent this la.ck of cer-

t~i~ty pr 1平~pf-confidence. An interval probability consists of two numbers, 
a l<?wer b.oμnd 9'nd an upper bound, that serve to model and to restrict the 
pro·bab,\li~y. ·T_h~real probability is邸 sumedto be somewhere inside this in-
terva.l. 
Howeyer, although interval probabilities are e邸yto compute with, they 
a.re dis~op~inu?~S and not accurate. If a probability is represented邸 being
bet:wee1:1 p.25 _and 0.75, does that mean that it is perfectly alright for the 
probab.\li~y to be 0.25001, but that it can't be 0.24999? Why such a large 
differeuce? An4, is it really true that the probabilities 0.2501 and 0.50 are 
equally. likely? 
ln t,p~P, 邸t,~ox邸ticinterval probabilities have been determined by邸king
people w~ 砧~ ~ow guess is for the probability, and what a high guess is. 
Ho~ev~r, I?eoI?l~normally feel hesitant about providing exact numbers for 
th命e9P1tnds. A good re邸onfor this could be that people actually are using 
a S!110叫 ~econ~-order function to represent the probabilities, perhaps in a 
neural pet¥vork. When邸kedto determine the bounds .for a probability, they 
mi~ht~u~t~e cu~ve off at about the 95% level on both sides. However, since the 
act~al~up.~tions are smooth, it is hard to tell where to place the boundaries-
the int,f:?ryal probability is only roughly approximating the information found 
in t:he 担o~d-or~er probability distribution. 

'Th~s~cpnd-qrder probability representation subsumes those of normal first-
order P.~obらbilit~es and also those of interval probabilities. 

叫0 {liscussion: Why Not Third-Order Probabilit ? y 
So~e peqp~e砥 "Ifsecond-order probability is so useful, why not third-order 
or four証orderprobability? Where does it stop?". The answer to this ques-
tio1:1 is th~t, although third-and fourth-order probabilities are mathematically 
well-d~ 匝e~, in f:Urrent problems there is no need for them-there is no inter-
pre~atipn of the mathematics that yields useful information. 
If w.e cpnsid~r this question,・we would have to邸 k,"How might it be 
useful to r~resent multiple possible universes of possible confidences and like-
lih如ods~''. In a~ingle-agent system, there is no need to represent this. Only if 
we・mov.e tq multiple-agent systems might this become useful. If we are trying 
to~epr蕊~D;t the beliefs that agent A h邸 abouthow likely it is that agent B 
bel1eve~t~at outcome C is likely to happen with a certain confidence, and how 
co面deμtagent A is in believing these likelihoods, then it would be useful to 
rep~eseµt such problems using third-and fourth-order probabilities. But such 
sitqatiqn~are really too complex for the present analysis, and must wait for 
future research. Third-and fourth-order probability systems are not discussed 
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2 Intrpquctjop. 

Realistic planniμg sy~te匹 ~ust deal with act\oµs~aving no~~~t~r面nistic
outcomes. Qften cpnqitiqn~ 紅ehighly uncertai~, an~a large~~-~-b~r of pr~­
vious action tri~1.ls allpwing confiμent d~rivatio~ ~f~set of fr~gu~~cy-bas~d 
outcome probaqili~ies is no't~vai~able. In addi~~o?-, µmited-resoµ~~~systerqs 
must decide wh~n th~y m11:st act, and~hen th~y can afford tp g叫1ermo!e 
information. A plゃn~~ng sys~em needs~well-~~qun~ed nume~ 年1.npdelth剤.t
can represenf th,e 1-lnc~rtain~y of a systelll direct~y an~present Hr~C\SP. ~nswe~·s 
邸 towhen a_nd~ow t~act. 
This is p~ovide~by a sy~ ぉm~f theor~es and~mpl~mentatio~~, v,~ich is iP.--
troduced in r,his P<i-Pef. A sit1:1ati?n-b邸 efimode\~f u.,ncertain~cfiqn; P!ovid~s 
a representafion fqrm叫lism.A Jl1:0del of second:o!'der probabilit~es r~presen~s 
uncertaintie~expli沖itly and disti~guish笞 confid~~ce !3-nd likeli~qo~1:?l~asur~. 
Confid enceme邸 ur芦 areused to make meta-dee碍iqnsf=.Oncern1n <> ・g i,h = gaf heri~g 
of additional inforr~at~on on~nce!tain li~elihoo~s. A・system of P,ar.t~~i~n- a~d 
event-based~quations supporr,s the probability mpd~l. A ma~il:?J,qrp.-~ntropy 
method initializes 血¼nown s~cond-order proba~il~ties without u函r~g f~equep.­
cies and a~ayesi令n I]lethod updates th~m fror:n, ob~ervations. Vp,{u.e of i?t-
formation equatio11rs p;ovide~uantitative solutions to meta-decisipn :er<?bleID:~ ・
The implemented ;,ystem is呻sedto solve a simpl~e~ample w血f~h·ill11:strat~s
_meta-decisioμmaking. 

r
 

＾ 
3 Previous・Wor s le 
Recently, many tesearFhers h斗~einvestigated pla:nning [Seg88, Han9Qa, HH99, 
KD89, GI89, Wel90b, DB90: BDI{L91],3 plan inference [My函1]~pr met~­
decision making [If C~89, RV{89) using first-order probabilities in .a. d~cisio~­
theoretic framewoェk.~owever, these do not use second-order P!?b~~iljties. 
There has als? q~en m1.:1ch activity concerning propagat~o11: of beli~f 
values in probabil!sti~netwqrks [Pea88)[Wel90a.); however, c~~ren~ ~esigqs 
cannot represent !1onmonot~nic nor repeated actions. S011;1~ ~~efl,rche~·s 
have investigated rimelines, ~hoice, and nondeterministic action re.p平ent~­
tion [McD82, HM91, RG91a, RG91b, Sho89], or uncertain~~li曲 in tiID:e 
[Han87, I{D89, DK88, DK91ゃ].The theory of probability h邸 beep~nvest~­
gated extensively by Halpern and Fagin [Hal89, Hal90, FH89, Hf~Op, ~yburg 
[Kyb91b, Kyb91a]1 Bacchus [Bac90b), and others. Good rec~~t s 

l 
〗nµnari蕊

on meta-decisions・using the value of information can be found i~[Dea9\] 
and [RW91]. Spiegelhalter [Spe86], Heckerman and Jimison [HJ~7], ~11:d lat~r 
Pearl (Pea88, p.360-372] discuss confidence based on conditioning~ve~ts, whi~h 
is mathematically similar to discrete second-order probabilities, but r,equires 
known probabilit西.Pearl defines a philosophy of second-order p~-o~ability 

3See however Feld.man and Sproull [FS77] for an excellent early pap~r op decision-
theoretic planning. 

~ 
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[Pea89)[Pea88, p.358-359) different from ours, but then rejects it as unnec-
essa.ry (ibid,p.372), ignoring meta-decisions. Spiegelhalter (Spe86), Fung and 
Chong (FC86), and Cheeseman [ Che85) point out that confidence can be rep-
resented by a second-order (event) distribution and that confidence increases 
with more samples. Kyburg [Kyb89) explores second-order probabilities but 
rejects them because they a.re not needed for decisions, ignoring their role 
in meta-decisions and representing confidence. Raiff a shows how to derive 
doxastic second-order event distributions (Rai68, pp. 161-168] and uses these 
event distributions for meta-decisions, but does not use normative partition 
distributions. 
No known previous researchers have used second-order probabilities for 
planning, have distinguished second-order partition probabilities from event 
probabilities, have presented a system of equations for partition probabilities, 
nor have used partition probabilities to quantify the value of obtaining perfect 
confidence as used in meta-decisions. 

~ 
4
 
UNDA Theory 

Planning and reasoning with Uncertain NonDeterministic Actions (UNDAs) 
requires a model of action representation. The model is based on situation 
theory [BP83). Action types (plan schemata) are instantiated -in situation 
instances. An uncertain action nondeterministically transitions to one of a 
known set of possible outcome situations, with a. specified believed (second-
order) probability. Performing a particular action type i~a particular situation 
type grants license for using a particular probability (similar to (Pea88, p.13)). 

~ 

4.1 The B-SURE system 

The UNDA theory is implemented in a system called B-SURE (Believed Situ-
ation and UNDA Representation Environment) (Mye92]. The B-SURE system 
is based on an ATMS (dl{86] that represents valued state, situation, uncertain 
transition, and action types and instances in multiple possible temporal ac-
tion worlds with nonmonotonic assertions and deletions, in a manner extended 
from the theory presented by Morris and N ado [MN86]. The use of situation 
and state typ蕊 allowsreasoning to be performed ahead of time, and simulta-
neously over multiple worlds; the system is not forced to wait until states and 
situations are instantiated, and then reason separately in each possible world. 
B-SURE supports inferencing and planning. 

4.2 History Mechanism 

An interactive planning/ execution system requires the use of a history mech-
anism to represent the current progress of the agent. This is provided by 
changing a transition assumption into a premise when it is known that an 

11 



agent h邸 startedperforming an action or an action h邸 finishedwith a given 
outcome. An additional "p邸 t"flag is set on previous situations and actions to 

distinguish actions that are currently being executed (e.g., high-level actions) 
from those that have finished execution. 

4.3 Planning C ons1derat1ons 

This paper's methods can be applied in most planning formalisms (cf. 

[THD90]). The current system uses a simple case-based expansion method 

[Ham89]. Significant issues include: (1) Plans form reactive trees of contin-

gency plans; (2) Alternate sets of scored goals a.re searched for; (3) Planning is 

neither purely predictive [FN71] nor reactive (Sch87] but interactive; (4) Non-
deterministic decompositions become problematical; (5) Practical systems re-

quire implementing recognition demons that can infer and certify when a given 

outcome has occurred [Mye9 l]. 

5 A Theory of Probability 

There are two b函ckinds of probability: real, and believed probability. 

Assume nondeterminism actually exists. Real probability represents the 

actual likelihood that a particular outcome follows from the execution of a 

particular nondeterministic action in the world. A real probability associated 

with a possible outcome is an innate property of a situation/ action pair. If the 
action type is repeatable and is repeated a large number of times in instances 

of the same situation type, the observed frequency of an outcome's occurrence 

will converge on the real probability.4 It is not necessary for an action to be 

repeatable or even to be actually performed in order to have real probabilities 

associated with it. The real probability of an outcome is a unique constant. 

Executing an action repeatedly in the real world can be modeled by repeatedly 

drawing a colored ball from the same urn with replacemept. Real probabilities 

correspond to Barwise and Perry's "real situations" [BP83, pp.49,57-60]. It 
does not make sense to talk of putting real probabilities into a computer. 

A believed probability is a model of a real probability that is represented by 

an agent.5 Believed probabilities correspond to Barwise and Perry's "abstract 

situations" [BP83]. They do not have to be unique nor constant. 

Believed probabilities can be subdivided into normative probabilities (what 

an agent ideally should believe), and doxastic probabilities (what an agent actu-

ally does believe). 6 Normative probabilities are derived from a mathematical 

4This paper only deals with stationary processes, defined as actions in which the real 
probabilities associated with outcomes are constants and do not change. 
5The term "subjective probability''has been used to describe at least believed, normative, 
and doxastic probability, and hence these other terms are proposed. 
6Normative probabilities are contrasted with prescriptive probabilities by Baron [Bar88]: 
normative probabilities may be too difficult or slow for an agent to use in practice. and 
should be replaced with fast heuristics. 
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model7, and must be valid (0~Pi~1, EiPi = 1). Doxastic probabilities are 
personal opinions and are not constrained to be valid. 
Believed probabilities may be represented by a universe of possible worlds 

and probabilistic transitions between them; first-orderprobabilities are defined 
over these transitions. Instances of the same situation/action pair should have 

the same transition probabilities in the same universe. Since the real universe 

is unknown, however, the agent should consider a continuum of possible uni— 

verses. This continuum has a second-order probability distribution represent-

ing the believed chances that a given believed universe accurately represents 

the real universe. 8 

Slightly more formally, if the believed probability of an outcome is treated 

to be not a constant p but rather a random variable p with a range [0,1], then a 

(believed) continuous probability distribution pr(p=p) can be associated with 
this variable 9 (Pap84, p.85]. This is called a second-order probability distribu-

tion, because it represents the believed probability that the real probability is 

a particular constant. For clarity, such functions will be represented by q(p) 

坦 pr(p=p).This does not represent the probability of the event that the 
agent will com~to believe p=p [Pea88, p.359]; the agent already s切nultane-
ously believes p=p1 and p=p2 for a continuum of p's. 
A second-order probability can be modeled by assuming that nature has 

drawn an urn representing the universe from an infinite cave of urns, and is 

drawing colored balls from that same one urn repeatedly with replacement to 
represent (possible-world) outcomes of a repeated given action. The agent has 
a believed opinion about the distribution of urns in the cave; however, the 
agent does not know which urn was chosen by nature to be the actual urn. 

In another conceptualization, state (determining a possible world) is a 

fundamental observable quantity analogous to position. First-order proba-

bility (likelihood) governs the changes between states (a universe of possible 

worlds and transitions), and, like velocity, can only be measured by differences. 
Second-order probability (confidence) governs the changes between probabil-

ity models (which believed universe is most accurate) and is thus analogous 

to acceleration. 10 

Note that second-order probabilities subsume both・certainly known first-

order (constant) probabilities and also interval probabilities. 

7It is not claimed that the Bayesian model presented later is the only normative model. 
Other models, for instance the Dempster-Shafer formalism [Sha79], are possible. 
8The 1st/2nd-order distinction becomes important when representing confidence and 
when committing to decisions involving repeated actions. 
, The theory supports discrete distributions (e.g., [Pea88, p.366-3721). However, the later 
Initialization section shows that these normally assume more known information than is 
justified and are hence usually misguided. 
10 As in physics, higher-order terms are well-defined but are useless in most practical 
matters. Third-and fourth-order probabilities will be required for solving plan inference 
problems involving agents'opinions of other agents'opinions of confidences and likelihoods. 
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6 Dec1s1ons vs. Meta-D 
．． 
ec1s1ons 

The decision problem is the task of choosing between a known set of known l_)ut 
uncertain alternatives each comprising a tree of actions with a set ?f ultimp,te 
outcome situations, their values, and the likelihoods of reaching them. Giyen 
an evaluation strategy such as maximum expected value11, it is straight~or­
ward to evaluate a decision problem and choose the most desired t1-lternative 
[HM83] .. Where, then, is the difficulty? The problem is that the~urrent be-
lieved decision problem may not represent the best model of the real decis~on 
problem-and if more information is added, the model may change t'? a new pe-
cision problem. This can happen in the following ways: (1) a new t1-lternative 
is added to the set; (2) an old alternative is deleted; (3) an action's expected 
outcome set is modified; (4) an alternative's anticipated value changes; (5) 
an alternative's expected likelihood changes. These modifications・are prod-
ucts of information derived from information-gathering actions whi~h include: 
(a) expanding a situation by mentally instantiating a new hypot~etical ac-
tion instance in the situation, thus making it more feasible; (b) performing 
other mental reasoning to increase confidence in values, likelihoo~s, and al-

（） ternative and outcome sets; and c actually perforrmng actions, including 
test actions. Deciding whether to decide and act with the curreI?,t dec1s1on 
problem, or whether to attempt to change the current problem by performing 
an information-~athering action, is a meta-decision problem.12 Meta-decision 
problems involving likelihood estimates (5) are properly answered using con-
fidence measures. H the agent has high confidence in its believe~estimates 
of likelihoods, with known values, alternative sets and outcome s~ts, then it 
believes that learning more infonnation will probably not change the decision 
problem in a significant manner. With low confidence, learning~ay signifi-
cantly change the believed decision problem model, and is therefor~valuable. 
Second-order probability distributions represent confidence and shol¥ld be used 

to solve meta-decision problems involving clarification of likelihood estimates. 

7 A Calculus of Normative 2nd-Order Prob-

abilities 

7.1 Definition 

A sample space S is partitioned into n known elemental outcome events 

[A1, ... ,A』composingthe partition A. The corresponding probabjlity vector 

110ther significant strategies include minimum risk, maximum possible gain, m訟 imum
thrill, and maximum learning. Maximum utility subsumes these and is subtle. Therefore 
only the maximum value evaluation strategy is supported in this paper. 
120ther meta-decision alternatives besides observing/interacting include do nothing, wait 
for a possible change, waffle by trying to take two or more alternatives, consult experts, 
relegate the problem to a. human superior, delegate a.n inferior or sibling agent to make the 
decision, react randomly, respond in a habitual/reflexive manner, or transcend the problem. 
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Figure 1: Initial 2nd-Order Partition and Event Probability Distributions. 
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p = (PA1, • • • ,PAn), where PA, 三 Pi= p(Ai), forms an n-dimensiC?nal space p. 
A point in this space p = p constitutes a unique assignment of (first-order) 
probabilities to the elemental outcome events. Normative probabilities have 
the property that the only valid probability assignments are contained in an 
(n -1)-dimensional hypertetrahedron defined by the formul邸 0~Pi~1,
珈 i= 1. These are shown for the first three nondeterministic-outcome di-
mensions in figure 1. For instance, for n = 3, all valid assignments comprise 
a 2-dimensional equilateral triangle (plus its edges and verticies).13 Dox邸 tic
probabilities are not constrained to be valid. Thus they may take on prob-
ability邸signmentpoints anywhere in the n-dimensional first-quadrant unit 
hypercube. 
A second-order probability function of a partition q(A) is then defined邸
a function cu(刃definedover the vector space p that maps a vector pinto a 
scalar q. For normative probabilities, q is always equal to O in invalid regions 
of the space. This function h邸 thequality that the integral of q over the 
entire space is equal to 1. This second-order partition probability distribution 
functionぃ（刃 isthe fundamental unit of computation in this calculus. 

13The (hyper-)edges have the interesting property that they represent situations where 
one of the outcomes has a probability of 0.0. The verticies represent situations where all 
but one of the outcomes has a probability of 0.0. It is important that the user know the 
number of possible outcomes at the beginning of the problem; the mathematics assumes 
that the event that one of the outcomes has a probability of 0.0 is possible but not more 
significantly likely than anything else. Problems where the number of possible outcomes is 
uncertain or unknown are not covered in this paper. 
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7.2 P roject1on 

The second-order event probability distribution知 (Pi)for any one elemental 
outcome Ai in the partition is determined by taking the projection of the q(刃
partition probability surface onto that outcome's p axis: 

叫 p;)= /.-/似(Pi,…，Pi-1, p;, Pi+i…, Pn) dp1…dp;-1 dp;+i…dpn (2) 
O 0 

The integral of qA,(Pi) over Pi is also equal to 1. Note: Doxastic event distribu-
tions can be~etermined from experts [Rai68, p.161-168). However, this paper 
points out that (1) normative, not doxastic, distributions should be used when 
possible; (2) partition, not event, distributions should be used when possible. 

7.3 Equivalent Probability 

The (first-order) equivalent or expected probability of an event Ai is the weighted 
mean of its distribution [Pap84, p.85]: 

p(A,) =八ふ） p; dp; 

゜
(3) 

This probability can be used in making decisions. 

7 .4 Negation 

The normative second-order event probability of the complement -,Ai of an 
event Ai is formed by reversing the event distribution: 

q..,Ai(p) = q瓜1-p) (4) 

Corollary: The normative second-order event probability distributions of the 
outcomes of a two-outcome action紅ethe reverse of each other. 

7.5 Union 

Taking the union Ai+j = Ai V A; of disjoint events Ai and A; in A forms a 
new partition A'that has (n -I) elements in it. This forms a new partition 
probability distribution qnew(A') found by collapsing the Pi and P; axes into a 
single Pivj axis. The q mass density is integrated accordingly. Without loss of 
generality let i = n -I and j = n. Then: 

qnew.A(…PAn-2'PAiVj) = JPAivj v'2 q.A(…PAn-2, (S), (p Aivj -S)) ds 

゜
(5) 

The union of more than two disjoint events can be found by collapsing the 
appropriate set of axes and integrating over the corresponding hypervolume. 
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The second-order event probability of the union can be determined di-
rectly from the old partition distribution function by collapsing the axes and 
projecting the rest of the space at the same time: 

恥，・(p)= J .. ./ rA;v; q(PA," (s,;,. PAJ, ((PA,v; ―s) = PA;), , 恥） dsdp1 dp1qa;J dp,. 
0 0 O 

. (6) 

In general, there is not enough information to determine the second-order 
event distribution of the union from the event distributions of Ai and A;. This 
is equivalent to the inverse-projection problem, and is the main reason why 
partition distributions should be used instead of event distributions. 

7 .6 Conditionals 

A partition B with m elemental events, that is conditioned without loss 
of generality on An with a corresponding conditional partition distribution 
qs(BIAn), forms a refinement of the partition A into a new partition A'with 
the (n + m -1) elements (A1, …, An-1, AnB1, …, AnBm]. The partition distri-
bution function of A'is found by splitting the PAn axis into m new axes, and 
weighting the previous qA mass by the qs proportion: 

邸 (PAu…,PAnー1'PAnB1! …, PAぶ）＝似(PA1,…, PAn) qs(PB1, …, PBm) (7) 

The event probability distribution of a new event Ai島 isfound by com-
bining the event distributions of the component events qAi(Pi) and q恥IAi(Pi): 

1 1 
qA;B; (Pii) = J Pii 

p;; Isl 
＿知(s)q恥IA;(-)ds 

s 
(8) 

with the usual adjust me~ts if Pii = 0. 
The union operation and the conditional operation are duals of each other. 

7.7 Expectation Distribution 

Associate a value vector V of known constants Vi, …，Vn with the respective 
outcome events A1, …, An. Then the expected valu_e of a given point『inthe 
probability space is the dot product E(p) = (p・V), a function of p. E is a 
random v紅iable,and the confidence that this particular E is correct is the 
partition distribution q.A(刃.The probability distribution qE(.A)(E), represent-
ing the likelihood that any particular scalar E is the actual expectation of A, 
is found by integrating over the probability points where E holds: 

叩 (E)= J噸△(E-p•V)dp ， (9) 

where△ is the unit selector function△ (0) = 1, △ (x#O) = 0. This is a second-
order distribution because E is based on first-order probabilities. Expectation 
is not a constant, but is a variable based on which universe of possible-、:vorlds
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Figure 2: Actual (Partition) and Estimated (Event) Expectation Distributions 

for an Action with n=4 

and probabilistic transitions is true. The scalar equivalent expectation E(A) 

is of course the weighted mean of this distribution, J~00 E年(.A)(E)dE. 
In general, there is insufficient information to determine an accurate eか
pectation distribution from the n event dおtributionsqA; (p). However, a rough 
heuristic approximation can be found by taking the average of an approxima-

tion from each axis: 
n 

＾ 
1 

qE(A)(E) =~L 虹(')
E-%i 

i=l l'i -Vbi 
(10) 

whereぬ＝ば可こ洋i1(; is the i'th base value found by averaging the others. 
Note that qA;(P) = 0 if p < 0 or p > 1. This approximation is exact if n = 2. 
See figure 2 for an example. 
Comparision of (decision between) two action alternatives A and B under a 
maximum-expected-value strategy uses the equivalent expectations (assuming 

independence): 

E(A)~E(B) (11) 

which is a condensation of p(E(p.A) 2:: E(西釘） 2:: 0.5. Using this equation and 
the conditional equations (7) or (8) allows decision trees to be evaluated via 
"averaging out and folding back" [Rai68]. 

7.8 Maximum and Greater-than-or-equal 

The following equations are generally useful, and could be used for comparing 
decisions in cases involving strategies other than maximizing expected value. 
Given two independent random variables x and y with corresponding proba-

bility densities pェ(x)and p畠）， the maximum distribution 1s: 

Jz Pmax(x,y)(z) = -oo匹(s)py(z)+匹(z)py(s) ds -1-四(s)py(s) ds (12) 
(The last term is zero, and thus may be ignored, in systems having no impulses 

in their probability distributions.) 
The scalar probability that x 2::. y is: 

Pェ?:Y= loo 1-: 匹(z+ s)四(s)ds dz 
18 
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Of course, if Y is a constant, this reduces to 

砂=Joo匹(s)ds 
l' 

7.9 Other Required Formulas 

Sum. 
知 (z)= Joo匹(z-s) Py (s) ds -oo 

Difference. 

Pエーツ(z)= Joo 匹(z+ s)凡(s)ds -oo 

(14) 

(15) 

(16) 

8 Origins of Normative 2nd-Order Probabil-
．． 
北1es

8.1 Initialization 

Normative second-order probabilities are initialized using maximum entropy 

theory applied to all known information. If only n, the number of elemental 
outcomes, is known, and no other information, 14 then any one valid probability 

vector is equally likely, and the partition probability function is fl.at and is equal 
to the inverse of the valid surface hyper area: 15 

(n -1)! 
qA(刃＝ -.rn (when 均Pi~1, Pi~0; qA(刃=0 otherwise) (17) 

The event probability distribution is the same for each outcome and also 

is a function of n: 
知 (Pi) = (n -1) (1 -Pi)n-2 (18) 

Examples are shown in figure 1. Most people are familiar with the flat distri-

bution for n = 2. Note qAi(O) = (n -1) and the expected p(Ai) = .!. n 

8.2 Updating 

If the action modeled by A is performed m times and the outcomes A1, .. , An 
are certainly observed to have occurred k1, .. , kn times respectively from se-

quential observation, I: ki = m, then the believed partition probability distri-
bution q。Id.A()can be normatively updated to a more accurate model qnew.A () 
as follows (derived from [Pap84, p.86]): 

(k1) 

qnew.A(刃＝
P1 …p~kn) q。心（刃

(Ip P仰...p仰 q。心（刃dP}
(19) 

14If other information is known, appropriate initializations can be specified. However, the 
mathematical reasoning becomes rather complex, and is beyond the scope of this paper (see 
e.g. [Pap84, p.535-544]). 
15The proof is available from the author. 
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Note that the denominator is a constant. If equation (17) is used for initial— 

ization, this expression is related to a beta density inn dimensions. This type 
of updating method is central to so-called "Bayesian statistics". [Jus84) 
A similar updating equation holds for event distributions using valid nor-
mative probabilities [Pap84, p.86): 

(k,) 
1 

qnewA, (Pi) = 
佑(_Pi)(m-ki) q。ldAi(Pi)
(It P仰(1-Pi)(m-ki) q。ldAi(Pi)dpi) 

(20) 

＇ Updating is signific皿 tbecause only the original distribution and the sue-
cess counts need to be stored to compute the current distribution as required. 
If equation (17) (or, equivalently, (18)) is used for initialization, then the 
results of (20) can be expressed in a closed form (using (18) and [Pap84, p.87]) 
as: 

(m+n-1)! 
qne叫 ,(Pi) = (k,) 

却 ((m+n -2)-kり！佑
{1 -Pi)((m+n-2)-ki) (21) 

and the corresponding expected probability (derived from [Pap84, p.88]) is: 

ki + 1 
p(Ai) = (22) 
m+n  

not岳， asis customarily taught. 

~ 

9 The Updating Function for Uncertainty 

Distributions 

It is important to be careful with the distributions that are used as input to the 
updating function, as the function can only sharpen uncertain distributions. 
In particular, if a known doxasticfirst-order probability is represented as a unit 
spike, then the updating function will not change that probability-it is ah・eady 
known with certainty, and it can't change! Similarly, if an interval probability 
is represented using a q distribution as having a flat or exponential distribution 
between the max and the min, and O elsewhere, then the updating function 
will only change the distribution inside the interval-all of the probabilities 
outside of the interval are certainly known not to be possible! In general, this 
will probably not be the desired behavior. It can be fixed by ensuring that 
the q(p) distribution is not 1 nor O for any p unless that p is known certainly 
to take on or not take on that probability. This is ensured by the normative 
initialization function. 

＾ 

9.1 Value of Perfect Information 

The general value of information is the sum of the possible gains times the 
probabilities that those gains occur [How66, Dea91]. Given that the agent is 
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maximizing expected value, i.~. ~sipg eq. (11) to rank preferenc~, ~nfl t~at 
the effective expected value of th~c~rrent best alternc;ttive i_s !3(<fma. ェ），thenthf! 
Expected Value of the Perfec~·Infotmatiqn that r~ 砥~s t~e actua.l・first-order 
probabilityず ofalternative斗ctぬnaalt is: 

EV Pl(Pcふ） = Joo (g呻(i~fO))~(Ea Al、)dEaQu -: cost(i.nfo) (~3) 
E(amGz)・ ・ ・ 

where (gain()) is normally (~ 押― E(amaェ）） (alt~1ough i~ 細ollle~i~uatjons it 
is a constant, if being correct 1s~11 that counts), anp. q(E) is t~ 叩恥m~q.
(9) for partition distributions or e沖timatedfrom e~. (19) fo~s~ts of ev~n"t 
distributions. 

9.2 Note 

This equation concerns reduc~ng uncertain confidence to l?erf ec~ 匹呻de!}C~
and is one of the main results of this paper. In effect, it compute~ ~np u~e~ 
q(E知 ~E(amax)),the possibility that the expectation of th~alfern~tive co'(Llfl 
be greater than the current expectation, which is a second:-order . pr? 坪biijty
result .. Note that if first-order probabilities are used, E(aa1t) is a c<;>~sfa~t, 11ot 
a random variable, and E(aa1t)・2:: ~(amaェ） is either true or 1:1<?t. Since the event 
distributions are coupled, it is insufficient to examine the ,e-yents sep平~tely.

9.3 Value of Testing 

The general expected value of in~ormation given one samp¥e exe~ution of an 
action is 

n 

EVI(sample) = I: ga切(qnew.A(筍凶observe~) p(Ai) (~4) 
i=l 

using equations (3), and (19)~ith m=l. The degree of c~aµge dtfe to':1-Pd?-t-
ing depends on the confidenc~of the current distribution.1~Thi~expr:essip1:1 
simplifies in cases. 

9.4 Implementatioq note 

Event distrib・utions can only give approximately correct tesults: Ho1vev~r, 
they are straightforward to im_plement, and allow a syste11:1 to tak~advantage 
of the theory. Partition distributions are definitely pref err斗hieif P?ssible. Full 

use of partition distributions s,eems to require a symbolic in~egrati_on package. 
The implemented system curr~ntly uses event distributioI¼s quantized at 0."05 
intervals in p. Obviously quantization causes loss of precis_ion [V'{el90a]; this 
level seems acceptable for current applications. 

16This equation apparently offers a closed-form optimal solution tp the "t"~o-armed ban-
dit" problem (Har91] for k arms with nk known outcomes apiece. 
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Confer-Success 

(_Input Utterance J, 

Hotels Success 

● 

,(score 25J 

e_-;core . 25J 

[;core 50J 

(score 75J 

l¥ ¥ ヽ[score 100; 
Using action CONFERENCE. If you quit nou、yourexpected actual volue uould be 28. 
Expected Volue of Perfect Infornation concerning action HOTELS: 39.96209. 
... Actual expected value or action HOTELS: 39. 
Changing connitnent to neu action HOTELS. 
Using action HOTELS. If you quit nou, your expected actual value uould be 39. 
Exp~cted Value of Perfect Infornation concerning action TRAVEL: 36.372406. 

....... ___一'-~- --ー.. 

Figure 3: Representation o f the Example Problem 

10 Example 

A hypothetical language translation system uses one of several modules to pro-

cess input utterances, depending upon the microcontext of the conversation. 

For instance, modules might be sp~cialized for processing parts of conversa— 

tions about conference registration, hotel registration, travel, sightseeing, etc. 

A module will uncertainly succeed or fail in processing each utterance. ff it 

succeeds, it will uncertainly produce an output scored at 25, 50, 75, or 100 
points. Some utterances, such as "How much does it cost?", may be success-

fully processed by some or all modules, but only one module will be correct in 

its understandings and predictions. The system is time-limited, and can only 
choose one module which will then be used to process repeated utterances.17 

The problem is modeled, using the B-SURE system, by an uncertain action 

representing success/failure for each module, and a different uncertain action 
representing the outcome scores given that the module was successful (See 

figure 3). Two separate actions are used because the success/failure outcome 
is a different sort than the score outcome, and to demonstrate conditional 

actions. Although partition probabilities should be usea, the current system 

only supports event probabilities, and so the event equations will be referenced. 
It is assumed that the possible current conversational context is completely 

uncertain, and so equation (18) is used to initialize the second-order event 
probability distributions for the actions, with n = 2 and n = 4 respectively. 

Eq. (8) is used to evaluate the second action and "fold it back" through the 
first action; each resulting alternative has five event axes, corresponding to 

"failure" and "(value) !success". 
Eq. (10),(11) are used. to rank the alternatives, and the highest one is 
selected to be the current "best action". Choosing is performed based on 

maximizing expected value. At this point, the actions are highly uncertain, 

17This work is designed to attack high-uncertainty problems that have low-confidence 
probability estimates. It is assumed that, because of the complexities of spontaneous dialog, 
the system is processing utterances in an original micro-context with uncertain likelihood 
estimates. High-confidence problems may employ simpler strategies than those presented. 
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and they all have the same~~u1vale~t expectation, ~o one is~P.C?Se~aし fandom.
In this example, "perfe~t inform~tion" consists of knowi_ng wi~h c?mplete 
confidence the real (first-order) likelihoo・d of each n_1odule, a~d·thus~~-e corre-
sponding expected v叫ue[Jtaj邸， p.2・?,168).Assum~that thefe is a~p~timator 
function for each module~hi3-t, for~k~own cost in time a1_~d res~u_rFes (e.g. 
0.5 sec.), can analyze the~~rtent~_ialog context~nd prediF.t the li:kt?lihoods 
that this module will be s1:1cc~ssful .and・will obtain particul_~r. an~Wef scores. 
Assume that these functions叩eid~ ゃ1,i.e. they return perf~ 叫ycpr!~ct first-
order predictions (complet~ ~ ゚pfidence).Assume that the sy~tem~s w~lling to 
spend about two seconds on fi1;1ding .. the best module, i.e. t~e~e is a (P.ime, 11) 
curve representing the value pf stopP,ing immediately that 四p1:1ect~th_~points
(0,0), [1,0), (3,100), (oo, 100). T~en t~e f~llowing strategy call: ~e f~llowed: (a) 
Maintain the current "best a:c~ion" i3-nd its equivalent expec~~tion; (じ） Select 
the best action out of the oth~r~that ha v.e not been estimated yet; (c)'l?.valuate 
the EVPI of executing thi~fction'~est~mator, using eq. (23}; (q) qompare 
this against the current Vc},l~e of stppp~ng immediately: (e) If gre砧~r, then 
update the "best action"; (f)~lse~-top and use the current''best action" to 
process the next series of utt¢r~nces. N叩ethat the amount~f inves海ationis 
a function of the amount of~r~e ti111.e a ¥?ailable. 
In this experiment, th~ ~Vf!rage best expectation is 67, and th~average 
number of modules analyz~~i~4.2 (2.1 sec.). This compares agai~s~an ex-
pectation of 31 if only the a pr.iori~est module is chosen bli~dly. 

11 Discussion 

Some people have argued aga~nst~he~se of probability in some si~uations 
when an agent is ignoran~ ~nd isµna~le to formulate a specific (~pxastic) 
probability. The argument g~e~thaf as9ignment of even a se·cond-ord~r prob-
ability implicitly assigns an eguivaJent first-order pro babili~y to th~events, 
and these authors feel unc?r¢?rtable with this: In other WC?rds, theY,-do not 
feel confident of the resulti1:1~J?robability. 
However, our theory an:swers this concern. Even if the agent has no dox-
astic probability at all (w~i.c~he or she is free to do), thやsituatign'sreal 
probability does exist in _all c邸es-andthis demands that a normat切eprob-
ability should exist. It do蕊叩tmatter whether the agent "believes in" the . 
normative probability or n?t; ~he point is that it offers the~est model of the 
real situation, given all th~ ~v?'ilable information. Second-o~·der prob.~bilities 
off er an explicit representc1-ti_on of confidence, and a method of d_et~~mining 
when to decide. Some p~p~e would have the agent not decide at~.11 when 
faced with completely unc_ertain probabilities-however, this may not be an 
option in a resource-limite4 ,vqrld. "Not to decide" is in fact a meta-decision, 
and it may be the wrong meta-decision if constantly applied in an indiscrim-
inate manner. Our theory aHows the agent to meta-decide whether to decide 
or to prefer gathering more information if possible, based on the confidence in 
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its mop~ls. Sometimes it is not possible to wait, and in this case a decision 
~us~b, e made with information in which the agent has low confidence-but at 
l~ast t~ 曲isrepresented explicitly. 
Fagii:i and Halpern [FH89] also argue that some events have probabilities 
that ai・e nonmeasurable. This is a difficult philosophical point, and one that 
咋qu¥函furtherresearch. 

A:n~ther concern that people have pointed out is that a second-order prob-
ability~istribution based on maximum entropy does not capture all of the 
p,rio~ 泣f?rmationthat a human expert has, based on experience and "common-
s~ns~" l~gic. There are two responses to this point. T~e first is to note that 
t~e qi~t~od of maximum entropy is not restricted to simply equation 17 which 
i~useq~or completely unknown situations, but can be used to・include any 
cpns~r~ 江tsknown to the agent that can be expressed mathematically. The 
11:1at~e1nf3,tics gets rather complex, however, and is beyond the scope of this pa— 

p,er (see e.g. [Pap84, p.535-544]). The second response is to observe that this 
p,rob~em may indeed occur when attempting to accurately install the existing 
kno~ledge of a human into a computer expert system. However, when creating 
an a~tifi~ial intelligence that must plan, function in the world, and learn from 
its e~pedences, a completely-unknown probability distribution may accurately 
desc~ibe the state of its knowledge. Human children and even intelligent adults 
mak~mistakes in judgement based on lack of experience, especially when en-
counteriμg new situations; to be fair, an artificial intelligence must be given a 
similar range of experiences if its judgements are expected to be comparable. 

~istributions are easily implemented in neural nets [Alb81]. It would be 
interestip.g to find out whether people actually use second-order probability 
distr~bu~ions to represent likelihood and confidence. 

The~urrent algorithms assume that path evaluation time is negligible when 
compared with the time required to perform an action. If this is not the case, 
the algo!ithms should take into account the amount of time required to do 
inferencing and evaluation, as well as the domain action time, when computing 
the cutoff for limited-resource reasoning. • 
Wheμ many instances of the same action type are incorporated in a plan, 
dynamically updating the action-type's outcome probability distributions from 
observeq execution outcomes will change likelihoods, which may change de-
cision p~eferences. The system supports such dynamic updating. However, 
in theory it is possible to predict the changes in believed likelihood based on 
possible・outcomes, and .to use these a priori in different downstream t~melines. 
The system does not yet support such calculations. 
This work is based on actions having stationary real probabilities. The 
questions of how to deal with actions having nonstationary probabilities or 
probabilities that vary depending on the current situation, how to estimate the 
probabilities of such actions when proposed in a new situation type, and how 
to recognize and distinguish such actions and situations, basically comprises 
the learning problem and must be left for future research. 
This work assumes that the starting situation is known with complete 
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confidence. If the starting situation is known uncertainly, it is nee~ 坪ryt~ 
use game theory against a fair opponent (nature) to decide which a~tiqns t~ 
perform. Discussion of such theory is beyond the scope of this paper. 

12 
． 

Conclusion 

This paper has presented a brief introduction into the theory and practice 
of planning, decision-making, and meta-decision-m吐:ingusing secoqd-order 
probabilities to explicitly represent uncertainty. Dec1s1ons can be ma~e whe~ 
necessary, with little or no frequency information, but the confidence may b~ 
low; information-gathering actions are indicated when required. Secoqd-orde~ 
probabilities offer a method to determine when it is useful to gath~r mor~ 
information, and when it is time to make a decision. 
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A Proof of Some Equations 

This section presents a proof of equations (21) and (22). 

so 

Equation (20) is repeated here for convenience. 

qnewAi (Pi) = 
炉 (1-Pi)(m-ki) q。ldAi(Pi)
(It P仰(1-Pi)(m-ki) q。ldAi(pi)如）

However, if (18) is used for initialization, then 

qnewAi lm,ki (Pi) 

q。ldAilm=o(Pi) = (n -1) (1 -Pi)n-2 

p仰{1-Pi)(m-ki) (n -1) {1 -Pi)n-2 
― (It P仰{1-Pi)(m—り (n-1) {1-Pi)n-2 dpi) 
p仰(1_ Pi)(m+n-2-ki} 

―(It P仰{1-Pi)(m+n-2-ki) dpi) 

Using the identity 

tp勺1-p)8-Adp 

゜
A! (B -A)! 

― (B + 1)! 

(25) 

(26) 

(27) 

with A = ki and B = m + n -2, the denominator is evaluated and inverted. 
This resolves into equation (21): 

（ 
(m+n-1)! 

q,.. 叫 lm,k;Pi) =却 ((m+ n-2) -k;)! p仰(1_ p;)((m+n-2)-k;) 丘召］
(28) 

Repeating equation (3) for convenience, the equivalent first-order proba— 

bility of a second-order event distribution is: 

p(A;) = t 知 (p;)p; dp; 

゜Using equation (28) for q(p), this is: 

p(Ai) = j 1 (m+n-1)! 
o ki ! ((m + n -2) -ki) ! 佑

叫1-Pi)((m+n-2)-ki) Pi dpi 

(29) 

(m+n-1)! 1 
却 ((m+ n -2) -k;) ! lo。P1k;+1¥1_ p;)((m+n-1)-(k;+l)) dp; 

Again using identity (27) with A_ = (如+1) and B = (m + n -1) to convert 
the integral, we get: 

p(Ai) = ---(m + n -1) ! (ki + 1) ! (m + n -1 -(k + 1)) ! 
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(m+n-1)! (柘+1)! 
・．
和! ・・(m +・n) 

ki + 1 
'(m +・ti) 巨

B~xpeFim印nt~l Ver.ification of the Estima-

tor 

B.1~iscu~sioµof th~Experiment 

Th~ ~xp~riment is b邸ed01:1: th~theo_ry of real and normative believed proba— 

bili~ 函0迅linedin se~fions 1.4 and 5. The experiment consists of an observer 
att~mHti~g to 母ima~~the !e~prob~bility of a.n outcome of a stationary ran-
do~p~·o~ess. Fqr ea中exp虹面ent,first the number of possible outcomes n is 
cho~~n: It is assl_lmed~hat~he ?bserv.er knows n correctly. Next, out of all the 
pos函ple邸signm;ents?f propabjlities fo the outcomes a probability assignment 
set p(J¥1), …p(A~) is~~ose11: a.t rando3:11, such that Ef Ai = 1. -This represents 
the・U:n¥nown re?-1 prqbabi恥y?f the problem. The observer arbitrarily picks 
the i't~outcome of th~pro~~s, Ai, fqr observation. Without loss of generality, 
let j~1. The g~al is to esfim~te th~probability p(Ai) as closely as possible, 
by p~r~or.ming r<rpeat~d tri叫sC?f the process and observing the results, where 
m i~ ~he 1:1umber of tri叫sthゃth~ve been performed so far, and ki is the number 
of the~u~cesses pf ou~ 四omeAi pbserved so far. It is assumed that the identity 
oft~~J?rocess o迅com面scr~sp, and is consistently and correctly observed with 
cert吋nty~ 一 k -暉eヽrerificationu~es th~two estimators pli = ...L and p2i =~The m (m+n)・ 
tri~l~eq~ence for eac~~exp~riID:ent starts at m = 0 and continues sequentially ---
up fo rri~100 t!ials 1:1:sing~he same real probability assignments. Since pli is 
undefined at m~0, i~is arbitrarily specified as O in this case. 
叫 i血tervalbetw~~n O~nd 1 is divided up by sequentially assigning subin-
terヽ祉stC? 。utco~es 心 wqere the length of each subinterval corresponds to 
the s~z~C?f its pfobab~lity p.(Ai). For each trial, a (flat-distribution) random 
num~e! R betw~en 0弁nd1 is P.icked to determine the outcome of the process. 
Wh.ich~v~r subiD:terval_ the 11u111:ber falls in designates the outcome of this trial. 
Sin~e the observer is qnly ip.terested in the first outcome, this can be reduced 
to s~gn祉i'xiga success when the random number 1s O~R < p(Ai), and a failure 
otherwise. 
For er1-ch tr迫， th~dist~nc芦詞ー PiI and I~-Pi I are collected as a 
fun点ionpf m. 

T~~experiment is perform~d 2000 times, and the results for all the exper-
ime_n~s a~·e collected¥a function of m and then divided by 2000 to get the 

--- -―--avera_ge v.alue. Finally the average curve for p2i is subtracted from that of pli 
--―-to determine how mu~~clo~er p2i is to the real probability, as a function of m. 

The results are s恥wnip figure 4 for n equal to two, three, ten, and one 
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hundred. 

Comm~11:ts T~er~ ~te two methods for selecting probability assignments 
random~y fof r oµt~fll• . The first involves picking (n -1) random numbers 
from a flat di~triqutiq? between O and 1, to represent the n -1 degrees of free-
dom of~he p~obl~~-'f.hese numbers are discarded if they sum to more than 
one. Ot~~rwi~e, ih~ 徊tprobability is determined by (1-sum). This method 
has the d~sadyanfage t~~t huge numbers of probability邸 signmentsmust be 
discarded as~nvc3:li~ ~ef~re a valid combination can be found, especially for 
higher r+·Th~s~con~ 押ethoddepends on using equation .(18) to determine 
the exp~c~ed~istfiqu~i<?1l of an outcome's probability from a randomly-chosen 
probabil_ity邸sig皿氾咄 whereall possible邸 signmentsare equally likely. In 
this cas~, an~pproP,r~ 牡eoutcome probability can be picked directly by trans-
forming a flat-distri_bµt~qn random number R between O and 1: 

ln(l-R} 

Pl= 1-e nー1 (30) 

This is the m~thqd u訳社.for the experiment. The two methods are equivalent. 

28 

~ 

＾ 



K/H: 

K/N: 

fv:; ユ 0.5 

0.4 
N::. 3 

0.Q 
渭置

-f
 

n
 l.. 、)

(K• 1) ✓ (11寸i) : 

0.3 (K•l)/(M•N): 
0.3 

n
 

-U
 

Ln 
フ＇

5
3
 

＇ K/N - (K• l)/(M叶0: 
0.2 Kバi - (K+ l )/(N•N): 

Ln 

＇ 
涵

0.2 

0.15 

0.1 

0.05 
25 

K/N: 
0.5 

0.4 

0.3 

N:: l〇
K/N: 

J L:i :,0 7:, 匹B

(K • l)/(H州）： (K•l)/(M• N): 
0.3 0.02 

0.015 0.2 

01~ 

~:i Sil 1:, 11:i0 
0.0 

Kバi - (K+l)/(H•H): 
K✓N - (K•l) ✓(M • N): 0 .15 
0.02 

0.01~ 
l'.l 1 

ヽ

N::: 100 

,n 
-I
 

25 
「

U
)

Figure 4: Mean Distance from the Real Probability and Improvement, for 

N=2, 3, 5, and 100 
29 



References 

[AC87) 

[AC90) 

(AK83] 

[Alb81) 

[App80) 

(Bac90a) 

[Bac90b] 

[Bar88] 

[BD89] 

Philip E. Agre and David Chapman. Pengi: An implementation of a theory of 
activity. In AAAI'87: The Sixth National Conference on Artificial Intelligence, 
pages 268-272, Seattle, WA, 1987. 

Philip E. Agre and David Chapman. What are plans for? In Pattie Maes, editor, 
Designing Autonomous Agents, pages 17-34. The MIT Press, Cambridge, MA, 
1990. 

James F. Allen and Johannes A. Koomen. Planning using a temporal world 
model. In JJCA/'83: The Eighth International Joint Conference on Artificial 
Intelligence, pages 741-747, Karlsruhe, West Germany, 1983. 

James S. Albus. Brains, Behavior, FJ Robotics. BYTE Books (McGraw-Hill), 
Peterborough, NH., 1981. 

Douglas E. Appelt. A planner for reasoning about knowledge and action. In 
First Annual National Conference on Artificial Intelligence, 1980. 

Fahiem Bacchus. Lp-a logic for statistical information. In Uncertainty in Arti-
ficial Intelligence 5, pages 3-39. North-Holland, Amsterdam, The Netherlands, 
1990. 

Fahiem Bacchus. Representing and Reasoning with Probabilistic Knowledge. The 
MIT Press, Cambridge, MA, 1990. 

Jonathan Baron. Thinking and Deciding. 
bridge, Mass., 1988. 

Cambridge University Press, Cam-

Mark Boddy and Thomas Dean. Solving time-dependent planning problems. 
In IJCAI'89: Eleventh International Joint Conference on Artificial Intelligence, 
pages 979-984, Detroit, MI, 1989. 

[BDKL91] Kenneth Basye, Thomas Dean, J ak Kirman, and Moises 
theoretic architectures for planing, perception and control. 
Brown University, Providence RI, 1991. 

(BGD87] 

[BP83] 

[CG89] 

[Che85] 

(DBSS] 

[DB90] 

Piero P. Bonissone, Steven S. Gans, and Keith S. Decker. Rum: A layered ar-
chitecture for reasoning with uncertainty. In JJCAI'87: The Tenth International 
Joint Conference on Artificial Intelligence, pages 891-898, Milan, 1987. 

Situations and Attitudes. The MIT Press, Cam-Jon Barwise and John Perry. 
bridge, Mass., 1983. 

Lej ter. Decision-
Technical report, 

Eugene Charniak and Robert Goldman. A semantics for probabilistic quantifier-
free first-order languages, with particular application to story understanding. In 
IJCAI'89: Eleventh International Joint Conference on Artificial Intelligence, 
pages 1074-1079, Detroit, MI, 1989. 

Peter Cheeseman. In defense of probability. In IJCAl'85: The Ninth lnterna-
tional Joint Conference on Artificial Intelligence, pages 1002-1009, Los Angeles, 
CA, 1985. 

Thomas Dean and Mark Boddy. An analysis of time dependent planning. In 
AAAI'88: The Seventh National Conference on Artificial Intelligence, St. Paul, 
MN, 1988. 

Mark Drummond and John Bresina. Anytime synthetic projection: Maximizing 
the probability of goal satisfaction. In AAAI'90: The Eighth National Conference 
on Artificial Intelligence, pages 138-144, Boston, MA, 1990. The MIT Press. 

， 

＾ 

、)

~ 

-
．．． 』
Z

-

q̀ 

30 



i 

-, 

＾ 

r---., 

[Dea91] 

[DF89] 

(dK86] 

[DK88) 

[DK91a] 

[DK91b] 

Thomas Dean. Decision-theoretic control of inference for time-critical applica— 

tions. International Journal of Intelligent Systems, 6:417-441, 1991. 

Bruce D'Ambrosio and Michael Fehling. Resource-bounded agents in an uncer-
tain world. In Al and Limited Rationality 1989 Spring Symposium, 1989. 

Johan de Kleer. An assumption-based tms. Artificial Intelligence, 28(2):127-162, 
March 1986. 

Thomas Dean and Keiji Kanazawa. Probabilistic temporal reasoning. In 
AAA/'88: The Seventh National Conference on Artificial Intelligence, pages 
524-528, St. Paul, MN, 1988. 

Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence 
and causation. Technical report, Brown University, Providence RI, 1991. 

Thomas Dean and Jak Kirman. Representation issues in bayesian decision the-
ory for planning and active perception. Technical report, Brown University, 
Providence RI, 1991. 

[FC86] Robert M. Fung and Chee Yee Chong. Metaprobability and dempster-shafer in 
evidential reasoning. In Uncertainty in Artificial Intelligence {1}, pages 295-302. 
North-Holland, Amsterdam, The Netherlands, 1986. 

(FH89] Ronald Fagin and Joseph Y. Halpern. Uncertainty, belief, and probability. In 
IJCA/'89: Eleventh International Joint Conference on Artificial Intelligence, 
pages 1161-1167, Detroit, MI, 1989. 

[FK86] Barry R. Fox and Karl G. Kempf. Planning, scheduling, and uncertanty in the 
sequence of future events. In Uncertainty in Artificial Intelligence Wo吐shop,
pages 77-81, Philadelphia, PA, 1986. 

[FN71] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application 
of theorem proving to problem solving. Artificial Intelligence, 2:189-208, 1971. 

[Fre71] John E. Freund. Mathematical Statistics. Prentice-Hall Inc., Englewood Cliffs, 
NJ, second edition, 1971. 

[FS77] Jerome A. Feldman and Robert F. Sproull. Decision theory and artificial intel-
ligence ii: The hungry monkey. Cognitive Science, 1:158-192, 1977. Reprinted 
in C、Readingsin Planning", pp. 207-224. 

(Gai86] Haim Gaifman. A theory of higher order probabilities. In Joseph Y. Halpern, ed-
itor, Reasoning About Knowledge, pages 275-292. Morgan Kaufmann Publishers, 
Inc., Los Altos, CA, 1986. 

(GI89] Michael P. Georgeff and Francois F. Ingrand. Decision-making in an embedded 
reasoning system. In /JCA/'89: Eleventh International Joint Conference on 
Artificial Intelligence, pages 972-978, Detroit, MI, 1989. 

[Hal89] Joseph Y. Halpern. An analysis of first-order logics of probability. In IJCA/'89: 
Eleventh International Joint Conference on Artificial Intelligence, pages 1375-
1381, Detroit, MI, 1989. 

[Hal90] Joseph Y. Halpern. An analysis of first-order logics of probability. Artificial 
Intelligence, 46:311-350, 1990. 

(Ham89] Kristian J. Hammond. Case-Based Planning. Academic Press, Orlando, FL, 
1989. 

[Han87] Steve Hanks. Temporal reasoning about uncertain worlds. In Third Workshop 
on Uncertainty in Artificial Intelligence, pages 114-122, Seattle, WA, 1987. 

31 



(Han90a] Steve Hanks. Controlling inference in planning systems: Who, what, when, 
why, and how. Technical Report 90-04-01, Dept. of CS and Eng., University of 
vVashington, Seattle, V¥7A, 1990. 

(Han90b] Steve Hanks. Practical temporal projection. In AAAI'90: The Eighth National 
Conference on Artificial Intelligence, pages 158-163, Boston, MA, 1990. 

(Han90c] Steven John Hanks. Projecting Plans for Uncertain Worlds. PhD thesis, Yale 
University Department of Computer Science, January 1990. 

[Har91] Leo B. Hartman. Uncertainty and the cost of planning. Technical Report 372, 
University of Rochester, Rochester NY, 1991. 

[HCH89] Eric J. Horvitz, Gregory .F. Cooper, and David E. Heckerman. Reflection and 
action under scarce resources: Theoretical principles and empirical study. In 
IJCAJ'89: Eleventh International Joint Conference on Artificial Intelligence, 
pages 1121-1127, Detroit, MI, 1989. 

[HF90a] Peter Haddawy and Alan M. Frisch. Modal logics of higher-order probability. In 
Uncertainty in Artificial Intelligence 4, pages 79-92. North-Holland, Amsterdam, 
The Netherlands, 1990. 

[HF90b] Joseph Y. Halpern and Ronald Fagin. Two views of belief: Belief as generalized 
probability and belief as~vidence. In AAA/'90: The Eighth National Conference 
on Art_ificial Intelligence, pages 112-119, Boston, MA, 1990. 

[HF90c] Steve Hanks and R. James Firby. Issues and architectures for planning and 
execution. Technical report, Dept. of CS and Eng., University of Washington, 
Seattle, WA, 1990. 

(HH90] Peter Haddawy and Steve Hanks. Issues in decision-theoretic planning: Symbolic 
goals and numeric utilities. In DARPA Planning Workshop, 1990. 

[HJ87) David Heckerman and Holly Jimison. A perspective on confidence and its use 
in focusing attention during knowledge acquisition. In Third Workshop on Un-
certainty in Artificial Intelligence, pages 123-131, Seattle, WA, 1987. 

[HM83] Ronald A. Howard and James E. Matheson, editors. The Principles and Ap-
plications of Decision Analysis. Strategic Decisions Group, Menlo Park, CA, 
1983. 

[HM91] Steve Hanks and Drew McDermott. Modeling a dynamic and uncertain world 
1: Symbolic and probabilistic reasoning about change. Technical report, Dept. 
of CS and Eng., University of Washington, Seattle, WA, 1991. Submitted to 
Artificial Intelligence journal. 

[How66] Ronald A. Howard. Information value theory. IEEE Trans. on Systems Science 
and Cybernetics, SSC-2(1), 1966. reprinted in''The Principles and Applications 
of Decision Analysis" , pp. 779-783. 

6H90] Jane Yung jen Hsu. Partial planning with incomplete information. In 
James Hendler et al., editor, Working Notes of Planning in Uncertain, Un-
predictable or Changing Environments, AAA! Spring Symposium Series, pages 
62-66, Stanford University, March 1990. Also PRICAI'90, pp. 474-479. 

[Jus84] James Justice, editor. Maximum entropy and Bayesian Methods in Applied 
Statistics. Cambridge University Press, Cambridge, Mass., 1984. 

[KD89) Keiji Kanazawa and Thomas Dean. A model for projection and action. In 
IJCAI'89: Eleventh International Joint Conference on Artificial Intelligence, 
pages 985-990, Detroit, MI, 1989. 

i
 

，
 

＾ 

， 

32 



[Kyb89] 

[Kyb91a] 

[Kyb91b] 

[MA90] 

[McD82] 

(MFD85] 

[MN86] 

ー、 [Mye91] 

[Mye92) 

[Pap84) 

[Pea88) 

[Pea89) 

、'
J

[Rac89] 

[Rai68] 

[RG91a) 

[RG91b] 

[RW89] 

! [RW91] 

[SC87] 

H. E. Kyburg. Higher order probabilities. In Uncertainty in Artificial Intelligence 
3, pages 15-22. North-Holland, Amsterdam, The Netherlands, 1989. 

Henry E. Kyburg. Evidential probability. In JJCAI'91: 12th International Joint 
Conference on Artificial Intelligence, pages 1196-1202, Sydney, Australia, 1991. 

Henry E. Kyburg. Knowledge representation and uncertainty in artificial intel-
ligence. Technical Report 395, University of Rochester, Rochester NY, 1991. 

Nathaniel G. Martin and James F. Allen. Abstraction in planning: A prob-
abilistic approach. Technical report, University of Rochester, Rochester NY, 
1990. 

Drew McDermott. A temporal logic for reasoning about processes and plans. 
Cognitive Science, 6(2):101-155, April-June 1982. 

David Miller, R. James Firby, and Thomas Dean. Deadlines, travel time, and 
robot problem solving. In JJCAJ'85: The Ninth International Joint Conference 
on Artificial Intelligence, pages 475-479, Los Angeles, CA, 1985. 

Paul H. Morris and Robert A. Nado. Representing actions with an assumption-
based truth maintenance system. In AAAI'86: The Fifth National Conference 
on Artificial Intelligence, Philadelphia, PA, 1986. 

John K. Myers. Plan inference with probabilistic-outcome actions. In Conf 
Proc. Information Processing Society of Japan, volume 3, pages 168-169, Tokyo, 
Japan, March 1991. 

John K. Myers. The b-sure manual. Technical report, ATR Interpreting Tele-
phony Research Laboratories, Kyoto, Japan, 1992. 

Athanasios Papoulis. Probability, Random Variables, and Stochastic Processes. 
McGraw-Hill Book Company, New York, NY, 1984. First edition 1965. 

Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann 
Publishers, Inc., Los Altos, CA, 1988. 

Judea Pearl. Do we need higher-order probabilities and, if so, what do they 
mean? In Uncertainty in Artificial Intelligence 3. North-Holland, Amsterdam, 
The Netherlands, 1989. 

Howard Rachlin. Judgment, Decision, and Choice. W. H. Freeman and Com-
pany, New York, NY, 1989. 

Howard Raiffa. Decision Analysis. Addison-Wesley Publishing Co., Menlo Park, 
CA, 1968. 

Anad S. Rao and Michael P. Georgeff. Asymmetry thesis and side-effect problems 
in linear-time and branching-time intention logics. In Proceedings of JJCAI-91, 
Sydney, Australia, 1991. 

Anad S. Rao and Michael P. Georgeff. Deliberation and intentions. Technical 
Report 10, The Australian Artificial Intelligence Institute, 1991. 

Stuart Russell and Eric Wefald. On optimal game-tree search using rational 
meta-reasoning. In JJCAI'89: Eleventh International Joint Conference on Arti-
ficial Intelligence, pages 334-340, Detroit, MI, 1989. 

Stuart Russell and Eric Wefald. Principles of metareasoning. A廿ificialJntelli-
gence, 49:361-395, 1991. 

Matthew Self and Peter Cheeseman. Bayesian prediction for artificial intelli-
gence. In Third Workshop on Uncertainty in Artificial Intelligence, pages 61-69, 
Seattle, WA, 1987. 

33 



[Sch87) Marcel Schoppers. Universal plans for reactive robots in unpredictable domains. 
In JJCAI'87: The Tenth International Joint C四ferenceon Artificial lntelli-
gence, Milan, 1987. 

[Seg88) Alberto Maria Segre, editor. Ma chine Learning of Robot Assembly Plans. Kluwer 
Academic, Boston, MA, 1988. 

[Sha79) Glen Shafer. Mathematical theory of Evidence. Princeton University Press, 
Princeton, NJ, 1979. 

[Sho89] Yoav Shoham. Time for action. In IJCAI'89: Eleventh International Joint 
Conference on'Artificial Intelligence, pages 954-959,1173, Detroit, MI, 1989. 

[Spe86) David J. Speigelhalter. Probabilistic reasoning in predictive expert systems. In 
Uncertainty in Artificial Intelligence {1}, pages 47-67. North-Holland, Amster-
dam, The Netherlands, 1986. 

[SS90) Prakash P. Shenoy and Glenn Shafer. Axioms for probability and belief-function 
propagation. In Uncertainty in Artificial Intelligence 4, pages 169-198. North-
Holland, Amsterdam, The Netherlands, 1990. 

[THD90] Austin Tate, James Hendler, and Mark Drummond. A review of ai planning 
techniques. In James Allen, James Hendler, and Austin Tate, editors, Readings 
in Planning, pages 26-49. Morgan Kaufmann Publishers, Inc., Los Altos, CA, 
1990. 

[Ver83) Steve A. Vere. Planning in time: Windows and durations for activities and goals. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(3):246-251, 
May 1983. 

[vM57) Richard von Mises. Probability, Statistics and Truth. Dover Publications, New 
York, NY, 1957. 

[Wel90a) Michael P. Wellman. Fundamental concepts of qualitative probabilistic networks. 
Artificial Intelligence, 44:257-303, 1990. 

[Wel90b] Michael P. Wellman. The strips assumption for planning under uncertainty. 
In AAAI'90: The Eighth National Conference on Artificial Intelligence, pages 
198-203, Boston, MA, 1990. 

34 


	0258
	0258cv



