
TR-1-0247

The Beholder TOOLBOX Manual
Part 1

ビホルダツールボクスマニュアル

パート 1

John K. Myers

真龍主•星音

March 2, 1992

Abstract

Internal Use Only

This manual presents user documentation for the ATR Interpreting Telephony
Research Laboratories BEHOLDER TOOLBOX package, Part 1. This package is
designed to be a comprehensive general-purpose toolbox that supports parallel
programming on the Sequent computer. The Part 1 manual presented here
consists of new commands, explanations of problems with the Sequent CLiP
system, and brief discussions of system timing information and agenda queueing
theory. The commands are broken down into four main groups: commands
extending the normal sequential Allegro Common.Lisp, heap commands, new-
flavors commands, and commands extending the parallel features of Lisp.':i;'he
TOOLBOX・commands are explained and grouped by topic in the front. An

appendix in the back provides a dictionary listing the commands in alphabetical
order.

◎ ATR Interpreting Telephony Research Laboratories
⑤ ATR自動翻訳電話研究所

Contents

1 INSTALLING THE BEHOLDER PACKAGE ー

2 DATA AND COMMAND EXPLANATION 2

2.1 Beholder-1: Language Augmentation Commmands 2

2.1.1 String Commands . 2

2.1.2 Basic Commands . 5

2.1.3 List Commands

2.1.4 File Commands . 9

2.1.5 Benchmarking and Testing Commands 10

2.2 Beholder-New-Flavors: A Flavors Syntax Package 11

2.2.1 New Flavor Commands 12

2.3 Beholder-Heap: A Simple Heap Package 17

2.3.1 Heap Commands 17

2.3.2 Implementation notes . 19

2.4 Beholder-2: Parallel Language Augmentation Commands 19

2.4.1 Lock Commands . 19

2.4.2 Time Commands ・. 20

2.4.3 Random Number Commands 21

2.4.4 Normal Mailbox Commands 21

2.4.5 Resource Commands . 21

2.4.6 Output Commands: The pformat Package 23

2.4. 7 Blocking and Unblocking Commands 26

2.4.8 Creation Commands: Spawn, Build, Fork, and Join 26

2.4.9 Workers and Agenda Commands 31

2.5 Significant Variables . 33

2.6 Flag Variables . 33

2.7 System (Non-user) Variables . 33

3 KNOWN FEATURES OF THE SEQUENT AND ALLEGRO
PARALLEL COMMON LISP 34

3.1 "Make-Lwp" Evaluates its Routine Arguments at Start-Time 34

3.2 Characters Interleaved on Multiple Output Processes 34

3.3 Characters Lost on Multiple Output Processes 34

3.4 "Sleep" Truncates to an Integer . 35

3.5 Compiling a Function Once Does Not Deinstall a Macro with the
Same Name 35

3.6 Machine Wedge on Too Many LWPs 36

3. 7 Incremental Error Compilation 36

3.8 No Checks for Unbound Function Names 37

3.9 Structures Do Not Evaluate to Themselves 37

3.10 Compiler Error Messages 37

3.11 Flavor Instances Do Not Receive Newly Defined Methods 38

4 THINGS A PROGRAMMER SHOULD KNOW ABOUT THE SE-
QUENT AND ALLEGRO 38
4.1 "Real" processors, Timesharing, and User Interference. 38
4.2 Memory Allocation and LWPs . 39
4.3 Arrays and Lists 39

4.4 Flavors and Object Oriented Packages 40
4.4.1 Overview and Discussion . 40
4.4.2 Problems with PCL . 40

5 THE SYMBOLICS SEQUENT-COMPATABILITY FILE 41

6 THE BEHOLDER AGENDA MECHANISM AND THEORY 43
6.1 Agenda Queuing Theory . 44
6.1.1 Conclusions 46

7 PRELIMINARY TIMING RESULTS 48

7.1 Basic Parallel Instructions 48

7.2 Starting lwps from a standstill at the CLiP monitor 48

A A DICTIONARY OF COMMANDS AND VARIABLES 49

11

,a,~

"'

--
ぼ~

1 IN~'fALLING THE BEHOLDER PACKAGE

The followiri-g lines should be installed at the end of the user's invisible . clinit. cl

file in the u~er's home directory:

(r~qnire ":/,usr/bhldr/beholder-1")
(r~qnire ":/,usr/bhldr/beholder-2")
(r~qnire 11:/,usr/bhldr/beholder-heaps")
(r~qnire 11:Jusr/bhldr/beholder-new-flavors")

;Basic system utilities.

; Parallel utilities.

; The heaps package.

; The new-flavors package.

(lt is important to use the double-quote syntax, in order to support future filenames

that might contain both upper and lower-case letters.) After this has been done,

the user may ?,utomatically use all of the capabilities described in this manual from

a cl:j.p shell or inside any clip programs.

In gene;r;:i,l, any of the packages may be omitted if the user does not need it, or

if there is a n<1ming conflict. However, it is best to load all of the packages.

ー

2 DATA AND COMMAND EXPLANATION

Thi戸sectionpresents a description of the system's data and commands. First, the

ty'pys of data used by the system are described. Next, the most commonly used
CO平nands・a{・edetailed. The commands are arranged in the order in which they are

typf cally u;3ed. After this, other support commands that can be used are listed, and

im~ortant system variables are also described.

臼

2.1 B~holder:-1: Language Augmentation Commi:nands

There are a number of assorted functions that are useful and should be available
in qornrno:p. Lisp. Some of these come from Symbolics Lisp; some of them are just
common-seni;;e. The. routines in this section are found in the :file beholder-1.

2.1:1 String Commands

(stdng-append "stringl" ... "stringN") Returns a string that is the concate-
nation of the previous strings. Example: (string-append 11Foo11 11bar11

"Baz11) ==> "FoobarBaz11

(f-string it~m) Coerces the item into a string, by returning its printed represen-
, tation. The name comes from "forced" string―-this is an improvement over
the normal (string) function, which breaks when given numbers, and some-

times when given lists. This function should work no matter what item is.

See also trunc.

(f~~ring item) This is the same as (f-string).

(string-length item) This is an improved version of length, that tries to "do the
right thing". It offers basic compatability with the Symbolics Lisp function

of the ('lame name. If item is a string, it returns a count of the number of
characters in the string. If item is a char, it returns 1. If item is an array, e.g.
an array of characters, it returns the length of the array. Otherwise, it uses
f-string to coerce the value of the argument into a string, and then returns
the length of that string.

(chararray-to-string chararray &optional(start O)(end+l (length chararray)))

This function converts an array of characters into an equivalent string. The

array must contain characters, not strings. The first optional argument indi-

cates the array index containing the starting letter of the string (inclusive).
The second optional argument indicates the array index of the ending letter

of the string, plus one (exclusive).

my-array
(chararray-to-string my-array)

(chararray-to-string my-array 1)

(chararray-to-string my-array O 2)

==> #(#¥a #¥b #¥c)
==> 11abc11
==> 11bc11
==> "abt'

2

(trunc item length) This function returns a string which is the name of the item,
or a truncated version if the string would be longer than the given length.

The item is forced to be converted into a name by using (f-string). If the

resulting name is longer than length characters, the name string is trunql..t國
to (length -1) characters and a tilde character ,i--,, is appended to indicate,

truncation; this resulting string is then returned. item can be just about

anything. length must be an integer that is 1 or greater. This function does
not pad the resulting string to ensure that it is exactly equal to length; it

could be smaller. Note that this function returns a string, it does not do any
printing; however, the results can be used as an argument to format. The
function has been used under Symbolics Lisp for printing labels of graphical

nodes.

(sys-make-name "STRING-I"…"STRING-N") This macro first forms a,
name by concatenating the (one or more) given strings. It then searches the.

current name-space and returns the existing symbol which uses that name,

as its print-name. The resulting expression returns the variable; it must be,
eval'ed one more time to reference the contents of the variable. This code is

useful for referencing variables if you will only know or be able to compute. the.
name of an existing variable at runtime.

(setq foo2 0)
(sys-make-name 11FDD211) ==> FDD2 :INTE~NAL
(set (sys-make-name "FOO" "2") 5) ;note this is not a setq

foo2 ==> 5
（＋ (eval (sys-make-name "FD" "□" 11211)) 5) ==> 10
(setq bar (sys-make-name 11F00211)) ==> FD02
bar ==> F002
(eval bar) ==> 5

IT IS VERY IMPORTANT THAT THE LETTERS IN THE STRING AR-
GUMENTS GIVEN FOR THE NAME BE IN UPPER-CASE. This fun~tion
will not do what you want it to do otherwise. Numerals and non-alphaqetic

characters are perfectly fine.

This function only finds existing symbols. If the symbol has not been interned

as part of the name-space yet, the function returns NIL.

(setq bar (sys-make-name "WEIRD"))

bar
==>
==>
NIL

NIL

(sys-make-new-name "STRING-1" ... "STRING-N") This

macro first forms a name by concatenating the one or more given strings.

It then searches the current name-space and returns the symbol which uses

that name as its print-name, if it exists; otherwise, it creates a new named
symbol and returns that. The resulting expression returns the variable; it

must be eval'ed one more time to reference the contents of the variable. This

code is useful for making new variables.

3

(setq foo2 0)
(sys-make-new-name 11FOD211)
(set (sys-make-new-name 11F0011 11211) p)
foo2
(+ (eval (sys-make-new-name 11F011 1101'1121!)) 5)

(setq bar (sys-make-new-name 11F00211))

bar
(eval bar)

==>
==> ゜

＇

『002 NIL
;note this is not a setq

==> -5
==> 10
==> F002
==> F002
==> 5

IT IS VERY IMPORTANT THAT THE LETTfRS IN THE STRING AR-
GUMENTS GIVEN FOR THE NAME BE. IN UBPER-CASE. This function

will not do what you want it to do otherw~se. ~umerals and non-alphabetic
characters are perfectly fine.

This function finds existing symbols. If the sympql has not been interned as

part of the name-space yet, the function returri-s a new symbol.

(setq bar (sys-make-new-name "WEIRD"))

bar
(set bar 20)

weird

==>
==>
==>
==>

WEIRD

WEIRD
20
20

(sys-make-keyword "STRING-I"…"S TR+N G-N") This macro first forms
a keyword name by concatenating the (on,e or more) given strings. It then
searches the current name-space and returns tμe existing keyword sympol

which uses that name as its print-name. The resulting expression returns

the keyword variable. This code is useful for referencing keywords if you will
only know or be able to compute the name pf an~xisting keyword at runtime.
The user should not include the ":" character it1 the keyword definition. A

keyword symbol should evaluate to itself.

(sys-make-keyword "STR" "EAM")
(setq bar (sys-make-new-name "STREAM"))

bar
(eval bar)

==>
==>
==>
==>

:STREAM :EXTERNAL

: STREAM

: STREAM
: STREAM

IT IS VERY IMPORTANT THAT THE LETTERS IN THE STRING AR-

GUMENTS GIVEN FOR THE NAME BE. IN UPPER-CASE. This functlon

will not do what you want it to do otherwise. Numerals and non-alphabetic

characters are perfectly fine.

This function only finds existing keyword symbols. If the symbol has not been
interned as a keyword yet, the function returns NIL.

(setq bar (sys-make-keyword 11WEIRD11)) ==> NIL

4

(~y~-make-new-keyword "STR応G-1" … ~'STR応G-lNH) +his macro first
forms a keywりrdname by conr:atenf1ting the onE; or rp.ore giYen strings. It
then searches the current name-spac~and r~turns the¼eywqrd symbol which
uses that name as its print-name, if tt exi瞬； otherwise, tt cr,e,;l,tes a new key-
word symbol aμd returns that. This code is useful for IDf1ki:q._g new keywords.
, The user should not include the ":" char?'cter in the keywo,rd definition. A
keyword symb~l should・evaluatr to ii self. ・

(sys-make-new-keywoヱd"MY-" "STR" "f-4-M")
(setq bar (s亙s-make-:new-keyworcj."MY:-STREAlll"))
bar
(eval bar)

=:,:;>
"

=:,:;>
"

=:,:;>
"

=:,:;>
"

:MY-STREAM
: MY-STREAM
: MY-STREAM

: MY-STREAM

:EXTERNA

IT IS VERY IMPORTANT THAT THE LETTE,RS IN THE STRING AR-

GUMENTS G!VEN FQR THE NAME BE IN UPPER-CA~E. This function
will not do wh~t you want it to do othenyi邸e.Numerci,ls anμnon-alphabetic
,e haracters are perfectly fine.

This function finds exi$ting keyworμsymqols. +f th~ ~e四rord symbol has
not been inter:p.ed as part of the narμe-sp科c,eyet, the f且nctio,nreturns a new
keyword symbol.

(setq bar

bar
(eval bar)

(sys-make-new-name憫EIRD',')) ==> ,＇
==> ,＇
==>:

:WEIRD

: WEIRD
: WEIRD

2.1.2 Basic Commands

(type-the-time &~ptional (stream T)) Types out the time in a pretty format.
Returns NIL. If the optional stream argument is NIL, does :qot type the time
out, but returns a string of what it would have typed ouf.

(type-the-ti¥1e nil) ==> 114:47:26 PM Thur 註un20, 199111

(neq a b) Returns NIL if a is eq to b, T otheryrise.

(beep &optional (stream T)) Prints a Cp.trl-G on the given stream. This

rings the bell on most terminals, including the Symbolics'. Example: (beep)

(c1-larml &optioqal (stream T)) Prints five beeps on the given stream.

(div2 x) Integer divide-by-2. Returns the integer representation of the number x
represented as a signed binary number, and then shifted right one place, filling
the sign bit. Takes floating-point numbers as input, but basically forgets the

decimal. This function does the right thing when working wit~binary negative
numbers. Note that this might not be what you'd expect if you didn't think
about it:

5

(div2 4) ==> 2

(div2 3) ==> 1
(div2 -4) ==> -2

(div2 -3) ==> -2

[O 100 ==> 0010]
[0011 ==> 0001]
[1100 ==> 1110]

[1101 ==> 1110]

(intern-soft string &optional package) This is the Symbolic~-comp叩table ver-

sion of the Common Lisp find-symbol function. It returns the symbol asso-

ciated with the string, or NIL if the symbol has not yet befn interned. It is
used by sys-make-name.

(boundpq varname) This is the literal version of boundp. It does not evaluate
its argument. It does not break if its argument is unbound.

(setq foo 2)

(boundpq foo)
(boundp weird)

(boundpq weird)

==> 2

==> T
==> ERROR: Attempt ...

==> NIL

(boundqp varname) Sarne as boundpq.

(second-value multi-valued-function) This function returns tμe second value of
a multiple-valued function. As a bonus, the first value of the multiple-valued

function is returned as a second value from this function cal+.

(second-value (values 1 2)) ==> 2 ー

(++ number-loc) This function is a暉 erentname for incf. +t pulls a nurμber
out of a general variable-location, increments the number by~, puts the re~ults
back into the same place, and returns the incremented results. The number

can be floating-point. Similar to setf, the number's location 91n be any ge1teral
location (such as an array reference), not just a variable name.

If you are using this function with multiple processes, you p,robably wan¥ the
locked version (++ 1) described in Section 2.4.1.

（＋ = number-loc mcrement) This fu nct10n is a different name for incf. It pulls
a number out of a general variable-location, increments th~number by the
given increment, puts the results back into the same place1 and returns the

incremented results. The number and/ or the increment can pe且oating-point.
Similar to setf, the number's location can be any general loc~tion (such as an
array reference), not just a variable name.

If you are using this function with multiple processes, you p,robably want the

locked version (+=l) described in Section 2.4.1.

(--number-loc) This function is a different name for decf. It pulls a number

out of a general variable-location, decrements the number by +, puts the results
back into the same place, and returns the decremented resl1lts. The number

can be floating-point. Similar to setf, the number's location CfLn be any general
location (such as an array reference), not just a variable name.

"

6

If you are using this function with multiple processes, you probably want the
locked version (--1) described in Section 2.4.1.

(-= number-loc decrement) This function is a different name for decf. It pulls
a number out of a general variable-location, decrements the number by the
given decrement, puts the results back into the same place, and returns the

decremented results. The number and/ or the decrement can be fioating-poi:qt.
Similar to set£, the number's location can be any general location (such as an
array reference), not just a variable name.

If you are using this function with multiple processes, you probably want the
locked version (-=l) described in Section 2.4.1.

(*= number-loc multiplicand) The multiply-in-place macro. This macrq pulls

a number out of a general variable-location, multiplies the number by the givfn

multiplicand, puts the results back into the same place, and returns the new

results. The number and/ or the multiplicand can be floating-point. Simil11r
to set£, the number's location can be any general location (such as an array
reference), not just a variable name.

Currently there is no locked version of this macro.

(/= numberl .. numberN) Surprise! (/=) is the system-defined not-equalfunc-

tion. There is no in-place div-equals function as of yet. Use (*= X (/ 1 Y~)
for now, and let me know if you'd like a better one.

2.1.3 List Commands

(squish nested-list) This function takes a simple nested list and non-destructively
returns a copy of the same list without all of the interior parenthises-tlie list

gets "squished" down to one level. Order is preserved. Given a non-list atom,
the function returns a list of that atom.

(setq foo'(a ((b (c) d))))

(squish foo)

foo
(squish'a)

==> (A ((B (C) D>))
==> (ABC D)

==> (A ((B (C) D>))
==> (A)

(only-once list) This function nondestructively returns a copy of the given list in
which every atom is listed only once-duplicates are eli血nated.The function

uses eq for comparison. The resulting order is reversed. This is unfortunately

an 0(ふ炉） operation.

(only-once 1 (a a a b b b a c b c c c)) ==> (C B A)

(apush key item alist) Assoc-list push. Pushes a new assoc entry (key . item)

onto the given assoc-list.

7

(pullq inlist atoml .. . atomN) Destructively Pulls atoms onto the back of th~
argument inlist, in place. Returns the new list. Designed to compleme叫
push, which puts things on the front of the list. Note carefully that the li$t i$

eval'ed, but that the atoms aren't.

(setq x'(a b c)) ==> (a b c)
(pullq x de) ==> (a b c d e)
X ==> (ab c de)
(setq x NIL) ==> NIL
(pullq x de) ==> (de)
X ==> (d e)

This new, improved version of pullq is just a hair slower but it does the rtg~~
thing when xis NIL. It also does the right thing in list-bashing a new copy pf
the atoms onto the back, avoiding those kinds of strange stack problems. ・

Please do NOT use this function to pull local variables (from a let or ffoID
a function's arguments) onto the back of a list, and then exit from the local
lexical definition. You will reuse part of the Lisp stack that is being assigned

to something else, and you will be sorry.

If x isn't a list you've got problems.

(pull inlist iteml ... itemN) Destructively Pulls items onto the back of the a.r7
gument inlist, in place. Returns the new list. Designed to complement p1:-sh1

which puts things on the front of the list. Note that both the list and the itfm$

are eval'ed.

(setq x'(a b c)) ==> (a b c)
(setq y'(d f)) ==> (d f)
(pull x (cdr y) 1e) ==> (a b c (f) e)
X ==> (a b c (f) e)
(setq x NIL) ==> NIL
(pull x'd'e) ==> (d e)
X ==> (d e)

This new, improved version of pull is just a hair slower but it does the rigpt

thing when x is NIL. It also does the right thing in list-bashing a new copy

of the atoms onto the back, avoiding those kinds of strange stack problems.
Also, since this macro evaluates all of its arguments, you would have to be

really creative to get yourself into problems storing local variables on a global
list. It should be safe.

If x isn't a list you've got problems.

8

2.1.4 File Commands

These commands implement a primitive-style output-file stream man?,ger. The com-

mands automatically open and close the stream OS (for "Output Stream"). Tp.ere

can be only one OS stream open at a time. It is up to the user to ensure that the
opened stream gets closed-there are no unwind-pro~ects used to auto-ensure this. If
the user aborts out of a program in the middle, he qr she should do a (close-file)

to make sure that things are alright.

Another convention, which does not need routines to be supporte:d, is to use the

stream ES for errors. The programmer can write all~rror-message fort11at command月
using the stream ES. This stream will normally be directed at the Li~tener terminal
T [i.e., ES=T], instead of into the output file. However, if the user wants the output

file to record the error messages too, the error streat11 can be set eq叫 tothe output

stream [ES=OS] by (setq ES OS).

(open-file filename) Opens output stream OS for serial output i:qto a new copy

of the given file. filename should evaluate to a string or file descriptor in-

dicating the appropriate file. This function breaks if filen苧eindicates a

nonsense path, e.g. to a machine that does not exist. The sr:ratch variable

using-file is set to the string or value passed in filename. When this

function is called from a terminal (and not from inside a running program),

it prints out a reminder message. No useful value is returned if this function

is called from within a program; however, OS is set to a legitimate file stream

on a successful call, as a side-effect. In general, it is important to specify the

full pathname of the file; the default directory on the Sequent seems to be

/usr, which should not be used by normal users, and will probably give you
a Permission Denied error anyway.

Franz Lisp does not seem to support remote files. Certainly the

''MACHINE:pathname" colon syntax is NOT supported for at least output

files.

Note that pformat supports the use of various streams, including ES and OS.

(open-file "/usr1/myers/recording.text")

"Opened stream #<stream writing /usr1/myers/recording.text (Q #x9294e9>
Do a (setq ES OS) if desired.

(use-file filename) Opens a file for output to OS. The same function as

open-file.

(close~file) Closes an existing OS file. Prints an error message to the terminal if
it is called twice, or if the file is already closed. Resets both OS and ES to T.

Returns the string or descriptor that was stored in *using-file*. Does not

take any arguments.

，

(close-file)

11/usr1/myers/recording.text11

(file-p stream) This function is supposed to test whether a given stream is an

output file or not. Currently it tests to see whether a file is not the terminal
IO stream or if it is, which gives similar but not precise answers. If you want
to use this, please talk to me.

(filep stream) The same as (file-p stream).

(with-open-file (IS input-filename :direction :input) BODY) This system-
defined function is the approved method of reading from an input file stream

IS. It uses an unwind-protect to ensure that the input file is closed if an error
occurs in the body of the routine.

OS This variable is used as the Output-file Stream. You can use it for all output in
your program. It is bound to T as a default. It is used by routines open-file
and close-file.

ES This variable can be used as the Error Stream. You can use it for all minor

error-message output in your program. It is bound to T as a default. Perform
a (setq ES OS) after opening a file if you want error messages to go to the

recording output file. Note that major error messages should use the stream

T to the terminal; otherwise, the user will not be notified when something bad
has happened. ES is reset to T by routine close-file.

using-file This variable is bound to the string or descriptor that was used to

open the currently open file by routine open-file. It is used for information
purposes only.

2.1.5 Benchmarking and Testing Commands

(exact-string-test function-call expected-results-string) This macro is used
for automatically testing functions that are supposed to return well-known

answers. For instance, if a routine is known to work properly, but then the

code gets changed, it is useful to run a suite of test programs on the routine
in order to check out that it still works correctly. Exact-string test accepts a

function call, executes the function, and gathers all of the output to stream
OS into an internal string variable. It then does a string-equal comparison

against the expected-results string, which should exactly correspond. If the
strings are equal, the routine prints a small verification message, and returns T.

If the strings are not equal, the routine prints a large complaining message, and
prints out the output that was actually obtained; it then returns NIL. Watch

out for spaces and carriage returns in the expected string. It is important that
the tested routine send its output to OS; the results that are -returned by the

tested routine are not examined. Examples:

，

10

(defun my-func (x) (format OS "Results: ~A11 (*xx)))

(exact-string-test (my-func 3) "Results: 9")

Exact-string-test: (MY-FUNC 3) passes the test. ==> T
(exact-string-test (my-func 3) "BadMatch")

EXACT-STRING-TEST: (MY-FUNC 3) FAILS THE TEST.

Actual output :

Results: 9 ==> NIL

(burn-cycles iteration-count) This command can be used for microsecond tim-

ing. See section 2.4.2.

2.2 Beholder-New-Flavors: A Flavors Syntax Package

The Beholder New Flavors package is found in the

/ usr /bhldr /beholder-new-flavors file.

Object-oriented programming is very useful, if not required, for many applica—

tions. A good, clean, object-oriented syntax makes programs easy and faster to

read, write, and debug. There have been a number of different syntaxes developed

for supporting object-oriented programming. The CLiP compiler currently supports

the Symbolics Old Flavors syntax, which is build on sending "messages" and "set-

messages" to programs. About seven years ago, people decided that this syntax was

too clumsy and hard to read, and Symbolics replaced this with the cleaner so-called

"New Flavors" syntax based on function calls and using setf to set slot variables.

The Beholder New Flavors package supports this syntax. Programmers can define

objects, define methods, access slot variables, set slot variables, and call methods,

in the manner defined by the Symbolics New Flavors package. In addition, the

Beholder New Flavors package implements some helpful option codes for frequently-

used options, which make the programs even easier to type and to read. These are

defined below.

The command definition section is not intended to be an introduction to the

advantages and uses of flavors and methods. For a good discussion of this, see

pages 85-206 of the Symbolics Common Lisp Programming Constructs Book 8, or

pages 368-490 of the old Symbolics Common Lisp Language Concepts 2A. Read the

introductory sections in these chapters for a brief overview.

The current New Flavors package is implemented on top of the CLiP old flavors

package. It works by defining macros which translate into old flavors calls. This
means that programs can use both New Flavors and old flavors at the same time.

This is very important, because some CLiP system routines2 are written using the

old-style flavors, and these would not work if New Flavors and the old flavors were

incompatible.

However, for this reason, it is currently necessary to use different names for the

New Flavors functions. Therefore, the flavor defining function is known as defflav,

and the method defining function is known as defmeth.

This introduces some incompatibilities with the Symbolics machine. So,

the beholder-new-flavors file also supports the Symbolics. If the

2Especially defflavor, which quietly calls defmethod.

11

beholder-new-flavors file is loaded on a Symbolics machine, then files using

defflav and defmeth can be run on the Symbolics, too. The file is implemented

using machine-dependent compilation, so the same source file that the Sequent uses

can be loaded. The Symbolics version of Beholder New Flavors also supports the

option codes.

The Beholder New Flavors package requires the use of beholder-1. This file

must have been previously loaded in order to work.

2.2.1 New Flavor Commands

Flavor and Method Definition Commands

(deffiav flavor-name (slot-vars) (parents) :options :option-codes)

De且nesa flavor named flavor-name that inherits from parents, uses the

given slot variables, and is built using the given (optional) options and/ or

option codes. Example:

(defflav ship (x

(defflav rocket (x

(y 0)) (vehicle thing) :C)

y z) (vehicle thing) :D)

This defines a flavor ship. It has slots x and y. The y slot has a default

initialization of O; the x slot has no default initialization. The ship inherits
slots from parent flavors vehicle and thing. Note multiple parents are no

problem. Often the parent list will simply be nil: (). The ship is defined using

option code :C, which, as explained below in section 2.2.1, makes y and x read-
able, writable, and initable, and creates the creation function (make-ship) for

creating instances of the flavor.

It is recommended that the option flag :C be used in most cases.

(defmeth (method-name flavor-name) (argl…argN) &body) Defines
a method that is used by the given flavor. It is permissable to have differ-
ent flavors use the same method name; the system automatically determines

which method is correct based on what且avorof object is used in the call.

The different且avormethods can even have a different number of arguments.

As usual, the slot variables of the且avorinstance are local variables inside the

method and can be referenced and setq'd directly; there is no need to use the

access functions inside the method. Also as usual, the special local variable

self is bound to the且avorinstance. The body can be a sequence, it does not

have to be a list.

Examples:

(defmeth (move ship) (new-x new-y)

11This method moves the ship to a new (x, y) coordinate. 11

(setq x new-x)

(setq y new-y)

）

12

(defmeth (move rocket) (new-x new-y new-z)

"This method moves the rocket to a new (x,y,z) coordinate."
(setq x new-x)

(setq y new-y)

(setq z new-z)

）

This shows that different :flavors can have methods with the same name.

Flavor Instance Creation Commands

(make-flavorname &optional :slotvarl initl…: slotvarM initM) Instaμce

creation routine used in the New Flavors package if the option-code :C is
used in defflav. Creates an instance of the given flavorname. Example:

(setq my-ship (make-ship :x 5))

Any slot variables that are not specified receive their default initialization

values. Any slot variables that are not specified and do not have initialization

values are set to NIL, they are not left unbound.

(flavorname &optional :slotvarl initl…: slotvar M initM) Instance

creation routine used in the New Flavors package if the option-code :D is

used in defflav. Creates an instance of the given flavorname. Example:

(setq my-ship (ship :x 5))

Any slot variables that are not specified receive their default initialization

values. Any slot variables that are not specified and do not have initialization

values are set to NIL, they are not left unbound.

(make-instance'flavorname &optional :slotvarl initl…: slotvar M initM)

Instance creation routine used by the old :flavors package. This is the default

method of constructing a且avorinstance that is used if the :C or :D option

code is not specified. Also, even if the :C or :D code is used for a且avor,this

syntax is still valid and can be mixed with that of the New Flavors package.

This function creates an instance of the given :flavornarne. Example:

(setq my-ship (make-instance'ship :x 5))

Any slot variables that are not specified receive their default initialization

values. Any slot variables that are not specified and do not have initialization

values are set to NIL, they are not left unbound.

13

Method Invocation Commands

(methodname flavor-instance argl…, ar:gN) Invokes the method function on
the given flavor instance object. Whic4 method function fS invoked depends
upon which flavor the object is an instance of. Example:

(move my-ship 10 20) ==> 20

This calls method move on the object my-:-ship. Since my-i;;hip is an instance

of flavor ship, it uses the move ship m蝉oddefined in the previous defmeth
example. The ship x and y slots are sett~10 and 20 resp,ectively; the method
returns the last line in the method definition, which evalu邸esto 20.

Slot-Variable Referencing Commands

(slotvarname flavor-instance) This is the nprmal method of referencing a slot's

value. This syntax is used-if one of the:~, :C, :D, :nilconc1 or :concnil option
codes were used. Example:

(x my-ship) ==> 10

(flavorname-slotvarname flavor-instance) This is the deffl,ult method of refer-
encing a slot's value, as provided by the New Flavors package. This syntax

is used if one of the :B, :C, :D, :nilconc, pr :concnil optipij-codes were NOT
used. Example:

（

(ship-x my-ship) ==> 10

send fl.avor-mstance :slotvarname) This is the default method of referencing

a slot's value, as provided by the old flavors package. Thi戸Eiyntaxis still valid,
even if the New Flavors package is being used. Example:

(send my-ship :x) ==> 10

Slot-Variable Setting Commands

(setf (slotvarname flavor-instance) newvalue) This is t4e normal method of
setting a slot's value. This syntax is used if one of the :B, :C, :D, :nilconc, or
: concnil option co des were used. Example:

(setf (x my-ship) 10) ==> 10

(setf (fl avorname-slotvarname flavor-mstance) newvallfe) This is the de-
fault method of setting a slot's value, as provided by the New Flavors package.

This syntax is used if one of the :B, :C, :D, :nilconc, or :concnil option codes
were NOT used. Example:

(setf (ship-x my-ship) 10) ==> 10

14

(SET-slotvarname flavor-instance newvalue) This is a bonus function fqr set-

ting a slot's value that is automatically defined by the New Flavors pack?'ge.

This syntax is usable for any flavor, New Flavors or not, as long as the New

Flavors package has been loaded. This syntax is still valid, even if the, New

Flavors package is being used.

（

(set-x my-ship 10) ==> 10

send flavor-mstance :SET-slotvarname newvalue)

This is the default method of setting a slot's value, as provided by t~e old
flavors package. This syntax is still valid, even if the New Flavors pack~ge is
being used. Example:

(send my-ship :x) ==> 10

Flavor Description Commands

(describe flavor-instance) This is the system command for printing out tre slots

and slot values of a flavor instance.

Deffiav Option-Code Descriptions

: A The :A option to deffiav sets all variables to set, get, and init.
It is equivalent to typing the flags : settable-instance-varュables
: gettable-instance-variables : ini table-instance-variables.

:all Same as :A. The :all option to defflav sets all variables to set, get1 and
init. It is equivalent to typing the flags : settable-instance-vari9-bles
: gettable-instance-variables : ini table-instance-variables.

: B The :B option to de田avsets all variables to set, get, and init, the same as qption
: A. In addition, it sets the cone-name to NIL, so that e.g. instead of saying
(ship-x my-ship) to reference slot variable x, the user says (x my-st1~P).

: C The :C option to defflav sets all variables to set, get, and init, and also i;;efs the
cone-name to NIL, the same as option :B. In addition, it sets the constructor
function name to make-name. So, for instance, to create an instance of a ship,

the user types (make-ship). This option is recommended.

: D The :D option to defflav sets all variables to set, get, and init, and also seys the

conc-name to NIL, the same as option :B. In addition, it sets the constructor
function name to name. So, for instance, to create an instance of a ship, the

user types (ship).

: concnil This option to defflav sets the flavor conc-name to NIL, so that e.g. instead

of saying (ship-x my-ship) to reference slot variable x, the user says (x

my-ship).

15

:nilconc This option to de:fflav sets the :flavor cone-name to NIL, so that e.g. instead
of saying (ship-x my-ship) to reference slot variable x, the user says (x

my-ship).

(:cone-name newname) This option to de:fflav sets the :flavor cone-name to NIL,

so that e.g. instead of saying (ship-x my-ship) to reference slot variable x,

the user says (newname-x my-ship).

: readable-instance-variables Option to de:fflav. Translates the Symbolics syntax

into :gettable-instance-variables. Makes all slot variables gettable.

: read Option to defflav. See :readable-instance-variables. Short for :gettable-

instance-variables.

: get Option to defflav. See :readable-instance-variables. Short for :gettable-

instance-variables.

: writable-instance-variables Option to de:fflav. Translates the Symbolics syntax

into :settable-instance-variables and :getable-instance-variables. Makes all slot
variables settable and gettable.

: write Option to de:fflav. See :writable-instance-variables. Short for :gettable-

instance-variables and :settable-instance-variables.

: set Option to de:fflav. See :writable-instance-variables. Short for :gettable-

instance-variables and :settable-instance-variables.

: init Option to de:fflav. Short for :initable-instance-variables. Makes all slot vari-

ables initable.

(:readable-instance-variables sequence-of-slotnames)

Option to de:fflav. Translates the Symbolics syntax into :gettable-instance-
variables. Makes the given slot variables gettable.

(:read sequence-of-slotnames) Option to defflav. See (:readable-instance-
variables). Short for :gettable-instance-variables.

(:get sequence-of-slotnames) Option to de:fflav. See (:readable-instance-

variables). Short for :gettable-instance—variables.

(:writable-instance-variables sequence-of-slotnames) Option

to de:fflav. Translates the Symbolics syntax into :settable-instance-variables

and :getable-instance-variables. Makes the given slot variables settable and

gettable.

(:write sequence-of-slotnames) Option to de:fflav. See (:writable-instance-
variables). Short for :gettable-instance-variables and :settable-instance-

variables.

(:set sequence-of-slotnames) Option to defflav. See (:writable-instance-
variables). Short for :gettable-instance—variables and :settable-instance-
variables.

16

(:init sequence-of-slotnames) Option to deffl.av. Short for :initable-instance-
variables. Makes the given slot variables initable.

2.3 Beholder-Heap: A Simple Heap Package

A "heap" is a data-structure si血larto a stack, except that each entry is tagged with

a priority. Instead of being ordered in a first-in, first-out relationship, the entries
in a heap are ordered by their priorities, with the lowest number belonging to the

first-out item on top of the heap. (Note that if two items have the same priority,
there is no guarantee as to which order the system will choose.)

A heap is a very common, useful data structure. The Allegro CLiP system by
itself does not support heaps. It was necessary to write a simple heap facility to
allow this behavior.
The routines in this section are found in the file beholder-heap. Heap functions
are currently not used by the beholder-1, beholder-2, nor beholder-new-flavors

files. The Heap system is independent and does not use routines supplied in other

files.

2.3.1 Heap Commands

(heap) Returns an empty heap. Same as (make-heap). Currently an empty heap
is implemented as an empty list ().

(make-heap) Returns an empty heap. Same as (heap). Currently an empty

heap is implemented as an empty list (). Be careful; "make-heap" returns a

Symbolics heap structure when this code is run on the Symbolics computer.

(push-heap heap key item) Pushes the given item on the given heap, using the
given key. The key must evaluate to a number.

(pop-heap heap) Pops the top item off the heap (the item with the lowest number

as its key). Returns two values: the item, and also its priority key. Returns
NIL NIL if the heap is empty. The popped item is removed from the top of
the heap.

(top-of-heap heap) Returns two values: the top item of the heap, and also its

priority key. Returns NIL NIL if the heap is empty. The top is the item with

the lowest number as its key. The top item is not removed from the top of the

heap.

(find-heap-item heap key item) Searches for the given item and key inside the
given heap. Both the item and the key must match, using equal. Returns

a heap object representing the subheap that the item was found in. Returns

NIL if the item was not found. The subheap object is replaceable in them血

heap using setf, for heap twiddling. The searched-for item is not guaranteed
to be at the top of the returned subheap object.

(heap-find-item heap item) Searches for the given item inside the given heap.
The item must match, using equal. Returns a heap object representing the

17

subheap that the item was found in. Returns NIL if the item was not found.
The subheap object is replaceable in the main heap using setf, for heap twid-
dling. The searched-for item is not guaranteed to be at the top of the returned

subheap object. This function searches exhaustively and will take longer than

find-heap-item.

(pull-heap heap) Pulls the bottom item off of the heap (the item with the highest

number as its key). Returns two values: the item, and also its priority key.

Returns NIL NIL if the heap is empty. The pulled item is removed from the

bottom of the heap.

(bottom-of-heap heap) Returns two values: the bottom item of the heap, and

also its priority key. Returns NIL NIL if the heap is empty. The bottom is
the item with the highest number as its key. The bottom item is not removed

from the bottom of the heap.

(top-of-heap-key heap) Returns the lowest number in the heap. Returns NIL if

the heap is empty.

(bottom-of-heap-key heap) Returns the highest number in the heap. Returns
NIL if the heap is empty.

(delete-from-heap heap key item) Deletes a given keyed item from the heap.
Returns two values: the deleted item, and also its key. Both the key and the

item must match the corresponding entry in the heap with equal.

(rekey-heap-item heap key item newkey) Labels an existing item in the given
heap with the given new key; reorders the heap to reflect the new status. The

new key must be a number. Both the old key and the item must match the
corresponding entry in the heap with equal. This routine should be faster

than deleting the item from the heap and then pushing it in again with the

new key.

(heap-empty-p heap) Tests to see whether a given heap is empty or not. Returns

Tor NIL.

(heap-full-p heap) Tests to see whether the given heap has at least one entry or
not. Returns the heap or NIL. This is the preferred test.

(clear-heap heap) Clears a given heap out; makes it empty. Currently this is

implemented by setting the variable to a new heap.

(list-of-heap-items heap) Returns a list of the items in the heap. The list is
ordered from lowest to highest, by key.

(list-of-heap-keys heap) Returns a list of the keys of the items in the heap. The

list is ordered from lowest to highest, by key.

(list-of-heap-items-and-keys heap) Returns a list of pairs of (item key), the
items in the heap paired with their keys. The list is ordered from lowest to

highest, by key.

18

(heap-top-N-items heap N) Returns a list of the top N items with the lowest
keys, and a second value of the number of entries returned. The list is ordered
from lowest to highest, by key.

(heap-bottom-N-items heap N) Returns a list of the bottom N items with the
highest keys, and a second value of the number of entries returned. The list

is ordered from highest to lowest, by key.

(heap-top-Nth-item heap N) Returns the item that is Nth from the top count-

ing up from the lowest entry, and a second value of its ranking, which will
usually be N. If the heap has less than N entries, the bottommost entry is
returned.

(heap-bottom-Nth-item heap N) Returns the item that is Nth from the bottom
counting down from the highest entry, and a second value of its inverse ranking,

which will usually be N. If the heap has less than N entries, the topmost entry
is returned.

(size-of-heap heap) Returns a count of the number of items in the heap.

2.3.2 Implementat10n notes

In version 1.0, heaps are currently implemented using simple lists instead of struc-
tures. This makes the heaps fast, but does not support describe. The current
implementation stores heaps using binary trees. No attempt is made to balance the
tree. Heap entries are of the form (key entry left-subtree right-subtree).

An empty heap consists of the empty list, ().

2.4 Beholder-2: Parallel Language Augmentation Com-

mands

The following commands are found in the beholder-2 file (see Section 1).

2.4.1 Lock Commands

The Lock commands are included in the beholder-2 file.

Locked Counter Increment/Decrement Commands One of the most basic

functions that a computer can do is to increment or decrement a counter, either
by 1 or by a specified number. However, when the computer is actually a parallel

multi-processor, even a simple increment can cause a write-write collision. These
functions circumvent this problem by supporting operations on locked counters. The

user provides both a counter location and a lock de出catedto that counter. The

command grabs the lock, performs the requested operation on the counter, and
returns the new resulting value. It is recommended, although not necessary, that
the counter's contents be of the integer type. The counter-lock should be a spin-
lock. Since these commands use something similar to a setf, it is not necessary for
the counter to be a variable name-any esoteric locator (e.g., an array reference, or

19

a slot in a def'd structure) will perform the proper operation. The functions are
intentionally named after the C language functions of similar operation, with the
addition of the "l" for "lock".

(++l counter-location counter-lock) Grabs the lock and increments the given
counter by 1. Returns the new value.

(--1 counter-location counter-lock) Grabs the lock and decrements the given
counter by 1. Returns the new value.

(+=l counter-location incr counter-lock) Grabs the lock and increments the
given counter by the given incr. Returns the new value.

（ -=l counter-locat10n decr counter-lock) Grabs the lock and decrements the
given counter by the given decr. Returns the new value.

Lock Extension Functions In~ome rare cases, there are times when a lock is
either required or not required at all. In these cases, you want the computer to
use the lock if it's there, and don't worry about it if it hasn't been allocated. The

following function supports this behavior.

(with-spin-lock-or-NIL lock body…) This enclosing macro supports optional
locks. If lock is NIL, the macro goes ahead and evaluates the body. If lock
is a lock, the macro is the same as a with-spin-lock form.

2.4.2 Time Commands

The Time commands are included in the beholder-2 file.

(get-time) Returns the "internal real time", in internal-tick units (milliseconds).
This command is only accurate to a few hundreths of a second.

There is a rumour that the time is different when asked between different
processors. This is currently being investigated.

(get-elapsed-time start-time-in-internal-ticks) Returns the amount of time
that has elapsed, in seconds, from the time that the start-time was recorded.

Start-time must be in internal-tick units. Unfortunately, this function is only
accurate to a few hundreths of a second-however, a basic operation takes

about a microsecond to perform. Thus, this function is useless in timing any-
thing that does not have more than about 5000-10000 basic operations in it.

[Besides this, since it uses simple subtraction, there may be a possibility that

this function will break once a month. E.g., for five seconds at midnight on the

31st, this function will return wrong answers. Do not use it to time elapsed
durations of more than about a day.] See also burn-cycles.

Example:

(setq old-time (get-time))

(when(> (get-elapsed-time old-time) 5.0))

(pformat T "You're taking longer than five seconds to think! ! ! -%"))

20

(wait nsecs) Wait implements a "sit-and-spin" function that ties up a processor
until the given number of seconds has elapsed. Wait uses get-elapsed-time
and should not be used to time durations of more than about a day, to be

safe. Wait can only be used safely for durations with hundreths of
seconds precision. It fixes the problem introduced by sleep, which quietly
truncates its argument down to integer values and is basically useless. See the

discussion in Section 3.4.

(burn-cycles iteration-count) This routine does nothing but use up computer
time. It counts up to the given total. Since each iteration takes almost exactly

1.925 microseconds to execute, this command can be used for microsecond

timing.

2.4.3 Random Number Commands

The Random Number commands are included in the beholder-2 file.

The system's random-n11mber generator produces exceedingly strange values
when used by multiple lwps. It is necessary to use a locked version in order to

get usable numbers.

(rand x) This is a locked version of the CL function (random x), which takes a
positive number x and returns a number of the same type from O (inclusive)
up to but not including x. I.e., if x is an integer, numbers from O to (x-

1) are returned; if x is a floating-point number, numbers from O to (x -E)
are returned. It is an error not to supply the argument x when calling this

function.

2.4.4 Normal Mailbox Commands

The Normal Mailbox commands are included in the beholder-2 file. See also the

Fast Mailbox commands, which will be presented in Part 2 of the Beholder Toolbox

manual.

(flush-mailbox my-mailbox &optional (mailbox-spinlock NIL)) This com-
mand first grabs the spinlock, if it exists, and then empties the current con-

tents of the mailbox by repeatedly receiving messages until the box is empty.

The contents of the mailbox are lost. The spinlock is released after the mail-

box is empty. It is not necessary to have a lock for the mailbox. The function
returns the number of messages that were thrown away.

Example:

(flush-mailbox parser-mailbox)

2.4.5 Resource Commands

In certain applications, the memory space allocated by the system may be especially
tight, and memory space management may become particularly acute. In such cases,
it is useful for the user to be able to allocate and deallocate his own items in memory,

21

rather than trusting to the garbage collection of the system to perform this task for

him or her properly.

Symbolics Lisp has a well-developed system known as "resources" that performs

this task. The Resources section of the Symbolics manual may be referenced for

further information on the general flavor of the types of operations required in a

resources package. Version 1.0 of the BEHOLDER package implements an (incompat-

able) version of a resources package that is simpler to use, but less powerful. The

user is only allowed to allocate and deallocate structures, (not other objects such

as arrays, etc.). The package is invoked by using defstruct-resource exactly in

place of the normal defstruct. This automagically defines functions allocate-Joo

and deallocate-Joo, where Joo is the name of the structure defined using the

defstruct-resource. The user should use allocate-Joo in place of the normal

call to make-Joo, to create an instance of the structure. In version 1.0, this function
takes no initialization arguments. It is necessary for the user to initialize all the slots
of the structure by himself, using setf. In particular, the contents of the structure
slots will most probably contain leftover garbage that could damage the user's data

structures if it is left there. When the user is done with a particular instance of

a resource structure, and wants to explicitly garbage-collect the instance, the user

should call deallocate-Joo on the instance.

All the options normally used with def struct can be used with

defstruct-resource. However, it does not make much sense to specify initializers

for the slots, as these may or may not be used when a new structure is allocated.

It is completely possible to specify many different types of resources. Each type
of resource is handled separately by its own allocate and deallocate calls.

If the structure is redefined using another defstruct-resource call, all the
previously deallocated garbage structures under that resource name are lost, and

the system starts with a new storage stack. Apart from using up more space, this

behavior should not affect the user in any way.

For reasons of speed, no checking is performed on a deallocation call to see

whether the structure instance has been deallocated or not. It is a serious error to
deallocate the same structure instance twice.

(defstruct-resource (myresource :named) slotl ... slotn) This function 1s

the defstruct function for resource structures. The syntax is exactly the same

as defstruct. This function defines a resource. After this function is called,

the user can call the allocate-myresource program to get instances. Default ini-

tializations should not be specified on the slots, since the user should explictly

fill in each slot whenever an instance is allocated.

(allocate-MYRESOURCE) This function is the allocation function for re-

sources. It should be used instead of the standard structure-instance allocation

function make-myresource to allocate an instance of a resource that has been

defined using defstruct-resource. It returns the newly allocated structure.

The new structure will most probably contain evil garbage in its slots, and

should be initialized by the user. This function is automagically defined when

a defstruct-resource is executed.

22

(deallocate-MYRESOURCE my-instance) This function is the deallocation
function for resources. It throws an instance back into the resource pool.
The next time the same kind of resource is allocated, instead of using new

data space, the allocation function will return this old instance. Since the
instance will contain garbage, it is up to the programmer to clear it out and

initialize it properly. It is a mistake to continue using an instance that has
been deallocated; the user program should deallocate an instance only after it
is sure that the program is恥ished面ththat instance.

2.4.6 Output Commands: The pformat Package

The beginning programmer should load beholder-2 and use pformat in
all cases where a format command would be used in normal Lisp. The
syntax is exactly the same.

One of the first things that a user discovers about a parallel computer such as
the Sequent is that the output from multiple parallel processors is close to useless. If
multiple processors are allowed to write into the same output stream, characters will

be badly interleaved and mixed up, and occasionally characters, words, or even whole
lines will get lost. Characters are not guaranteed to be printed. Right away, this
renders numbers meaningless, because you cannot be sure that when the computer
typed 10. 5 it did not actually mean 1000. 56, or even 19999 200. 5. It is important

to guarantee that all output gets printed, and that the output from a single format
statement is printed continguously (without being shuffled with other output). This

is accomplished by the pformat command. The pformat command implements a

parallel version of the familiar format command; the arguments are exactly the
same. A single lwp called the PFORMAT-PROCESS is allocated (by init-pformat

and dedicated to the task of printing output. When a process calls pformat, instead
of sending the output directly to the ter血nal,the output arguments get evaluated,

quoted, and then placed in a special system mailbox (pformat-MB). The PFORMAT-

PROCESS does nothing but read this mailbox and print out the messages in it. If

there are no messages, the process b~ocks until a message comes in. The process
runs forever (until it is killed). Since, m practice, an lwp keeps running on the same
processor-task until it blocks, this means that the application processes will tend

to run for a long time until a couple of these processes block, and then finally the

PFORMAT-PROCESS is allowed in and you get a lot of (old) output at the same time.

Since the output uses one lwp, this could tend to take one processor-task away

from the other lwps that want to run. However, since the output only runs when
there is actually output to be typed, this should not cause too much extra overhead.

There does not seem to be any alternative.

In the past, the output would only be typed out when the lwps are running. Thus,

if you typed a pformat command at the top level, it was stored until (start-lwps)
was typed again. This was inconvenient. The latest version of pformat tests to see

whether only one processor is allocated or not. If so, it assumes that the user is
testing a program directly at the top level, and prints out the message directly, using

format. If there is more than one processor allocated, it assumes that a parallel
program is running, and sends the message to the pformat mailbox as before. Note

that this test takes some time to peザorm.If the user is certain that only parallel

23

programs will be run, and that the programs will not be tested at the top level, then

ppformat sends the message directly to the pformat mailbox.

In certain pathological circumstances, unprinted output will be saved up until

(st art-1 wps) is called, resulting in leftover output that does not belong to the

current program run. For this reason, it is currently recommended that you call

(reset-pformat) at the beginning of your program. This function flushes out the

old mailbox without disturbing the pformat lwp itself.

Currently (ini t-pformat) is automatically called when the beholder-2 file is

loaded. In addition, the PFORMAT-PROCESS is not placed on the list of *lwps* used
by kill-all-lwps. Thus, there should be no need for a user to call init-pformat;

and the user can use kill-all-lwps as often as possible without having to worry

that the output will go away. If, for some reason, two PFORMAT-PROCESSes are
allocated, it is conceivable that this could cause a problem, as both of them would

try to read from the current pformat-MB mailbox and then try to type at the same

time.

pformat should be used for all output done by lwps. If, for some reason, you
want the main process to perform output, you may use either format or pformat

for this task. Note again that the pformat output will not appear until after the

start-lwps command starts up, if more than one processor is allocated. Remember

also that the process running the start-lwps command goes away until all the lwps

are completely finished, so pformat output provided afterthe start-lwps command

in the main-process code will be pushed on the queue and not seen this time.

Current thinking says to use format for :print-functions inside defstructs; it is

unclear whether this is correct or not. Sometimes it is necessary to use'', stream

instead of stream for the stream in a :print-function.

It is important not to call the system routine (reset-queues) after the
beholder-2 package is loaded, as this will break pformat by terminating the pfor-

mat process, causing all messages to stack up in the mailbox and not get printed.
If (reset-queues) is called, the user must call (init-pformat) afterwards to ini-
tialize a new pformat process. This also wipes out the mailbox.

If pformat appears to be broken, it should be possible to dump the contents of
the mailbox using the command dump-pformat. This is similar to reset-pformat,

except it prints the dead messages out, in order, as it flushes them.

Pformat Basic User Routines

(pformat stream control-string args ...) This function is the parallel version of

the regular format command. The arguments are exactly the same as format.

First, the function tests to see whether only one processor has been allocated

or not. If so, it assumes that a top-level program is running, and it prints out
the formatted message directly. If not, the function evaluates its arguments,
quotes the result, and pushes a print request containing the quoted evaluations

onto a system mailbox. Later, a special dedicated lwp executes the request

and prints the output. pformat should be used in lwp code in all cases instead

of format.

(ppformat stream control-string args ...) This function is the direct version of

pformat, the parallel version of format. It does not test how many processors

24

have been allocated, but rather sends the output directly to the pformat
mailbox. It is slightly faster than pformat, and should be used when the
programmer is certain that only parallel processes will be used and there is

no need for running the program at the monitor level. It does not print out

its messages until start-lwps has been called. The arguments are exactly
the same as format. The ppformat function evaluates its arguments, quotes

the result, and pushes a print request containing the quoted evaluations onto
a system mailbox. Later, a special dedicated lwp executes the request and

prints the output.

(reset-pformat) This function performs a廿ushof the pformat-MB. Any and all old
format messages currently in the mailbox are discarded. The function returns

the number of old format messages that were thrown out. The messages are
not printed out. See dump-pformat.

Pformat Advanced User Routines and System Routines The normal user

should not have to worry about these commands.

(init-pformat) This function is called by sq-system when it is loaded. It allocates
the PFORMAT-PROCESS lwp and stores it in system variable pformat-process.

It sets pformat-MB to a new mailbox. The pformat process should not be
blocked or killed by the user. For this reason, the user should never have to
call this function.

It is important not to call the system routine (reset-queues) after the

beholder-2 package is loaded, as this will break pformat by terminating the

pformat process, causing all messages to stack up in the mailbox and not get
printed. If (reset-queues) is called, the user must call (init-pformat) af-
terwards to initialize a new pformat process. Remember that this also wipes
out the mailbox.

(check-pformat) This function returns the state of the pformat process. It should

be :RUNNABLE. If it is :TERMINATED, the process must be re-initialized
with init-pformat.

(dump-pformat) This function performs a dump of the pformat-MB. Any and all

old format messages that are currently in the mailbox are printed out, and
then discarded. The function returns the number of old format messages that

were dumped out. This routine is useful for seeing dead messages if pformat is
broken, or if the lwps are not running at the moment. It should only be used

in unusual cases. See reset-pformat.

pformat-MB This system variable stores a mailbox that is used to implement
pformat. It should not be examined or modified by the user.

pformat-process This system variable stores the lwp process that is used to im-

plement pformat. It should not be examined or modified by the user.

25

2.4. 7 Blocking and Unblocking Commands

(kill-all-lwps) Kills all the lwps on the *lwps* list.

(block-lwp LWP) The same as suspend. Note that (block) is a system command
that means something completely different.

(unblock LWP) The same as resume. Note that (unblock-lwp) is apparently al-

ready a system command.

(block-me) A very useful command. Suspends the lwp that executes this state-

ment. When the lwp is unblocked by someone else, execution picks up on the

next line.

2.4.8 Creation Commands: Spawn, Build, Fork, and Join

Basic LWP Creation-Spawn and Build One of the major problems of the

Sequent is that the primary function make-lwp does not evaluate its arguments

until the lwp actually runs. This means that, if you are lucky, local variables used

in the function definition両ghtbe bound to something new but vaguely reasonable;

if you are unlucky, they might point to something completely random in the両 ddle

of the stack. For example:

<Initial lwp> (dotimes (i 3)
(make-lwp (format T "Process variable -A.-%11 i) :run T)) NIL

<Initial lwp> (start-lwps)

Using 1 processor

Process variable 3.

Process variable 3.

Process variable 3.

In this case, the variable i is still bound to 3 at the time that the processors
start. All three processors use that value.

The predicted and desired behavior, of course, is to have the arguments eval-

uate at the time that the process is defined and allocated, not at the time that it

is started. This capability is implemented by the spawn-lwp and build-lwp com-

mands. spawn-lwp starts a live process, i.e. one with the :run flag of T; the process

will start running as soon as (start-lwps) is called. Of course, if spawn-lwp is

called from a running lwp, the resulting created process starts running immedi—

ately (well, as soon as it can get a free processor-task). build-lwp starts a blocked

process-one that waits until it is unblocked (resumed) by someone in order to run.

Remember that start-lwps does not unblock blocked processes, it just starts ones

that are unblocked already.

The main argument to both spawn-1 wp and build -1 wp is a list that looks like

a function call. Each of the arguments in the function call is evaluated, quoted,

and then packaged into a new make-lwp call. Since the new make-lwp only ac-

cepts quoted constants, the expected proper behavior is produced. Note that this

means it is no longer possible to define an unnamed process consisting of a let or

a progn enclosing a bunch of statements-since spawn-lwp would evaluate each of

26

the statements at allocation-time, instead of at lwp run-time, this would probably

not produce the desired results. It is much better to package the desired program of
an lwp into a single routine, and then to use that routine name, together with any

required arguments, in a call to spawn-lwp.

Both spawn-lwp and build-lwp come in two flavors. The normal kind considers

the first atom in the function-call list (i.e., the function name) to be a literal; this

is normally what you want. The second kind, distinguished by -ev at the end of

the name, considers the first atom in the function-call list to be a variable; this

variable is evaluated just like the other arguments, and then the result is used to

call the function. For instance, in the following example the two constructed lwps

are identical:

(spawn-lwp (parse *input-sentence*))

(setq *which-routine*'parse)

(spawn-lwp-ev (*which-routine* *input-sentence*))

Spawning and Building Commands

(spawn-lwp (my-routine args ...) &optional (name "An LWP"))

Allocates and creates an lwp that starts out running. The lwp will run the

given routine. Evaluates and then quotes its arguments. Does not evaluate

the routine specification; this should be a literal. Returns the resulting lwp.

(spawn-lwp (parse *input-sentence*))

(build-lwp (my-routine args…) &optional (name "An LWP"))
Allocates and creates an lwp that starts out blocked. The lwp will run the

given routine. Evaluates and then quotes its arguments. Does not evaluate

the routine specification; this should be a literal. Returns the resulting lwp.

(build-lwp (parse *input-sentence*))

(spawn-lwp-ev (my-routine-expr args…) &optional (name "An LWP"))
Allocates and creates an lwp that starts out running. The lwp will run the

given routine. Evaluates and then quotes its arguments. Evaluates the routine

specification as well. Returns the resulting lwp.

(setq *which-routine*'parse)

(spawn-lwp-ev (*which-routine* *input-sentence*))

(build-lwp-ev (my-routine-expr args ...) &optional (name "An LWP"))

Allocates and creates an lwp that starts out blocked. The lwp will run the

given routine. Evaluates and then quotes its arguments. Evaluates the routine

specification as well.

(setq *which-routine*'parse)

(build-lwp-ev (*which-routine* *input-sentence*))

27

Fork and Join A common medium-low-level problem is to set up map.y P, 可allel
processes that fork off from the stream of execution, and have each proce~s take
care of its own business. In addition, it also may be desired to join these processes

together, so that when all of them are finished executing a new process is called to
continue the stream of execution. This model of parallel control is called the "fork

and join" model. Various processes are "forked" off, and "join" back together again
later when they are finished.
The fork-and-join model is fully supported by the routines make-fork, for}cーlwp,

and join-and-when-finished-do, along with their variants. First, the user戸hould
use make-fork to create a fork structure, which is used for bookkeeping py the

system. The fork (structure) is important, because several forked sets of P,arallel
processes could be going on at the same time, and it is important to tell which
fork a new process belongs to. The user should store this structure in a handy fork

variable, and use this variable as a bookkeeping device. The user never needs to
examine this structure, merely to pass it around for identification purposes.

Next, the user should create a number of parallel processes, using fork-lwp,
which takes the previously-mentioned fork variable as an argument. The fork-lwp

call replaces the normal call to spawn-lwp. Inside the process function definition, as
the last line to get executed, the process should call join-and-when-finished-do
with the argument of a block of routines to be executed after the join occurs.
It is important to remember that the parent process continues executing after it

forks off a child-fork process. Indeed, there is no need for there to be a single parent;

many parent processes can call fork-lwp, and as long as they all use the same fork
variable, they can all contribute new child processes to the fork.

Typically, a parent will set up a number of forked processes, and then die; or
loop, go to sleep and wait for the next processing iteration (e.g. the next utterance).
The forked children execute, and then perish; all except one, which gets to be the

lwp that executes the join routine and its subsequent processing. However, if the
desired effect is for the parent to fork off a series of routines and then wait until they
are all done, and then to have the parent continue as the join, a slightly different

programming style is necessary. The parent should pass itself, *this-lwp*, as an
argument parent-lwp to each of the child forked processes. The parent should call

(block-me) after it has finished forking off all of the children. Each child should
then have the expression (join-and-when-finished-do (unblock parent-lwp))

as its last line. The parent will fork the children and then block; the children will
execute; and the last child will unblock the parent. In this manner, an inline fork-
and-join is built.

There have been questions as to whether the fork variable should be stored in

a local variable inside the parent routine, and then passed down as an argument to
the child forks; or whether the fork variable should be a global variable (perhaps

in an indexed array) and then have the child call this global by name. Either way
will work. It is probably better to design the child to accept a fork variable as

an argument, rather than hardwiring the name in, in case more than one parallel

parent desires to start up different (simultaneous) forks using the same child-process
function. There is no need to worry about whether the fork variable is local or global

in the parent, as the fork variable stores the fork structure, which is allocated out
of main memory, not the parent's lwp memory. Even if the structure is stored in a

28

local variable in the parent, and the parent process dies (thereby rendering its local
variable storing the structure invalid), the forked child processes will still continue
on correctly-because they have been given pointers to the structure, not copies,

and not the variable itself. About the only way to mess up is if the user attempts to
pass the fork variable in by declaring a local variable name "special" in the parent

and forked-child processes, and then hoping that the child processes will be able to
reference the special variable by name. The parent's local variable is taken from

its processing stack. If the parent process terminates or even becomes blocked, its

stack is no longer available, and the special references will fail.
It is important to be careful about pathological race conditions when using forks.
If fork-lwp is used to build lwps one by one in an indiscriminant fashion, and
the resulting processes are small and fast, it could happen that all of the existing
processes finish just as the next lwp in the fork is about to get built. If all the

processes in a fork finish, the fork's join routine is executed, and that turn or

round of the fork is basically finished. Putting a late forked process or two onto a
fork that has already fired its join routine is the same as starting up another turn

for the fork-when those few processes finish, the join routine will be called again.
This is normally not what is desired by the programmer. The solution is to normally

use build-fork-lwp to create blocked fork processes, and to collect these and push

them onto a list as they are allocated. Then, use start-processes to unblock them
all at the same time. Note that in theory, since start-processes uses a loop to

unblock the processes one at a time, it could be possible for a started process to
finish before all of the processes are unblocked. However, in practice, since an lwp
is not swapped out of a processor-task until it blocks, this should not cause any

problems.
All of a fork's join-and-when-finished-do routines should execute the same

code, since it is unknown which one of them will actually be used to complete the
join and start the next process.
The fork-and-join model of parallel processing has to some extent been replaced

by the agenda-and-worker model, which allows higher-level control of the amount of

resources allocated to a subsystem. Although the fork-and-join routines are prob-
ably alright for experimental use, it would probably be better to develop serious

code using the agenda-and-worker routines instead, to allow integration with other

subsystems at a later date.
In the current version, the variable *lwps* is maintained by the user. If the user

is interested in having (kill-all-lwps) work, it is now the user's responsibility to

push each created process onto the *lwps* list.

Forking and Joining Commands

(make-fork) Creates and returns a fork record-keeping structure. Store this in a
variable and use it to control the following functions.

(fork-lwp fork-var (my-routine args…) &optional (name "A Forked Process"))
Spawns a running process to execute the given routine. The name of the rou-
tine is a literal that is not evaluated. Increments the active process count in

the given fork. Returns the created lwp. Example:

29

(setq parse-fork (make-fork))

(setq i 1)

(fork-lwp parse-fork (parser *sentence1-A*)

(string-append "Parser-" (my-string i)))

(++ i)

(fork-lwp parse-fork (parser *sentence1-B*)

(string-append "Parser-" (my-string i)))

(build-fork-lwp fork-var (my-routine args ...) &optional

(name "A Forked Process")) Builds a blocked process to execute the
given routine. The name of the routine is a literal that is not evaluated. In-

crements the active process count in the given fork. Returns the created lwp.

Example:

(setq parse-fork (make-fork))

(setq parse-lwps ())

(setq i 1)

(push

(build-fork-lwp parse-fork (parser

(string-append ."Parser-" (my-string i))

parse-lwps)

(++ i)

(push

(build-fork-lwp parse-fork (parser

(string-append 11Parser-11 (my-string i))

parse-lwps)

(start-processes parse-lwps)

sentence1-A)

）

sentence1-B)

）

(fork-lwp-ev fork-var (my-routine-expr args…) &optional (name "A
Forked Process")) Spawns a running process to execute the given rou-

tine. The name of the routine is contained in an expression that is evaluated.

Increments the active process count in the given fork. Returns the created

lwp. Example:

(setq parse-fork (make-fork))

(setq which-func'parser)

(setq i 1)

(fork-lwp-ev parse-fork (which-func *sentence1*)

(string-append 11Parser-11 (my-string i)))

(++ i)

(fork-lwp-ev parse-fork (which-func *sentence1*)

(string-append 11Parser-11 (my-string i)))

(build-fork-lwp-ev fork-var (my-routine-expr args…) &optional (name
"A Forked Process")) Builds a blocked lwp that is part of a parallel fork.

30

The name of the routiny fS contained in an e:;<:pression that is evaluated. Grabs
and increments the active process count in the gi-yen fork, pushes the lwp on

the fork list. ~eturns the created lwp. Example:

(setq par~e迂ork (make-fork))

(setq w~ich-『unc'rarser)

(setq i q
(push

(buil匂 orf-lwp:-E,JVparse-fork
(string-aP,penp. "Par戸 ~r-11 (my-string

parse芦ps~
(++ i)

(push

(build-fo己~-lwp:-~v parse-fork

(string-aP,p~np. "Par戸E,Jr-11(my-string
parse丑~ps~

(start-p,roc1=sses parse-lwps)

(which-func *sentence1-A* .)

砂））

(which-func *sentence1-B*)

~)))

(join-and-when'.'"finished-qo old-fork-var body…) Decrem,ents the number of
active procc:sses in the fo,rk by 1. Executes the code cont箪inedin body when

the last pror:;e~s finisheEi (calls this function); This routine should come at the
end of the qody of the hyp procedure.

(join old-fork-v~r.) This is Q, low-level routine that could be used by users at-
tempting to build CU$tom join routines. It decrements the active pro-
cesses count and returns the new value. Most useri;; will want to use

JOュn-andー叫hen.-finist1'¥!d-do instead.

(end-of-fork olq-fork-var) This is a low-level routine tha,t cot1ld be used by users

attempting tq build cus~om join routines, or. to seal off forks that have no
joins. It is伽 $ameas "join". It decrements the active frocesses count and
returns the new value.

(start-processefi list-or-seq1-1-ence-of-processes) Starts a list of blocked pro-

cesses: sends a :resume signal to each process on the 1ist.

(start-pro,ces戸eslwp1 lwp2 lwp3)

(setq pars.er-lwps (list lwp1 lwp2 lwp3))

(start-pro,ces戸esparser-lwps)

2.4.9 Workers anp Agenda Commands

;could be'',lwp1

The Worker and Agenda model is a very useful model for designing parallel control

structures. An agenda is a First In, First Out (FIFO) queue of tasks to be performed.

31

Each agenda has a set of worker proc,ess~s. ¥Vhen a worker process和nishesits current
task, it goes to the agenda and req廿est$another tas_k. Another, 1.1;nspeci且edpart of
the system keeps the agenda full qy entering tasks on it. If the agenda is empty
when a worker requests a task, the五thev:-rorker blocks, goe~to sl~ep, and waits for
the agenda to fill up again.

A simple Worker and Agenda Ei!strrq can be irp.plemented using mailboxes or
Fast Mailboxes.
This section offers a more compl~x version, that is designed for stronger control.
Each agenda has a certain number of wprkers, but only some o.f these are active

at one time-the rest of them are lras~ed. Commands exis~for creating, leashing,
and unleashing workers. The resul~ing fra:μiework allows control of the amount of
resources devoted to executing different J>arts of a system, repres~nted by different
agendas.

The Worker and Agenda package is :;;till under res~arch. A more advanced version
is being prepared to replace this one.
For a further discussion of the theory b~hind this package, see Section 6.

(make-agenda) Returns an agen畑

(agenda-empty-p agenda) Test~to se~whether f1Il agenda is empty or not.

(wait-for-empty-agenda agend4-) Waits until ar:i-agend~is empty. Detects this
by waiting for the agenda to send ;:i,n ".empty" message to itself, which happens

when the agenda notices the 11umber of running active workers is 0.

(push-agenda item agenda) Pu~hes a given item onto t4e given agenda.

(pushnew-agenda item agenda) P1-1-shes a new given item onto the given agenda,

if it wasn't in the agenda waiting t~be processed alre?,dy.

(my-worker-function item) User-defined vy-orker functions for a particular agenda
must take one and only one argum~Ij-t, which gets bound to the item that is
popped off the agenda-the same f1S the item that was originally pushed onto

the agenda.

(make-worker my-worker-function ag~nda) Allocates a worker for the given
agenda. My-worker-function rp.ustじean unquoted literal.

(make-N-workers N my-workerふfunctionagenda) Allpcates N workers for

the given agenda. N should qe a positive integer. My-worker-function must

be an unquoted literal.

(unleash-all-workers agenda) A~tivates all of an agenda's workers. Normally
call this right after allocating f1ll workers. Active workers stay active whether
they are executing an agenda item or waiting for the agenda to fill.

(unleash-N-workers N agenda) Activate some of an agenda's workers.

(leash-all-workers agenda) Deactivate all of an agenda's workers.

(leash-N-workers N agenda) Deactivate some of an agenda's workers.

32

2.5 Significant Variables

lwps This variable holds all the lwps that the system knows about. This includes

live, blocked, and dead lwps. This variable was previously used by fork,

build-fork, ini t-pformat, etc., but is now completely maintained by the

user. It is mainly useful because kill-all-lwps uses it as input. When you

create a process by yourself (e.g., by using fork), you should push the process

onto *lwps*, so that you can kill it later if you need to.

Example:

(push (spawn (my-process args)) *lwps*)

master-process This variable is used by Start-Master to deter皿newhich pro-

cess to start. It is used for looping process chains. It should store a process,

if you want to take advantage of the looping feature. Set this variable to a
process that sets up your system, and then call Start-Master as the last thing

before the last join dies.

2.6 Flag Variables

recording-statistics This flag is used by the worker/ agenda package. If it is
non-NIL, the agenda package gathers statistics on how long each worker takes

to accomplish its job. These can be used by the BEHOLDER package to

determine expected process durations.

2.7 System (Non-user) Variables

pformat-MB This system variable stores a mailbox that is used to implement

pformat. It should not be examined or modified by the user.

pformat-process This system variable stores the lwp process that is used to im-

plement pformat. It should not be examined or modified by the user.

rand-lock This system variable stores a lock that is used to implement rand. It

should not be examined or modified by the user.

33

3

KNOWN FEATURES OF THE

AND ALLEGRO PARALLEL

LISP

SEqUENT

COMMQ~

3.1 "Make-Lwp" Evaluates its Routine Arguments at

Start-Time

One of the major problems of the Sequent is that the primary function make-lw:p

does not evaluate its arguments until the lwp actually runs. The lrxical string

containing the lwp process definition is apparently quoted and pusheq on a stack;

later on, when start-lwps is called, the definition is recovered and rvaluated to

determine what constants and variable values the process should use. This means

that, if you are lucky, local variables used in the function definition mi~ht be bound
to something new but vaguely reasonable; if you are unlucky, they might point to

something completely random in the middle of the stack. For example:

[1] <Initial lwp> (dotimes (i 3)
(make-lwp (format T "Process variable -A.-%11 i) :run T)), NIL

[1] <Initial lwp> (start-lwps)

Using 1 processor

Process variable 3.

Process variable 3.

Process variable 3.

In this case, the variable i is still bound to 3 at the time that the processors

start. All three processors use that value, instead of 0, 1, and 2.

The predicted and desired behavior, of course, is to have the argum~nts evaluate
at the time that the process is defined and allocated, not at the time that it is started.

This capability is implemented by the spawn-lwp and build-lwp commands, dis-

cussed in Section 2.4.8.

The problem is made more interesting by the fact that the :run and the :name

arguments inconsistently evaluate at allocation-time, not start-time.

3.2 Characters Interleaved on Multiple Output Processes

Using the CLiP system, when multiple processes print information out to the user's

terminal by using format, not only the words but also the characters are interleaved

in the output stream. If multiple processes are printing out at the same time, as
is normally the case, it is almost impossible to read the output. This problem has

been fixed by the pformat command.

3.3 Characters Lost on Multiple Output Processes

When multiple processes print characters to the terminal, not• only does the order
of the characters get jumbled, but sometimes output gets lost. Whole characters,

words, or lines of output can get lost in the output stream and never show up.

34

Just think of the differences between reading a printed timing result of 1234.56
seconds, 14.56 seconds,_or 123456 seconds, and it is easy to understand why this is
unacceptable. This is another important reason for using pformat.

3.4 "Sleep" Truncates to an Integer

Because Franz-Lisp is implemented on top of Unix, the (sleep ns_ecs) program

quietly converts nsecs from a (possible) :floating-point number into an integ~r, in
order to call the Unix sleep function. It does this by truncating down to the
next lowest integer. Thus, a call to (sleep 0.99), instead of sleeping for abput 1
second, does not sleep at all-it sleeps for O seconds. This renders the sleep function

basically useless for subsecond timing, required for simulating mock processes and
testing race conditions. Users requiring this functionality should use the new (wait

nsecs) function defined in this man叫.Unfortunately, the wait function can only
be accurate within a hundreth of a second or two, whereas basic operations take on
the order of a microsecond to perform.

3.5 Compiling a Function Once Does Not J?einsta~l a
Macro with the Same Name

Sometimes known as the "Undead Macro" or the "Macro From Hell'1 problem, this
feature is particularly nasty. If a macro is changed into a function with the same
name, the system will still use the macro definition instead of the function definition
for the source code, apparently until the time after the file containing the new func-
tion has been compiled and loaded. Thus, the next compilation will reuse the old

macro definition. The symptoms of the problem are consistent with the following

behavior: The function definitions are saved as the file is compiled, and installed
on their symbols after the end of the file is reached. However, ma,cro definitions
are installed on their symbols as they are defined. Any macro that was previpusly

defined remains in effect until it is redefined in the source code by another defqacro,
or until after the file containing a new function definition has been compiled and

loaded. A function does not redefine a macro until after it has been loaded. Thus,
if a function redefines a macro at the beginning of a file, the redefinition will not
take effect until the file has been completely compiled and loaded-and all the calls

to the function will have been compiled as calls to the old macro. The way to fix
this feature seems to be to both compile and load the program, twice. Note that

the source code must be a different version in order for : cl to consider recompiling
it-modify one character up and back and then save the new result to get a new
version.

As an example, say that you are debugging a difficult macro (e.g. my-format)
that has problems with the level of evaluation of its arguments-it comes up wit.h the

wrong answer. Of course, the macro is defined before the test routines that use it in

the source code. Now say that you decide to turn the macro into a function-building
function, because the level of evaluation should be different. You change the source

appropriately, compile and load the program. You run the compile,d test routine,

but you get the same mistakes. The compiler secretly reuses the old definition of
the macro, even if the function definition is before the test code cc1lling it in the

35

source. However, if you test my-format by hand directly at the interactor level, it
uses the new definition, thus adding to the confusion. If you are lucky, you change
something else in the code, recompile, and the old macro definition has gone away

so you get the new function definition this time. If you're not lucky, you spend half
a day chasing down a bug that's not there.
Note that no warning messages are given when a function redefines a macro in

the environment. Also, even if a function redefines a macro in the same file, no
warning message is presented. Also, if a macro redefines a macro in the same file,

no warning message is presented.

As is typical, normal macros get expanded inside routines at compile time. Thus

it is impossible to redefine a macro call inside compiled code by redefining the
macro from one defmacro even to another defmacro; since the code has already
been expanded and compiled, there is no way to touch it. The routine calling the

macro must be recompiled.

3.6 Machine Wedge on Too Many LWPs

If too many LWPs are allocated by a user, the entire machine wedges. Not only
does that user's terminal freeze up, but no other users can log on, and basically

all commands (including ls, etc.) will not run. The symptom is a message si証
lar to Insufficient memory to run command: ls. It does not matter whether
the processes are running or blocked; this problem will typically occur even before

(start-lwps) is called in the code.

This problem is caused by the entire computer running out of disk space on the
user's partition. The system (actually the Sequent Symmetry Parallel Programming

Library) u_ses virtual memory to represent each LWP. Each LWP consumes a default
of about 75K of memory, for Lisp stack space and a few other details. The virt叫
memory is represented by an actual, temporary swap file on disk that is stored in

the user's current working directory, ".". The name of this file is "shared memory
PIDNUM"; however, it is unlinked, so 1 s will not show it. This file dynamically

expands as the user requests allocation for more LWPs; it gets deleted when the user

qui ts a CLiP session, specifically until the CLiP process responsible for creating it
dies. When the user requests the creation of too many, light-weight processes (say,

more than 100), the system attempts to grow the temporary file past the limits of
the disk space and crashes. However, when it crashes, the temporary file is not

removed. At this point, if any other user attempts to open a single LWP, his system

will crash too. Since most shell commands (even simple shell commands such as ls)

require virtual memory space to run, even the simple shell commands will not work
for other users. The entire machine is blocked.

The solution is to log in as the root (i.e., system) programmer on the system
console, and to kill the user's processes. This should free up enough memory to get
the system back up and running again.

3.7 Incremental Error Compilation

The current version of the CLiP compiler is extremely inconvenient to use, in that

it compiles until the first error is found in the source file, prints a cryptic error

36

message, and then .stops. There is no error recovery. This means that if there are
30 errors in your source code, you will have to fix an error and recompile the code

30 times before the code is bug-free, as opposed to getting a list of 30 errors, fixing

them, and recompiling the code only once.

One solution is to develop and compile the code on the Symbolics machine, using
the sq-compat file discussed in Section 5, and make sure as much as possible that
there are no compilation errors in the code by using the Symbolics'facilities. After

that, download the debugged code to the Sequent.

Another very good solution is to use the ILISP editor package, which does allow

incremental compilation.

3.8 No Checks for Unbound Function Names

The CLiP compiler does not check for unbound function names when it compiles
your code; no error messages are generated. This means that if you have any typo-
graphical errors in your code, or any functions that you were "going to define later"

but forgot to, you get to discover them at run-time (if you are lucky). The program
will bomb because it attempts to call an undefined function. Of course, if the error

is in a rare case and the program does not call that case very often, the program
might run correctly for several times and you might not discover your error until
much later.

This feature is particularly inconvenient. It is scheduled to go away in the next
release of CLiP.

3.9 Structures Do Not Evaluate to Themselves

In most Lisp compilers, an atom that is an instance of a structure is bound to a
value that consists of itself. That is, when a structure is eval叫 ed,the structure
is returned. This means that the expressions'#<instance> and #<instance> can

both be used as legal input to a function; both will evaluate to the instance itself.

However, in the current version of CLiP (6.0.1), an atom that is an instance of

a structure is not bound to any value. That is, when a structure is evaluated, the
program crashes with an unbound variable reference. This means that the expression
#<instance> cannot be used as legal input to a function.

This problem is especially pernicious when implementing general-purpose deeply

nested macros.

This feature may go away in future releases of CLiP.

Note that numbers do in fact evaluate to themselv.es; this problem appears to be

restricted to things implemented・using structures only.

3.10 Compiler Error Messages

The current compiler prints out a running list of the routines that it has ALREADY
compiled, but it uses ; Compiling ROUTINE-A instead of ; Compiled ROUTINE-A.

If there is a syntactic error in the follow切gmacro, structure, or routine (say,
ROUTINE-B), the compiler prints out the fo且owingsequence:

37

; Compiling ROUTINE-A

Error: <some error message>

This normally means that the error is in routine B following routine A, not that the

error is in routine A.

3.11 Flavor Instances Do Not Receive Newly Defined

Methods

If a programmer defines a flavor type (using the old flavor system or the new-flavors
system built on top of it) and then starts creating instances of the flavor, and then

defines some methods THIS IS UNCLEAR.

4 THINGS A

PROGRAMMER SHOULD KNOW ABOUT

THE SEQUENT AND ALLEGRO

4.1・"Real" processors, Timesharing, and User Interfer-

ence

The CLip manual talks about virtual LWPs being allocated, and then assigned to

actual processors. A programmer must allocate actual processors in order to be

allowed to run. A programmer is only allowed by the system to allocate up to

11 processors, the current number of hardware processor boards inside the ATR

Sequent. The manual also states that processors communicate via global memory.

There are two logical consequences of the material presented in the manual.

First, it would seem that if one user logs on and allocates, say, 8 or 11 processors,

then that would exclude those processors'usage from other users. Perhaps a third

or a second user could not log on. Second, it would seem that one user's program

could communicate with another user's program by storing appropriate values in

common global variables.

These consequences are not the case. Any number of users can log in to the

Sequent computer at the same time, and each of them can allocate 11 processors.

Each_ user program runs in a separate space; programs running on two different

terrmnals cannot communicate with each other through shared variables.

The confusion is resolved by examining the details of the implementation more

closely. The CLiP system is implemented on top of a (multi-processor) version of

the UNIX timesharing system. What the CLiP manual calls a "processor" is not

a hardware processor at all, it is actually a UNIX software process image. The

operating system forks a UNIX process for each "processor" that is allocated, and

then uses that process for running an active LWP. The operating system takes

care of the low-level details of the actual hardware processor allocation; this is

transparent to (and apparently uncontrollable by) the user. The limit of 11 allocated

"processors" imposed by the system is arbitrarily put in to insure that no_ one user

bogs down the system

38

4.2 Memory Allocatioif~n~LWPs

Each LWP consumes a default of abput 75K of virtual memory. Most of this (64K)

is a stack for run-time Lisp. The cod~and the data used by the LWPs科reshared and
are charged once to the initial proctss heap-:-the system does not make /1 separate
copy of the executable code for each~WP. Note that this affects self-modifying code.
This means that the overhead for allqcating another LWP is slight-basically, only
space is allocated, and very little str,te initialization is performed. The LWP~akes
a copy of the executable code defining the rirocess (one line), all,ocates /1 separate

stack plus local variables, and then use~a common executable image pf t,he sy~tem
routines to actually run the code. So each r?utine shares code bμt dpes not share

data. Both C and CLiP work in thi~m?,11ner.
It is possible to allocate an LWP with a smaller stack size, using the : ~tack;size
65532 keyed argument to make-lwp. (l'fote that the default is 64K). Ho';lever, any
LWPs with smaller stacks will not get garbage-collected and recycl叫op.termination
in the current CLiP version. If your program works with immor~al processes that
never terminate, this will only be a problem if you try and run yo,ur i:irogram twice
in one CLiP session. This feature is~xp伊ctedto change in the next version of CLiP.

The system has been tested with stack芦assmall as 1024. It is rirob~bly smart to
make the stack size be a multiple of a l~rge power of two.
Note that the system garbage-wllects the memory of dead LWPs. Thus1 the
allocation of every LWP with a non-st~ndard size is guaranteed to require a low-
level system call to the disk to grow the memory space, whereas the allocation of
a standard-size LWP should reuse the space ?fan old dead LWP without requiring

a system call, if any dead standarμLWPs exist. This may cost more time for

allocation. On the other hand, if less memory is required for~he LWP's stack,
theoretically less time should be taken }Il allocating the memory for ,~single LWP.
It is unclear what kind of trade-off exists between these two factors.

The results indicate that the nlfmb~r of LWPs that can be allocated depends
on the size of the LWPs and the amount of space left on disk. S,ee Section 3.? for
further discussion.

Apparently, the system keeps a list of the inactive processes. When a LWP is
activated, it is removed from this li戸t.Note that this operation is O(n) [linear] in

computational time, n being the numbe_r of inactive LWPs. This~eerr+s to limit the
total number of LWPs that can be u~ed rffectively, to around 100-500. These results
have not yet been confirmed.

4.3 Arrays and Lists

CLiP arrays are printed out as lists by tp.e CLiP system. This may lead some people

to think that the CLiP arrays are implemented as lists, and that array indexing is

imp~emented as the horribly inefficient~th 恥nction. This is incorrect. CLiP arrays
are implemented as actual arrays in the normal manner; access consists of adding

the index to the base pointer to compute an indirect pointer, and then following the
indirect pointer twice, as usual. The printout of arrays as lists is an artifact, and
should be ignored. It is speculated that this printing method comes from the fact

that both arrays and lists are sequences, although this does not justify the confusion.

39

4.4 Flavors and Object Oriented Packages

Three object-oriented programming packages are available on the Sequent. The first

is known as Flavors (standard Flavors, or Old Flavors), and was written by Franz.

The second is called New-Flavors, and was written by John Myers. The third is
called PCL; the author is unknown. A fourth package, called CLOS, is currently
not yet available on the Sequent.

4.4.1 Overview and Discussion

Flavors Flavors is a mature product that has been well-implemented. It supports

the old style of syntax used in the Symbolics Version 6 operating system, which
was popular around 1984. Franz reimplemented the Flavors system, they are not
using Symbolics code. The old Flavors syntax uses send messages to set and access

variables, and is slightly clumsy. Although old Flavors code will compile and run

on a Symbolics, the compiler complains about the syntax used by each defmethod,
which is inconvenient.

New-Flavors "New-Flavors" is the name of a small but clean hack designed to sit

on top of the Sequent Flavors system and provide compatability with the Symbolics
New Flavors syntax, popular around 1988. New Flavors-style calls are translated
into old Flavors calls by using macros. Thus, both New-Flavors calls and old Flavors

calls can coexist in the same piece of code. New-Flavors code should compile directly
on a Symbolics machine. Conversely, using the New-Flavors package, New Flavors
code from the Symbolics can be run on the Sequent. However, the system has not
yet been tested extensively.

PCL PCL stands for Portable Common LOOPS (the Lisp Object-Oriented Pro-

gramrning System). It is a dirty system that leaves many needed functions uni皿
plemented in the version we have. It is an early (1988) precursor to CLOS and uses

the CLOS syntax (on those functions that work). Although PCL has been ported
to a number of machines, it really should be considered to be an alpha version of
CLOS and should be ignored in favor of CLOS.

CLOS CLOS stands for the Common Lisp Object System. It is a new language

(1989) that is an attempt by many vendors to create an object-oriented system that

sets a standard and can be used on any machine running Common Lisp. Franz has
not yet come out with a version of CLOS for CLiP. CLOS is slightly more powerful

than New Flavors, but apparently requires much more defining to be done by hand.
"classes" are used instead of "flavors". CLOS code compiles and runs on Genera 8

Symbolics.

4.4.2 Pro bl ems with PCL

In the PCL flavors (classes) package, the printname of object instances is represented
as #<Standard-Instance ###>. The object prints correctly as #<My-Class ###>
in Flavors and New-Flavors.

40

(type-of my-instance) always returns PCL: : IWMC-CLASS, no matter what the

class, for PCL. (type-of my-instance) correctly returns the lowest flavor for Flavors

and New-Flavors.

In PCL, (typep my-instance my-class) returns a list of the class types in the

hierarchy from my-class up to T. If the instance is not part of the class, it returns
NIL. This is more useful than the simple T /NIL returned by the Flavors and New-

Flavors packages.

subtypep always returns NIL -NIL for Flavors, New-Flavors and PCL.

The (defgeneric) and (slot-boundp) functions defined in CLOS are not

supported in PCL.

In PCL, (describe my-instance) does not report the slot names nor values,

and is basically useless. It works correctly in Flavors and New-Flavors.
Sometimes it is desired that a new description be created for a class of ob-

jects. In the PCL system, it is impossible to modify the function (describe)

with a defmethod, as is described in the CLOS manual. Flavors already com-
pletely supports both forms of syntax: (describe my-instance) and (send

my-instance : describe) both print a description; it is also possible to create a

custom (defmethod describe) for a flavor. New-Flavors also completely supports

describe by using the old Flavors routines, and by making describe be a special

case that does not use the New-Flavors compilation procedure (otherwise describe

would get rebound, which is not desired).

PCL does not support (print-object my-instance) nor (print-self my-instance).

Obviously (send my-instance :print-self) is also unsupported (the syntax

is incorrect). Both Symbolics (Genera 7,8) and the Sequent Flavors support
(send my-instance :print-self stream list-depth slashification). List-

depth should be around 3-8. Slashification should be T or NIL. Strangely,

none of these arguments are optional; the system will break if one is left out.

The function (print-self my-instance &optional (stream T) (list-depth

4) (slashification T)), using optional arguments, is not supported by Se-

quent Flavors but is supported by New-Flavors. The Symbolics also supports the

print-self function (besides the message), but the arguments are required, not

optional.

The : print-self method is used to output the standard print-representation

of the object and can be modified on the Symbolics, under Flavors, or New-Flavors

by writing a new method that accepts the same arguments. PCL apparently does

not support this capability.

5 THE SYMBOLICS

SEQUENT-COMPATABILITY FILE

There is a need to develop Allegro CLiP code on the Symbolics (as discussed in

Section 3.7). However, if a CLiP file is compiled on a normal Symbolics, there will

be many error messages, as the CLiP parallel system primitives are not defined on

the Symbolics. These many unnecessary error messages will mask the few actual

error messages that the undebugged program will generate.

41

The solution is to load a Symbolics Sequent-Compatability file into your Symbol~
ics, that defines each of the CLiP parallel system primitives. Then, the Symbolic月

compiler will not complain about unbound functions, and only the actual srntacti<;

mistakes in your program will be flagged by the compiler.
This file is currently found in

LM01:>myers>sq-compat.lisp

There exist both . bin and . ibin versions. The appropriate version should be loaded
into your Symbolics when you first boot the Symbolics.

At present, each of the CLiP system functions has a trivial or null definition.
The file is designed for syntactic compilation checking only, and not for rμn-time,
simulation. Indeed, it would be difficult to build a Sequent (parallel) simulator to

run on the Symbolics (time-sharing) machine. Thus, the Compatability filt'. should
only be used for checking the compilation of a Sequent file, and not its rμn-time,
characteristics.

42

6 THE BEHOLDER AGENDA MECHANISM

AND THEORY

The BEHOLDER agenda mechanism provides a simple but powerful approach towards

allowing a single subsystem (e.g. the Parsing subsystem, the Transfer subsystem, or

the Generation Subsystem) to be implemented in a parallel fashion. The concept

of an agenda plus worker processes is quite simple. An agenda is a FIFO stack

of medium-small processing jobs, called task descriptions. A set of "workers" is

assigned to an agenda. Each worker uses a different processor. When a worker is

free, it pops the next task description off of the top of the agenda, and executes that

task. After a worker is :finished, it goes back to the agenda and gets another task.

Since there are many workers pulling tasks off the agenda and running tasks at the

same time, the subsystem's processing is executed in parallel. The whole process

continues until the agenda is empty.

When an agenda is created, it can have a number of workers assigned to it.

However, it is not necessary that all of the workers be used at any one particular

time. Some of the workers can be active, while the rest are inactive. An active

worker watches the agenda and attempts to get tasks to execute. An active worker

requires a processor, and thus consumes processing resources. An inactive worker

does not take any action; it is implemented with a blocked "lwp" and thus does not

use any processing resources. However, just because a worker is active, it does not

mean that the worker is executing a task. The worker could be contesting to grab

the agenda, or the agenda could be empty.3 But, in general, the number of active

workers determines the number of tasks that the subsystem executes in parallel. The

amount of processing resources allocated to a subsystem can be controlled by varying
the number of agenda workers that are active. The number of workers controls how

much efjorl is spent on processing a program1 and indirectly how fast that program

gets processed. In an ideal world, the number of active workers would be directly
proportional to the speed of processing-e.g., with four workers, the program would

execute four times as quickly. However, in actuality, a large number of workers

usually tend to get in each other's way when locking data and contesting for the

agenda, and program speedup tends to level off sharply after a certain number

of workers is activated. The optimal number of active workers depends on the

application and must be tuned by benchmarking the program with many different

active-worker counts.

The amount of computational resources allocated to a subsystem becomes im-

portant to control when many subsystems are integrated together into a complete

system. Controlling the levels of computation among multiple subsystems working

together is the main job of the BEHOLDER scheduler, which will be discussed in a

later report.

3In the current implementation, a worker goes to sleep and lets go of its processor when the
agenda is empty. The worker is still active, but it is not consuming any processor resources. This
could change in the future.

43

6.1 Agenda Queuing Theory

We first define a simple agenda as consisting of a FIFO queue with a lock on it. This

is the same as a mailbox. We assume that the lock is only on the receive-message

(allocate-task) side, and ignore the sending side at first. The lock is necessary so

that two workers do not grab the same task-message. We first assume that the

queue has previously been filled up with a large number of tasks.

It takes a finite amount of message time M for a worker-process to grab the lock,
pop the top message off the FIFO queue, and release the lock. For a mailbox, this
time is roughly 100 microseconds4.

It is important to note that the physical size of the message has nothing to do

with how fast the message can be read from the agenda. Lisp does not copy data,

but rather passes a pointer to the data. A pointer to a long list of data is just the

same as a pointer to a brief list of data. Once the task message has been received,

it may take longer to interpret the data, but this time is classed under the next

parameter J.

It takes a non-zero amount of job time J for a worker-process to execute the
given job task. The length of the job-task duration may vary, but assume that

it is constant. The duration of the task will of course depend on the complexity

of the task. A simple one-instruction task, such as a single setq, takes about 6

microseconds to execute. A complex program may take many hours to execute.

Most worker processes will be somewhere in between.

Assume that there are N parallel workers assigned to the agenda. Each worker
grabs the lock when it is free, pops the top message, releases the lock, (taking M
microseconds), executes the indicated job (taking J microseconds), and waits for
the lock to be free. Assume that, once the lock has been freed, it is instantaneously

available for someone else to grab it (this is not a bad assumption, because if this

time is finite, it can simply be added on to the release time).

Given these assumptions, the theoretical maximum speed of the system is

1,000,000 .

M
Jobs/second (1)

or about 10,000 jobs/second using normal mailboxes. Note that this equation is

independent of both N and J. Thus, the maximum efficiency of the system can-
not be increased by adding more processors, since the single agenda is acting as a

bottleneck. Each processor has to wait for the agenda, so the maximum speed is

not affected by the number of processors. Note that this is the total number of jobs

processed by the entire parallel worker/ agenda system, i.e. the total effort.

This limit assumes that there are no gaps between processor requests, i.e. the

agenda is not kept waiting for a processor to finish. Under what conditions does this

happen? The agenda is not kept waiting if a processor's job's duration takes less

than or equal to the amount of time required to grab a message times the number

4This is only the time that the mailbox spends locked. The actual duration time that a single
call to read a mailbox takes is closer to 130 microseconds, because of the need to clean up, etc.
Only the time that the mailbox spends being locked is significant, and the other 30 microseconds
should be added onto J. This second-order effect changes the rough calculations presented here
slightly, by degrading the theoretical efficiency due to J having a constant added to it.

44

of other processors in the system. I.e., the speed limit is in effect if

J < M*(N-l) (2)

If N is eq叫 to11 processors, then the speed li叫 isin effect if the time to execute

the job J is less than about 1,000 microseconds (roughly 50 lines of code), using
a normal mailbox. If N is equal to 1 (using a parallel setup), the speed limit is

always in effect, and even if J is O the system is still li皿tedby the speed of the
mailbox. With N=15, our current maximum configuration, the speed limit takes
effect at 1,400 microseconds (roughly 70 lines of code).

Let's turn this equation around. Given a particular job duration J, what is the
maximum number of processors that can be used efficiently? The speed limit is in

effect when

N>
J

M
+1 (3)

so if an = is used, the maximum effective number can be determined. If the task

duration J is less than about 100 microseconds, then two processors is already
too many. If the task duration takes up to about 500 microseconds, then up to 5
processors are effective, but more are wasted. So the amount of processors required
to be maximally efficient depends on the duration of the task.

What happens if the processors are operating under the speed limit? In this
case, there is a neglible delay when the program first starts up, and the (N -1)
processors have to wait for their first assignment. However, after that the processors

are out of phase (assuming an exact, constant job-time duration J, and that the
workers do nothing but run jobs) and never have to wait for each other again. In

this case, the steady-state speed of the system is

1,000,000 * N

(M +J)
jobs/second (4)

which is linear in N. So as long as the system has not hit the speed limit, increasing
N increases the speed of the system.
This theoretical analysis predicts that the speed curve of the system, measured

in jobs per second versus number of worker processes, will consist of two lines with
a sharp corner in the middle. The first line will start around the origin and have
a slope of基．

(M+J)
The second line will be flat and will occur at韮舟幽 jobsper

second. The corner will occur at N =紅+1 processors.
This prediction agrees closely with the shape of curves measured. Of course,
since this is a theoretically optimal prediction that assumes J is constant, it is

only accurate to a first-order approximation; real times will be more ine缶cient.In

particular, if J varies from task to task, the workers will tend to wait more for each
other. Nevertheless, this helps to understand what is going on, and to predict what

will happen with changes.

How long does a serial system take to run if there is no parallelization involved?

Since a job takes J microseconds to run, the speed of the serial system is by definition

1,000,000 .

J
Jobs/second (5)

45

Using this expression, we can derive the efficiency of the system, in terms of the
ratio of the speed of the parallel system versus the speed of the serial system.

At the speed limit, the theoretical maximum efficiency of the system is

speed of parallel system 1,000,000

＝ M
J

speed of serial system 1,000,000
＝

J
M

(6)

Since M is a constant, this is eq叫 toabout声 inour system. That is, the top
efficiency of the system depends upon how long a job-task takes. If the job takes
500 microseconds to execute (roughly 25 lines of code), then the parallel system can
only run 5 times as fast as a serial system at maximum efficiency. If the job only
takes 50 microseconds to execute (roughly 3 lines of code), then the parallel system
can only run 50% as fast as a serial system at top speed. Longer jobs give better
results when parallelized.

Under the speed limit, the theoretical efficiency of the system is

1,000,oooN
speed of parallel system = (M+J) = J N
speed of serial system 雲旱g

J
(M +J)

(7)

which is linear in N, and depends upon how much larger J is than M. Again,
different duration times will give different e缶ciencies.

These results predict that if efficiency is plotted against number of processors,
instead of speed in jobs per second, then the graph will again consist of two lines, but

this time the speed limit will occur at different heights (-ty): depending upon how
long a job takes to perform. The corner of the curve will again occur at N =店+l
processors, which is the number of processors that gives the maximum efficiency.
All of the preceding analysis has assumed that the agenda has already been
filled by a previous process by the time the workers start working. A more realistic

scenario has other processes competing with the workers in order to submit tasks to
the agenda. Analysis of such a scenario is beyond the scope of this paper.

6.1.1 Conclus10ns

The results of this analysis show that the best measurement for an agenda or mailbox
is its speed in number of jobs per second, and not the efficiency of the overall
system. The speed depends on the amount of time that the agenda actually spends

locked-when getting one message, and not on the amount of time required for one

processor to get one message. This can be measured by seeing how long it takes many

processors to empty an angenda if each processor does nothing but pull messages off.

It is expected that this time should be constant with the number of processors, once
N is larger than one or two. Measuring the efficiency of an agenda by using a small

job for testing does little to predict the efficiency of the agenda when a different-sized
job is used, since efficiency is a function of job duration. The theoretical efficiency

of an agenda system can be computed by determining the required duration for

locking, popping, and unlocking the agenda, M, and by measuring the amount of
time required to perform a job (including processing the message), J. 111 is about 100
microseconds for normal mailboxes; J needs an additional 30 microseconds added
for cleanup time inside recei ve-mb. The actual efficiency will probably be slightly

46

less. This analy9is has ignored the complicattons i応".olvediYf submitting tasks to t'tie
agenda; this will slow things up even further.

47

7 PRELIMINARY TIMING RESULTS

Timing is出伍cultto evaluate, because it depends on the load on the time-sharing
machin・e, whether the code has been swapped in or out of core, etc. Nevertheless,

some gμidelines are offered here.

7.1 Basic Parallel Instructions

A basic instruction, such as setq, +, or if, takes around a microsecond to run.
It takes almost exactly 0.000001925 seconds (2 microseconds) for a processor to go
through an empty dot imes loop once. This is the basis of the burncycles command.

The duration of an lwp that is computing using its own numbers is quite stable,
and does not vary with the number of other processors that are running, as long as
there is no interaction between the processor and the other processors (i.e., parallel

constructs such as locks are not used).
A spin-lock takes 0.000015 (fifteen microseconds) to grab and release, using
with-spin-lock.

The pformat command basically consists of grabbing a lock, pushing a message
onto a mailbox, and releasing the lock, along with some evaluations and list ma—

nipulations. It takes about 0.0007 seconds (700 microseconds) to execute, if other

processors are not printing things out at the same time. Under worst-case condi-
tions, i.e. 15 processors doing nothing but printing things out, it degrades by a
factor of 13 or so and takes about 0.009 seconds to execute per message. This is

predictable, as one message has to wait for 15 -1 = 14 other messages to get ac-
cepted before it can be serviced. Note that the pformat process itself seems to wait

until there is a free processor left from an application-it does not seem to start out

running, so it does not block any application lwps from running.

7.2 Starting lwps from a standstill at the CLiP monitor

One of the most important commands is the start-lwps command which runs

all of the light-weight processes that have been created. This command has been
measured to take between 0.45 seconds and 1.12 seconds・from the time that the
command start-lwps is called, until the time that the first process starts up, with

a normal time of around 0.53 seconds. This time does not seem to vary with the

number of processes waiting to be started.

Processes are started in linear order, they are not turned loose all at once.
The next existing process with a single pformat statement in it takes between

0.0013 seconds and 0.008 seconds to start from the main branch of a program using
start-lwps, average around 0.002 seconds, once start-lwps has started running.

The start-lwps program will continue to start lwps at 0.002-second intervals until

all of the existing lwps have been started, or until all of the processors have been
used up. In the latter case, waiting processes are started when the previous process

dies. It takes between 0.03 seconds and 0.08 seconds, average about 0.045 seconds,
for a a finished process to die off and a new one to get started.

48

A A DICTIONARY OF COMMANDS AND

VARIABLES

(++ number-loc) This function is a different name for incf. It pulls a number
out of a general variable-location, increments the number by 1, puts the results

back into the same place, and returns the incremented results. The number
can be floating-point. Similar to set£, the number's location can be any general
location (such as an array reference), not just a variable name. -

If you are using this function with multiple processes, you probably want the
locked version (++ 1) described in Section 2.4.1.

(++l counter-location counter-lock) Grabs the lock and increments the given

counter by 1. Returns the new value.

（＋ = number-loc mcrement This funct10n 1s a different name for incf. It pulls ）
a number out of a general variable-location, increments the number by the
given increment, puts the results back into the same place, and returns the

incremented results. The number and/ or the increment can be floating-point.
Similar to set£, the number's location can be any general location (such as an
array reference), not just a variable name.

If you are using this function with multiple processes, you probably want the
locked version (+=l) described in Section 2.4.1.

(+=l counter-location incr counter-lock) Grabs the lock and increments the
given counter by the given incr. Returns the new value.

(--number-loc) This function is a different name for decf. It pulls a number
out of a general variable-location, decrements the number by 1, puts the results

back into the same place, and returns the decremented results. The number
can be floating-point. Similar to setf, the number's location can be any general
location (such as an array reference), not just a variable name.

（

If you are using this function with multiple processes, you probably want the
locked version (--1) described in Section 2.4.1.

--1 counter-locat10n counter-lock) Grabs the lock and decrements the given

counter by 1. Returns the new value.

(-= number-loc decrement) This function is a different name for decf. It pulls
a number out of a general variable-location, decrements the number by the

given decrement, puts the results back into the same place, and returns the

decremented results. The number and/ or the decrement can be floating-point.
Similar to set£, the number's location can be any general locadon (such as an

array reference), not just a variable name.

If you are using this function with multiple processes, you probably want the
locked version (-=l) described in Section 2.4.1.

(-=l counter-location decr counter-lock) Grabs the lock and decrements the

given counter by the given decr. Returns the new value.

49

(*= number-loc multiplicand) The multiply-in-place macro. This macro pulls
a number out of a general variable-location, multiplies the number by the given

multiplicand, puts the results back into the same place, and returns the new

results. The number and/or the multiplicand can be floating-point. Similar
to set£, the number's location can be any general location (such as an array
reference), not just a variable name.

Currently there is no locked version of this macro.

(/= numberl .. numberN) Surprise! (/=) is the system-defined not-equal func-
tion. There is no in-place div-equals function as of yet. Use (*= X (/ 1 Y))

for now, and let me know if you'd like a better one.

: A The :A option to deffl.av sets all variables to set, get, and init.
It is equivalent to typing the flags : settable-instance-variables

: gettable-instance-variables : ini table-instance-variables.

(agenda-empty-p agenda) Tests to see whether an agenda is empty or not.

(alarml &optional (stream T)) Prints five beeps on the given stream.

: all Same as :A. The :all option to de:ffiav sets all variables to set, get, and

init. It is equivalent to typing the flags : settable-1nstance-var1ables

: gettable-instance-variables : ini table-instance-variables.

(allocate-MYRESOURCE) This function is the allocation function for re-

sources. It should be used instead of the standard structure-instance allocation
function make-myresource to allocate an instance of a resource that has been

defined using defstruct-resource. It returns the newly allocated structure.

The new structure will most probably contain evil garbage in its slots, and
should be initialized by the user. This function is automagically defined when
a defstruct-resource is executed.

(apush key item alist) Assoc-list push. Pushes a new assoc entry (key . item)

onto the given assoc-list.

: B The :B option to defflav sets all variables to set, get, and init, the same as option
: A. In addition, it sets the conc-name to NIL, so that e.g. instead of saying
(shi p-x my-ship) to reference slot variable x, the user says (x my-ship).

(beep &optional (stream T)) Prints a Cntrl-G on the given stream. This

rings the bell on most terminals, including the Symbolics. Example: (beep)

(block-lwp LWP) The same as suspend. Note that (block) is a system command

that means something completely different.

(block-me) A very useful command. Suspends the lwp that executes this state-
ment. When the lwp is unblocked by someone else, execution picks up on the

next line.

50

(bottom-of-heap heap) A Heap Package command. Returns two values: the

bottom item of the heap, and also its priority key. Returns NIL NIL if the

heap is empty. The bottom is the item with the highest number as its key.

The bottom item is not removed from the bottom of the heap.

(bottom-of-heap-key heap) A Heap Package command. Returns the highest
number in the heap. Returns NIL if the heap is empty.

(boundpq varname) This is the literal version of boundp. It tests to see whether

its argument is bound (has a value) or not. It does not evaluate its argument.
It does not break if its argument is unbound.

(setq foo 2)

(boundpq foo)

(boundp weird)

(boundpq weird)

==> 2
==> T
==> ERROR: Attempt ...
==> NIL

(boundqp varname) Same as boundpq.

(build-fork-lwp fork-var (my-routine args…) &optional
(name "A Forked Process")) Builds a blocked process to execute the
given routine. The name of the routine is a literal that is not evaluated. In-

crements the active process count in the given fork. Returns the created lwp.

Example:

(setq parse-fork (make-fork))

(setq parse-lwps ())

(setq i 1)

(push

(build-fork-lwp parse-fork (parser *sentence1-A*)

(string-append "Parser-" (my-string i)))

parse-lwps)
(++ i)

(push

(build-fork-lwp parse-fork (parser *sentence1-B*)

(string-append "Parser-" (my-string i)))

parse-lwps)

(start-processes parse-lwps)

(build-fork-lwp-ev fork-var (my-routine-expr args…) &optional (name
"A Forked Process")) Builds a blocked lwp that is part of a parallel fork.
The name of the routine is contained in an expression that is evaluated. Grabs

and increments the active process count in the given fork, pushes the lwp on

the fork list. Returns the created lwp. Example:

51

(setq parse-fork (mak~-fork))
(setq which-func)par弓er)

(setq i 1)

(push

(build-fork-1 wp-ev :p,arse-f ork (which-fun~*sentence 1-A*)
(string-append "Parser-" (my-string i)))

parse-lwps)
(++ i)

(push

. (build-fork-lwp-ev :p,arse-fork (wl:-ich-fun~*sentence1-B*)
(string-append "Parser-" (my-string i)))

parse-lwps)

(start-processes parsE:r-lwps)

(build-lwp (my-routine args ...) &optional (name "Ap LWP"))
Allocates and creates an lwp that starts out blocked. The lwp yvill run the

given routine. Evaluates and then quotes its arguments. Does not evaluate

the routine specification; thi戸shouldbe a literal. Returns the res~lting lwp.

(build-lwp (parse *inpu~-sentence*))

(build-lwp-ev (my-routine-expr args ...) &optional (11ame "An LWP"))
Allocates and creates an lwp that starts out blocked. The lwp yvill run the

given routine. Evaluates and then quotes its arguments,. Evaluates the routine

specification as well. Returns the resulting lwp.

（

(setq *which-routine*'parse)

(build-lwp-ev (*which-r~utine* *input-sentenc~*))

burn-cycles iterat10n-count) This does not面ngbut count up tp iteration-

count. Since each iteration t咄esalmost exactly 1.925 microsecond:;; to execute,
this command can be used f?r microsecond timing.

: C The :C option to defflav sets all variables to set, get, and init, and c1,lso sets the
conc-name to NIL, the same as option :B. In addition, it sets the constructor
function name to make-name. So, for instance, to create an instance of a ship,

the user types (make-ship). This option is recommended.

(chararray-to-string chararray &optional(start O)(enp.+1 (length chararray)))

This function converts an array of characters into an equivalent string. The

array must contain characters, not strings. The first optional argument indi-

cates the array index containing the starting letter of the string (inclusive).

The second optional argument indicates the array index of the ending letter

of the string, plus one (exclusive).

52

my-array
(chararray-to-string my含 rray)

(chararray-to-strin~my念ェray 1)
（ chararray-to-string my頑arrayO 2)

=;=> #(#¥a #¥b #¥c)
=,=> "abc''
=,=> 11bc11
==> 11ab11

(check-pformat) This functi?μreturns t,he state of the pformat proces月.~t should
be :RUNNABLE. If it is :T~RMIN,ATED, the process must be re,-initialized
with ini t-pformat.

(clear-heap heap) A Heai:1 Package command. Clears a given heap out; makes it

empty. Currently this is implein~nt~d by setting the variable tq a neyv heap.

(close-file) Closes an existing OS祖e.Brints an error message to the terminal if
it is called twice, or if the file is alr~ady closed. Resets both OS and ES to T.
Returns the string or de;icriptor th3;t was stored in *using-fi+e*. Does not

take any arguments. Ex印mple:

(close-file)

"/usr1/myers/recordiヰ~.teヰ＂

(:cone-name newname) Thi~option to deffl.av sets the flavor conc-:-naμie to NIL,
so that e.g. instead of saying ,(ship-x my-ship) to reference slot v<.1,riable x,

the user says (newnamE)-x m ・ y-ship).

: concnil This option to deffl.av (,ets the flavor conc-n印meto NIL, so th!3-,t e.g. instead
of saying (ship-x my-:-s~ip) to reference slot variable x, the user says (x
my-ship).

: D The :D option to deffiav se.ts all variables to set, get, and init, and als~sets the
cone-name to NIL, the same as optipn :B. In aμdition, it sets the constructor
function name to name. So, for instance, to create an instance of a ship, the
user types (ship).

(deallocate-MYRESOURCE my-instance) This function is the d,ea.llocation

function for resources. It throws an instance back into the resource pool.
The next time the same kind of resource is allocated, instead of using new

data space, the allocation function will return this old instance. Since the

instance will contain garbage, it is up to the programmer to clear it out and

initialize it properly. It is a mistake to continue using an instance that has
been deallocated; the user program should deallocate an instance only after it

is sure that the program is :finished with that instance.

(deffiav flavor-name (slot-vars) (parents) :options :option-codes)

Defines a flavor named flavor-name that inherits from parents, uses the

given slot variables, and is built using the given (optional) options and/ or

option codes. Example:

(defflav ship (x

(defflav rocket (x

(y O)) (vehicle thing) : C)

y z) (vehicle thing) :D)

53

This defines a孔avorship. It has slots x and y. The y slot has a default
initialization of 0; the x slot has no default initialization. The ship inherits

slots from parent丑avorsvehicle and thing. Note multiple parents are no

problem. Often the parent list will simply be nil: (). The ship is defined using

option code :C, which, as explained below in section 2.2.1, makes y and x read-

able, writable, and irritable, and creates the creation function (make-ship) for

creating instances of the flavor.

It is recommended that the option且ag:C be used in most cases.

(defmeth (method-name flavor-name) (argl ... argN) &body) Defines

a method that is used by the given且avor.It is permissable to have differ-

ent flavors use the same method name; the system automatically determines

which method is correct based on what廿avorof object is used in the call.

The different廿avormethods can even have a different number of arguments.

As usual, the slot variables of the且avorinstance are local variables inside the

method and can be referenced and setq'd directly; there is no need to use the

access functions inside the method. Also as usual, the special local variable

self is bound to the且avorinstance. The body can be a sequence, it does not

have to be a list.

Examples:

(defmeth (move ship) (new-x new-y)

"This method moves the ship to a new (x,y) coordinate."

(setq x new-x)

(setq y new-y)

）

(defmeth (move rocket) (new-x new-y new-z)

"This method moves the rocket to a new (x,y,z) coordinate."

(setq x new-x)

(setq y new-y)

(setq z new-z)

）

This shows that different flavors can have methods with the same name.

(defstruct-resource (myresource :named) slotl ... slotn) This function is

the defstruct function for resource structures. The syntax is exactly the same

as defstruct. This function defines a resource. After this function is called,

the user can call the allocate-myresource program to get instances. Default ini-

tializations should not be specified on the slots, since the user should explictly

fill in each slot whenever an instance is allocated.

(delete-from-heap heap key item) A Heap Package command. Deletes a given

keyed item from the heap. Returns two values: the deleted item, and also its

key. Both the key and the item must match the corresponding entry in the

heap with equal.

54

(describe flavor-instance) This is the system command for printing out the slots
and slot values of a flavor instance.

(div2 x) Integer divide-by-2. Returns the integer representation of the number x
represented as a signed binary number, and then shifted right one place, filling
the sign bit. Takes floating-point numbers as input, but basically forgets th~
decimal. This function does the right thing when working with binary negativ,e

numbers. Note that this might not be what you'd expect if you didn't thinf

about it:

(div2 4) ==> 2 [0100 ==> 0010]
(div2 3) ==> 1 [0011 ==> 0001]
(div2 -4) ==> -2 [1100 ==> 1110]
(div2 -3) ==> -2 [1101 ==> 1110]

(dump-pformat) This function performs a dump of the pformat-MB. Any and a且
old format messages that are currently in the mailbox are printed out, and
then discarded. The function returns the number of old format messages that
were dumped out. This routine is useful for seeing dead messages if pformat is
broken, or if the lwps are not running at the moment. It should only be used

in unusual cases. See reset-pformat.

(end-of-fork old-fork-var) This is a low-level routine that co,uld be used by users

attempting to build custom join routines, or to seal off forks that have no
joins. It is the same as "join". It decrements the active processes count and
returns the new value.

ES This variable can be used as the Error Stream. You can use it for all minor
error-message output in your program. It is bound to T as a default. Perform
a (setq ES OS) after opening a file if you want error messages to go to the

recording output file. Note that major error messages should use the stream
T to the terminal; otherwise, the user will not be notified when something bad

has happened. ES is reset to T by routine close-file.

(exact-string-test function-call expected-results-string) This macro is used
for automatically testing functions that are supposed to return well-known

answers. For instance, if a routine is known to work properly, but then the

code gets changed, it is useful to run a suite of test programs on the routine
in order to check out that it still works correctly. Exact-string test accepts a
function call, executes the function, and gathers all of the output to・stream

OS into an internal string variable. It then does a string-equal comparison

against the expected-results string, which should exactly correspond. If the
strings are equal, the routine prints a small verification message, and returns T.

If the strings are not equal, the routine prints a large compl珀ningmessage, and
prints out the output that was actually obtained; it then returns NIL. Watch

out for spaces and carriage returns in the expected string. It is important that
the tested routine send its output to OS; the results that are returned by the
tested routine are not examined. Examples:

55

(defun my-func (x) (format OS "Results: -A" (*xx)))

(exact-string-test (my-func 3) "Results: 911)

Exact-string-test: (MY-FUNC 3) passes the test. ==> T
(exact-string-test (my-func 3) 11BadMatch11)

EXACT-STRING-TEST: (MY-FUNC 3) FAILS THE TEST.

Actual output:

Results: 9 ==> NIL

(filep stream) The same as (file-p stream).

(file-p stream) This function is supposed to test whether a given stream is an

output file or not. Currently it tests to see whether a file is not the terminal

IO stream or if it is, which gives similar but not precise answers. If you want
to use this, please talk to me.

(find-heap-item heap key item) A Heap Package command. Searches for the

given item and key inside the given heap. Both the item and the key must

match, using equal. Returns a heap object representing the subheap that

the item was found in. Returns NIL if the item was not found. The subheap

object is replaceable in the main heap using setf, for heap twiddling. The

searched-for item is not guaranteed to be at the top of the returned subheap

object.

(flavorname &optional :slotvarl initl…: slotvarM initM) Instance

creation routine used in the New Flavors package if the option-code :D is

used in defflav. Creates an instance of the given flavorname. Example:

(setq my-ship (ship :x 5))

Any slot variables that are not specified receive their default initialization

values. Any slot variables that are not specified and do not have initialization

values are set to NIL, they are not left unbound.

(flavorname-slotvarname flavor-instance) This is the default method of refer-

encing a slot's value, as provided by the New Flavors package. This syntax

is used if one of the :B, :C, :D, :nilconc, or :concnil option codes were NOT
used. Example:

(ship-x my-ship) ==> 10

(fork-lwp fork-var (my-routine args ...) &optional (name "A Forked Process"))
Spawns a running process to execute the given routine. The name of the rou-

tine is a literal that is not evaluated. Increments the active process count in

the given fork. Returns the created lwp. Example:

(setq parse-fork (make-fork))

(setq i 1)

56

(fork-lwp parse-fork (parser *sentence1-A*)

(string-append "Parser-" (my-string i)))

(++ i)

(fork-lwp parse-fork (parser *sentence1-B*)
(string-append "Parser-" (my-string i)))

(fork-lwp-ev fork-var (my-routine-expr args…) &optional (name "A
Forked Process")) Spawns a running process to execute the given rou-

tine. The name of the routine is contained in an expression that is evaluated.

Increments the active process count in the given fork. Returns the created

lwp. Example:

(setq parse-fork (make-fork))

(setq which-func'parser)

(setq i 1)

(fork-lwp-ev parse-fork (which-func *sentence1*)

(string-append "Parser-" (my-string i)))

(++ i)

(fork-lwp-ev parse-fork (which-func *sentence1*)

(string-append "Parser-" (my-string i)))

(fstring item) This is the same as (£-string).

(f-string item) Coerces the item into a string, by returning its printed represen-

tation. The name comes from "forced" string―-this is an improvement over
the normal (string) function, which breaks when given numbers, and some-

times when given lists. This function should work no matter what item is.

See also trunc.

:get Option to deffiav. See :readable-instance-variables. Short for :gettable-

instance-variables.

(:get sequence-of-slotnames) Option to de:ffiav. See (:readable-instance-

（

variables). Short for :gettable-instance—variables.

get-elapsed-time start-time-m-mternal-ticks) Returns the amount of time

that has elapsed, in seconds, from the time that the start-time was recorded.

Start-time must be in internal-tick units. Unfortunately, this function is only

accurate to a few hundreths of a second-however, a basic operation takes

about a microsecond to perform. Thus, this function is useless in timing any-

thing that does not have more than about 5000-10000 basic operations in it.

[Besides this, since it uses simple subtraction, there may be a possibility that

this function will break once a month. E.g., for five seconds at midnight on the

31st, this function will return wrong answers. Do not use it to time elapsed

durations of more than about a day.] See also burn-cycles.

Example:

57

(setq old-time (get-time))

(when (> (get-elapsed-time old-time) 5.0))

(pformat T 11You're taking longer than five second_s to think!!!-%11))

(get-time) Returns the "internal real time", in internal-tick units (milliseconds).

This command is only accurate to a few hundreths of a second.

There is a rumour that the time is different when asked between different

processors. This is currently being investigated. ・

(heap) A Heap Package command. Returns an empty heap. Same as (make-heap).
Currently an empty heap is implemented as an empty list (). •

(heap-empty-p heap) A Heap Package command. Tests to see whether a given
heap is empty or not. Returns Tor NIL. See heap-full-p.

(heap-find-item heap item) Searches for the given item inside the given heap.
The item must match, using equal. Returns a heap object representing the
subheap that the item was found in. Returns NIL if the item was not found.

The subheap object is replaceable in the main heap using setf, for heap twid-
dling. The searched-for item is not guaranteed to be at the top of the returned
subheap object. This function searches exhaustively and will take longer than

:fi nd-heap-item.

(heap-full-p heap) A Heap Package command. Tests to see whether the given

heap has at least one entry or not. Returns the heap or NtL. This is the

preferred test.

(heap-bottom-N-items heap N) Returns a list of the bottom N items with the
highest keys, and a second value of the number of entries returned. The list
is ordered from highest to lowest, by key. ・

(heap-bottom-Nth-item heap N) Returns the item that is Nth from the bottom

counting down from the highest entry, and a second value of its inverse ranking,
which will usually be N. If the heap has less than N entries, the topmost entry
is returned.

(heap-top-N-items heap N) Returns a list of the top N items with the lowest

keys, and a second value of the number of entries returned. The list is ordered

from lowest to highest, by key.

(heap-top-Nth-item heap N) Returns the item that is Nth from the top count-

ing up from the lowest entry, and a second value of its ranking, which will
usually be N .. If the heap has less than N entries, the bottommost entry is

returned.

:init Option to deffi.av. Short for :initable-instance-variables .. Makes all slot vari-

ables initable.

58

(:init sequence-of-slotnames) Option to deffl.av. Short for :initable-insta11-ce-
variables. Makes the given slot variables initable.

(init-pformat) This function is called by sq-system when it is loaded. It alloc邸es
the PFORMAT-PROCESS lwp and stores it in system variable pformat-process.
It sets pformat-MB to a new mailbox. The pformat process should not be

blocked or killed by the user. For this reason, the user should never have to

call this function.

It is important not to call the system routine (reset-queues) after the

beholder-2 package is loaded, as this will break pformat by terminating the

pformat process, causing all messages to stack up in the mailbox and not get
printed. If (reset-queues) is called, the user must call (ini t-pformat) af-
terwards to initialize a new pformat process. Remember that this also wipes

out the mailbox.

(intern-soft string &optional package) This is the Symbolics-compatable ver-

sion of the Common Lisp find-symbol function. It returns the symbol a$SO-
ciated with the string, or NIL if the symbol has not yet been interned. It is

used by sys-make-name.

(join old-fork-var) This is a low-level routine that could be used by users at-
tempting to build custom join routines. It decrements the active RIO-
cesses count and returns the new value. Most users will want to use

J 01n-and-when-f1n1shed-do mstead.

(join-and-when-finished-do old-fork-var body…) Decrements the number of
active processes in the fork by 1. Executes the code contained in body when

the last process finishes (calls this function). This routine should come at the
end of the body of the lwp procedure.

(kill-all-lwps) Kills all the lwps on the *lwps* list.

(++l counter-location counter-lock) Grabs the lock and increments the given

counter by 1. Returns the new value.

(-1 counter-location counter-lock) Grabs the lock and decrements the given

counter by 1. Returns the new value.

(+=l counter-location incr counter-lock) Grabs the lock and increments the
given counter by the given incr. Returns the new value.

（ -=l counter-locat10n decr counter-lock) Grabs the lock and decrements the
given counter by the given decr. Returns the new value.

(leash-all-workers agenda) Deactivate all of an agenda's workers.

(leash-N-workers N agenda) Deactivate some of an agenda's workers.

(list-of-heap-items heap) Returns a list of the items in the heap. The list is

ordered from lowest to highest, by key.

59

(list-of-heap-items-and-keys heap) Returns a list of pairs of (item key), the
items in the heap paired with their keys. The list is ordered from lowest to
highest, by key.

(list-of-heap-keys heap) Returns a list of the keys of the items in the heap. The

, list is ordered from lowest to highest, by key.

lwps This variable holds all the lwps that the system knows about. This includes

live, blocked, and dead lwps. This variable was previously used by fork,
build-fork, init-pformat, etc., but is now completely maintained by the
user. It is mainly useful because kill -all -lwps uses it as input. When you
create a process by yourself (e.g., by using fork), you should push the process
onto *lwps*, so that you can kill it later if you need to.

Example:

(push (spawn (my-process args)) *lwps*)

(make-agenda) Returns an agenda.

(make-flavorname &optional :slotvarl initl ... :slotvarM initM) Instance
creation routine used in the New Flavors package if the option-code :C is

used in defflav. Creates an instance of the given flavorname. Example:

(setq my-ship (make-ship :x 5))

Any slot variables that are not specified receive their default initialization
values. Any slot variables that are not specified and do not have initialization
values are set to NIL, they are not left unbound.

(make-fork) Creates and returns a fork record-keeping structure. Store this in a

variable and use it to control the following functions.

(make-heap) A Heap Package command. Returns an empty heap. Same as
(heap). Currently an empty heap is implemented as an empty list (). Be
careful; "make-heap" returns a Symbolics heap structure when this code is

run on the Symbolics computer.

(make-instance'flavorname &optional :slotvarl initl ... :slotvarM initM)

Instance creation routine used by the old flavors package. This is the default

method of constructing a flavor instance that is used if the :C or :D option

code is not specified. Also, even if the :C or :D code is used for a flavor, this
syntax is still valid and can be mixed with that of the New Flavors package.

This function creates an instance of the given flavorname. Example:

(setq my-ship (make-instance'ship :x 5))

60

Any slot variables that are not specified receive their default initialization
values. Any slot variables that are not specified and do not have initialization
values are set to NIL, they are not left unbound.

(make-N-workers N my-worker-function agenda) Allocates N workers for
the given agenda. N should be a positive integer. My-worker-function must
be an unquoted literal.

(make-worker my-worker-function agenda) Allocates a worker for the given

agenda. My-worker-function must be an unquoted literal.

master-process This variable is used by Start-Master to determine which pro-

cess to start. It is used for looping process chains. It should store a process,
if you want to take advantage of the looping feature. Set this variable to a
process that sets up your system, and then call Start-Master as the last thing

before the last join dies.

(methodname flavor-instance argl…argN) Invokes the method function on
the given flavor instance object. Which method function is invoked depends
upon which flavor the object is an instance of. Example:

(move my-ship 10 20) ==> 20

This calls method move on the object my-ship. Since my-ship is an instance
of flavor ship, it uses the move ship method defined in the previous defmeth
example. The ship x and y slots are set to 10 and 20 respectively; the method

returns the last line in the method definition, which evaluates to 20.

(my-worker-function item) User-defined worker functions for a particular agenda

must take one and only one argument, which gets bound to the item that is
popped off the agenda—the same as the _item that was originally pushed onto
the agenda.

(neq a b) Returns NIL if a is eq to b1 T otherwise.

: nilconc This option to deffiav sets the flavor conc-name to NIL, so that e.g. instead
of saying (ship-x my-ship) to reference slot variable x, the user says (x
my-ship).

(only-once list) This function nondestructively returns a copy of the given list in

which every atom is listed only once-duplicates are eliminated. The function
uses eq for comparison. The resulting order is reversed. This is unfortunately

an 0(冒） operation.

(only-once'(a a a b b b a c b c c c)) ==> (C B A)

(open-file filename) Opens output stream OS for serial output into a new copy

of the given file. filename should evaluate to a string or file descriptor in-
dicating the appropriate file. This function breaks if filename indicates a

61

nonsense path, e.g. to a machine that does not exist. The scratch variable

using-file is set to the string or value passed in filename. When this

function is called from a terminal, it prints out a reminder message. No useful

value is returned if this function is called from within a program; however, OS

is set to a legitimate file stream on a successful call, as a side-effect. In general,
it is important to specify the full pathname of the file; the default directory

on the Sequent seems to be /usr, which should not be used by normal users,

and will probably give you a Permission Denied error anyway.

Franz Lisp does not seem to support remote files. Certainly the

''MACHINE: pathname II colon syntax is NOT supported for at least output

files.

Note that pformat supports the use of various streams, including ES and OS.

(open-file "/usr1/myers/recording.text")

"Opened stream #<stream writing /usr1/myers/recording.textc#x9294e9>

Do a (setq ES OS) if desired.

OS This variable is used as the Output-file Stream. You can use it for all output in

your program. It is bound to T as a default. It is used by routines open-file
and close-file.

(pformat stream control-string args…) This function is the parallel version of
the regular format command. The arguments are exactly the same as format.

First, the function tests to see whether only one processor has been allocated

or not. If so, it assumes that a top-level program is running, and it prints out

the formatted message directly. If not, the function evaluates its arguments,
quotes the result, and pushes a print request containing the quoted evaluations

onto a system mailbox. Later, a special dedicated lwp executes the request

and prints the output. pformat should be used in lwp code in all cases instead

of format.

pformat-MB This system variable stores a mailbox that is used to implement

pformat. It should not be examined or moふfiedby the user.

pformat-process This system variable stores the lwp process that is used to im-

plement pformat. It should not be examined or modified by the user.

(pop-heap heap) A Heap Package command. Pops the top item off the heap (the

item with the lowest number as its key). Returns two values: the item, and

also its priority key. Returns NIL NIL if the heap is empty. The popped item

is removed from the top of the heap.

(ppformat stream control-string args ...) This function is the direct version of

pformat, the parallel version of format. It does not test how many processors

have been allocated, but rather sends the output directly to the pformat

62

mailbox. It is slightly faster than pformat, and should be used when the
programmer is certain that only parallel processes will be used and there is
no need for running the program at the monitor level. It does not print out

its messages until start-lwps has been called. The arguments are exactly
the same as format. The ppformat function evaluates its arguments, quotes
the result, and pushes a print request containing the quoted evaluations onto

a system mailbox. Later, a special dedicated lwp executes the request and
prints the output.

(pull inlist iteml…itemN) Destructively Pulls items onto the back of the ar-
gument inlist, in place. Returns the new list. Designed to complement push,

which puts things on the front of the list. Note that both the list and the items
are eval'ed.

(setq x'(a b c)) ==> (a b c)
(setq y'(d f)) ==> (d f)
(pull x (cdr y)'e) ==> (a b c (f) e)
X ==> (a b c (f) e)
(setq x NIL) ==> NIL
(pull x'd'e) ==> (d e)
X ==> (d e)

This new, improved version of pull is just a hair slower but it does the right

thing when x is NIL. It also does the right thing in list-bashing a new copy
of the atoms onto the back, avoiding those kinds of strange stack problems.

Also, since this macro evaluates all of its arguments, you would have to be
really creative to get yourself into problems storing local variables on a global
list. It should be safe.

If x isn't a list you've got problems.

(pull-heap heap) A Heap Package command. Pulls the bottom itern off of the
heap (the item with the highest number as its key). Returns two values: the

itern, and also its priority key. Returns NIL NIL if the heap is empty. The
pulled item is removed frorn the bottom of the heap.

(pullq inlist atoml…atomN) Destructively Pulls atoms onto the back of the
argument inlist, in place. Returns the new list. Designed to cornplernent
push, which puts things on the front of the list. Note carefully that the list is

eval'ed, but that the atoms aren't.

(setq x'(a b c)) ==> (a b c)
(pullq x d e) ==> (a b c d e)
X ==> (a b c d e)
(setq x NIL) ==> NIL
(pullq x de) ==> (de)
X ==> (d e)

63

This new, improved version of pullq is just a hair slower but it does the right
thing when xis NIL. It also does the right thing in list-bashing a new copy of

the atoms onto the back, avoiding those kinds of strange stack problems.

Please do NOT use this function to pull local variables (from a let or from

a function's arguments) onto the back of a list, and then exit from the local

lexical definition. You will reuse part of the Lisp stack that is being assigned

to something else, and you will be sorry.

If x isn't a list you've got problems.

(push-agenda item agenda) Pushes a given item onto the given agenda.

(push-heap heap key item) A Heap Package command. Pushes the given item

on the given heap, using the given key. The key must evaluate to a number.

(pushnew-agenda item agenda) Pushes a new given item onto the given agenda,

if it wasn't in the agenda waiting to be processed already.

(rand x) This is a locked version of the CL function (random x), which takes a
positive number x and returns a number of the same type from O (inclusive)

up to but not including x. I.e., if x is an integer, numbers from O to (x-
1) are returned; if x is a floating-point number, numbers from O to (x -t)
are returned. It is an error not to supply the argument x when calling this
function.

rand-lock This system variable stores a lock that is used to implement rand. It

should not be examined or modified by the user.

: read Option to deffiav. See :readable-instance-variables. Short for :gettable-

instance-variables.

(:read sequence-of-slotnames) Option to deffiav.

variables). Short for :gettable-instance-variables.

See (:readable-instance-

: readable-instance-variables Option to deffiav. Translates the Symbolics syntax

into :gettable-instance-variables. Makes all slot variables gettable.

(:readable-instance-variables sequence-of-slotnames)

Option to deffi.av. Translates the Symbolics syntax into :gettable-instance-
variables. Makes the given slot variables gettable.

recording-statistics This flag is used by the worker/agenda package. If it is
non-NIL, the agenda package gathers statistics on how long each worker takes
to accomplish its job. These can be used by the BEHOLDER package to

determine expected process durations.

(rekey-heap-item heap key item newkey) A Heap Package command. Labels

an existing item in the given heap with the given new key; reorders the heap

to reflect the new status. The new key must be a number. Both the old key
and the item must match the corresponding entry in the heap with equal.

This routine should be faster than deleting the item from the heap and then

pushing it in again with the new key.

64

(reset-pformat) This function performs a恥 shof the pformat-MB. Any and all
old format messages currently in the mailbox are discarded. The function

returns the number of old format messages that were thrown out.

(second-value multi-valued-function) This function returns the second value of

a multiple-valued function. As a bonus, the first value of the multiple-valued
function is returned as a second value from this function call.

(second-value (values 1 2)) ==> 2 ー

(send flavor-instance :SET-slotvarname newvalue)
This is the default method of setting a slot's value, as provided by the old

flavors package. This syntax is still valid, even if the New Flavors package is

being used. Example:

(send my-ship :x) ==> 10

(send flavor-instance :slotvarname) This is the default method of referencing
a slot's value, as provided by the old flavors package. This syntax is still valid,

even if the New Flavors package is being used. Example:

(send my-ship :x) ==> 10

:set Option to de伍av. See :writable-instance-variables. Short for :gettable-
instance-variables and :settable-instance-variables.

(:set sequence-of-slotnames) Option to de田av. See (:writable-instance-

variables). Short for :gettable—instance-variables and :settable-instance-
variables.

(setf (flavorname-slotvarname flavor-instance) newvalue) This is the de-
fault method of setting a slot's value, as provided by the New Flavors package.
This syntax is used if one of the :B, :C, :D, :nilconc, or :concnil option codes

were NOT used. Example:

(setf (ship-x my-ship) 10) ==> 10

(setf (slotvarname flavor-instance) newvalue) This is the normal method of

settin~a slot's value. This syntax is used if one of the :B, :C, :D, :nilconc, or
: concml option codes were used. Example:

(setf (x my-ship) 10) ==> 10

(SET-slotvarname flavor-instance newvalue) This is a bonus function for set-
ting a slot's value that is automatically defined by the New Flavors package.

This syntax is usable for any flavor, New Flavors or not, as long as the New
Flavors package has been loaded. This syntax is still valid, even if the New

Flavors package is being used.

65

(set-x my-ship 10) ==> 10

(size-of-heap heap) Returns a count of the number of items in the heap.

(slotvarname flavor-instance) This is the normal method of referencing a slot'Ei

value. This syntax is used if one of the :B, :C, :D, :nilconc, or :cpncnil optio1t
codes were used. Example:

(x my-ship) ==> 10

(spawn-lwp (my-routine args ...) &optional (name "An LWP'1))
Allocates and creates an lwp that starts out running. The lwp will run the

given routine. Evaluates and then quotes its arguments. Does not evaluate

the routine specification; this should be a literal. Returns the resulting lwp.

(spawn-lwp (parse *input-sentence*))

(spawn-lwp-ev (my-routine-expr args…) &optional (name "An LWP"))
Allocates and creates an lwp that starts out running. The lwp will run the

given routine. Evaluates and then quotes its arguments. Evaluates the routine

specification as well. Returns the resulting lwp.

(setq *which-routine*'parse)

(spawn-lwp-ev (*which-routine* *input-sentence*))

(squish nested-li~t) This function takes a simple nested list and non-destructively
returns a copy of the same list without all of the interior parenthises-the list

gets "squished" down to one level. Order is preserved. Given a non-list atom1

the function returns a list of that atom.

(setq foo'(a ((b (c) d))))

(squish foo)

foo

(squish'a)

==> (A ((B (C) D)))

==> (ABC D)
==> (A ((B (C) D)))

==> (A)

(start-processes list-or-sequence-of-processes) Starts a list of blocked pro-

cesses: sends a resume signal to each process on the list.

(start-processes lwpi lwp2 lwp3)

(setq parser-lwps (list lwpi lwp2 lwp3))

(start-processes parser-lwps)

; could be'i, lwp1

(string-append "stringl"…"stringN") Returns a string that is the concate-
nation of the previous strings. Example: (string-append''Foo 1 1''bar 1 1
''Baz11) ==>''FoobarBaz11

66

(string-length item) This is an improved vers.ion of length, that tries to "do the
right thing". It offers basic compatability with the Symbo且csp~p functiC!n
of the same name. If item is a string, it retur11-s a cou:p.t of the number ?f

characters in the string. If i tern is a char, it returns 1. If i tern is an array, e.p・
an array of characters, it returns the length of the array. Qtherw.ise, it us~s
f-string to coerce the value of the argument into a string, /:),nd then returns

the length of that string.

(sys~make-keyword "STRING-1"…"STilJNG-N") This macro first forms
a keyword name by concatenating the (o,ne or more) giyen strings. It then

searches the current name-space and retμrns the existing keyword symbpl

which uses that name as its print-name. The resulting e~pre料on returns
the keyword variable. This code is useful for referencing keywords if rou w~ll
only know or be able to compute the name, of an~xisting keywor,d ?'t rμntim_e.
The user should not include the ":" charf:Lder in the keywqrd~efinition. A
keyword symbol should evaluate to itself. ・

(sys-make-keyword "STR" "EAM")
(setq bar (sys-make-new-name "STREA~"))
bar
(eval bar)

==> :STREAM
==> :STREAM
==> :STREAM
==> :STREAM

:EXTERNAL

IT IS VERY IMPORTANT THAT THE LETTERS IN THE STRil'fG AR-
GUMENTS GIVEN FOR THE NAME BE IN UPPER-CASE. This functi~n
will not do what you want it to do otherwise. Numerals and non-alphabetic

characters are perfectly fine.

This function only finds existing keyword symbols. If the !'lymbol has not been
interned as a keyword yet, the function returns NIL.

(setq bar (sys-make-keyword "WEIRD")) ==> NIL

(sys-make-name "STRING-1"…"STRING-N") This macro first forms a
name by concatenating the one or more given strings. It then searches the
current name-space and returns the existing symbol which uses that name

as its print-name. The resulting expression returns the variable; it must be

eval'ed one more time to reference the contents of the variable. This code is

useful for referencing variables if you will only know or be able to compute the

name of an existing variable at runtime.

(setq foo2 0)
(sys-make-name "F002")

(set (sys-make-name "FOO" "2") 5)

foo2

==> FDD2 :INTERNAL
; note this is not a setq

==> 5
(+ (eval (sys-make-name "FD""□" "2")) 5)
(setq bar (sys-make-name "FOD2"))

==> 10
==> FDD2

bar ==> FD02
(eval bar) ==> 5

67

IT IS VERY IMPORTANT THAT THE LETT:ERS IN THE STRING AR-

GUMENTS GIVEN FOR THE NAME BE IN UPPER-CASE. Thls function
will not do what you want it to do otherwise. Numerals and non-.alphabetic

characters are perfectly fine.

This function only finds existing symbols. If th~ ~ymbol has not bee,n interned
as part of the name-space yet, the function returns NIL.

(setq bar (sys-make-name "WEIRD"))

bar

==>
==>

NIL

NIL

(sys-make-new-keyword "STRING-1"…"STilING-N") This macro first
forms a keyword name by concatenating the o:p.e or more given strings. It

then searches the current name-space and returns the keyword symbol which

uses that name as its print-name, if it exists; qtherwise, it creates a new key-
word symbol and returns that. This code is useful for making new keywords.
The user should not include the ":" character in the keyword definition. A

keyword symbol should evaluate to itself.

(sys-make-new-keyword 11MY-11 "STR" 11EAM11)

(setq bar (sys-make-new-keyword ,"MY-STRE認＂））
bar
(eval bar)

==> :MY-STREAM :EXTERNAL
==> :MY-STREAM
==> :MY-STREAM
==> :MY-STREAM

IT IS VERY IMPORTANT THAT THE LETT:ERS IN THE STRING AR-

GUMENTS GIVEN FOR THE NAME BE IN UPPER-CASE. This function
will not do what you want it to do otherwise. Numerals and non-alphabetic

characters are perfectly fine.

This function finds existing keyword symbols. If the keyword symbol has
not been interned as part of the name-space yet, the function returns a new
keyword symbol.

(setq bar (sys-make-new-name "WEIRD"))

bar
(eval bar)

==>
==>
==>

:WEIRD

: WEIRD

: WEIRD

(sys-make-new-name "STRING-1" ... "STRING-N") This

macro first forms a name by concatenating the (one or more) given strings. It
then searches the current name-space and returns the symbol which uses that

name as its print-name, if it exists; otherwise, it creates a new named symbol
and returns that. The resulting expression returns the variable; it must be

eval'ed one more time to reference the contents of the variable. This code is
useful for making new variables.

t,

寡

(setq foo2 0)

(sys-make-new-name "F002")
==> .0
==> F002 NIL

68

T
I

ヽ`r， ~、.、、ヽ`,d (set (sys-m幸e-ne刃―nami311F0011 11211) 5) ;no,te this is not a setq
foo2 ==> 5

． （＋ (eval (sys-make-ner7-name "FD" 11□11 "2'1)) 5) ==> 10
,:

(setq bar (sys-m吐e-ne閃―name11F00211)) ==> F002
bar ==> FOD2
(eval bar) ==> 5

罪 ISVERY Il'y'IPOi}TANT THAT THE LETT匹RSIN THE STRING AR-
G1JMENTS GIVEN FOR THE NAME BE IN UPP闘凡CASE.. This function
will not do wh<;Lt you wan} it to do otherwise. l'fum,erals and no_n-alphabetic
characters are J;>erfe~tly fin.e.

This funcVon finds~?Cisting symbols. If the sympol has not been interned as
part of the name-sp~~e yet, the function retur1ts a new ;symbol.

c-、、9 (setq bar (sys-maヤFe-ner7-name11WEIRD11))

bar
(set bar 20)

weird

=:;=>
＇

=:;=>
=:;=>
＇

=:;=>

WEIRD

WEIRD

20
20

/¥

：

(top-of-heap heap) A H~ap Package command. Returns two values: the top item
of the heap, anr also its priority key. Returns N耳町Lif the he,ap is empty.
The top is the item with the lowest number as its],{ey. The top item is not
re:rnoved from the top of the heap.

(top-of:-heap-key heap) A Heap Package command. Returns the lowest number
in the heap. Returns NIL if the heap is empty.

(trunc item length) This function returns a string which is the name of the item,

or a truncated versiC?n if~he string would be lqnger tμan the given length.
The item is for~ed tq be c,onverted into a nam~py using (f-string). If the
re:;;ulting name is longer than length characters, the na:rne string is truncated
to (length -1) char年ctersand a tilde character ,M, is appendeq to indicate
truncation; thi;, resulting string is then returne,d. i tym can be just about
an_ything. length IDl!-st be, an integer that is 1 or greater. This fμnction does
nqt pad the re;mlting stri?-g to ensure that it if;l exactly equal to length; it
could be smaller. Note thc).t this function return~a~tring, it doe~not do any
printing; however, the results can be used as an argument to format. The

fu:p.ction has been us~d under Symbolics Lisp for pr~nting labels of graphical
nodes.

J"~
．`

『
~
ヽ

5

,

t

~
~
·

n, `・

(type-the-time &optional (sfream T)) Types oμt the time in a pretty format.

Returns NIL. If the qptional stream argument is NIL, does not type the time
out, but returns a string of what it would have typed out.

(type-the-time nil) ==> 114:47:26 PM Thur Jun 20, 199111

(unblock LWP) The same as resume. Note that (unblock-lwp) is apparently al-
ready a system command with unknown effect.***

69

(unleash-~11-wprkers agenda) Activate~all of an agenda's workers. Normally
call this right after allocating all worfers. Artive workers stay active whether
they are executing an agenda item or waiting for the agenda to fill.

(unleash-N-wqrkers N agenda) Activ斗tesome of an agenda's workers.

(USf-file filenflμie) Opens~file fo「叫putto OS. The same function as
open-file.

using-fil~ This variable is bound tp the. string or descriptor that was used to
open the currently open file by routine op13n-file. It is used for information
purppses only.

(w3rit nser-:s) Wait implemer+ts a "sit-and-$pin" function that ties up a processor
until the given number of second$ has elapsed. Wait uses get-elapsed-time

and $hould not be used to time durafions of more than about a day, to be
safe. Wait can only be used sc;1.fely for durations with hundreths of a

second Pfecision. It fixes the :problem introduced by sleep, which quietly

truncates its argument down to i1tteger values and is basically useless. See the
discussion in Section 3 .4.

(w3rit-for-.em:pty-agenda agenda) Waits until an agenda is empty. Detects this
byw四tingfor the agenda to send an "e.mpty" message to itself, which happens
when the'agenda notices the nuIT}ber qf running active workers is 0.

(with-open-file (IS input-filename :direction :input) BODY) This system-
defined function is the approvedμiethod of reading from an input file stream

IS. It use$ an unwind-protect to ensure that the input file is closed if an error
occurs in the body of the routine:

(with-spin-lo~k-or-NIL lock body…) This enclosing macro supports optional
locks. If lock is NIL, the macro goes ahead and evaluates the body. If lock

is a lock, the macro is the same as a with-spin-lock form.

: write Option to defflav. See :writaple-instance-variables. Short for :gettable-
instance-yariables and :settable-instance-variables.

(:write sequence-of-slotnames) Option to defflav. See (:writable-instance-

variables). Short~or :gettable-instance-variables and :settable-instance-
variables.

: writable-instance-variables Option to defflav. Translates the Symbolics syntax
into :settable-instance-variables and :getable-instance-variables. Makes all slot
variables settable and gettable.

（ : writable-mstance-variables sequ~nce-of-slotnames) Option
to defflav. Translates the Symbolics syntax into :settable-instance-variables
and :getable-instance-variables. tylakes the given slot variables settable and
gettable.

70

	001
	002
	003

