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Abstract’

The first part of this paper presents a basic introduction to second-order
probability theory: whatitis, and what kinds of problems it is used to solve.

The remaining parts of this paper introduce a system of theories and
implementations for planning and meta-decision-making with uncertain-outcome
actions represented using second-order probabilities. A situation-based theory of
representing states, situations, and nondeterministic actions is implemented by
the ATMS-based B-sURE system, which supports uncertain-action planning. A
second-order probability theory allows an agent to model a probable continuum of
universes, only one of which is correct; each universe describes a set of possible
worlds labeled with probabilities. This represents the difference between the
likelihood of an outcome and the confidence with which that likelihood is
believed. Confidence is shown to govern meta-decision making, particularly
meta-decisions concerning the gathering of information to clarify outcomes’
likelihoods. Second-order probabilities are defined over partitions and individual
events. Event distributions are convenient but cannot be used for accurate union
nor expectation-distribution conputation. Partition and event distributions are
initialized using maximum-entropy methods which significantly do not require
prior frequency information, and are updated using Bayesian methods. Value of
Information equations are defined, which support meta-decisions. A simple
example demonstrates meta-decision-making with the implemented system. No
other system has used second-order partition probabilities for planning or meta-
decision-making.
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1 Basic Introduction

This paper presents an introduction to the theory of second-order probability,
and how it can be used in uncertain planning, decision-making, and meja:
decision-making. '

1.1 The Problems

In order to understand second-order probability well, it is yseful to review the
kinds of problems it was designed to solve.

1.1.1 Represepting Uncertainty Explicitly: Degrees of Confidence

A friend asks yoy to play some games with betting on a coin flip, whether
it lands “heads” pr “tails”. The coin could be weighted, so you flip it twice
to test it out-it comes up heads opce, and tails once. You conclude that
the probability of heads is 0.5. However, this test qoes not seem to be very
satisfying—you wq.nt to test the coin out some more. In fact, you might not
want to play with the coin unless you are allowed to test it more. After 1000
flips, you find that the coin landed heads 500 times, and talls 500 tlmes Now
you are quite confident that the probability of hea.ds is 0.5, and you are ready
to start betting with your friend.

What has changed here? In both the “before” case and the “after” case,
the probability estimate is the same. However, the cases seem qulte different,
based on what you are willing to do. The difference cap be characterized by the
confidence in the probability estimate. How can this be represepted exPliditly?

1.1.2 Estimating Probabilities with Few Samples

Your friend asks you to play a game with a 6-sided die. The die definitely has
six sides, but it could be weighted. You throw i twice to check it qut, and
get a two and a six. Remembering from basic n‘;a.th,emahps tha.t probability.
should be estimated by £, the numbgr of observed occurrences d1v1ded by the
number of observa,tlops you conclude that this die will roll twos 3 of the time
and sixes 7 of the time, and ones, threes, fours, gnd fives will never come up
(zero probability). ,

After rolling the die for 1000 times, you can tell that it definitely is
weighted, because the “one” has only come up 3 tnnes Ypu conclude that
the probability of getting a one is 7305

What is wrong with estimating probability in this way?

1.1.3 Deciding When To Stop

A scheduling program is overseeing the processing of a list of a large number
of alternatives, which are ranked by quality estimates. There are too many
alternatives and they take too long to process for the scheduler to comfortably
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process them all. In addition, the best alternative is probably somewhere at
the top of the list, and it is a waste of time to process all of the remaini_pg
alternatives, since only the best one will be chosen. At any one time, it is easy
to pick the best result out of all the alternatives that have been processed so
far-this is a decision problem. It is not so easy to determine when to stop
processing alternatives and choose the best one, or whether to keep going-this
is a meta-decision problem. How can this problem be formulated, and what
information is needed to solve it?

1.1.4 Uncertain Planning

Given actions that have uncertain outcomes with chances that are not known
well, how can an agent plan what course of action to take? And, how can g
computer recognize and predict the plans of that agent?

How is Second-Order Probability Useful? In summary: Second-order
probability is useful for the following tasks:

¢ Representing uncertainty in a precise and accurate manner

o Correctly representing probabilities derived from information obtained
from a low number of sampling experiments, or a low number of success-
ful outcomes

¢ Planning with uncertain actions, and performing plan recognition on
people planning with uncertain actions

¢ Decision-making with uncertain quantities

o Meta-decision-making about whether it is time to stop and make a de-:
cision now, or whether it is important to continue to gather information
about probabilities ‘

1.2 The Most Important Formula

The simplest and most important result of second-order probability theqry
has to do with first-order probability. Based on results shown using second-
order confidences, maximum-entropy initializations, and average (effective)
probability, the following results can be proven:

Given a situation in which n outcomes A;...A, are definitely known
a priori to be possible

and nothing else is known about the situation

and a total of m trial experiments have already been performed

and the A;’th outcome has definitely been observed to occur k;
times



(and other outcomes have definitely been observed to occur (m—k;)
times)

then the best current estimate for the probability p(A;) of the A;’th
outcome occuring on the next trial is:

ki + 1
m + n

p(A:) = (1)

For instance, this shows that the current estimated probability of a two or
a six in the previous dice problem is % apiece, and the estimated probability
of a one, three, four, or five is  apiece. The estimated probability of rolling a
one is ;5= = 0.0040 in the other problem, not 0.0030.

The estimation is optimal in the sense that it is the center of gravity of all
probable estimations, given all the information that is available at the moment.

This result is significantly different from the customary i estimate when m
is small or when k is small (under 10). A person who bets using this estimator
will make more money in the long run than a person who bets using the old
estimator. Note that both estimators approach the same limit as m approaches

infinity.

1.3 What Is Second-Order Probability Theory?

Second-order probability theory basically consists of five things:
1. A theory of what probability is, and how it is used;

2. A method of representing probability, based on a continuous function
that represents the (second-order) probability that any one particular
(first-order) probability is real;

3. A method of initializing the representation in (2) before performing any
experiments, and of updating a representation based on the known re-
sults of experiments;

4. An interpretation of the mathematics in (2) and (3), that says that
the first-order probability should be interpreted as an estimate of the
likelihood that an action will have a particular outcome, the second-
order probability should be interpreted as the confidence with which this
estimate is believed,

5. A series of formulas that show how to use the mathematics in (2) and
(3) for problems in search, planning, and decision-making.

These points will be briefly discussed, in order, in the following sections.
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1.4 What Is Probability, and How is it Used?

Probability, and second-order probability, were both developed to deal pri-
manly with uncertain outcomes that occur when a nondetermlmstlc action
is performed. A “nondeterministic” action is an actlon that does qot ha.ve
one fixed outcome that can be determined ahead of time, before the action
is performed. Second-order probability theory is based on the follow1pg basic
assumptions:

1. A nondeterministic action is in fact nondeterministic. There are several
possible outcomes to the action, each of which in fact could ha,ppen

2. A nondeterministic action has a fixed, constant, statiopary numerical
probability for each outcome, that corresponds to the actugl llkellhoqd
that the outcome will occur if the action is executed.! This number
exists and is unique.

This number is known as the real probability. It is typically pnknowable
with complete accuracy. Note that it is not necessary for the action to
be performed many times, or even to be performed at all, in order for a
real probability to exist.

3. Based on all information known about the system, ap ideal (unlimited)
observer can determine estimates of the real probability. Such an esti-
mate is known as a believed probability because it js an agent’s opinion
of the real probability, not the real probability itself. An ideal observer’s
opinion is called a normative probability, and it corresponds tq what every
agent ideally should believe about the probability of an action. Because
the real probability exists in all cases, normative probability estimates
should exist in all cases.

4. An actual human observer may or may not have an opinipn about a real
probability. Such a believed probability is called a dozastic probability,
because it describes what the person actually believes, pot what he or
she should believe.

It is possible to weaken assumption 1 to a relativigtic version, without
apparent damage to the rest of the system:

1A. A nondeterministic action is nondeterministic to the perform-
ing/deciding agent. As far as this observing person can determine,
there are several possible outcomes to the action, each of which
could happen.

Since the system is concerned with believed probabilities, it apparently does
not matter whether the action is “in fact” nondeterministic, or is only believed
to be nondeterministic by the observer.?

!Nonstationary processes are not treated by this theory yet.
%Interesting possibilities occur when observers have access to different information, and
one observer believes the system is nondeterministic while another pbserver believes it is
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1.4.1 Other theories

It is interesting and useful to compare this theory of probability against other
prevalent theories. ’

The Frequency Definition. One main definition of probability is the num-
ber that results from taking the limit of the relative frequency of observatiops
versus the total number of experiments as the number of experiments ap-
proaches infinity [vM57, p.15,221] [Fre71, p.36]. This interpretation is well-
grounded in reality.

The main problem with this definition is that the probability of an experi-
ment that cannot be repeated a large number of times is undefined. Also, it is
necessary to perform the experiment a “large number” of times before an accp-
rate probability can be determined. Finally, a completely accurate probabilijy
cannot be determined without repeating the experiment an infinite number of
times.

The Subjective Definition. A second main definition of probability is the
percentage that a person would feel comfortable with when asked tq bet money
on the outcome of the experiment [Fre71, p.36].

This definition seems to be equivalent to our doxastic probabilities. How-
ever, it ignores the fact that doxastic probabilities depend on the way that the
problem is defined, and do not have to be unique. The person may not feel
comfortable betting at all. The main problem with this definition is that a sup-
jective probability can vary arbitrarily from person to person, and even within
the same person from moment to moment. There is no objective definition.

The Set-Theoretic Definition. A third main definition of prpbability is
grounded in mathematics. Sets are divided up into subsets and elements corre-
sponding with events; these are assigned numbers which are called “probabilify
measures”. A probability is a number that is assigned to a set. A set of three
axioms allows derivation of useful equations for working with the numbers.
This system only tells how to compute with probabilities; it does not say what
they are, or where they come from. In particular, it does not determine how
to derive the probability measures in the first place [Fre7l, p. 39].

The main problem with this system is that probabilities cannot be deter-
mined in the system; it is necessary to reach outside of the system to initialize
the probability measures. Probabilities are not grounded in the real world. In
addition, there is no way to represent confidence.

1.5 How is Second-Order Probability Represented?

A second-order probability representation is quite simple to understand. Fpr
any one problem, there is a known set of n possible outcomes A;..A,. Each

deterministic. These situations will not be covered in this paper.
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outcome can, in theory, have any probability between 0.0 apd 1.0. Sq this forms
an n-dlmensmnal problem space, where each axis represents a proba.blhty of
an outcome, and each axis only varies ﬁorn 0.0 to 1.0. For instance, if there
are three possible outcomes, this forms a three—dm'{ensmna,l space. Apy one
point in the space corresponds to a definite labeljng qf the probabilities of each
of the three outcomes. Of course, if we want to pay attentign to the fact that
all of the probabilities have to add up to one, then not all of the pomts in the
space will be valid-most will be invalid, and the only usa.ble points w111 lie on
the surface of an equilateral triangle (1n three-djmensiopal space).

Of course, a point can also be considered to be a vector. We will Jike some
of these probability assignments better thar other assignment points (vectors),
and so we will assign a function to each point tp grade how much we like it.
This will be a vector density function, that maps each gomt (vector) in the
space into a scalar, which represents conﬁdence For convenience, this number
will also be a probability (i.e. the function is a continuqus probablhty dens1ty
function) that measures the likelihood or the confidence with which we believe
this probability estimate could be true. Beca.qse this is a proba,b}hty of a
probability, the theory is called “second-order pxobablllty

Explicitly representing an entire space llke this (called the partition prob-
ability distribution function) would be too dlfﬁcult to do inside present-day
computers—it would take up too much space. Eventua.lly rt will be possible to
work directly with equations, and not have to worry abopt numerical yepresen-
tations. However, at present it is necessary to use a condensed representation.
For this reason, the space is projected onto each of the n axes, and then n
separate one-dlmensmna.l functions, called evenf prababzhty dzstrzbutzons, are
represented using arrays. This representation is exact for some problems, but
loses information for other problems.

Thus, there are two representations for secopd-order proba.blhty, the par-
tition distribution and the event distribution. If will be necessary to develop
formulas for each type of representation.

The normal first-order probability of an outcome can be found by taking
the average of the outcome’s event distribution. However, it is possible to find
other, more important information by using these distributions, that cannot
be found using normal scalar probabilities.

1.6 How is Second-Order Probability Initialized?

Second-order probability should be initialized usjng maximum entropy theory.
Maximum entropy says that there are all these Poss;ble values that the prob-
abilities could take on, but at the beginning there is no known reason to favor
any one estimate over any other estimate. We are equa.lly ignorant on all esti-
mates. So, the best thing to do is to act as if they are eqpally likely. Of course,
this is just an estimate; we do not believe they actpally ARE equa.}ly likely,
we just don’t have any information to tell us which ones are more important.
As a matter of fact, the mathematics tells us this-we have an extremely low
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confidence in 2}l estimates.

In order to sgt up a problem like this, it is first important to sit down
and decide which outcomes are possjble, a,nd which are impossible. Include
all the possible ones, and leave ou} all the 1mposmble ones. This is important
information for the system—a.nq as a matter of fact, the mathematigs presented
here assumes tha.t thlS is all the information tha.t you have.

As we make more and more experlrnents, the probabilities adjust, and a
hill grows somewhere in the middle of each event distribution. We bepome
more and more certa.}n about the pro})ablhty estlma.tes of each oujcome as we
gather more da.ta But, we can always be surpnsed The distrihution never
goes completely to zero at any one pqint (except at p=1, the endpomt)—therp
is always a posglbll_lty that the current distribytion estimate could be wrong,
and the hill could shift over. '

1.7 Interpretation: Likelihood vs. Confidence

Once a distinction has been drawn bgtweep the likelihood that somgthjng
will happen, and the confidence with which we believe that hkehhood then
certain problems can be seen to depepd on likelihood, while others depend on
confidence.

It is still a research issue to separate these put and to pin down how they
can be used in genera.l situatiqns. Certain specific situations are preseqted in
the paper.

1.8 The Formulas

The formulas are presented in the main body of the paper. It is not imp,ortg.ht
to understand them unless you want to use them.

1.9 Discussion: Why is Second-Order Probability
more important than First-Order Probability or
Interval Probab1ht1es"

Simple first-order proba.blhty has been used for a long time to represent un-
certainty abont estlma,tes of an a.ctlon s outcomes. However, in the past 25
years, people have grown dissatisfied with this representa,tlon mostly beca.use
they feel tha.t it does not represent all that they know about the estimate.
In particular, sometqnes people feel quite confident about a probability estl-
mate, and sometimes they do not feel confident at all. Thus, ong number is
msufﬁment 1nforma.t10n to represent this phepomenon.

It is easy to give an example to illustrate this. If I flip a coin two times,
and it comes up “heads” once and “tails” once, then I can say that I believe
that the probability of heads is 0.50. However, I do not feel very confident
about this-I would not want to bet a lot of mopey on whether the coin comes
up heads 5 times out of 10. The coin could bg biased, and I might lose. If,
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however, I flip the coin 1000 times, and 500 times it comes up “heads” while
500 tm}es if cqmes up “tails”, then I would feel quite confident about betting
op | the cojn. Istill think the probablhty of heads is 0.50, but the two situations
are dlfFereqt Somethmg else is needed in order to represent confidence.

Pegple have tried using interval probabilities to represent this lack of cer-
tainty pr lq,ck pf confidence. An interval probability consists of two numbers,
a lower bopnd and an upper bound, that serve to model and to restrict the
proba,bﬂlty The real probability is assumed to be somewhere inside this in-
terval.

Howeyer, although interval probabilities are easy to compute with, they
are discoptinuous and not accurate. If a probability is represented as being
between (.25 and 0.75, does that mean that it is perfectly alright for the
probabjlity to be 0.25001, but that it can’t be 0.24999?7 Why such a large
difference? And, is it really true that the probabilities 0.2501 and 0.50 are
equally hkely"

In the past, doxastic interval probabilities have been determined by a.sking
people what g 1 low guess is for the probability, and what a high guess is.
Howevpr, people normally feel hesitant about providing exact numbers for
these hoynds. A good reason for this could be that people actually are usmg
a smooth second—order function to represent the probabilities, perhaps in a
neura.l petwork When asked to determine the bounds for a probability, they
n'ught cut the curve off at about the 95% level on both sides. However, since the
actual fupctlons are smooth, it is hard to tell where to place the boundaries—
the interval probability is only roughly approximating the information found
in the second—order probability distribution.

The secpnd-qrder probability representation subsumes those of normal first-
order p_rob@.blhtl_es and also those of interval probabilities.

1.10 Discussion: Why Not Third-Order Probability?

Some pegple ask, “If second-order probability is so useful, why not third-order
or fourth-order probability? Where does it stop?”. The answer to this ques-
tion is that, although third- and fourth-order probabilities are mathematically
well-defiqed in gurrent problems there is no need for them-there is no inter-
pretation of the mathematics that yields useful information.

If we consider this question, we would have to ask, “How mjght it be
useful to represent multiple possible universes of possible confidences and like-
hhoods”” In a single-agent system, there is no need to represent this. Only if
we move tq multiple-agent systems might this become useful. If we are trying
to represent the beliefs that agent A has about how likely it is that agent B
beljeves that outcome C is likely to happen with a certain confidence, and how
conﬁdept agent A is in believing these likelihoods, then it would be useful to
represept such problems using third- and fourth-order probabilities. But such
sityations are really too complex for the present analysis, and must wait for
future research. Third- and fourth-order probability systems are not discussed

8
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2 Intrpduction

Realistic plannipg systems must deal with actjops having nondeterministjc
outcomes. Qften cpnqltlons are highly uncertain, and a large number of pre-
vious action trials allowmg confident derivation of a set of frequency -based
outcome proba.blhtles is not available. In addltlon, lxrmted resourge systen}s
must decide when they must act, and when they can afford tp gather more
information. A planmng system needs a well-grqunded numeri¢ model tha{t
can represent the yncertaingy of a systerq dlrectIy and present precisg answers
as to when and how to act.

This is prov1ded by a system of theories and implementations, which is ip-
troduced in phls paper. A SItuatlon-ba.sed mode] of uncertain acfign provides
a representation fgrmalism. A model of second-order probabilities represents
uncertainties exphi,ltly and dlstmgulshes conﬁdcnce and likelihqod measures.
Confidence measurgs are used to make meta-decigions concerning the ga’phermg
of additional mforrna.tlon on uncertain hkehhoods A-system of pariition- and
event-based cquatwns supports the probability model. A ma.x1mqrp-entropy
method initializes unknown second-order proba,bllltles without using frequep
cies and a Bayesizn rpethod updates them from observations. VpIue of in-
formation equations provide qua.nt1tat1ve solutions to meta.—de0131pn problems
The implemented system is ysed to solve a simple example which illustrates
meta-decisiop ma.k;ng_

3 Previous Works

Recently, many researchers have investigated planning [Seg88, Han90a, HH90,
KD89, GI89, Wel90b, DB90, BDKL91],® plan inference [Myte]7 or meta-
decision making [HCHSQ RW89] using first-order probabilities in a dec1s101;-
theoretic framework. Howeve;, these do not use second-order probabll;tles
There has also heen much activity concerning propagation of belief
values in probabilistic netwqrks [Pea88][Wel90a); however, current designs
cannot represent nonmonotonic nor repeated actions. Some researchels
have investigated plmelmes ch01ce, and nondeterministic actlon rePresenta-
tion [McD82, HM91, RG91a, RGI1b, Sho89), or uncertain behefs in time
[Han87, KD89, DI.\.SS DK91a]. The theory of probability has beep investi-
gated extensively by Halpern and Fagin [Hal89, Hal90, FH89, HFQO})] Kyburg
[Kyb91b, Kyb9la], Bacchus [Bac90b], and others. Good recent sqrqma.nes :
on meta-decisions using the value of information can be found in [Dea9}]
and [RW91]. Spiegelhalter [Spe86], Heckerman and Jimison [HJ87], : and later
Pearl [Pea88, p.360-372] discuss confidence based on conditioning ¢ events whlch
is mathematically similar to discrete second-order probabilities, but requires
known probabilities. Pearl defines a philosophy of second-order plobablhty

3See however Feldman and Sproull [FS77]) for an excellent early paper op decision-
theoretic planning.
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[Pea89][Pea88, p.358-359] different from ours, but then rejects it as unnec-
essary (ibid,p.372), ignoring meta-decisions. Spiegelhalter [Spe86], Fung and
Chong [FC86], and Cheeseman [Che85] point out that confidence can be rep-
resented by a second-order (event) distribution and that confidence increases
with more samples. Kyburg [Kyb89] explores second-order probabilities but
rejects them because they are not needed for decisions, ignoring their role
in meta-decisions and representing confidence. Raiffa shows how to derive
doxastic second-order event distributions [Rai68, pp. 161-168] and uses these
event distributions for meta-decisions, but does not use normative partition
distributions.

No known previous researchers have used second-order probabilities for
planning, have distinguished second-order partition probabilities from event
probabilities, have presented a system of equations for partition probabilities,
nor have used partition probabilities to quantify the value of obtaining perfect
confidence as used in meta-decisions.

4 UNDA Theory

Planning and reasoning with Uncertain NonDeterministic Actions (UNDAs)
requires a model of action representation. The model is based on situation
theory [BP83). Action types (plan schemata) are instantiated in situation
instances. An uncertain action nondeterministically transitions to one of a
known set of possible outcome situations, with a specified believed (second-
order) probability. Performing a particular action type in a particular situation
type grants license for using a particular probability (similar to [Pea88, p.13)).

4.1 The B-SURE system

The UNDA theory is implemented in a system called B-SURE (Believed Situ-
ation and UNDA Representation Environment) [Mye92]. The B-SURE system
is based on an ATMS [dK86] that represents valued state, situation, uncertain
transition, and action types and instances in multiple possible temporal ac-
tion worlds with nonmonotonic assertions and deletions, in a manner extended
from the theory presented by Morris and Nado [MN86]. The use of situation
and state types allows reasoning to be performed ahead of time, and simulta-
neously over multiple worlds; the system is not forced to wait until states and
situations are instantiated, and then reason separately in each possible world.
B-SURE supports inferencing and planning.

4.2 History Mechanism

An interactive planning/execution system requires the use of a history mech-
anism to represent the current progress of the agent. This is provided by
changing a transition assumption into a premise when it is known that an
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agent has started performing an action or an action has finished with a given
outcome. An additional “past” flag is set on previous situations and actions to
distinguish actions that are currently being executed (e.g., high-level actions)
from those that have finished execution.

4.3 Planning Considerations

This paper’s methods can be applied in most planning formalisms (cf.
[THD90]). The current system uses a simple case-based expansion method
[Ham89]. Significant issues include: (1) Plans form reactive trees of contin-
gency plans; (2) Alternate sets of scored goals are searched for; (3) Planning is
neither purely predictive [FN71] nor reactive [Sch87) but interactive; (4) Non-
deterministic decompositions become problematical; (5) Practical systems re-
quire implementing recognition demons that can infer and certify when a given
outcome has occurred [Mye91].

5 A Theory of Probability

There are two basic kinds of probability: real, and believed probability.

Assume nondeterminism actually exists. Real probability represents the
actual likelihood that a particular outcome follows from the execution of a
particular nondeterministic action in the world. A real probability associated
with a possible outcome is an innate property of a situation/action pair. If the
action type is repeatable and is repeated a large number of times in instances
of the same situation type, the observed frequency of an outcome’s occurrence
will converge on the real probability. It is not necessary for an action to be
repeatable or even to be actually performed in order to have real probabilities
associated with it. The real probability of an outcome is a unique constant.
Executing an action repeatedly in the real world can be modeled by repeatedly
drawing a colored ball from the same urn with replacement. Real probabilities
correspond to Barwise and Perry’s “real situations” [BP83, pp.49,57-60]. It
does not make sense to talk of putting real probabilities into a computer.

A believed probability is a model of a real probability that is represented by
an agent.®> Believed probabilities correspond to Barwise and Perry’s “abstract
situations” [BP83]. They do not have to be unique nor constant.

Believed probabilities can be subdivided into normative probabilities (what
an agent ideally should believe), and dozastic probabilities (what an agent actu-
ally does believe). 8 Normative probabilities are derived from a mathematical

4This paper only deals with stationary processes, defined as actions in which the real
probabilities associated with outcomes are constants and do not change.

$The term “subjective probability” has been used to describe at least believed, normative,
and doxastic probability, and hence these other terms are proposed.

SNormative probabilities are contrasted with prescriptive probabilities by Baron [Bar88):
normative probabilities may be too difficult or slow for an agent to use in practice. and
should be replaced with fast heuristics.
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model’, and must be valid (0 < p; < 1, E;p; = 1). Doxastic probabilities are
personal opinions and are not constrained to be valid.

Believed probabilities may be represented by a universe of possible worlds
and probabilistic transitions between them,; first-order probabilities are defined
over these transitions. Instances of the same situation/action pair should have
the same transition probabilities in the same universe. Since the real universe
is unknown, however, the agent should consider a continuum of possible uni-
verses. This continuum has a second-order probability distribution represent-
ing the believed chances that a given believed universe accurately represents
the real universe.

Slightly more formally, if the believed probability of an outcome is treated
to be not a constant p but rather a random variable p with a range [0,1], then a
(believed) continuous probability distribution pr(p=p) can be associated with
this variable ® [Pap84, p.85). This is called a second-order probability distribu-
tion, because it represents the believed probability that the real probability is
a particular constant. For clarity, such functions will be represented by ¢(p)
¢/ pr(p=p). This does not represent the probability of the event that the
agent will come to believe p=p [Pea88, p.359); the agent already simultane-
ously believes p=p; and p=p, for a continuum of p’s.

A second-order probability can be modeled by assuming that nature has
drawn an urn representing the universe from an infinite cave of urns, and is
drawing colored balls from that same one urn repeatedly with replacement to
represent (possible-world) outcomes of a repeated given action. The agent has
a believed opinion about the distribution of urns in the cave; however, the
agent does not know which urn was chosen by nature to be the actual urn.

In another conceptualization, state (determining a possible world) is a
fundamental observable quantity analogous to position. First-order proba-
bility (likelihood) governs the changes between states (a universe of possible
worlds and transitions), and, like velocity, can only be measured by differences.
Second-order probability (confidence) governs the changes between probabil-
ity models (which believed universe is most aceurate) and is thus analogous
to acceleration.!®

Note that second-order probabilities subsume both certainly known first-
order (constant) probabilities and also interval probabilities.

It is not claimed that the Bayesian model presented later is the only normative model.
Other models, for instance the Dempster-Shafer formalism [Sha79], are possible.

8The 1st/2nd-order distinction becomes important when representing confidence and
when committing to decisions involving repeaied actions.

®The theory supports discrete distributions (e.g., [Pea88, p.366-372]). However, the later
Initialization section shows that these normally assume more known information than is
justified and are hence usually misguided.

10As in physics, higher-order terms are well-defined but are useless in most practical
matters. Third- and fourth-order probabilities will be required for solving plan inference
problems involving agents’ opinions of other agents’ opinions of confidences and likelihoods.
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6 Decisions vs. Meta-Decisions

The decision problem is the task of choosing between a known set of known but
uncertain alternatives each comprising a tree of actions with a set of ultimate
outcome situations, their values, and the likelihoods of reaching them. Given
an evaluation strategy such as maximum expected value'l, it is straightfor-
ward to evaluate a decision problem and choose the most desired .a,lterna.t'ive
[HM83). Where, then, is the difficulty? The problem is that the current be-
lieved decision problem may not represent the best model of the real decision
problem-and if more information is added, the model may change to a new de-
cision problem. This can happen in the following ways: (1) a new alternative
is added to the set; (2) an old alternative is deleted; (3) an action’s expected
outcome set is modified; (4) an alternative’s anticipated value changes; (5)
an alternative’s expected likelihood changes. These modifications are prod-
ucts of information derived from information-gathering actions which include:
(a) expanding a situation by mentally instantiating a new hypothetical ac-
tion instance in the situation, thus making it more feasible; (b) performing
other mental reasoning to increase confidence in values, likelihoods, and al-
ternative and outcome sets; and (c) actually performing actions, including
test actions. Deciding whether to decide and act with the current decision
problem, or whether to attempt to change the current problem by performing
an information-gathering action, is a meta-decision problem.!? Me}a-decision
problems involving likelihood estimates (5) are properly answered using con-
fidence measures. If the agent has high confidence in its believed estimates
of likelihoods, with known values, alternative sets and outcome sets, then it
believes that learning more information will probably not change the decision
problem in a significant manner. With low confidence, learning may signifi-
cantly change the believed decision problem model, and is therefore valuable.
Second-order probability distributions represent confidence and shoyld be used
to solve meta-decision problems involving clarification of likelihood estimates.

lJ

7 A Calculus of Normative 2nd-Order Prob-
abilities
7.1 Definition

A sample space S is partitioned into n known elemental outcome events
[A1,...,An] composing the partition A. The corresponding probabijlity vector

UQOther significant strategies include minimum risk, maximum possible gain, maximum
thrill, and maximum learning. Maximum utility subsumes these and is subtle. Therefore
only the maximum value evaluation strategy is supported in this paper.

120ther meta-decision alternatives besides observing/interacting include do nothing, wait
for a possible change, waffle by trying to take two or more alternatives, consull experts,
relegale the problem to a human superior, delegate an inferior or sibling agent to make the
decision, react randomly, respond in a habitual/reflexive manner, or transcend the problem.
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Figure 1: Initial 2nd-Order Partition and Event Probability Distributions.

7= (Pay,---»P4.), Where pa; = p; = p(A:), forms an n-dimensional space p.
A point in this space p = 7 constitutes a unique assignment of (first-order)
probabilities to the elemental outcome events. Normative probabilities have
the property that the only valid probability assignments are contained in an
(n — 1)-dimensional hypertetrahedron defined by the formulas 0 < p; < 1,
Yip; = 1. These are shown for the first three nondeterministic-outcome di-
mensions in figure 1. For instance, for n = 3, all valid assignments comprise
a 2-dimensional equilateral triangle (plus its edges and verticies).?® Doxastic
probabilities are not constrained to be valid. Thus they may take on prob-
ability assignment points anywhere in the n-dimensional first-quadrant unit
hypercube.

A second-order probability function of a partition q(.A) is then defined as
a function q4(p) defined over the vector space p that maps a vector f into a
scalar g. For normative probabilities, ¢ is always equal to 0 in invalid regions
of the space. This function has the quality that the integral of q over the
entire space is equal to 1. This second-order partition probability distribution
function q4(7) is the fundamental unit of computation in this calculus.

13The (hyper-)edges have the interesting property that they represent situations where
one of the outcomes has a probability of 0.0. The verticies represent situations where all
but one of the outcomes has a probability of 0.0. It is important that the user know the
number of possible outcomes at the beginning of the problem; the mathematics assumes
that the event that one of the outcomes has a probability of 0.0 is possible but not more
significantly likely than anything else. Problems where the number of possible outcomes is
uncertain or unknown are not covered in this paper.
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7.2 Projection

The second-order event probability distribution qa,(p;) for any one elemental
outcome A; in the partition is determined by taking the projection of the ¢(p)
partition probability surface onto that outcome’s p axis:

1 1
qa;(pi) = /o"'/o QA(P1y -y Pic1, Piy Pig1ees Pn) @P1 ---dDi1 dPity -.dpn (2)

The integral of ga,(p;) over p; is also equal to 1. Note: Doxastic event distribu-
tions can be determined from experts [Rai68, p.161-168). However, this paper
points out that (1) normative, not doxastic, distributions should be used when
possible; (2) partition, not event, distributions should be used when possible.

7.3 Equivalent Probability

The (first-order) equivalentor ezpected probability of an event A; is the weighted
mean of its distribution [Pap84, p.85):

p(A:) = /01 q94;(p:) pi dp; (3)

This probability can be used in making decisions.

7.4 Negation

The normative second-order event probability of the complement —A; of an
event A; is formed by reversing the event distribution: ‘

¢-4:(p) = 9a:(1—p) (4)

Corollary: The normative second-order event probability distributions of the
outcomes of a two-outcome action are the reverse of each other.

7.5 Union

Taking the union A;y; = A; V A; of disjoint events A; and A; in A forms a
new partition 4’ that has (n — 1) elements in it. This forms a new partition
probability distribution gp,(‘A’) found by collapsing the p; and p; axes into a
single p;y; axis. The q mass density is integrated accordingly. Without loss of
generality let : =n — 1 and j = n. Then:

PAivj
GnewA(--Phn_2> pAivj) = /0 ’ \/-2-%4("-?44:--2: (s), (pA.‘vj_ s)) ds  (5)

The union of more than two disjoint events can be found by collapsing the
appropriate set of axes and integrating over the corresponding hypervolume.
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The second-order event probability of the union can be determined di-
rectly from the old partition distribution function by collapsing the axes and
projecting the rest of the space at the same time:

1 1 rPaiy; )
QA.-\,,-(P) = _/(; A _/0 ’ Q(p-‘h” (3 = PA.-), ((pAivj—s) = pA,')a 1y PAn ) depl dpk#i,j dpn
(6)
In general, there is not enough information to determine the second-order
event distribution of the union from the event distributions of A; and A;. This
is equivalent to the inverse-projection problem, and is the main reason why
partition distributions should be used instead of event distributions.

7.6 Conditionals

A partition B with m elemental events, that is conditioned without loss
of generality on A, with a corresponding conditional partition distribution
q8(B|A,), forms a refinement of the partition A into a new partition A’ with
the (n + m — 1) elements [A;, ..., An-1, AnB1, ..., AnBm]. The partition distri-
bution function of A’ is found by splitting the p4, axis into m new axes, and
weighting the previous g4 mass by the ¢z proportion: ‘

QA'(PA“---,PA,._U pAan"')pAan) = qA(pAn"':pAn)qB(an'")me) (7)

The event probability distribution of a new event A;B; is found by com-
bining the event distributions of the component events ga;(p:i) and g¢g;4; (p;):

11 Dij
wnny(pis) = [ i oals) amaa(FD) ds ®

with the usual adjustments if p;; = 0.
The union operation and the conditional operation are duals of each other.

7.7 Expectation Distribution

Associate a value vector V of known constants Wiy ..oy Vi with the respective
outcome events Ay, ...,A,. Then the expected value of a given point 7 in the
probability space is the dot product E(p) = (7- 17), a function of 5. E is a
random variable, and the confidence that this particular F is correct is the
partition distribution g4(p). The probability distribution gg(4)(F), represent-
ing the likelihood that any particular scalar F is the actual expectation of A,
is found by integrating over the probability points where F holds:

aww(E) = [au®) AE-5-7)dp ©)
where A is the unit selector function A(0) = 1, A(z#0) = 0. This is a second-

order distribution because E is based on first-order probabilities. Expectation
is not a constant, but is a variable based on which universe of possible-worlds
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Figure 2: Actual (Partition) and Estimated (Event) Expectation Distributions
for an Action with n=4

and probabilistic transitions is true. The scalar equivalent ezpectation E(A)
is of course the weighted mean of this distribution, [7, £ ¢p4)(E) dE.

In general, there is insufficient information to determine an accurate ex-
pectation distribution from the n event distributions ga,(p). However, a rough
heuristic approximation can be found by taking the average of an approxima-
tion from each axis:

I & E— Vi
Ew(E) = - 2 aalygo VZ;-

1=1

(10)

where V;; = (_r':.L—ﬁ iz V;is the 7th base value found by averaging the others.
Note that g4,(p) = 0if p < 0 or p > 1. This approximation is exact if n = 2.
See figure 2 for an example.

Comparision of (decision between) two action alternatives A and B under a
maximum-expected-value strategy uses the equivalent expectations (assuming
independence):

E(A) =z E(B) (11)

which is a condensation of p( E(f4) = E(ps)) = 0.5. Using this equation and
the conditional equations (7) or (8) allows decision trees to be evaluated via
“averaging out and folding back” [Rai68§].

7.8 Maximum and Greater-than-or-equal

The following equations are generally useful, and could be used for comparing
decisions in cases involving strategies other than maximizing expected value.
Given two independent random variables x and y with corresponding proba-
bility densities p.(z) and p,(y), the maximum distribution is:

z

Prosten(?) = [ p()Pf2) + pul)pls) ds — [ pals)py(s) ds (12)
(The last term is zero, and thus may be ignored, in systems having no impulses

in their probability distributions.)
The scalar probability that z > y is:

py = [ [ pale+5)p(s) dsd (13)
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Of course, if Y is a constant, this reduces to

Py = [ pa(s) ds (14)

7.9 Other Required Formulas

Sum. o

pern(2) = [ pelz = 9)pi(s) ds (15)

Difference. - ,
Pes(2) = [ pa(z+)py(s) d (16)

8 Origins of Normative 2nd-Order Probabil-
ities
8.1 Initialization

Normative second-order probabilities are initialized using maximum entropy
theory applied to all known information. If only n, the number of elemental
outcomes, is known, and no other information,'* then any one valid probability
vector is equally likely, and the partition probability function is flat and is equal
to the inverse of the valid surface hyperarea:!®

—1)!
qu(P) = (n\/ﬁl) (when Ip; =1, p; 2 0; ga(p) = 0 otherwise)  (17)

The event probability distribution is the same for each outcome and also
is a function of n:

() = (n=1)(1—p)"? (18)
Examples are shown in figure 1. Most people are familiar with the flat distri-
bution for n = 2. Note g4,(0) = (n — 1) and the expected p(A;) = 2.

8.2 Updating

If the action modeled by A is performed m times and the outcomes Ay, .., A,
are certainly observed to have occurred k;,..,k, times respectively from se-
quential observation, Y k; = m, then the believed partition probability distri-
bution g,44() can be normatively updated to a more accurate model guew.a()
as follows (derived from [Pap84, p.86)):

(kl) (kn)
p1 D™ Qoda(P) (19)

k en 9
S5 8.8 gotaa(P) d)

141f other information is known, appropriate initializations can be specified. However, the
mathematical reasoning becomes rather complex, and is beyond the scope of this paper (see
e.g. [Pap84, p.535-544)).

15The proof is available from the author.

QnewA(ﬁ) = (
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Note that the denominator is a constant. If equation (17) is used for initial-
ization, this expression is related to a beta density in n dimensions. This type
of updating method is central to so-called “Bayesian statistics”. [Jus84)

A similar updating equation holds for event distributions using valid nor-
mative probabilities [Pap84, p.86]:

P (L = p)m k) goraai(pi)
13 (1= )R g () dp)

Updating is significant because only the original distribution and the suc-
cess counts need to be stored to compute the current distribution as required.

If equation (17) (or, equivalently, (18)) is used for initialization, then the
results of (20) can be expressed in a closed form (using (18) and [Pap84, p.87])
as:

qnewAi(pi) = ( (20)

(m+n —1)! (ki

QnewA.‘(pi) = kzl ((m +n— 2) _ k)' D; )(1 - p'_)((m+n-2)—k;) (21)

and the corresponding expected probability (derived from [Pap84, p.88)) is:

kL + 1
m 4+ n

p(Ai) =

(22)

not fni, as is customarily taught.

9 The Updating Function for Uncertainty
Distributions

It is important to be careful with the distributions that are used as input to the
updating function, as the function can only sharpen uncertain distributions.
In particular, if a known doxastic first-order probability is represented as a unit
spike, then the updating function will not change that probability-it is already
known with certainty, and it can’t change! Similarly, if an interval probability
is represented using a ¢ distribution as having a flat or exponential distribution
between the max and the min, and 0 elsewhere, then the updating function
will only change the distribution inside the interval-all of the probabilities
outside of the interval are certainly known not to be possible! In general, this
will probably not be the desired behavior. It can be fixed by ensuring that
the ¢(p) distribution is not 1 nor 0 for any p unless that p is known certainly
to take on or not take on that probability. This is ensured by the normative
initialization function.

9.1 Value of Perfect Information

The general value of information is the sum of the possible gains times the
probabilities that those gains occur [How66, Dea91l]. Given that the agent is
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maximizing expected value, i.e. usipg eq. (11) to rank preferences, and that
the effective expected value of the current best alternative is E(tmaz), then the
Expected Value of the Perfect Informathn that reveals the actual first-order
probability p* of alternative arctlon'aau is:

EVPI(p.,) = /E . )(ng’n(ir;fo)) q(Eam) dE,,alg — cost(info)  (33)

where (gain()) is normally (an E(amaz)) (although in some situatjons it
is a constant, if being correct is all that counts), and ¢(E) is takep from eq.
(9) for partition distributions or estimated from eq. (10) for sets of event,
distributions.

9.2 Note

This equation concerns reducing uncertain confidence to perfect confidence
and is one of the main results of this paper. In effect, it computes and uses

q(Ea,, 2 E(amaz)), the possibility that the expectation of the alternative coulp!
be greater than the current expectation, which is a second-order probability
result. Note that if first-order probabilities are used, E(aau) is a constant, not
arandom variable, and E(aqit) > E(@paz) is either true or not. Since the eve_;nt

distributions are coupled, it is insufficient to examine the events separately.

9.3 Value of Testing

The general expected value of information given one sample execution of an
action is

EVI(sample) = Y gain(gnewa(P)| Aiobserved) p(A;) (34)

i=1

using equations (3), and (19) with m=1. The degree of chapge dye to updat-
ing depends on the conﬁdence of the current distribution.’® This expression
simplifies in cases.

9.4 Implementation note

Event distributions can only give approximately correct results. However,
they are straightforward to implement, and allow a system to ta,kp advantage
of the theory. Partition distributions are definitely preferrqble if possible. Full
use of partition distributions sgems to require a symbolic integration package.
The implemented system currently uses event distributioqs quantized at 0.05
intervals in p. Obviously quantization causes loss of precision [Wel90a]; this
level seems acceptable for current applications.

'6This equation apparently offers a closed-form optimal solution to the “two-armed ban-
dit” problem [Har91] for k& arms with n; known outcomes apiece.
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: Figure 3: Representation of the Example Problem

10 Example

A hypothetical language translation system uses one of several modules to pro-
cess input utterances, depending upon the microcontext of the conversation.
For instance, modules might be specialized for processing parts of conversa-
tions about conference registration, hotel registration, travel, sightseeing, etc.
A module will uncertainly succeed or fail in processing each utterance. If it
succeeds, it will uncertainly produce an output scored at 25, 50, 75, or 100
points. Some utterances, such as “How much does it cost?”, may be success-
fully processed by some or all modules, but only one module will be correct in
its understandings and predictions. The system is time-limited, and can only
choose one module which will then be used to process repeated utterances.!”

The problem is modeled, using the B-SURE system, by an uncertain action
representing success/failure for each module, and a different uncertain action
representing the outcome scores given that the module was successful (See
figure 3). Two separate actions are used because the success/failure outcome
is a different sort than the score outcome, and to demonstrate conditional
actions. Although partition probabilities should be used, the current system
only supports event probabilities, and so the event equations will be referenced.
It is assumed that the possible current conversational context is completely
uncertain, and so equation (18) is used to initialize the second-order event
probability distributions for the actions, with n = 2 and n = 4 respectively.
Eq. (8) is used to evaluate the second action and “fold it back” through the
first action; each resulting alternative has five event axes, corresponding to
“failure” and “(value)|success”.

Eq. (10),(11) are used to rank the alternatives, and the highest one is
selected to be the current “best action”. Choosing is performed based on
maximizing expected value. At this point, the actions are highly uncertain,

17This work is designed to attack high-uncertainty problems that have low-confidence
probability estimates. It is assumed that, because of the complexities of spontaneous dialog,
the system is processing utterances in an original micro-context with uncertain likelihood
estimates. High-confidence problems may employ simpler strategies than those presented.
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and they all have the same equ}va.lent expectation, so one is chosen at random.

In this example, “perfect information” consists of knowing with complete
confidence the real (first- order] likelihood of each module, and thus the corre-
sponding expected value [R,a;68 p- 28 ,168]. Assume that the;:e is an pst:ma.tor
function for each module that, for a known cost in time and resourges (e.g.
0.5 sec.), can analyze the purl:ent dxa.log context and predlpt the likelihoods
that this module will be successful and will obtain particular answer scores.
Assume that these functions are 1dea.l i.e. they return perfectly correct first-
order predictions (complete copﬁdence) Assume that the system is w1ll1ng to
spend about two seconds on finding the best module, i.e. there is a [time, V]
curve representing the value pf stopping immediately that copnects the points
[0,0], [1,0], [3,100], [c0,100]. Then the following strategy can be followed: (a)
Maintain the current “best a.ctlon and its equivalent expectatlon, (b) Select
the best action out of the others that have not been estimated yet; (c) Evaluate
the EVPI of executing this action’s estimator, using eq. (23); (d) Gompare
this against the current vq,lue of stopping immediately: (e) If greater, then
update the “best action”; (f) Else stop and use the current “best action” to
process the next series of uttgrances. Note that the amount of 1nvest1ga,t10n is
a function of the amount of free time available.

In this experiment, the; average best expectation is 67, and the average
number of modules analyzed is 4.2 (2.1 sec.). This compares against an ex-
pectation of 31 if only the a priori best module is chosen blindly.

11 Discussion

Some people have argued a.gamst the use of probability in some situations
when an agent is ignorant and is pna,ble to formulate a specific (dpxastic)
probability. The argument goes tha} assignment of even a second-order prob-
ability implicitly assigns an equivalent first-order probability to the events,
and these authors feel uncomfortable with this.' In other words, they do not
feel confident of the resulting probability.

However, our theory answers this concern. Even if the agent has no dox-
astic probability at all (which he or she is free to do), the situation’s real
probability does exist in a]l cases-and this demands that a normatwe prob-
ability should exist. It does not matter whether the agent “believes in” the .
normative probability or not the point is that it offers the best model of the
real situation, given all the a.valla.ble information. Second-order proba,blhtles
offer an explicit representqtlon of confidence, and a method of determining
when to decide. Some people would have the agent not decide at all when
faced with completely uncertain probabilities-however, this may not be an
option in a resource-limited warld. “Not to decide” is in fact a meta-decision,
and it may be the wrong meta-decision if constantly applied in an indisc':rim-
inate manner. Our theory allows the agent to meta-decide whether to decide
or to prefer gathering more information if possible, based on the confidence in
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its models. Sometimes it is not possible to wait, and in this case a decision
,must be made with information in which the agent has low confidence-but at
least this is represented explicitly.

R Fagin and Halpern [FH89) also argue that some events have probabilities
that are nonmeasurable. This is a difficult philosophical point, and one that
r#quires further research.

Another concern that people have pointed out is that a second-order prob-
ablhty distribution based on maximum entropy does not capture all of the
prior 1nformatlon that a human expert has, based on experience and “common-
sense” loglc There are two responses to thls point. The first is to note that
the method of maximum entropy is not restricted to simply equation 17 which
is used for completely unknown situations, but can be used to include any
constraints known to the agent that can be expressed mathematically. The
ma.thema.tlcs gets rather complex, however, and is beyond the scope of this pa-
per (see e.g. [Pap84, p.535-544]). The second response is to observe that this
problem may indeed occur when attempting to accurately install the existing
knowledge of a human into a computer expert system. However, when creating
an artificial intelligence that must plan, function in the world, and learn from
its experiences, a completely-unknown probability distribution may accurately
describe the state of its knowledge. Human children and even intelligent adults
make mistakes in judgement based on lack of experience, especially when en-
counferipg new situations; to be fair, an artificial intelligence must be given a
similar range of experiences if its judgements are expected to be comparable.

~ Distributions are easily implemented in neural nets [Alb81]. It would be
interestipg to find out whether people actually use second-order probability
distributions to represent likelihood and confidence.

The current algorithms assume that path evaluation time is negligible when
compared with the time required to perform an action. If this is not the case,
the algorithms should take into account the amount of time required to do
inferencing and evaluation, as well as the domain action time, when computing
the cutoff for limited-resource reasoning. '

Whep many instances of the same action type are incorporated in a plan,
dynamically updating the action-type’s outcome probability distributions from
observed execution outcomes will change likelihoods, which may change de-
cision preferences. The system supports such dynamic updating. However,
in theory it is possible to predict the changes in believed likelihood based on
possible outcomes, and to use these a priori in different downstream timelines.
The system does not yet support such calculations.

This work is based on actions having stationary real probabilities. The
questions of how to deal with actions having nonstationary probabilities or
probabilities that vary depending on the current situation, how to estimate the
probabilities of such actions when proposed in a new situation type, and how
to recognize and distinguish such actions and situations, basically comprises
the learning problem and must be left for future research.

This work assumes that the starting situation is known with complete
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confidence. If the starting situation is known uncertainly, it is necegsary to
use game theory against a fair opponent (nature) to decide which actigns to
perform. Discussion of such theory is beyond the scope of this paper.

12 Conclusion

This paper has presented a brief introduction into the theory and practice
of planning, decision-making, and meta-decision-making using second-order
probabilities to explicitly represent uncertainty. Decisions can be made when
necessary, with little or no frequency information, but the confidence’ may be
low; information-gathering actions are indicated when required. Second- order
proba.blhtles offer a method to determine when it is useful to gather more
information, and when it is time to make a decision.
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A Proof of Some Equations

This section presents a proof of equations (21) and (22).
Equation (20) is repeated here for convenience.

(k.)(l )(m-k.-) Golas; (P:’)

GnewA; (pt) = (25)
(1 (1 = )™k quiau (i) dp:)
However, if (18) is used for initialization, then
Qotd i |m=0(pi) = (n—1)(1—p)*? (26)
50
InewA;|m k(p) = ki)(l — pi)(m—k‘) (n — 1) (1 — pi)n—Z
T (B B —p)eR) (- 1) (1 - p)? dpi)
(k.)( )(m+n-—2—k')
- ( fk')(l p;)(m+n=2-k) dp)
Using the identity
' peas _ AL(B—A)
[, pa=p"t = S (27)

with A = k; and B = m 4 n — 2, the denominator is evaluated and inverted.
This resolves into equation (21):

QnewA; |m.k.-(Pi) = k ' ((E:‘L-:-nn 21)) = )' pskl)(l —_ pi)((m'f'n—z)_kn') q_e.d

(28)

Repeating equation (3) for convenience, the equivalent first-order proba-
bility of a second-order event distribution is:

. .
i) = \Pi) pi ap; 2
p(A:) fo q4;(p) pi dp (29)
Using equation (28) for ¢(p), this is:
N — ! (m +n— l)l (ki) ((m+n—-2)-k;) . .
p(A't) - / k | ((m+ n — 2) k: )| bi (1 ) pi dpt
(m+n-1)

(ki+1) ((m+n—1)=(k;+1))
El(m+n—2) — &) / P (1= pi) api

Again using identity (27) with A = (k;+1) and B = (m+n —1) to convert
the integral, we get:

(4) = (m+n—1) (k;+ 1) (m+n—1— (k+1))!
T RN(m+n-2)—k) m+n)
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(m+n—1)! (k+1)!

kY7 (m+n)
k;+1 —
= (m+n) ..q'e':d

B Experimentgl Verification of the Estima-
tor

B.1 Discussion of the Experiment

The experiment is based on the theory of real and normative believed proba-
b111t1es outlined in sectlons 1.4 and 5. The experiment consists of an observer
a.tternptmg to estimatg the real probability of an outcome of a stationary ran-
dom process. For each expe.nm‘ent first the number of possible outcomes n is
cho:.en It is assumed ‘that the observer knows n correctly. Next, out of all the
posslble assignments of proba.b]htles to the outcomes a probablhty assignment
set p(A1),...p(An) is chosen at random, such that £ A; = 1. This represents
the unknown real prqba.bllrty of the problem. The observer arbitrarily picks
the #’th outcome of the process, A;, for observation. Without loss of generality,
let 4 = 1. The goal is to estimate the probability p(A;) as closely as possible,
by perfor.rmng repeatged trigls of the process and observing the results, where
m is the number of trials that have been performed so far, and k; is the number
of the successes pf outgome A; observed so far. It is assumed that the identity
of the process outcomg is crisp, and is consistently and correctly observed with
certajnty.

The verification uses the two estimators pl; = & and p2; = Ik—-_’:_'—;))- The
trial sequence for ea,ch expenment starts at m=0 a.nd continues sequentlally
up $o m = 100 trials using the same real probability assignments. Since pl; is
undeﬁned at m=0,it is arbitrarily specified as 0 in this case.

The mterva,l between 0 and 1 is divided up by sequentially assigning subin-
terv a.ls to outcomes A,, w]:}ere the length of each subinterval corresponds to
the sizg of its probability p(A ). For each trial, a (flat-distribution) random
number R between 0 agnd 1 is picked to determine the outcome of the process.
Whlchever subinterval the number falls in designates the outcome of this trial.
Since the observer is quly ipterested in the first outcome, this can be reduced
to s1gna.hng a success when the random number is 0 < R < p(A;), and a failure
otherwise.

For each trial, the distances [pl; — p;| and [p2; — pi are collected as a
function of m.

The experiment is performed 2000 times, and the results for all the exper-
1ments are collected as a function of m and then divided by 2000 to get the
average value. Flna.lly, the a.verage curve for p2; is subtracted from that of pl;
to determine how much closer p2 is to the real probability, as a function of m.

The results are shown in ﬁcure 4 for n equal to two, three, ten, and one
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hundred.

Comments Therg are two methods for selecting probability assignments
ra.ndomly fo;' n optwmes The first involves picking (n — 1) random numbers
from a flat dlstrlbuthn between 0 and 1, to represent the n —1 degrees of free-
dom of the problem. These numbers are discarded if they sum to more than
one. Otherw1se, the Jast probability is determined by (1 sum). This method
has the disadyanfage that huge numbers of probability assignments must be
discarded as invalid before a valid combination can be found, especially for
higher n. The second ;qethod depends on using equation (18) to determine
the expected dlstpbutloq of an outcome’s probability from a randomly-chosen
probability assignment, where all possible assignments are equally likely. In
this case, an qpproprig.ﬁe outcome probability can be picked directly by trans-
forming a flat-distributiqn random number R between 0 and 1:

pr=1— et (30)

This is the methqd used for the experiment. The two methods are equivalent.
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