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Chapter 1

INTRODUCTION

1.1 Speech Communication

Speech has been the most natural and easiest way to exchange information
between humans in the long history of the human race. This is because humans are
able to converse with each other simply by using their own faculties. A human, of
course, is able to exchange information by other means such as letters and gestures.
However, humans usually use speech for exchanging information because it is facile
and because it has many other advantages such as real-time response, no need for
special training, individuality and conveying emotion information.

Before computers were developed, human only had to exchange information
with other humans. The computer, though originally developed as a calculation
machine, has passed through many levels or technological innovation. Computers
now cope with a great amount of information which requests human-machine com-
‘munication. In practice, the exchange of information between humans and machines
is ever increasing.

Considering the demand for communicating with machines and the advantages
of speech, it is very natural to make use of speech for human-machine communica-
tion. The study of human-machine speech communication is an on-going task, and
speech recognition and speech synthesis are its basic elements.

This report concerns a study of a speech recognition expert system that inte-
grates human knowledge and neural networks.
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1.2 Background

In this section, the history of the study of speech recognition is described
along with a background of the study of neural networks and the knowledge based
approach [Nakata 77] [Nakata 78] [Niimi 79] [Furui 85] [Nakagawa 88] [Waibel 90].

1.2.1 Speech Recognition

The study of speech began in about 1940 with the development of the vocoder
by Dudley [Dudley 40] and the sound spectrogram by Potter [Potter 47]. The first
speech recognizer, whose speech recognition task was digits [Davis 52], was pro-
posed in 1952 by Davis. In the 1960’s, fundamental studies in speech processing
were achieved by Franagan [Franagan 55] and Fant [Fant 60]. Around that time,
research aiming at a phoneme typewriter were proposed by Olson [Olson 56] and
Sakai [Sakai 63], although these studies only showed the difficulties of automatic
speech recognition.

In Japan, the “Maximum Likelihood Spectrum Distance” and “Linear Pre-
dictive Coding (LPC) Analysis” were proposed by Saito and Itakura, [Itakura 69]
[ltakura 71] and were dramatic developments in speech analysis. The LPC anal-
ysis has had a great effect on the speech signal processing field up to the present
time. Furthermore, Sakoe formulated the problem of non-linear time-warping of
speech using “Dynamic Programming (DP or DTW: Dynamic Time Warping)”
[Sakoe 71]. This method also spurred the study of speech recognition based on
template-matching. Influenced by these developments, many speech recognizers
were realized, albeit with limitations such as speaker dependency, isolated word
utterance input, limited vocabulary, and so on.

At almost the same time in the U.S.A, research into utilizing natural language
as a human-machine interface was proposed by Woods and Winograd [Woods 70]
[Winograd 72). They demonstrated effective and sophisticated natural language
communication by implementing “Question-and-Answer” systems. Such research
in natural language processing showed the possibility of realizing a human-machine
communication system with a very limited domain such as a Question-and-Answer
system.

These developments in the study of speech processing and of natural language
processing influenced the ARPA (Advance Research Projects Agency) established
in 1971 [Klatt 77]. The aim of the ARPA project was the development of a speech
understanding system that integrated speech recognition and natural language pro-
cessing, whose vocabulary size was around 1,000 words. Two famous systems were
developed at Carnegie Mellon University: the “HearSay II” system [Lesser 75] and
“HARPY” system [Lowerre 76]. The HearSay II system is wellknown because it
proposed a new architecture called the “blackboard model”. The blackboard model
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is able to cope with variable type knowledge and variable hierarchical knowledge.
Furthermore, the invention of the blackboard model was the dawn of “Artificial
Intelligence” (AI) study, the beginning of expert system development. HARPY is
wellknown because it gave the best speech understanding performance of 97% in the
ARPA project, by combining the advantages of the “DRAGON?” system [Baker 75]
and the HearSay II system.

This ARPA project also had considerable influence on the research in Japan
and Europe. In Japan, Kyoto Institute of Technology’s “SPOKEN-BASIC?”
[Niimi 77], Kyoto University’s “LITHAN” [Nakagawa 76]), NTT’s “Voice Q-A sys-
tem” [Shikano 81], Waseda University’s “WABOT II” [Kobayashi 85], and in Eu-
rope, CNET’s “KEAL” system [Mercier 77] are some of the better known results.

The ARPA project showed the advantage of integrating natural language as a
constraint into the speech recognition process. However, it also proved the necessity
of more accurate and detailed acoustic models for speech recognition.

At the same time, computer progress has been incredible. Computer hardware
has become faster, smaller and cheaper and memories have expanded geometrically.
This progress greatly speed up data handling. On the software side, many program-
ming languages were invented not only for fast calculation, but also to facilitate
complex system implementation such as knowledge based systems in Al

The progress in computers also brought break-throughs in the study of speech
recognition, making possible several new approaches, such as “Hidden Markov Mod-
els (HMM)” [Rabiner 86], “Neural Networks” [Rumelhart 86} [Lippmann 87] and
“Expert Systems” [Buchanan 85]. These approaches are the newest techniques in
the study of speech recognition and are break-throughs from the DTW template-
matching speech recognition approach.

Considerable progress has been made using these techniques and many speech
recognition systems have been developed as a result. “SUMMIT” [Zue 90] and
“SPREX” [Mizoguchi 87] based on “Expert Systems”, “TANGORA” [Jelinek 85],
“SPHINX” [Lee 89], “BIBLOS” [Chow 87] and “ATR-HMM-LR” [Hanazawa 90]
based on “Hidden Markov Models.” As for “Neural Networks” research into “Time-
Delay Neural Networks” (TDNN) [Waibel 89}, “Dynamic Neural Networks” (DNN)
[Sakoe 89] and “Neural Prediction Models” (NPM) [Iso 90], is now progressing. Each
of the aforementioned systems has attained very impressive accuracy and most have
overcome some recognition constraints such as speaker dependency, utterance style,
vocabulary size, etc.

At present. many speech recognition studies are concentrating on improving
one of these techniques or on integrating certain of these techniques to improve the
overall speech recognition performance.

Among these studies, HMM appeared to be a good approach to continuous
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speech recognition. The main advantages of HMM for speech recognition are as
follows:

e Invention of a strong training algorithm, Baum-Welch algorithm [Baum 70] or
EM algorithm [Dempster 77].

e Probabilistic representation in each acoustic model.

e Capability of dealing with non-linear time warping.

e Facile integration into language models by concatenating phoneme HMMs.

On the other hand, speech recognition based on neural networks and expert
systems appeared to have some difficulties when applied to continuous speech recog-
nition. In the neural network approach, although the performance of the phoneme
classification is greater than that of HMM [Waibel 89}, it has various problems such
as mis-activation in the untrained regions for the input utterance. Moreover, in the
approach of classification-type neural networks, the problem of normalizing time
warping of speech features is serious. In the approach of expert systems research
has proved the effectiveness of using human expert knowledge. However, on the
other hand, it also proved the difficulties of full formulating human knowledge into
explicit rules and the difficulties of full automatic acoustic feature extraction.

1.2.2 Neural Networks

The study of neural networks applied to pattern recognition was in fashion in the
1950’s and 60’s. However, after 1969, the theoretical limitation of neural networks
for pattern recognition was shown by Minsky [Minsky 69}, and studies in this field
have faded away. The main reason for this was that a good training algorithm for
multiple layer neural networks could not be developed at that time.

Recently, there were break-throughs in the study of neural networks: one was
the development of the back-propagation algorithm for multiple layer neural network
training, and the other was the incredible speed-up of computers. These break-
throughs made it possible to use a great amount of data to train multiple layer
neural networks which were thought to be impossible or very difficult to train.

This back-propagation algorithm is very easily realize on computers. Thus, it
spread to many research fields and many neural network application studies are
now on-going, such as speech processing, image processing, language processing,
system control and so on. In particular, joined with study of the Massively Parallel
Distribution Processing in parallel computer science, the study of neural networks
has become fashionable again.

Since the back-propagation algorithm was developed, many neural network ap-
plications into speech recognition have been proposed. Several neural network ap-
proaches in speech recognition, such as the “Neural Prediction Models” (NPM)
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[Iso 90], “Dynamic Neural Networks” (DNN) [Sakoe 89] and “Time-Delay Neural
Networks” (TDNN) [Waibel 89], have shown its effectiveness.

NPM and DNN are able to deal with the time warping of speech features. TDNN
has a capability for time-shift tolerance. Considering the type of neural networks,
the NMP can be classified as a non-linear mapping model, while DNN and TDNN
can be considered as neural network classifiers. NPM and DNN are proposed for
a word speech recognizer and TDNN is proposed as a phoneme classifier. TDNN
showed incredibly high performance on phoneme identification, compared with the
HMM identification results obtained using the same data [Waibel 89].

1.2.3 Expert Systems

The origin of the knowledge based approach derived from the blackboard model
of the HearSay II system. This approach directly deals with human knowledge.
Knowledge engineering 1s a discipline that seeks to understand the human knowl-
edge, especially the knowledge of human experts using an engineering technique.
In practice, this discipline aims at the construction of an expert system which is
able to automatically solve problems the human expert is able to solve. In this
study, knowledge is the heuristic and experimental knowledge which was difficult
to cope with in the previous studies. This heuristic knowledge is described as a
production rule and is used in the production system to solve the problem by hy-
pothesizing and evaluating the evidence while properly considering the constraints.
These knowledge based systems are developed*through a recursive or iterative trial
and error rule-retraining as shown in Figure 1-1.

This knowledge engineering technique is adopted in speech recognition because
a human expert has some sort of knowledge for speech recognition. There are two
major advantages to using a knowledge based approach for speech recognition:

(1) Knowledge should be explicitly described as production rules which help the
researcher make sure and to order one’s knowledge.

(2) Decision path, the way of recognition, can be easily obtained by back-tracking
the production rules and makes it easy to modify rules for system improvement.

These are the main advantages that can be obtained from the knowledge based
approach compared to the conventional approaches.

The most famous knowledge for speech recognition is “spectrogram reading
knowledge.” Spectrogram reading is a technique to identify a phoneme category
with its boundaries on a speech spectrogram using the visual acoustic phonetic fea-
tures. A spectrogram reader obtains experiential knowledge of acoustic phonetic fea-
tures through spectrogram reading, which makes it possible to recognize phonemes
in a continuous speech spectrogram with high accuracy (over 80%) [Zue 79], per-
forming phoneme segmentation and phoneme identification simultaneously using
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spectrogram reading knowledge. For these reasons, several knowledge based speech
recognizers have been developed [Zue 86] [Carbonell 86] [Mizoguchi 87] {Stern S6]
[Connolly 86]. These previous research studies proved the effectiveness of spectro-
gram reading knowledge for phoneme identification.

1.3 Purpose

This report has two purposes:

(1) To simulate spectrogram reading behavior by an expert system.
(2) To construct a speech recognizer by integrating human knowledge and neural
networks without a language model.

The first purpose is advancing the early study of Hatazaki, which is a feature
based phoneme recognition expert system [Hatazaki 87] [Hatazaki 88]. Hatazaki’s
study has various benefits compared with the previous study of speech recognition
expert systems because it simulates the human expert spectrogram reading process.
This means that the system uses not only static human knowledge but also dynamic
knowledge, i.e. strategies of a human expert.

Since Zue showed the effectiveness of utilizing spectrogram reading knowledge
for speech recognition, as previously described, several knowledge based speech
recognition systems have been developed [Zue 86] [Carbonell 86] [Mizoguchi 87]
[Stern 86] [Connolly 86]. Most of these systems are basically separable into two
parts as shown in Figure 1-2:

(1) Acoustic feature extraction part.
(2) Verification and recognition part.

In the acoustic feature part, acoustic analysis is performed, then features are ex-
tracted into explicit fact representations. In the recognition part, these extracted
features are evaluated by the production rules which represent for phoneme identi-
fication knowledge.

However, in this structure, the system is not able to represent human knowledge
fully. The human knowledge for reading spectrograms consists not only of the facts
of acoustic evidence for phoneme recognition but also the strategies, in other words
the ways to manage the acoustic evidence for phoneme determination. Thus, to
realize an adequate knowledge based speech recognizer, the system should utilize
not only the static knowledge but also the dynamic knowledge of the human expert.

Various kinds of acoustic features have to be extracted from a spectrogram
for phoneme identification. Moreover, they are complex and fuzzy. It is also very
difficult to automatically extract these acoustic features from a spectrogram. Thus,
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in most conventional speech recognition systems, very limited acoustic features are
used. They are extracted and symbolized by pre-processing and/or by hand-labeling.
Extracting acoustic features by hand from a spectrogram remains a major problem
in fully automatic speech recognition. When extracting acoustic features by pre-
processing, there are also problems:

e The system is not able to extract precise acoustic features according to the
phoneme context, because of the lack of knowledge concerning phoneme vari-
ations and coarticulation effects.

e The system is not able to pre-process all acoustic feature extraction which
appear on a speech spectrogram. There are various kinds of acoustic features
which are global and rough, or local and precise.

e The system 1s not able to manage the usage of acoustic features because the
usage differs considerably according to phoneme context.

Thus, the separation of feature extraction and verification /recognition makes it dif-
ficult to extract and to control all the necessary acoustic features.

In Hatazaki’s study, these problems were overcome by the use of dynamic human
expert knowledge as strategies for phoneme recognition. Acoustic feature extraction
was performed under the demand of the strategy by considering phoneme contexts,
which made it possible to extract precise and various acoustic features. In Hatazaki’s
system, the feature extraction and phoneme verification are elegantly integrated and
very well-formed in controlling acoustic features.

However, there remain other problems in feature based expert system ap-
proaches. In general, acoustic features which are useful for phoneme identification,
such as distinctive features between /m/ and /n/ or /b/ and /d/, etc., are especially
difficult to extract automatically. Even a human expert is not able to find these fea-
tures. Moreover, spectrogram reading knowledge such as pattern matching, which
is not a small part of the whole human knowledge, is hard to describe as explicit
rules. Thus, it is very difficult to fully formalize phoneme recognition knowledge,
and to extract acoustic features automatically.

Considering these difficulties, in the approach of this report, only explicit knowl-
edge is described into rules, e.g. strategies, phoneme boundary detection, rough
phoneme class features, and so on. Knowledge, which is difficult to describe as
rules, e.g. pattern matching-type knowledge, is implicitly represented inside the
neural networks.

The second purpose of this report is to construct a speech recognizer with
no language model.  Most speech recognition systems or speech understanding
systems previously proposed are designed to choose the best word sequence from
the word dictionary, under some constraint of a language model and limited domain
knowledge. However, when humans converse with each other, many new and non-
entry words arise, even if the domain 1s limited. A recent approach that recognizes
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such non-entry words [Asidi 90], only gets the rough category of the meaning for
the input speech using the constraints of a task-dependent language model.

However, in conversation, it is sometimes necessary to get the exact sequence
of the input speech. For example, to spell out a name such as “KOMORI”, K-O-
M-O-R-I. There is some challenging research aiming toward a phonetic typewriter
proposed by Kawabata [Kawabata 91] and Kohonene [IKohonene 88]. Kawabata’s
study is based on the “ATR-HMM-LR” speech recognizer [Hanazawa 90] while its
grammar is modified as a syllabic trigram model. The disadvantage of this system
is that the performance strongly depends on the syllabic trigram. In this sense,
this system has some kind of language model because the syllabic trigram is trained
using a language database, and phonemes are not recognized only from the acoustic
information. Kohonene’s approach is a combination of the neural network approach
and knowledge based approach. The neural network is used to produce the frame-
by-frame phoneme identification results and the knowledge is the phonotactics con-
straint in the language model. In Kohonene’s approach, the acoustic information is
fully analyzed in a neural network, and is not a feature based approach.

To realize a phoneme recognition system aiming at phoneme typewriter with-
out a language model, powerful methods for phoneme segmentation and phoneme
identification are indispensable and the architecture of the system should be con-
structed in a full bottom-up style. Many bottom-up style speech recognizers have
been proposed in recent research. These recognizers consist of some sort of phoneme
segmentation and phoneme identification. Although, in their segmentation part,
they did not find the exact phoneme boundary, they obtained every possible acous-
tic boundary or performed very rough segmentation. As for phoneme identification,
a high performance phoneme identifier, such as neural networks, was not developed
until recent.

From this point of view, the boundary obtained by spectrogram reading knowl-
edge is every bit as accurate as that of a human expert [Hatazaki 90} and the TDNN
is one of the most powerful phoneme identifiers available [Waibel 89]. Thus, this
combination is one of the most promising ways to realize speech recognition without
a language model. The system proposed in this report is realized as a sophisticated
integration of knowledge and TDNNs. '

1.4 Contents

This report proposes a phoneme recognition expert system which integrates
knowledge and neural networks, aiming at a speech recognizer without a language
model by simulating the spectrogram reading behavior of a human expert.

This report consists of four major parts:

(1) Introduction, Chapter 1.
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(2) Recognition system and evaluation, Chapter 2 to Chapter 7.
(3) System expansion to continuous speech, Chapter 8 to Chapter 10.
(4) Conclusions, Chapter 11.

Chapter 1: The introduction begins with speech as a human-machine communica-
tion, then describes the background and the purpose of this study along with
recent studies of speech recognition and finally the contents of this report.

Chapter 2: An example of spectrogram reading behavior is shown. Then, a knowl-
edge representation that simulates the human expert behavior is described.
The framework of the expert system, spectrogram reading knowledge for ex-
plicit knowledge, non-deterministic strategy, representation of uncertainty us-
ing certainty factor and fuzziness, on-demand top-down control feature ex-
traction under phoneme context constraints, and neural networks representing
implicit knowledge are described.

Chapter 3: The architecture of a speech recognition expert system without a lan-
guage model is proposed along with its hardware configuration. The system
is realized as an integration of human knowledge and neural networks. The
system mainly consists of two parts: consonant recognition and vowel recog-
nition.

Chapter 4: The consonant recognition part is described in this chapter. Consonant
recognition consists of two main parts:

(1) Feature based phoneme segmentation.
(2) Neural network based phoneme identification.

The details of each part are presented and the experimental result tested on
an ATR database [Takeda 88] is discussed.

Chapter 5: In this chapter, five mechanisms for integrating knowledge and neu-
ral networks are studied to enhance their respective advantages. Consonant
recognition experiments are carried out, and show that the closer integration of
knowledge and neural networks improves not only identification performance
but also segmentation accuracy, effectively reducing insertion errors.

Chapter 6: The details of the vowel recognition part are described. Vowel recogni-
tion utilizes phoneme-spotting neural networks for vowel detection and knowl-
edge for verifying its category and boundaries. The effectiveness of this ap-
proach is shown through a vowel detection experiment.

Chapter 7: The evaluation of the overall expert system 1s performed using the
best integration of knowledge and neural networks proposed in this report. A
phoneme recognition experiment is shown for all Japanese phonemes on 2,620
isolated words in the ATR database.

Chapter 8: The robustness of a feature based segmentation against speaker inde-
pendency and utterance styles (speaking rate) is shown through experimental
results. The added and modified knowledge for system expansion is also dis-
cussed.
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Chapter 9: This chapter focuses on neural network structure to improve the
phoneme identification performance of continuous speech and reports a new
structure for phoneme identification neural networks, “Time-State Neural Net-
works” (TSNN). Phonemes in Japanese have certain rough temporal structures
of phonemic features which do not greatly change even when the utterance is
an isolated word or continuous speech. The proposed TSNN is able to deal
with the temporal structure of phonemic features, which is helpful for identify-
ing phonemes. Several types of TSNNs are described along with their phoneme
identification performance, tested on Japanese phonemes /b,d,g,mn,N/, taken
from isolated words, phrase and sentence utterances.

Chapter 10: This chapter focuses on neural network training to improve contin-
uous speech recognition. A new training method for phoneme identification

— neural networks, called “Neural Fuzzy Training” method, is proposed. The

general idea is described and the experimental results of phoneme identifi-
cation are presented. Moreover, continuous speech recognition experiments
using the TDNN-LR speech recognizer [Sawai 91] are performed. Dramatic
improvements of the proposed Neural Fuzzy Training method compared with
the conventional training method are shown.

Chapter 11: Finally, this chapter summarizes the study of this report and discusses
further studies.

Appendixes, References, Index are appended at the end of this report.
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KNOWLEDGE
REPRESENTATION

2.1 Introduction

In this chapter, an example of the spectrogram reading process performed by
a human expert is described in order to show the kinds of human knowledge and
how they are used. This knowledge is required to be incorporated into the system
naturally to implement a high performance knowledge based speech recognizer.

Secondly, this chapter presents knowledge representation in order to simulate
the spectrogram reading behavior. The knowledge and strategy used by a human
" expert in spectrogram reading strongly depend on phoneme context; moreover, it
is fuzzy. And knowledge consists of various kinds of precise and local, or rough
and global acoustic phonetic features. To simulate a spectrogram reading process
and to describe complex human knowledge easily and naturally on a computer, a
well-formed framework is indispensable. The knowledge representations that are
incorporated in the system are listed below:

e Expert system.

o Spectrogram reading knowledge.

o Nomn-deterministic contextual strategy.

o Representation of uncertainty.

e Representation of fuzziness.

¢ On-demand top-down control acoustic feature extraction.
e Time-Delay Neural Networks.

13
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2.2 Spectrogram Reading Process

Figure 2-1 shows an example of a spectrogram uttered by a male speaker. The
utterance /sukunakutomo/ is visualized as a two-dimensional pattern. The horizon-
tal axis indicates the time scale and the vertical axis indicates the frequency scale.
Shading indicates the power inside a certain region of the time and frequency do-
main. Spectrogram reading is a technique for identifying phoneme categories with
their boundaries by using these visual acoustic phonetic features on a speech spec-
trogram. The spectrogram reading process for this example takes place as follows:

1. Rough segmentation is easily performed. In this case, the spectrogram is
separated into 11 regions. 1) From 350ms to 500ms, 2) 500ms to 570ms, 3)
570ms to 640ms, 4) 640ms to 670ms, 5) 670ms to 760ms, 6) 760ms to 830ms,
7) 830ms to 890ms, §) 890ms to 950ms, 9) 950ms to 1,040ms, 10) 1,040ms to
1,090ms, 11) 1,090ms to 1,200ms.

2. These regions are roughly classified into 3 regions.

silence region: 2), 6) and 8) with no power over the entire frequency range

(0-6,000Hz).

unvoiced region: 1) and 7) with no power in the low frequency range (0-
500Hz).

voiced region: 3), 4), 5), 9), 10) and 11) using the power in the low fre-
quency range (0-500Hz).

3. Region 1) has considerable power in the high frequency range (4,000-6,000Hz),
and no power in the low frequency range (0-500Hz). The duration is long.
Thus, the unvoiced-stop for /ch/ or /ts/, the unvoiced-fricative for /s/ or /sh/
or the phoneme /h/ are hypothesized as phoneme candidates.

4. The phoneme contexts are hypothesized at the same time and acoustic evi-
dence is evaluated. The acoustic features for the phoneme contexts for region
1) are silence for both left and right. The silence of the left context derives from
the location at word initial position. The right silence indicates the possibility
of the following vowel devocalization for it is uttered between unvoiced conso-
nants. The left boundary is not so sharp and the strong high frequency power
exists above 4,000Hz. Thus, the first candidate for region 1) is the phoneme
/s/. Phonemes /h/, /ch/, /ts/ will be the next candidates. The right phoneme
boundary is detected at the point of increase and the left phoneme boundary
at the point of decrease of the high frequency power.

5. Region 2) is silence, which may be the unvoiced-stop closure. There is some-
thing in the high frequency range, which seems to be a double burst. This
1s one indication of the phoneme /k/. The aspiration is not short enough to
suggest /p/ or /t/, and not long enough to suggest /ch/ or /ts/. Thus, the
first candidate will be the phoneme /k/. The right boundary will be obtained
at the start point of voicing where the low frequency power increases.
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From steps 4 and 5, the hypothesis of vowel devocalization is in accord with the
knowledge “vowel between unvoiced consonants happens to be devocalized”.
Region 3) is a vowel-like pattern, and using the pattern matching knowledge,
the first candidate is hypothesized as the phoneme /u/. Other evidence can
be found such as very low frequency power exists, which indicates that it is
not the phoneme /a/ or /o/. There is a strong power around 1,200Hz which
indicates this is not the phoneme /i/.

Region 4) is detected from a sharp spectral gap, which is one evidence of a
nasal. The duration is not short and there i1s a strong low frequency power
which is other evidence of a nasal. Thus, the phoneme candidates are /m/ or
/n/. To distinguish /m/ and /n/, the formant movement (almost invisible in
this case) of the preceding and the following vowel should be captured. The
left- and the right boundaries are obtained by the spectral gap.

Region 5) is another vowel-like pattern, and using the pattern matching knowl-
edge, the first candidate is hypothesized as the phoneme /a/.

Inside the region 6), 7) and 8), there are two silence closures and a fricative-like
pattern in the middle. Here, two concatenated unvoiced-stops with a devocal-
ized vowel are hypothesized. At 825ms, a burst is observed. The duration of
region 7) is not particularly long. The left boundary of region 7) is not sharp.
Region 8) is a complete silence with a sharp boundary on the right side, which
is a burst. The aspiration after the burst is very short. From this evidence, the
left phoneme candidate is /k/ and the right phoneme candidates are /p/ or
/t/. To distinguish /p/ and /t/, the formant movement to the following vowel
is important. The left boundary of the first phoneme is detected by the low
frequency power decreasing point where silence begins. The boundary of the
two phonemes is detected at the point where high frequency power decreases
around 870ms. The right boundary of the second phoneme is detected at the
low frequency power increasing point.

Region 9) is again a vowel-like pattern, and using the pattern matching knowl-
edge, the first candidate is hypothesized as the phoneme /o/. The second
formant of this vowel goes up into the preceding closure, which raises the
possibility that preceding phoneme is a /t/ rather than a /k/.

Region 10) is not short and has a very low frequency power and does not have
a high frequency power. This indicates the possibility of a nasal. In this case,
the first- and the second formant of the preceding and following vowel go down
into region 10). Thus, the first candidate for this region is hypothesized as
phoneme /m/. The left and the right boundaries are obtained by the edges of
the spectrum.

Finally, region 11) is a vowel-like pattern, and using the pattern matching
knowledge, the first candidate is hypothesized as phoneme /o/. The pattern
of regions 9) and 10) are similar which indicates that these two phonemes
are the same vowel. The right boundary is obta,lned at the point where the
following silence begins.
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2.3 Expert System

Since the knowledge based approach [Zue 86] was proposed for speech recogni-
tion, several speech recognizers have been developed [Carbonell 86] [Mizoguchi 87]
[Stern 86] [Connolly 86]. However, most of these conventional systems adopted sep-
arate structures for 1) the acoustic feature extraction part and 2) the phoneme
recognition part, utilizing only static human knowledge for phoneme identification.
Knowledge was represented using frameworks of simple if-then rules and certainty
factors. Moreover, very limited acoustic features were used, because of the difficul-
ties of automatic extraction. These acoustic features were extracted and symbolized
by pre-processing to be executed by the rules for phoneme recognition.

However, as shown in the aforementioned spectrogram reading process of a
human expert, human knowledge consists of not only static knowledge but also
dynamic knowledge. A human expert spectrogram reader recognizes phonemes by
simultaneously performing phoneme segmentation and phoneme identification us-
ing his/her dynamic knowledge in combination with static knowledge. Dynamic
knowledge is the strategy for phoneme recognition which is performed by hypoth-
esizing phoneme contexts and by extracting appropriate acoustic features, while
static knowledge is the verification of the acoustic evidence.

To cope with this knowledge, a good framework is required. In the proposed
expert system, an assumption-based inference is incorporated to describe phoneme
contextual knowledge and to realize a contextual non-deterministic strategy. Also,
certainty factors and the idea of fuzzy sets, are adopted to represent the uncer-
tain and fuzzy knowledge. Acoustic phonetic features are automatically extracted
(on-demand top-down control feature extraction), using appropriate methods and
parameters according to the phoneme contexts when the features are referred by
the rules. And knowledge, which is difficult to explicitly describe, is represented by
neural networks. These techniques make it possible to incorporate human expert
knowledge into a system easily and naturally. '

2.4 Spectrogram Reading Knowlledge

As already mentioned, a human expert simultaneously performs phoneme seg-
mentation which determines phoneme positions in speech as well as phoneme identi-
fication while reading a spectrogram. Not only for identification but also for segmen-
tation, a human expert has his/her knowledge concerned with the acoustic phonetic
features and coarticulation, and uses this knowledge for segmentation by extracting
acoustic features through his/her strategy according to phoneme contexts. Thus, a
human expert is able to obtain highly accurate phoneme boundaries, regardless of
acoustic variations in the phoneme caused by coarticulation.

The acoustic features which are used for phoneme segmentation are more facile



2.5. NON-DETERMINISTIC STRATEGY 17

than those of phoneme identification, not only in extracting acoustic features but
also in describing in explicit rules.

In this system, the spectrogram reading knowledge, both dynamic and static, is
mainly focused on the phoneme segmentation purpose rather than phoneme identi-
fication, by simulating the human spectrogram reading process. The segmentation
process detects phonemes on a speech spectrogram and determines their left and
right boundaries along with their phoneme classes using human expert knowledge
and strategy described in rules. Some knowledge for phoneme identification is also
incorporated into the system, such as formant frequency range of vowels, however
this knowledge is used as additional information and not as the main information
for phoneme identification.

2.5 Non-Deterministic Strategy

Phonemes in continuous speech have a number of acoustic variations caused by
the effect of coarticulation from the preceding and/or from the following phonemes.
For this reason, a human expert hypothesizes various phoneme contexts and acoustic
variations of phonemes and evaluates these hypotheses by verifying acoustic evidence
when reading a spectrogram. To obtain more reliable phonemes, appropriate strate-
gies have to be selected, and suitable acoustic features have to be extracted from a
spectrogram according to the phoneme contextual hypotheses.

Through an assumption-based inference technique, the expert system is able
to deal with phoneme contextual knowledge and variations, and also is able to re-
alize a non-deterministic contextual strategy. Phoneme contextual knowledge is
described as rules under the conditions of each phoneme context, and is only ap-
plied within the hypothesized phoneme context. When several kinds of phoneme
contexts may be hypothesized, phoneme detection is performed under each con-
dition of each phoneme contextual hypothesis in parallel, independently. ART’s
[ART 87] ATMS (assumption-based truth maintenance system) [de Kleer 86] man-
ages the consistency of these hypotheses, by a prohibition of combining contradictory
hypotheses.

Each hypothesis is evaluated as correct or incorrect. When the hypothesis is
correct, a sequence of certain rules under the hypothesis is applied without con-
tradiction, to determine a phoneme. On the other hand, when the hypothesis is
incorrect, some condition of the rules (in which the phoneme context is described)
differs from the actual phoneme context on the spectrogram. In such a case, the
phoneme cannot be determined because of the contradictory phoneme context, or
else the phoneme will be determined with a low certainty. The phoneme with the
highest certainty is selected as the final result among all candidates determined
from each hypothesis. The assumption-based inference makes it easy and natural to
describe knowledge which is dependent on phoneme contexts and on phoneme vari-
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ations as rules. This is because the conditions of these rules are phoneme contexts
and phoneme variations. Moreover, this assumption-based inference also makes it
very easy to describe these conditional rules, because it only has to take account of
each phoneme context and each phoneme variation condition in each rule.

2.6 Representation of Uncertainty

When reading a spectrogram, a human expert hypothesizes several phoneme
contexts and phoneme variations. Simultaneously, these hypotheses are judged as
correct or incorrect, by collecting positive or negative evidence using acoustic fea-
tures extracted from a spectrogram. However, it cannot be defined clearly that
these hypotheses were correct or incorrect, and the correctness of these hypothe-
ses can only be obtained. The existence of acoustic evidence on a spectrogram is
also very difficult to clearly identify. Most of the evidence can be characterized as
“the acoustic feature can be observed clearly” or as “the acoustic feature can be
observed but not clearly”. These examples show that the existence of the acoustic
evidence should be represented with some sense of certainty. Thus, the certainty of
the hypothesis is evaluated by its importance, by its certainty, and by the amount
of evidence. In this way, the hypothesized candidates through spectrogram reading
are represented with a degree of certainty, which cannot definitely be evaluated as
right or wrong.

Generally, when solving a problem of uncertainty, there are relations such as
AND, OR and COMB (combination) between various evidence used in the hy-
potheses. The evidence in an AN D relation shows a necessary condition, and the
evidence in an OR relation shows a sufficient condition. Evidence in a COMB
relation can be independent positive or negative proof [Ishizuka 85].

For instance, “the power between 0Hz to 500Hz is large”: This evidence is a
positive proof that a phoneme is a vowel, and is also a necessary condition. On
the other hand, “a double burst exists”: This evidence is a positive proof that a
phoneme is a burst, but it is not a necessary condition, for no other phoneme except
phoneme /k/ has a double burst. Moreover, in spectrogram reading, this kind of
evidence is evaluated independently and regardless of order.

There are some methods to deal with uncertainty like Bayesian probability,
“MYCIN” certainty factor [Buchanan 85] system, subjective Bayesian method,
probabilistic theory of Demster-Shafer, or fuzzy set theory. Each of these meth-
ods has advantages and disadvantages. This system basically adopts the certainty
factor calculation model of the MYCIN system, and modifies it to be able to deal
with the evidence evaluation, regardless of order. This model is adopted because
the MY CIN model is able to deal with unsigned values, is able to calculate the
COM B relation, and is easy to define the importance and certainty of the evidence
intwitionally. Moreover, the calculation of certainty factors is easily understandable.
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In the certainty factor calculation model of the MYCIN system, the value of
the certainty factor CF lies between [—1, +1]. When CF = -1, the hypothesis
is absolutely negative, when C'F' = +1, the hypothesis is absolutely positive, and
when CF = 0, it means that the hypothesis is neutral and cannot be defined as
right or wrong. When the hypothesis has no evidence, its certainty factor is defined
as CF = 0. The certainty factor CFp, where P is a condition of some hypothesis,
will be calculated according to the relation between the evidence x and y, with their
certainty factors of C'I; and C'F, shown in the following equations.

(1) the relation between the evidence x and y is AND:

CFp =min(CF,,CF,)

(2) the relation between the evidence = and y is OR:

CFp = mazx(CF;,CF,)
(3) the relation between the evidence z and y is COM B:
Cl,+(1-CF,;) - CFy fCF,>0and CF,>0

(CF, +CFE) |
' = f < ‘ <
CFP 1-7’7?,zn(|CFx|,|CFyD 1 CFI__OOI CFy_O

CF,+(1+CF,)-CF, i#CF,<0andCF, <0

Though there is no theoretical background in this MYCIN equation of the
COM B relation, the certainty factor result from this equation is easy to understand
intuitively. This certainty factor calculation model is adopted because any positive
and negative certainty factors can be combined in any order. The certainty of the
hypothesis from the N evidence can be integrated, in general, by applying these
equations of relations one by one.

Each certainty factor calculation equation (and, or, combine) preserves com-
mutativity. This means that if only one kind of relation from these three is used
and when integrating move than three bits of evidence, the given result will take
the same value regardless of the order of the evidence integration. However, if two
or three kinds of relations are used among these three equations for the integration,
the result value will change according to the order of the evidence integration. This
means that evaluation of the evidence using two or three relations from AND, OR
and COAM B is not possible, regardless of the order of evidence integration.

To avoid this problem, a three—tuple score representation of certainty factors is
proposed for each relation of evidence (AND, OR and COM B) during the hypoth-
esis as follows:
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CFh = {C’Fanda CFm‘; CFcomb}

where CFyng, CF,., CF.ms are the integrated certainty factor results of each
AND, OR and COM B relation. The initial value of the certainty factors is {1,-1,0},
when there Is no evidence at the beginning. Each certainty factor of the evidence is
integrated into CFyny, CFor and CFopp according to each AND, OR and COM B
relation. In addition, some weight is multiplied according to the importance of
the evidence in the hypothesis, when its certainty factor is integrated in a COM B
relation.

CF}, is accumulated into a scalar score, when all evidence evaluations in all the
hypotheses have been completed. Thus, the three-tuple scores can generally be in-
tegrated into certainty factors of COM B relations using the maz() function for an
AND relation and the min() function for an OR relation. This is because an AN D
relation is a necessary condition and an OR relation is a sufficient condition. More-
over, in this system, evidence of a sufficient condition is treated as more important
than the evidence of a necessary condition. This is because, generally in spectrogram
reading, the hypothesis, in which the evidence of sufficient condition is observed, is
determined to be successful. On the other hand, hypotheses in which the evidence
of necessary condition is not observed, are not determined to be unsuccessful. Thus,
the CFy is accumulated as a scalar value in the next equation:

CFh = maa:{min(CFcomb, CFand), CFO,-}

In this way, each AND, OR and COMB calculation preserves commutativity
during the evaluation of the hypothesis, because every evidence integration for each
relation is performed individually. Thus, the final scalar result can be obtained
regardless of the order of evidence integration. This means that it is possible to
integrate results by evaluating a lot of evidence which has relations of AND, OR
and COM B, in any order.

2.7 Representation of Fuzziness

The human’s knowledge of acoustic features extracted from a spectrogram
has a certain fuzziness, in other words, it is qualitative. For instance, “the low
frequency power of vowel is strong, but that of voiced-fricative is not so strong”.
Accordingly, the degree of knowledge is represented in qualitative phrases like “very
strong”, “strong”, “not so strong”, “weak” and “very wealk”, and does not have
clear boundaries. Moreover, the mapping from the numerical quantity of an acoustic
feature to a qualitative concept used by a human expert, is different in each phoneme

context. Ior instance, -50dB of low frequency power is “slightly weak” for a vowel,
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but “suitable” for a voiced-fricative, while -20dB is “sufficiently strong” for a vowel,
but “too strong” for a voiced-fricative.

To deal with such fuzziness, the theory of fuzzy sets [Zadeh 65] is a good frame-
work. Using the fuzzy membership function of this theory, it is easy to map a
qualitative representation into a numerical one. The fuzzy knowledge is represented
using this idea in this system.

In a spectrogram reading as described above, the mapping from a qualitative
representation such as “strong” and/or “weak” to a physical quantity, is not a simple
or a single relation, which means that it is not able to give one single fuzzy mem-
bership function to each qualitative representation. Thus, the fuzzy membership
function must be defined depending on each extracted acoustic feature and depend-
ing on each phoneme context. Figure 2-2 shows an example of a fuzzy membership
function of low frequency power ( 0-500Hz ) for voiced-fricatives, which appears in
the medial part of the utterance. This function shows how the extracted feature
fits into the phoneme contextual hypothesis. In other words, the value obtained by
mapping the physical quantity through the fuzzy membership function, represents
the certainty of existence for the extracted feature. The dynamic range of this fuzzy
membership function is defined between [—1; +1] which lies in the same range as the
certainty factor, so as to be directly applied to the calculation model of the certainty
factor described in the previous section.

As a result, this makes it easy for a human expert to represent knowledge about
a physical quantity for the extracted features from a spectrogram using an intuitional
mapping, which also makes it possible to evaluate the certainty of a hypothesis for
the extracted feature without using any thresholds.

2.8 Acoustic Feature Extraction

Spectrogram reading uses various kinds of global and local, or rough and pre-
cise acoustic features on a spectrogram. A human expert is able to extract such
acoustic features under the phoneme contexts, by predicting and focusing on the
feature existence on a spectrogram, and by selecting the appropriate method with
its thresholds. In the same manner, this system extracts the acoustic features under
the phoneme context hypotheses simultaneously, when the rules are executed.

This malkes it possible to supply an appropriate method with proper parameters
by top-down control, to extract the acoustic features, such as frequency ranges, time
ranges, thresholds and smoothing factors. As a result, the various acoustic features
used by a human expert can be precisely extracted, easily and accurately.

Here is an example of the feature extraction of a power increasing point. This
acoustic feature extraction function (power-increase .....) searches for the power in-
creasing point 7time and obtains its value 7change. This function searches from
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?point within 7range toward before (left) or after (right) between ?lowfrq (low fre-
quency) and ?highfrq (high frequency) by using tlie ?*smoothing™ (smoothing rate)
and its ?*threshold*.

(power-increase (7time ?change)
after 7point ?range ?lowfrq Thighfrq *7smoothing® 7*threshold*)

As described, every parameter depends upon the feature to be extracted with its
phoneme and phoneme context. The following two examples show the difference of
feature extraction parameters which closely depend on the phoneme and its context.

(1) Searching power increasing point for the right boundary of phoneme /r/ in the
medial part of the utterance.

(power-increase
(?time 7change) after 7point ?lqd-range
?lqd-lowfrq ?lqd-highfrq *?lqd-smoothing™® 7*iqd-start-threshold*)

where 7point is search start point,
?lqd-range = 50ms,
?lqd-lowfrq = 1,000Hz, ?lqd-highfrq = 4,000Hz,
?*|qd-smoothing® = (5 3), almost no-smoothing,
7*|qd-start-threshold* = 0.5

(2) Searching power increasing point for the left boundary of phoneme /s/ in the
medial part of the utterance.

(power-increase

(?time ?change) before ?point ?frc-range

re-lowfrq  7fre-highfrq  7*frc-smoothing®  7*frc-end-threshold*)
where ?point is search start point,

?frc-range = 150ms,

?frc-lowfrq = 4,000Hz, ?frc-highfrq = 6,000Hz,

*frc-smoothing* = (10 9), normal smoothing,

?*frc-start-threshold* = 0.5

Here are the acoustic features which can automatically be extracted in the
current system.

(a) Spectral power in certain frequency ranges.
(b) Time when the spectral power increases or decreases across thresholds.
~ (¢) Time and magnitude of spectral power change peaks in certain frequency
ranges.
(d) Frequency and magnitude of spectrum peaks.
(e) Cutofl frequency of fricative power.
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2.9 Time-Delay Neural Networks

Time-Delay Neural Network, TDNN, is a neural phoneme classifier and consists
of a layered feed-forward neural network. Waibel showed the incredible performance
of TDNN on phoneme identification, comparing with the HMM identification result
obtained on the same data [Waibel 89]. Thus, TDNN is adopted as a pattern match-
ing knowledge for phoneme identification in the expert system.

The following properties are considered in a TDNN architecture, to be useful
for speech recognition.

e Multiple layers and sufficient inter-connections between units in each of these
layers to ensure that the network has the ability to learn complex non-linear
decision surfaces.

o Ability to represent relationships between events in time. These events could
be spectral coefficients, but might also be the output of the higher level feature
detectors.

e Tolerance in time of the actual features and abstractions learned by the net-
work.

e Small number of weights in the neural network compared to the amount of the
training data for better generalization.

In the following, the architecture of TDNN design is described.

The basic unit used in many neural networks computes the sum of the weights
its inputs and passes this sum through a non-linear function. In the TDNN, this
basic unit is modified by introducing delays D1 through DN as shown in Figure 2-3.
The J inputs of such a unit will be multiplied by several weights, one for each delay
and one for the undelayed input. For N=2, and J=16, for example, 48 weights will
be needed to compute the weighted sum of the 16 inputs, with each input measured
at three different points in time. In this way, a TDNN unit has the ability to relate
and compare current input with the passed history of event. The sigmoid function
was chosen as the non-linear output function F' due to its convenient mathematical
properties. An example of a four layer TDNN with the overall architecture and its
connections for three phoneme identification tasks is shown in Figure 2-4.

In the proposed speech recognition system, a TDNN identifier modularly ex-
panded for 18-consonant identification for Japanese and a TDNN phoneme-spotter
for five vowels, one syllabic nasal and two semivowels are adopted as a pattern
matching knowledge.
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Chapter 3

RECOGNITION SYSTEM
OUTLINE |

3.1 Introduction

In this chapter, the hardware configuration and the system architecture, which
realize the proposed phoneme recognition expert system by integrating knowledge
and neural networks, are described.

3.2 Hardware

Figure 3-1 shows the hardware configuration of the expert system. The system
consists of two workstations, Symbolics and VAX, which are connected by Ethernet
for communication.

The system control part and the rule-based part are described by use of ART
[ART 87], which is a commercial tool for building expert systems on the Symbolics
workstation. The acoustic analysis, feature extraction and neural network perform
on a VAX workstation, and these are described in programming language C. Accord-
ing to the requests of the rules on the Symbolics, the VAX replies with the acoustic
features and phoneme identification results. The interface program is described in
Lisp programming language.

3.3 System Architecture

Figure 3-2 shows the rough architecture of the expert system. The expert
system, which recognizes phoneme in continuous speech, reads a spectrogram of
an input speech and determine phonemes using the human expert knowledge and
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strategy by utilizing rules and neural networks. The rules run by hypothesizing and
by verifying the possible phoneme candidates and phoneme contexts, as shown in
the figure as blocks ((__|). The lines (—) and arrows (—) in the figure show how
the hypotheses and verifications perform. The arrow (—) indicates the path which
gave the final result.

The system mainly consists of three parts:

(1) Consonant recognition.
(2) Vowel recognition.
(3) Phoneme determination.

In the consonant and vowel recognition parts, knowledge and neural networks
are integrated so as to improve the overall recognition performance. Finally in the
phoneme determination part, the system selects the results of consonant and vowel
recognition.

3.3.1 Consonant Recognition

In the consonant recognition part, the knowledge is mainly used for segmenta-
tion and the neural network is mainly used for identification. First, the segmentation
candidates are obtained using the knowledge. Then, the neural network is closely
integrated in order to determine the most likely phoneme category with its boundary.

3.3.2 Vowel Recognition

In the vowel recognition part, the system utilizes a neural network as a
phoneme-spotting method for detecting vowel candidates along with their rough
locations in the input speech. Then, in combination with rule-based knowledge, the
system verifies the vowel categories and determines the vowel boundaries.

3.3.3 Phoneme Determination

In the current system, the consonant recognition result and the vowel recogni-
tion result are combined in a simple fashion. The regions where consonant segments
are obtained by the expert system are all assumed to be correct, and the other re-
glons where consonant segments are not obtained are assumed to be vowel segments.
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Chapter 4

CONSONANT RECOGNITION

4.1 Introduction

In this chapter, the consonant recognition part of the expert system is de-
scribed. Knowledge in this part mainly consists of two types. 1) human knowledge,
both static and dynamic, for phoneme segmentation realized in a rule-based process,
and 2) pattern matching phoneme identification knowledge realized in a neural net-
work process. Details of each part and the evaluation of the Japanese 15-consonant
recognition is described.

4.2 Consonant Segmentation

Consonant segmentation, which is a rule-based system, is presented in this
section. Characteristics, Strategy and Examples are described.

4.2.1 Characteristics

The following characteristics are incorporated into the segmentation part of
the system for knowledge representation. Details have been already described in
Chapter 2.

e Phoneme boundaries are detected by hypothesizing and by verifying the
phoneme contextual acoustic evidence by utilizing the non-deterministic con-
textual strategy.

¢ On-demand top-down control feature extraction is performed which makes
it possible to extract proper acoustic features using appropriate extraction
parameters.
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e More reliable phoneme boundaries can be obtained by representing fuzzy hu-
man expert knowledge using the theory of fuzzy sets and certainty factors.

4.2.2 Segmentation Strategy

Knowledge of Japanese consonant segmentation is currently incorporated as
about 250 rules in the system. The rules are almost described for each phoneme
class: 1) unvoiced-stop, 2) unvoiced-fricative, 3) voiced-stop, 4) voiced-fricative, 5)
nasal, 6) liquid and 7) glottal. The phoneme segmentation is performed in the
following steps as shown in Figure 4-1.

(1) Detecting phoneme candidates.

(2) Hypothesizing phoneme context.

(3) Detecting and evaluating phoneme boundaries.
(4) Selecting more reliable boundaries.

Details of these processes are as follows:

Phoneme Candidate Detection

Phoneme classes and their rough locations are hypothesized as phoneme candi-
dates by referring to global and rough acoustic features, which can be the evidence of
the existence of the hypothesized phonemes. At the same time, the certainty factors,
computed from this acoustic evidences with some additional evidences, are assigned
to the hypotheses. Table 4-1 shows the 7-phoneme class categories in the current
system. At this stage, the system uses rough and global acoustic features. Thus,
even when the system observes only very slight evidence for a phoneme existence,
it tries to hypothesize the existence of the phoneme. As a result, extra phonemes
may be hypothesized, in other words more than one phoneme may be hypothesized
at the same location in the input speech. These extra phoneme candidates will
be rejected by evaluating the suitability of the acoustic evidence to the phoneme
contextual hypothesis.

Phoneme Context Hypothesis

The phoneme contexts, which include acoustic variations and their left and
right phoneme classes, are hypothesized for each phoneme candidate hypothesized
in the phoneme candidate detection stage. In most phonemes, phoneme context is
hypothesized as a) silence for the left context and vowel for the right context in the
initial part of the utterance, b) vowels for both left and right contexts, in the medial
part of the utterance.

Vowel devocalization often occurs when a vowel /i/ or /u/ appears between
unvoiced-stops or unvoiced-fricatives. In such cases, vowel devocalization should be
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assumed. Thus, for a phoneme context hypothesis of an unvoiced-stop which appears
in the medial of the utterance, a vowel and a devocalized vowel are hypothesized
as its left phoneme contexts, and a vowel, a fricative and another stop as its right
phoneme contexts. In addition, the existence of a double burst and the existence
of the low frequency power in the aspiration region or in the burst region are also
hypothesized for its own acoustic variations.

Boundary Detection and Evaluation

The consonant boundaries are determined in the following steps:

e Boundary Detection

Phoneme boundary detection, both the start point and the end point, is per-
formed for each phoneme candidate under each phoneme context hypothesis,
by referring to local and precise acoustic features. In this way, under the
correct hypothesis, correct boundaries can be obtained. Under the wrong
hypotheses, some wrong boundaries are obtained and/or are not obtained
because of some contradiction in the assumption-based inference. And some-
times, multiple boundaries are obtained under one phoneme context hypoth-
esis.

¢ Boundary Evaluation

The certainty of the detected boundary is calculated by integrating the cer-
tainty factor of the hypothesis of the phoneme candidate and those of the
phoneme contexts. Some hypotheses are evaluated explicitly and others implic-
itly. Explicit evaluation of a hypothesis is performed by verifying the acoustic
evidence directly when the acoustic feature is observed clearly in the phoneme
context hypothesis. For instance, in the case of “the right phoneme context
is an unvoiced stop”, the certainty of this hypothesis will be evaluated by
the certainty of the closure existence using its power. On the other hand, in
some cases, it is very difficult to evaluate the evidence by direct extraction
of the acoustic features. This kind of hypothesis is evaluated implicitly. In
such a case, the phoneme boundary is detected without verifying the acoustic
evidence in the hypotheses directly, but is assigned a certainty factor which
indicates how likely the acoustic measurements are when compared to the
conditions around the boundary of the hypothesis. As a result, a phoneme
boundary which is obtained under more reliable hypotheses will be assigned a
larger certainty factor. For instance, the hypothesis “an unvoiced-stop has no
extra low frequency power at the aspiration” is difficult to evaluate directly,
because it is not easy to tell the difference between the low frequency power
in the aspiration region, from that in the following vowel region.

e Selecting More Reliable Boundaries
As the result of detecting boundaries, more than one set of left and right
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boundaries may be detected for a phoneme, or more than one phoneme may
be detected at the same location in the input speech. The more reliable bound-
aries are selected from all the detected boundaries: By default, the boundaries
assigned larger certainty factors are selected. For some phoneme classes, the
certainty factors are recalculated by referring to additional acoustic features,
for example, phoneme duration after getting the left and right boundaries.
Finally, the coarsely classified phonemes and their left and right boundaries
are obtained with their certainty factors.

4.2.3 Rule Example

Here, two examples for consonant boundary detection considering their
phoneme context are presented.

¢ Boundary detection between /h/ and devocalized /u/

Figure 4-2 is an example of a spectrogram reading knowledge for phoneme
boundary detection: “when the vowel /u/ is devocalized between the phoneme
/h/ and an unvoiced-stop, the end point of the phoneme /h/ is located at the
boundary between the phoneme /h/ and the closure of the unvoiced-stop”.
In this system, this kind of phoneme contextual knowledge is described as
individual rules. For example, when the condition part of the following rule
is sufficient “phoneme candidate /h/ exists, and a silence section exists on its
right side”, the rule then executes the action, “detect the boundary between
phoneme /h/ and silence as an end point of phoneme /h/”.

To detect “the boundary between phoneme /h/ and silence” accurately, the
boundary is detected using precise acoustic features according to the phoneme
context in the next process;

(1) First, the system looks for the rough boundary, the rough start point of
silence, as a point where the 0-6,000Hz power drops to none.

(2) Then the system looks for the boundary, hypothesizing that the largest
formant of the phoneme /h/ comes into the silence region, using the
knowledge that “the phoneme /h/ has the same formant structure of the
following vowel”. Thus, the system computes the largest formant peak
around the start point of silence.

- (3) Next, the system determines that the point where the band frequency
power around the largest formant peak +200Hz drops to none, is the end
boundary of phoneme /h/ in this phoneme context.

e Boundary detection between unvoiced-stop and vowel
Figure 4-3 shows a description of a rule to obtain the right boundary of an
unvoiced-stop which is followed by a vowel and has no low frequency power in
the region of its aspiration. This rule performs as follows:
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(1) Rough location where the following vowel starts is found using 0-500Hz
power increase.

(2) 0-500Hz power in the vowel region is computed.

(3) The boundary, which is the end point of the unvoiced-stop, is obtained
as the time when the 0-500Hz power increases across the threshold of a
vowel.

The rule is applied in both cases where the phoneme context hypothesis “a stop
having no extra power at the aspiration” is correct and incorrect. When the
hypothesis is correct, the correct boundary is detected with a large certainty
factor, which is calculated from the power just at the right side of the boundary
and from the voiced-onset-time (the duration from the time of burst point
to the start time of the following vowel). However, when the hypothesis is
incorrect, which means “a low frequency power in the aspiration exists,” the
boundary is detected at a wrong position (at the start point of the following
vowel), where the low frequency power rises. Then, its certainty factor will be
calculated from the power of right side of the boundary which will be smaller
than the vowel power, and from the voice-onset-time which will be shorter.
Thus, the certainty factor of this hypothesis will be smaller than that of the
correct hypothesis, which will obtain the correct boundary under a correct
phoneme context. As a result, the correct boundary will be selected in the
next step.

4.3 Consonant Identification

This section presents a phoneme identification method which applies neural
networks to the phoneme segmentation results. The neural network for phoneme
identification in this system is the modularly structured Time-Delayed Neural Net-
works (TDNN) {Sawai 88] which is able to identify Japanese 18 consonants. First,
the characteristics and the structure of TDNN are presented. '

 4.3.1 Characteristics of TDNN
TDNN has the following characteristics:

(1) Easy training using the back-propagation training algorithm.

(2) Easy extension to large phoneme identification tasks by integrating small mod-
ules of TDNNs.

(3) High performance phoneme identification using both time and spectrum do-
main information.

(4) Time-shift tolerance thanks to a time-shifted tied-connected weight architec-
ture.
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With these advantages, the neural networks can easily be trained. It can be expected
that the system 1s able to identify a correct phoneme in high performance, even if a
slight boundary alignment error occurs in the phoneme segmentation stage.

4.3.2 18-Consonant Identification TDNN
Figure 4-4 shows the TDNN structure used in this system for the iden-

| tification of Japanese 18 comsonants: (/b/,/d/,/g/, [p/,/t/,/k/, /m/,/n/,/N/,

[s];/sh],[b],]z], [eh],[ts/, [x/,[w] and [y]).

Structure

This TDNN is made up feed-forward neural networks of four layers. The lowest
layer corresponds to spectral input values, the two next layers are hidden layers and
the topmost layer, which is the output layer, corresponds to each phoneme output.
The hidden layers of this network are modularly constructed from consonant sub-
category networks and integrated into one large network.

In particular, the input layer has 15 frames and 16 spectral coefficients (240
units) which makeit possible to deal with both the dimensions of time and frequency
simultaneously. The first hidden layer has 13 frames and the 2nd hidden layer has
9 frames for the time axis. And in the output layer, there are 18 units which
correspond to each of the 18 consonants to be identified.

Connection

The window architecture of the connections between the layers is time-shifted
and tied-connected, as shown in Figure 4-4. The connection in the time-shifted
window from input layer to hidden layer one is three frames to one frame, and
from hidden layer one to hidden layer two is five frames to one frame. The tied-
connected link to the output layer has the same weight for each output unit, i.e. the
weights of corresponding connections are constrained to be identical by the networlk
training, wherever their positions are shifted frame-by-frame over the time axis. In
this way, the network is forced to discover useful acoustic phonetic features in the
input regardless of their appearance position within the input window. This is an

~ important property, as it makes the neural network less prone to slight segmentation

errors. All weights are adjusted using the back-propagation training procedure.
The phoneme corresponding to the highest activated output unit is defined as the
classification result.

Training and Identification

In practice, phonemes are culled into data with a length 150ms and analyzed
through a 10ms window into 15 frames of input data. For Japanese phoneme train-
ing, the phoneme end point of the hand-label is aligned at the 100ms point, from
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the beginning of the 150ms TDNN input layer. Similarly, in recognition, the end
point of the phoneme segmentation result is also adjusted at the same input point
of the TDNN input layer. The neural networks were trained using the fast back-
propagation training method “Dynet” [Haffner 89]. And the phoneme identification
result for the applied segment is determined by the corresponding phoneme of the
TDNN output unit which indicates the maximum value.

4.3.3 Knowledge-TDNN Combination

For the baseline system of integrating knowledge and neural networks, the
simplest combination of the segmentation part and the identification part is adopted
in this chapter. The simplest combination of segmentation and TDNN is shown in
Figure 4-5. In this approach, the consonant segmentation result with the largest
certainty factor is selected and determined to be the final segmentation result. Then,
an 18-consonant identification TDNN (Figure 4-4.) is applied to the segment in order
to recognize the exact consonant category,

4.4 Consonant Recognition Experiment

In order to.evaluate the consonant recognition process in this expert system,
an experimental result is discussed.

4.4_1.1 Data and Task

The segmentation rules were tuned on an ATR database of phonetically bal-
anced 216 words uttered by one male speaker (MAU). TDNNs were trained on half
(even numbered words) of the ATR 5,240 isolated word database [Takeda 88] of
the same speaker. Experiments using the proposed system were carried out on the
other half (odd numbered words) of the same database. The task given to the expert
system was to find the location of consonants in the words and to recognize their
categories with their boundaries.

4.4.2 Acoustic Analysis

The acoustic analysis for the input speech is described.

e Input for Segmentation:
The input speech for phoneme segmentation is sampled at 12kHz and is an-
alyzed by FFT to 64 coefficients of band-powers through a 5ms Hamming
window at every 2.5ms shift. Then the spectrogram is smoothed along both
the time and frequency axis, and the power is normalized to lie between —20dB

and —80dB.
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e Input for Identification:
The input speech for phoneme identification (TDNN) is sampled at 12kHz
and is-analyzed by FFT through a 21.3ms Hamming window at every 5ms
shift. 16 mel-scaled coefficients are computed from the power spectrum to
collapse adjacent coefficients in time resulting in an overall 10ms frame rate.
The coefficients of each input token are then normalized to lie between —1.0
and +1.0 with the average at 0.0.

4.4.3 Evaluation Criteria

The following are the evaluation criteria for consonant segmentation and con-
sonant recognition.

e Criteria for Segmentation
The criteria of correct phoneme segmentation, deletion, insertion and substi-
tution are:

correct: When the boundaries, both the start and the end points of a
phoneme detected by the expert system, exist within 50ms of the
phoneme boundaries defined by hand-labeling

deletion: When the boundaries cannot be detected around the correct po-
sition where it should be. This case also includes when ether the start
or end boundaries detected outside a range 50ms from the hand-labeled
boundary.

insertion: When the phoneme boundaries (both start and end point) are
detected by the system where they should not be. This case also includes
when either the start or the end boundary is detected out of 50ms range
from the hand-labeled boundary. The following are typical examples for
insertion errors: “the boundaries of a consonant appeared in a vowel
region” or “ether a start or an end boundary is detected out of 50ms
range from the hand-labeled boundary.”

substitution: The difference of the number of all consonants and the sum of
the corrects and deletions.

e Criteria for Recognition
When the two following conditions are both sufficient, phoneme recognition is
evaluated as correct:

correct segmentation: Segmentation result is evaluated as correct in the
above criteria.

correct identification: TDNN output unit corresponding to the correct
phoneme category obtains the highest activating value and its value 1s
over 0.1.
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4.4.4 Result

Table 4-2 shows the experimental result tested on the half of the ATR 5,240
word database not used for TDNN training. Although the neural network is able to
identify the 18-consonant categories, the current system is only able to recognize 15-
consonant categories, because knowledge for syllabic nasal /N/ and semivowels /y/
and /w/ are not implemented yet. These phonemes are considered to be recognized
in a vowel recognition process. Thus, the evaluation of the system is performed on
the 15 consonants without these three phonemes.

The segmentation and identification results are described in each column of
Table 4-2. Correct in the Segmentation Result column shows the percentages
of the number of phonemes which are evaluated as correct using the criteria described
above. Average Boundary Error shows the averages of the boundary alignment
errors compared with hand-labeled boundaries, and the Insertion Errors column
shows the rates of extra segments for the number of consonants. Correct in the
Identification Result column, shows the percentages of phonemes both correctly
segmented and identified, which indicates the expert system ability. And finally,
In Correct Segment shows the percentages of correctly identified phonemes for
the number in correct segmentation, and TDININ Ability shows the percentages of
identification tested on phonemes pre-segmented by hand.

The segmentation score was 93.3% with 6.7% deletion error in total, and 5.8ms
boundary alignment error on the average. The insertion error rate was 27.8%.
TDNN correctly-identified 93.0% (In Correct Segment) of the phonemes whose
segmentation was performed correctly by the system. This score (93.0%) was almost
the same score as the 93.3% (TDININ Ability) obtained on the hand-labeled pre-

segmented phonemes.

Many insertion errors have appeared in the current system and the main reasons
for this are:

(1) Most of the current phoneme segmentation rules are described to detect bound-
aries even if there is a slight possibility of phoneme existence.

(2) Few rules which indicate negative evidence of phoneme existence are incorpo-
rated into the system, which is able to reduce the insertion errors.

(3) There are no segmentation rules for vowels, semivowels and syllabic nasals
which compete with the consonant segmentation rules; once a consonant seg-
mentation result appears in the vowel regions, it will counted as an insertion
error.

Indeed, most of the insertion errors appeared in the regions of vowel and syl-
labic nasal. If some method for detecting vowels is integrated in this system, the
insertion errors will be reduced effectively. Insertion errors caused by voiced-stop
and unvoiced-stop segmentation rules mainly appeared at the initial vowel in the



40 CHAPTER 4. CONSONANT RECOGNITION

utterance. These appear because the acoustic features at the burst point of the
initial vowel in an utterance is very similar to the acoustic features of the unvoiced-
stop and of the buzz-bar-less voiced-stop. Most of the insertion errors caused by the
nasal and the liquid rules occur in the last vowel in the utterance, where the acoustic
features, such as spectrum and power, are not stable. These insertion errors appear
because the boundary detection rules of these phonemes use very precise spectral
features and power changes.

Figure 4-6 shows the distribution of end point alignment errors for the hand-
labels and phoneme identification rates for each error location. The horizontal axis
shows the alignment error to right or left side compared with the hand-labeled
boundaries. More than 90% of the boundaries within the correct segments are
detected within the —10ms and +10ms.

From this result, it can be said that the boundaries detected by the system are
as accurate as the hand-labeled boundaries, because the hand-labeled ones also have
errors averaging less than 8ms [Takeda 88]. When the alignment errors are detected
inside the boundary errors of —20ms to 4-10ms compared with the hand-labels, the
phoneme identification rates are almost 90% or more. This performance is as good
as the average rate of TDNN ability, and through this result indicated that the
time-shift tolerance capability of the TDNN is about 30ms for all consonants, on
the average. All these factors indicate the effectiveness of this rule-based phoneme
segmentation method and this phoneme identification method based on TDNN.

Figure 4-7 shows the relation between the recognition performance for each
phoneme and the segmentation error. The vertical axis indicates the difference
between the average phoneme recognition rate (expert system ability) and the orig-
inal TDNN phoneme identification performance (TDNN ability) obtained by the
hand-labeled phoneme identification experiment. The horizontal axis indicates the
average segmentation error for each phoneme. The Average, X in the figure, shows
the average point of the boundary alignment error of 5.3ms for the all phoneme
segmentation and -0.9% lower TDNN phoneme identification performance than the
original TDNN phoneme identification performance. -0.9% is obtained from “expert
system ability” — “IDNN ability” (92.4% — 93.3%).

The unvoiced-fricative /s/,/sh/ and stops /b/,/d/,/t/ were segmented within
5ms of the hand-label accurately and their phoneme identification performance was
greater than the average. The tendency of the other phonemes showed that “the
larger the boundary error is the lower the identification performance is”, except
phoneme /p/ and /z/. The reason for the lower performance of phoneme /p/ de-
rives from the insufficient number of the TDNN training data. In this case, even
though there is a slight error of the boundary, the performance drops drastically.
On the other hand, in the case of phoneme /z/, there are no other phonemes whose
feature has both low frequency power and large high frequency power. Thus, the
phoneme /z/ is quite different from other phonemes. Thus, even if there is a large
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segmentation error, high phoneme identification performance on phoneme /z/ can
be obtained,

Overall, the expert system correctly recognized 86.8% of the total number
of phonemes, both in phoneme segmentation and phoneme identification. Every
phoneme recognition rate is over 75%, except for the phoneme /g/. This is pri-
marily because the rules to detect typical /ng/ segments were not described yet,
and also because the identification ability of the TDNN for voiced consonants was
slightly worse than that for other phonemes. An additional reason for deletion er-
rors in phoneme segmentation is observed. There are several acoustic variations or
allophones which appear on the testing database but did not appeared in the 216
word database used for segmentation rule creation.

4.5 Conclusion

This chapter presented the consonant recognition part of the proposed expert
system which consists of 1) a rule-based phoneme segmentation based on spectro-
gram reading knowledge, and 2) phoneme identification based on neural networks
adjusted on the resulted segments. It also discussed an experiment result using this
system for speaker dependent Japanese consonant recognition.

The consonant recognition part of this expert system has the following charac-
teristics:

(1) Highly accurate phoneme segmentation can be achieved by hypothesizing the
coarse classified phoneme and its left and right contexts simultaneously when
determining phoneme boundaries.

(2) High performance phoneme identification can be achieved by applying neural
networks to the accurate result of phoneme segmentation.

(3) More reliable phoneme recognition results can be obtained because every result
and hypothesis for phoneme segmentation and identification are represented
with some measure of certainty.

Because of these advantages, the proposed system can achieve a high perfor-
mance of both phoneme segmentation and identification, which were shown through
the experiment. And this method may be one of the most promising ways to build
a high performance phoneme recognizer.

The expert system presented in this chapter was realized in a very simple com-
bination of the phoneme segmentation part and the phoneme identification part
in which each part performs individually and independently. It is easy to imagine
a more sophisticated integration of each part for this expert system, which would
improve not only the segmentation accuracy but also the phoneme identification ac-
curacy, and it would definitely improve the phoneme recognition performance itself.
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The best way to combine the segmentation and identification methods, so as to make
use of their respective merits, should be studied. Phoneme identification could also
be improved by applying different kinds of neural networks according to phoneme
contexts. In the next chapter, a more sophisticated integration of knowledge and
neural networks is proposed and evaluated.
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(defrule sg-h-right-silence-1
"Find a right boundary of /h/, which right context is silence.”
(declare (salience ?*right-segmentation*))
(segment-status ?segment segmentation)
(category ?segment h) :
(right-context ?segment silence)
7x<-(CF (right-context ?2segment silence) ?CFright-silence)
(not (applied ?segment sg-h-right-silence-1))
(prop ?segment (candidate-loc ?from ?to))
;11 search segmentation posision of right silence
(power-end ?power-end & "NONE
after 7to 150 0 6000 ?*h-right-is-silence-power*)
(spectrum-peak (?peak-freq& NONE
&:(?peak-freq > = 1000
&:(?peak-freqg < = 6000) ?peak-amp ?peak-Q)
at = (- ?power-end 10) ?power-end
7*spectrum-peak-smoothing-for-h*)
(not (spectrum-peak (?pk-fq& NONE&:(?pk-fq > = 1000)
&:(?7pk-fg < = 6000) ?another-peak-amp
&:(> ?another-peak-amp ?peak-amp) ?pk-Q)
at = (- ?power-end 10) ?power-end
?*spectrum-peak-smoothing-for-h*)
(power-end ?h-end& " NONE
&:(< (abs (- ?h-end ?power-end)) 50)
after =(- ?power-end 50) 100 =(- ?peak-freq 200)
=(+ ?peak-freq 200) ?*h-right-is-silence-power*)
;;: check charasterictics of right silence
(power-strength ?h-end =(+ ?h-end 30) 0 6000 ?spw-0-6000)
(CF (h-power-is-silence-closure ?spw-0-6000)
?CFspw-0-6000&:mightbe-valid)
=>
(retract 7x)
(assert (applied ?2segment sg-h-right-silence-1))
(assert (prop ?segment (following-silence-start-time ?h-end)))
(assert (CF (right-context ?segment silence)
= (CFand (CFcomb ?CFright-silence (CFweight
?*evidence* ?CFspw-0-6000)) ?CFspw-0-6000))))

Figure 4-2: Rule Example for Glottal /h/.
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(defrule sg-uvstop-bfr-vowel-3a
“find a right boundary of an unvoiced stop
with no aspiration powerin low freq,
and followed by a vowel."
(declare (salience ?*left-segmentation®))
(segment-status ?segment segmentation)
(CF (category ?segment unvoiced-stop)
?CFcategory&:mightbe-valid)
?7x <- (CF (right-context ?segment vowel)
?CFcontext&:mightbe-valid)
(CF (has-burst 7segment yes) ?CFburst&:mightbe-valid)
(prop ?segment (burst ?burst-start ?burst-end ?burst-freq))
(prop ?segment (has-burst-power-in-low-frequency no))
(prop ?segment (has-aspiration-power-in-low-frequency no))
(not (applied ?segment sg-uvstop-bfr-vowel-3a))
(power-increase (?vowel-region& "NONE ?change)
after =(- ?burst-start 20) 150
0500 -
?*normal-smoothing-size* ?*default-min-change*)
(power-strength
=(+ ?vowel-region 20) =(+ ?vowel-region 40)
0500
?voicing-power)
(CF (vowel 0-500-power ?voicing-power) ?7CFvowel)
(power-start 2vowel-start& " NONE
before =(+ ?vowel-region 40) 100
0500
= (- ?voicing-power 10))
(CF (unvoiced-stop voice-onset-time
= (- ?2vowel-start ?burst-start)) ?CFvot)
=>
(assert (applied ?segment sg-uvstop-bfr-vowel-3a))
(retract ?x) ‘
(assert (prop 7segment (following-vowel-start ?vowel-start)))
(assert (CF (right-context ?segment vowel)
=(CFand (CFcomb ?CFcontext
(CFweight ?*evidence* ?CFvowel)
(CFweight ?*weak-evidence* ?CFvot))
?CFvowel
?CFvot))))

Figure 4-3: Rule Example for Unvoiced-stop.
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Table 4-1: Phoneme Classes and Spectrogram Acoustic Features
for Phoneme Candidate Detection

Phglr;c:;-ne Phoneme ' Spectrogram Acoustic Features
Un;/&l;ed- 0,1, k, ts, ch Closure & Burst
Unvoiced- . Large High Frequency Power
fricative s, sh, hi) Indicating Fricative
Voiced- b d Closure & Burst with Buzzbar,
stop 4. g Burst with Weak Buzzbar (Initail Utterance)
Voiced- . Large High Frequency Power Indicating
fricative Fricative and Weak Low Frequency Power
Glottal h Weak Middle and High Frequency Power
Indicating Fricative
' Large Low Frequency Power and
Nasal m,n Weak High Frequency Power
Liquid r Short Time Power Dip in Middle Frequency

Table 4-2: Phoneme Recognition, Segmentation and Identification Results

Segmentation . Indentification
Phoneme Result Insertion Result TDNN
Correct| Average Error Ability
Category| Number (%] Eror%??r?':; C?;ﬁd Igegﬁgi?
e | 28] 964 | 42 | 893 | 926 | 1000 |
. 461] 980 | 43 "] 939 | 958 | T9a5 ]
kCTITTA3000 978 s8] 174|895 [T916 [ 835 ]
| ch_[TThanTens [ TTE 759 | 829 | 874
ts 2201 93.2 5.6 85.5 91.7 93.5
s 572| 883 | 35 | .5 |.841 | 952 | 935 |
sh 3871 92.0 4.5 91.7 99.7 97.5
h 313] 88.8 8.3 7.7 80.5 90.6 94.0
z 315] 85.4 9.6 11.1 - 83.8 98.1 97.5
B 230] 983 [ 47 | 938 | 956 | 935 |
T 17707983 |34} 157 | 793.2. | 9as [ 922 ]
g 263] 83.7 8.9 70.0 83.6 90.5
_m_| 485 953 | 60 | g, |.870 | 913 | 935
n 2731 97.8 |- 5.7 86.1 88.8 89.0
r 7601 90.7 6.2 47.4 86.1 94.9 97.5
Total 5925| 93.3 5.8 27.8 86.8 93.0 93.3




Chapter 5

INTEGRATING KNOWLEDGE
AND NEURAL NETWORKS

5.1 Introduction

This chapter discusses the method of integrating human knowledge and neural
networks in the consonant recognition part of this expert system. As previously
mentioned, the consonant recognition part is performed in three stages:

(1) Consonant segmentation based on spectrogram reading knowledge.

(2) Consonant identification based on neural networks.

(3) Consonant determination using the results of segmentation and identification
stages.

Several mechanisms for integrating phoneme segmentation based on spectro-
gram reading knowledge and phoneme identification based on neural networks are
studied to enhance their respective advantages. Consonant recognition experiments
are carried out, and show that the close integration of segmentation and identifica-
tion improves not only phoneme identification performance but also segmentation
accuracy. Furthermore, the proposed integration shows an effective reduction of
insertion errors. '

5.2 Segmentation and Identification

Details of the phoneme segmentation process and phoneme identification pro-
cess are already described in Chapter 4.

In the phoneme segmentation process, not only the phoneme boundaries but
also the phoneme classes are produced, because the boundaries are obtained under
the condition of some assumed phoneme context which includes phoneme class.

49
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In the phoneme identification process, phoneme candidates are produced using
the Time-Delay Neural Network. The advantage of the TDNN is a high perfor-
mance phoneme identification and a time-shift tolerance capability. This capability
provides the system with a high phoneme recognition, even if a slight boundary
alignment error occurs in the phoneme segmentation stage.

5.3 Integraﬁion of Knowledge and TDNN

Several integrating mechanisms of knowledge based segmentation and neural
network based identification for the final consonant determination stage are pro-
posed, compared and discussed. Here are the proposed mechanisms:

1) Simple combination of knowledge and single TDNN (baseline, Chapter 4).
2) Simple combination of knowledge and selective TDNNs.

3) Close combination of knowledge and single TDNN.
4)
5)

Close combination of knowledge and selective TDNNs.
Integration of a reject filter.

(
(
(
(
(

5.3.1 Simple Combination of Knowledge and Single
TDNN

The simple combination of knowledge and single TDNN is shown in Figure
5-la. In this approach, the consonant segmentation result with the largest certainty
factor is selected and determined to be the final segmentation result. Next, an 18-
consonant identification TDNN, as shown in Figure 5-2a, is applied to the segment
in order to recognize the exact consonant category. Details of this combination are
described in Chapter 4. |

5.3.2 Simple Combination of Knowledge and Selective
TDNNs

Generally, phoneme identification performance of the TDNN is higher when
the number of phoneme identification classes is smaller. Thus, if a consonant class
1s determined with certainty, better identification performance can be obtained by
applying a smaller intraclass identification TDNN corresponding to its class. Using
this approach, as shown in Figure 5-1b, two separate TDNNs are adopted in or-
der to identify consonants within voiced/unvoiced classes (voiced/unvoiced TDNNs:
Figure 5-2b). The appropriate TDNN is chosen according to the voiced/unvoiced
class decision, whose result is rarely wrong, obtained in the consonant segmentation
stage.
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5.3.3 Close Combination of Knowledge and Single TDNN

The rough consonant classification information produced in the phoneme seg-
mentation stage can be utilized in a more sophisticated way in combination with
TDNN phoneme identification.

As described in the section on the consonant segmentation part, the system
produces not only the phoneme boundaries but also the phoneme classes. This is
because the boundaries are obtained under the condition of some assumed phoneme
context which includes phoneme class. In the first simplest combination mechanism,
this phoneme class information was ignored. The second approach, which is a sim-
ple combination of knowledge and selective TDNNs only uses the voiced/unvoiced
class decision of the segmentation stage as a pre-process classification. However, to
use this sort of information in combination with a TDNN is helpful in improving
the overall system performance. The approach proposed here, as shown in Fig-
ure 5-1c, is a more sophisticated integration of consonant segmentation knowledge
and TDNN identification. The recognition result is determined by considering the
suitability of the identified consonant category from the 18-consonant identification
TDNN, as shown in Figure 5-2a, with the phoneme class obtained from the conso-
nant segmentation. The final certainty factor of the consonant recognition result,
CF,..(), is calculated through a suitability function f(). The result which obtains
the largest certainty factor is determined to be the most reliable recognition result.
The integrated knowledge-TDNN certainty factor CF...(), is calculated using the
next equation:

CF,e. = combine(CFyey, CFpp)

CF'n.'n. =k- Wnn . f(arg(seg),arg(nn))

where

CF,e: certainty factor of the final recognition result

CF,ey: certainty factor of the segmentation result

CF,,: certainty factor of the identification result

Won: activating value of the TDNN for the 1dentified consonant
arg(seg): consonant class from segmentation

arg(nn): identified consonant category from the TDNN

k: TDNN reliability (the larger, the more reliable)

f(): fitness of consonant for consonant class

if (category C phoneme class)
‘then f() returns 1.0;

else if (category C voiced/unvoiced class)
then f() returns 0.5;
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else
f() returns —1.0;

combine(): certainty factor calculation model of MYCIN

Practically, the suitability function f() is realized as a table of phoneme cate-
gory, phoneme class and phoneme context. In the current system, the phoneme cat-
egories are the 18 consonants; the phoneme classes are voiced-stop, voiced-fricative,
unvoiced-stop, unvoiced-fricative, nasal, liquid, glottal (for /h/); the phoneme con-
texts for this current table are position in the utterance, either initial or medial.
The values in the table are between —1.0 and +1.0, where +1.0 indicates that the
results obtained from the knowledge and TDNN have very good positive suitability
while —1.0 indicates the contrary. These suitability values have a sense of gradual
levels, defined according to the degree of fitness between the phoneme category and
the phoneme class.

For example, the phoneme /r/, which appears in the medial of the utterance,
has a degree of fitness with phoneme classes as follow: very well with a liquid, quite
well with a voiced-stop, slightly with a nasal, rather badly with a voiced-fricative
and really badly with the other phoneme classes. And in the current system, the
scores in the table for the gradual fitness are fixed as 0.8 for very well, 0.5 for quite
well, 0.2 for slightly well, —0.2 for rather badly and —0.8 for really badly.

This integration improves not only the consonant identification performance of
this system, but also improves the accuracy of the segmentation. This is because
the system chooses the best combination of results obtained by knowledge based
segmentation and TDNN based phoneme identification.

5.3.4 Close Combination of Knowledge and Selective
TDNNs

The idea of the fourth approach is a combination of the second approach
(see 5.3.2) and the third approach (see 5.3.3) applying separate TDNNs for
voiced/unvoiced- class according to the voiced /unvoiced classification obtained in
the segmentation stage, which is shown in Figure 5-1d.

5.3.5 Integration of a Reject Filter

The final approach is shown in Figure 5-le. In this approach, a reject filter
1s added in the close combination of knowledge and single TDNN approach. When
the result obtained by the segmentation part and the result obtained by the identi-
fication part strongly conflict, they will be rejected by this reject filter in order to
reduce the number of incorrect insertion errors. In other words, when the phoneme
category identified by TDNN conflicts strongly with the phoneme class obtained
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from the segmentation, the result will be rejected. This mechanism drastically re-
duces the number of insertion errors. However, this mechanism does not reduce
the recognition performance; it only reduces the insertion errors or exchanges the
substitution errors for deletion errors. The reason for this is as follows: If the final
recognition is correct, the segmentation with phoneme class and the phoneme cate-
gory is correct. The proposed mechanism does not perform in this condition. If the
segmentation is incorrect, this is an insertion error. TDNN applied to this segment
may result in some phoneme category. In this case, the phoneme category of TDNN
may strongly conflict with the segmentation result and the proposed mechanism
performs to reject all these results. Thus, the insertion error will be reduced. If the
segmentation is correct but the phoneme category obtained by TDNN is incorrect,
this is a substitution error. In this case, the proposed mechanism also performs and
if these results strongly conflict, it rejects the results and the substitution error is
exchanged for a deletion error.

5.4 Comparison Experiment

Experiments to compare the proposed five mechanisms were carried out using
the ATR 5,240 isolated word database. The task given to the expert system was
to find the consonants in the words and to recognize their categories with their
boundaries.

5.4.1 Experimental Condition

All of the experimental conditions such as database for rule-training, database
for TDNN training, database for testing, the task and evaluation criteria, acoustic
analysis for segmentation and identification process are exactly the same as those
described in Chapter 4 experiment. The neural networks were trained using the fast
back-propagation training method “Dynet” [Haffner 89].

5.4.2 Result

Table 5-1 shows the results of consonant recognition experiments using the
five proposed mechanisms. The column labeled Recog. shows the rate correctly
recognized by the expert system for both consonant segmentation and identification.
Ins. Error shows the insertion error rate. Seg. shows the rate correctly segmented.
Boundary Ave. Error shows the average boundary alignment error of the correct
segments for the hand-label. Ident. shows the rate correctly identified in the correct
segments.

e Simple combination of knowledge and single TDNN (D (baseline).
e Simple combination of knowledge and selective voiced /unvoiced TDNNs )
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¢ Close combination which considers the suitability of knowledge and single
TDNN. k=0.4 @ (k is the TDNN reliability) and k=0.8 @ are adopted.

¢ Close combination of knowledge and selective voiced/unvoiced TDNNs. k=0.4
® and k=0.8 @ are adopted.

¢ Integration of reject filter with the close combination of knowledge and single
TDNN. k=0.8 @ is adopted.

First, the four mechanisms are compared: Q@@ @O® and &

Comparing @ and @) the improvement in columns RECOG. and IDENT. shows
the effectiveness of applying smaller consonant identification TDNNs selectively.
Comparing D and @/ @ or @ and ®/ @) it can be seen that the more sophisticated

combination which considers the fitness of the identified consonant category with the.

consonant class is effective. Almost all results in Table 5-1 improved. In particular,
the insertion error rate was effectively reduced.

However, in comparing @ and & or @ and & no improvement can be
seen. This means that the combination mechanism is not adequate for selecting
voiced /unvoiced TDNNs. This is because there is no inhibition between voiced and
unvoiced consonant classes when using voiced/unvoiced TDNNs selectively. Once
a consonant class error occurs in consonant segmentation, an inadequate TDNN is
selected and, by combining these results, the certainty factor of the wrong result
may be larger than that of the correct one.

The combination mechanism adopted in @ showed the best total score among
the six experiments. The rate, correctly recognized and segmented, shows as good
a score as the best in each column. In particular, the insertion error rate is reduced
to its lowest value (18.6%), and the average boundary alignment error reaches its
minimum value of 5.38ms.

An additional experiment was performed by integrating the proposed reject fil-
ter with the best knowledge and TDNN integration mechanism. The function of the
suitability between the result obtained form the segmentation part and the identi-
fication part are slightly modified to improve the overall system performance. The
experimental result () is shown in Table 5-1. From the result, a drastic reduction
in the insertion errors can be seen. Slight recognition improvement can also be
observed. «

The recognition, segmentation and identification performance of @ for each
phoneme is shown in Table 5-2. Correct in the Segmentation Result column
shows the percentages of the number of phonemes evaluated as correct using the
criteria described above. Average Boundary Error shows the averages of the
boundary alignment errors compared with hand-labeled boundaries, and the Inser-
tion Errors column shows the extra segment rate for the number of consonants.
Correct in the Identification Result column, shows the percentages of phonemes

Y s ke At
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both correctly segmented and identified, which indicates the expert system ability.
And finally, In Correct Segment shows the percentages of correctly identified
phonemes for the number in correct segmentation, and TDINN Ability shows the
percentages of identification tested on phonemes pre-segmented by hand.

As a result, a phoneme recognition experiment showed a 89.4% recognition rate
for Japanese 18 consonants. The deletion error rate was 5.9%, the substitution error
rate 4.7% and the insertion error rate 12.4%, using the best integration mechanism.

5.5 Conclusion

A consonant recognition system, which uses a sophisticated and closer inte-
gration of knowledge and TDNN is proposed. The experiments showed that more
reliable phoneme recognition results can be obtained by integrating knowledge and
TDNN in a more sophisticated manner. Using this approach, the proposed system
is able to achieve high phoneme recognition accuracy.

Consonant recognition experiments showed that the closer combination which
considers the suitability of knowledge and TDNN improved not only consonant iden-
tification but also segmentation accuracy. It also effectively reduced the number of
insertion errors. Furthermore, the experiment showed the effectiveness of integrating
the proposed reject filter.
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5.6 Figures & Tables
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Table 5-1: Integration Mechanism Comparison of
Human Knowledge and Neural Networks
L Condition Result
Combination
TDNN Boundary
Method |Num.| TDNN Reliability [R€COG-| Ins. | Seg. |, o"et Y] Ident.
Simple_ @ |18-cons - 86.8 | 27.8 93.3 5.75 93.0
Simple with |
Selective @ | ViUV - 87.7 | 27.8 | 93.3 5.75 94.0
TDNNs
@ |18-cons| k=0.4 | 88.8 | 22.0 | 94.6 543 | 93.9
G o1 R Mt AR LTS SESEEES SEEEEES EEEEEEEE EEEEERERS RN,
@ |18-cons| k=0.8 | 88.8 | 18.6 94.5 5.38 93.9
Closewith | ® | v/uv | k=0.4 | 888 | 226 | 937 | 543 | 94.8
Selective f-==---m—mmqmmmmm oo oo e et
TDNNs ® | ViUV | k=0.8 | 88.4 | 22.6 | 93.1 540 | 94.9
With a
Reject Filter @ |18-cons] k=0.8 | 89.4 | 124 94.1 5.42 95.0

Table 5-2: Phoneme Recognition, Segmentation and Identification Results

Phoneme Segmentation Indentification
Result Insertion Result TDNN
Average Erro Correct iti
Category| Number Co[trﬁd Eg_g??r%g o o[%]c Isne(é%g%g[t Ability
B 28] 929 | 46 ~89.3_| 962 | 1000
|t | Tae1]Tee3| a3 | L B TAT 7
" kTTA300] 966 [ 57 ] 119|910 19427 7[77935
| ch_ | Taat]Teis [T75E ] 816 | 891 | "87.4 ]
ts 220} 93.6 5.0 87.6 93.6 93.5
.___§ _________ 5 _7_2_.__9_2_'§ ______ 3_ '_3____ 3.4 ___8..9.:9___L__9_§:.8_ ______ 9‘:3’:..5__“
sh 387 94.3 5.4 93.8 99.5 97.5
h 3131 91.7 8.9 0.6 86.6 94 .4 94.0
z 3151 87.0 9.4 1.0 86.7 99.6 97.5
b | 230 965 | 47 | 952 | 986 | 935 |
AT 177] 7983 |35 | 128 | 904 | 920 | 922 |
g 263} 79.8 8.9 73.0 91.4 90.5
| m | 485|940 | 57 | o | 868 | 923 | 935 |
n 273 95.2 5.2 86.4 90.8 89.0
r 760] 954 4.0 13.0 91.2 95.6 97.5
total 5925 94.1 5.4 12.4 89.4 95.0 93.3
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Chapter 6

VOWEL RECOGNITION

6.1 Introduction

The vowel recognition part in this expert system utilizes a neural network
for detecting vowel candidates. The spectrogram reading knowledge is utilized for
verifying the vowel categories and for detecting boundaries. In this part, five vowels
/a,i,u,e,0/, one syllabic nasal /N/ and two semivowels /y,w/ are recognized. The
neural network for vowel recognition is also a TDNN which is used as a phoneme-
spotting method. The time-shift tolerance capability of the TDNN is expected to
be a good phoneme-spotting method to detect vowels, syllabic nasal or semivowels
whose spectral features are stable or change smoothly.

6.2 Vowel Recognition

Vowel recognition is performed in the following steps:

Vowel Region Detection

Possible region for vowels is determined using the power of low frequency range
(0-1,500Hz and 500-1,000Hz).

Vowel Region Division

The vowel region is divided at the point of a large spectral change peak in the
low and middle frequency range (0-3,000Hz) by assuming that a vowel change exists
at that point. ‘

63



64 CHAPTER 6. VOWEL RECOGNITION

TDNN Vowel Spotting

Vowels and their rough locations are detected using TDNN for phoneme-
spotting in the divided vowel regions. TDNN, which detects vowels and semivowels,
is shifted over the input speech frame-by-frame, as shown in Figure 6-1, which spots
five vowels /a,i,u,e,0/, one syllabic nasal /N/ and two semivowels.

TDNN is trained by adjusting the center of the vowel and semivowel samples to
the center frame of the input layer. The frame-by-frame vowel outputs which have
values over a certain threshold are blocked together, and the block is hypothesized
as a vowel candidate. The certainty factor of the vowel candidate depends on the
block duration and the sum of the activating values within the block. If this certainty
factor is not large enough, the hypothesis will be rejected.

Boundary Detection and Category Evaluation

The boundaries of the vowels /aiue,0/ and /N/ are detected by searching
for points where the spectral difference in the low and middle frequency range (0-
3,000Hz) rises over a fixed threshold. The search is conducted from the middle of
the hypothesized vowel candidate toward its left and right sides. The existence of
the semivowels /y/ and /w/ is evaluated by phoneme context. In Japanese, /v/ and
/w/ can appear only in a very limited phoneme context. Phoneme /y/ appears at
the utterance initial position or between the phonemes /p,bk,g,z2,m,n,r,h/, the five
vowels /a,i,u,e,0/, and /a,u,0/. Phoneme /w/ only appears at the utterance initial
position or between the five vowels and /a/.

Additionally, the certainty factor for the candidate is recalculated by using du-
ration information. When a conflicting region exists among these vowel candidates,
each certainty factor is recalculated using the lowest frequency spectral peak in the
conflicting region, by assuming the lowest frequency spectral peak as a first formant.
The vowel given the largest certainty factor is determined to be the vowel recognition
result.

Without the integration of this knowledge, i.e. if the system directly uses the
results of the vowel-spotting TDNN, a large number of insertion errors may occur.

6.3 Vowel Recognition Example

Figure 6-2 shows a vowel recognition example and Figure 6-3 shows the spec-
trogram for this utterance. The utterance is a Japanese word /omowazu/. The
horizontal axis indicates the time scale and the vertical axis indicates the frequency
scale. The phonemes and acoustic events of hand-label lie at the top of this fig-
ure. The segments under the hand-labels are the recognition results obtained by the
expert system. The dotted segments just below the recognition result with vowel
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characters are the vowel candidates produced by TDNN vowel-spotting. Between
600ms to 700ms, two candidates of vowel /a/ and /o/ are obtained by the TDNN-
spotting. Spectrum peaks are calculated between the conflicting region. In the
figure, formant peaks 1,218.8Hz and 2,625.0Hz were obtained. Using these formant
peaks, the certainty factors of the two vowel candidates are recalculated. The for-
mant of vowel /o/ is generally lower. Thus, the certainty of the vowel /o/ candidates
is decreased and finally the vowel /a/ is obtained as a vowel result for this region.

6.4 Vowel Detection Experiment

Here, the effectiveness is shown through a vowel detection experiment.

6.4.1 Experimental Condition

The training data for the vowel-spotting TDNN are selected from the odd num-
bered words in the ATR 5,240 isolated word database, up to 500 phonemes for each
category. The acoustic analysis for the input speech conditions are exactly the same
as those used in the consonant recognition experiments in chapter 4. The neural
networks were trained using the fast back-propagation training method “Dynet”
[Haffner 89]. The task given to the expert system in this vowel detection exper-
iment was to determine what kind of, and how many, vowels will be detected in
the vowel regions of the input speech. In this task, mis-detection in the consonant
regions of the input speech is of no consequence.

Here, the blocked vowel candidates were used to evaluate vowel detection per-
formance. The blocked vowel candidate with the largest certainty factor is selected
from among the candidates which overlap each other in the middle of their block
candidates.

6.4.2 Result

Table 6-1 shows the result of the vowel detection experiment: The column
Num. is the number of vowels for testing. The column Rate is the ratio of correct
detection to the number of testing vowels. The bold number on the diagonal of this
matrix is the number of vowels which are correctly detected. And the number in the
parentheses () are the insertion errors. The total detection score was comparatively
good, 96.1% [7,726/8,043]. The top five causes for detection error were: 1) vowel
/a/ mis-activated in /y/ following /a/, 2) /i/ in /¥/, 3) /u/ in [N/, 4) Jo/ in /u/,
5) /u/ in Jy/ following /u/.
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6.5 Conclusion

The vowel recognition part in this expert system is described. This part uti-
lizes the TDNN as a vowel-spotting method for vowel candidate detection. The
spectrogram reading knowledge is used for category verification and for boundary
detection. The effectiveness of the proposed method is shown by the vowel and
semivowe] detection experiment.
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6.6 Figures & Tables
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CHAPTER 6.

VOWEL RECOGNITION

- - Table6-1: Vowel Detection

Num.| a | i | u e o | N |y |w R;)te
1772 1(7791) -t - e (]l (n] - | 999
1333| - 1("581"; aol (o) - | (2] @] (1| s90
1615] (9)| (20) 1(57%1) o) Ga)| anl (e| - | 942
829| (5)| (5| (6) (81282 - on] (3] - | 989
1352 (28) - | (26)] - 1(?;334? ( 4) - | 930
a88| (17)| (19| 7®)| (@] (3) é%‘; - | es4
573| (88)| (85)| 44| (21)| (16)| - (5152‘)1 (1| 967
s1] 33| (3| (2| - | anl (] (v (701) 87.7

Average Detection Rate : 96.1% [7726/8043]
Numberin () Indicates the Mis-spotting Vowel




Chapter 7
FULL SYSTEM EVALUATION

7.1 Introduction

_This chapter presents a phoneme recognition example using the proposed ex-
pert system and discusses all phoneme recognition experiments without using any
language model.

7.2 Recognition Example

Figure 7-1 shows an example recognized using the current expert system. The
input speech is /subete/, whose spectrogram is shown in Figure 7-2. In the figure, @
shows the spectrogram plane where the horizontal axis indicates the time axis(ms)
and the vertical axis indicates the frequency axis (kHz). The blocks @ with the
alphabetic labels at the top of the figure are the hand-labels. The upper ones are
the phoneme labels and the lower ones are the event labels. Immediately below
are the final recognition results ®of the system for this input. The dotted-line
segments @ with vowel labels are the vowel-spotting results from the vowel identifi-
cation TDNN. The next bars & are the global acoustic features for searching for the
rough location of phonemes. The characters ® under the bars are the consonant
candidates from the 18-consonant identification TDNN. The segments () with the
phoneme classes are the segmentation results. The dotted-line segments ® are the
phoneme segment candidates. The vertical dotted-lines (9 are the candidates for
the phoneme boundaries and the number indicates their position in the time scale.
The a) rectangles, b) bold vertical lines, ¢) small circles, d) bold rectangles and e)
horizontal lines on the spectrogram plane @ are the acoustic features @@ wused in
the current system:

a) spectral power in certain frequency ranges.

T1
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b) time when the spectral power increases or decreases across thresholds deter-
mined according to the phoneme context.

c¢) time and magnitude of spectral power change peaks in certain frequency
ranges.

d) frequency and magnitude of spectrum peaks.

e) cutoff frequency of fricative power.

In this example, the phonemes are correctly recognized both in segmentation
and identification. '

7.3 All Phoneme Recognition Experiment

All phoneme recognition experiments were performed for total system evalua-
tion purposes.

7.3.1 Experimental Condition

The experimental conditions are exactly in the same conditions previously de-
scribed. The acoustic analysis for the input speech conditions are the same. The
knowledge for the rules is created using an ATR database of 216 phonetically bal-
anced words uttered by a single male speaker (MAU). Both TDNNs for the 18-
consonant identification and for vowel-spotting are trained on half (the even num-
bered words) of the ATR 5,240 isolated word database, uttered by the same spealker.
The neural networks were trained using the fast back-propagation training method
“Dynet” [Haffner 89].

All phoneme recognition experiments were performed using the other half of
the 5,240 isolated word database (the odd numbered words). The task given to the
system was to find phonemes in the words and to recognize their categories.

In the consonant recognition part, the proposed close integration of knowledge
and TDNN with a reject filter, which showed the best performance in the consonant
recognition experiment, is adopted. The consonant recognition part and the vowel
recognition part are combined in a very simple fashion. In the current system, the
regions which have consonant segments are assumed to be correct and the results
obtained by the consonant recognition part is determined as consonant regions.
The other remaining regions are assumed to be vowel, syllabic nasal or semivowel
segments.

7.3.2 Evaluation Criteria

The criteria of the evaluation is as follows:

correct recognition: The correct phoneme is found inside the region
of that phoneme in the input speech.



3. ALL PHONEME RECOGNITION EXPERIMENT 73

~1
<

substitution error: The correct phoneme is not found inside the region
of the input speech phoneme, instead, another incorrect phoneme
is found.

deletion error: No phoneme is found inside the region of the input
speech phoneme.

insertion error: The phoneme produced by the system is neither a
correct recognition nor a substitution error.

7.3.3 Result

Table 7-1 shows the confusion matrix for all phonemes appearing in the testing
data. There are 23 Japanese phonemes. The column Num shows the total numbers
of each phoneme, Del. the number of deletion errors and Rate the percentage of
phonemes correctly recognized by the system. The row Ins. shows the number of
insertion errors. The number of phonemes correctly recognized lies on the diagonal
in this confusion matrix. The numbers which lie off the diagonal are the substitution
errors. Thus, the sum of “correct recognition”, “substitution error” and “deletion
error” is equal to the number of the input phonemes. All the results obtained by
the system have certainty factors (C'F) over a certain threshold ( CF > 0.2).

Overall, the phoneme recognition experiment produced a 91.4% [11,612/12,710]
recognition rate for all Japanese phonemes. The deletion error rate was 3.6%, the
substitution error rate 5.0% and the insertion error rate 20.7%.

The phoneme recognition results for /i/,/y/,/w/,/ch/ and /g/ were not suf-
ficient. The main reason is that the vowel detection by TDNN-spotting was not
sufficient for the phonemes /i/,/y/,/w/. Moreover, when the phoneme /i/ is uttered
between an unvoiced phoneme or the phoneme /z/, the duration becomes very short.
Thus, the phoneme /i/ has many deletion errors. This is also true in the case of the
phoneme /u/. The reason for errors in recognizing the phoneme /ch/ is substitution
errors with the phoneme /sh/. The acoustic features of the phoneme /ch/ and /sh/
are very similar, particularly in utterance initial positions. For the phoneme /g/,
the reason for the errors was that the segmentation knowledge was not well-tuned.
Thus, the current system cannot determine the phoneme boundary of the phoneme
/g/ with sufficient accuracy. '

Most of the insertion errors were vowels, semivowels, unvoiced-stops and the
phonemes /g/ and /r/. The main cause of the insertion errors were the vowels.
Many short vowels, but whose duration exceeded 30ms, appeared at the transitional
part of the voiced regions. Insertion errors caused by the unvoiced-stops /p/,/t/,/%/,
mainly appeared in the utterance initial vowel position. These appeared because the
acoustic features at the burst point of the initial vowel in the utterance is very similar
to the features of the unvoiced-stop, and of the buzz-bar-less voiced-stop. Most of
the insertion errors caused by the phonemes /g/ and /r/ occurred in the last vowel
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in the utterance, where the acoustic features, such as spectrum and power, are not
stable. These insertion errors appeared because the rules to detect these boundaries
use very precise spectral features and power changes.

Some of these errors, especially those which occurred due to the insufficient
rules, for instance phoneme /g/ deletions, insertions and deletions of short vowels,
can be improved by adding more knowledge. Although errors occurring by TDNN
mis-identification are fatal now, TDNN, itself, has to be improved.

7.4 Conclusion

The proposed phoneme recognition expert system, which is realized by a close
combination mechanism of human knowledge and neural networks, is evaluated
using the ATR isolated word database. The experimental result showed that high
phoneme recognition performance can be achieved without any language model,
using this approach. |

A phoneme recognition experiment showed a 91.4% recognition rate for all
Japanese phonemes. The deletion error rate was 3.6%, the substitution error rate
5.0% and the insertion error rate 20.7%. This phoneme recognition performance
was realized without using any language model.
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Chapter 8

ROBUSTNESS OF FEATURE
BASED SEGMENTATION

8.1 Introduction

A phoneme recognition expert system by integrating spectrogram reading
knowledge and neural networks has been described. In the previous chapters, the ef-
fectiveness of a phoneme recognition expert system integrating spectrogram reading
knowledge and phoneme identification based on neural networks is shown.

The spectrogram reading knowledge is mainly used for segmentation because
phoneme segmentation is not as difficult as identification using a feature based ex-
pert system. The neural networks are mainly used for phoneme identification after
the segmentation because of the high identification performance on pre-segmented
phonemes. Through phoneme recognition experiments, it is shown that the inte-
grated system is one of the most promising ways to recognize continuous speech.
However, all these experiments were performed under the condition of speaker de-
pendent isolated word speech. This expert system should be expanded to a speaker
independent continuous speech recognition system. As the first step in this expan-
sion, the robustness of this segmentation module to speaker independent speech and
continuous speech is tested.

This chapter presents the performance of a feature based phoneme segmentation
expert system, tested on speaker independent and continuous speech. The exper-
iments were performed both on isolated word speech uttered by six male spealkers
and on speaker dependent continuous speech. The additional and modified knowl-
edge for this expansion is also reported by the difference of the rules and fuzzy
membership functions.
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8.2 Rule Expansion

Details of the feature based consonant segmentation part have already been
described in Chapter 4. The system consists of about 250 rules in the current
expert speech recognizer and produces the left and right phoneme boundaries and
its phoneme classes.

The rule creation and brushing up have been performed in a style shown in
Figure 8-1, using an ATR database of 216 phonetically balanced words uttered by
one male speaker (MAU). The basic rule creation is performed in the following steps:

(1) Pick up several data having typical spectrogram pattern for creating segmen-
tation rules. '

(2) Describe the rule by carefully observing the spectrogram, then testing and
modifying iteration is performed until the described rule is correctly seg-
mented.

(3) Test the rule using the hole database, and pick up the unsuccessful data, go
to (2).

(4) Modify the rule until it segments the error data sufficiently. If the acoustic
features or acoustic environments strongly differ, a new rule must be described,
goto (1).

To expand the expert system from speaker dependent to speaker independent
and/or from isolated word to continuous speech, the same iteration of rule creation
will be applied, as shown in Figure 8-2. The speaker dependent rules are utilized for
the initial rules for speaker independent rule training. The process of rule creation
and knowledge expansion is exactly the same except the data to be trained.

8.3 Segmentation Experiment

The evaluation of phoneme segmentation is performed using Japanese con-
sonants in the ATR database. The robustness of this segmentation module of the
expert system is tested on the ATR 216 phonetically balanced word speech database
uttered by six male speakers. The robustness to continuous speech is tested on the
ATR short and long Japanese phrase continuous speech database uttered by one

male speaker (MAU).

8.3.1 Experimental Condition

The task given to the system is to find consonants in the utterances and to
determine their phoneme boundaries, both start and end points. The knowledge
for consonant segmentation (about 250 rules), used in the current system, is basi-
cally created from the ATR 216 phonetically balanced isolated word speech database
uttered by one male speaker (MAU). The phoneme segmentation rules have been
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enhanced so that the success rate is over 96% using the same MAU training data.
When the testing is performed on six male speakers, some knowledge is added and/or
modified using another male speaker (MNM). Details of acoustic analysis and eval-
uation criteria are exactly the same which are described in section 4.4.2 and 4.4.3,
respectively.

8.3.2 Result

Table 8-1 shows the consonant segmentation experiment results on a) 2,620
isolated words uttered by one male speaker, b) Japanese short and long phrases
uttered by one male speaker and ¢) 216 isolated words uttered by six male speakers.
In the case of the 2,620 isolated words and phrase utterances, knowledge was trained
by one male speaker (MAU) on 216 isolated word utterances. In the case of six male
speaker utterances, two results are shown:

(1) knowledge trained by one male speaker (MAU).
(2) knowledge trained by two male speakers (MAU and MNM).

The result for 2,620 isolated words is already reported in Chapter 4. In the
table, the column Task indicates the utterance style. Data consists of Speaker for
speaker information, Number for number of data. Result consists of Segmen-
tation, Boundary Error and Insertion Error. Segmentation indicates the
percentage of phonemes whose start and end boundaries were detected within 50ms
of the hand-labeled boundaries. Boundary Error is the average of the boundary
alignment errors compared with hand-labeled boundaries. Insertion Error is the
ratio of extra segments to the number of phonemes.

Figure 8-3 shows the distribution of the boundary alignment error compared
with the hand-labeled boundaries in the database for short and long phrases uttered
by one male speaker and 216 isolated words uttered by six male speakers. From these
distributions, it can be seen that, in any case, most of the errors lie between —15ms
and +15ms. :

The overall experimental results are as follows. The average result, which is
correctly segmented by the system on the six male speakers, is 91.1% [2,938/3,226]
with an average boundary alignment error of 6.2ms. The result on the short phrase
utterance was 89.2% [2,374/2,661] and 5.6ms. The result on the long phrase ut-
terance is 87.6% [2,336/2,667] and 5.5ms. These results are as good as, or slightly
worse than, the previous experiment result on the speaker dependent 2,620 isolated
word speech, which is 93.3% [5,530/5,925] and 5.7ms. These results, especially the
boundary alignment errors, are as good as those achieved by human labeling.
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8.3.3 Discussion

This section discusses the difference in acoustic features between utterances
or between speakers through knowledge which was added and/or modified in this
experiment.

Table 8-2 shows the average segmentation results for each phoneme tested on
1) 216 isolated words uttered by six male speakers, 2) phrases (short and long)
uttered by one male speaker and 3) on 2,620 isolated words by one male speaker.
Num. indicates the number of phonemes. Rate indicates the ratio of correct
segments to the number of phonemes. Bndry Error indicates the average of the
boundary alignment errors compared with hand-labeled boundaries. Ins. Error
Rate indicates the rate of extra segments to the number of phonemes.

The tendency of the performance for each phoneme is very similar whether
tested on 2,620 isolated words, on phrase utterances or on six male speaker 216
words. Results which were not so good on 2,620 isolated words such as /g/, /z/,
/h/ and /s/ worsened, especially in the case of phrase utterances. For the phoneme
/g/, the knowledge itself is not enough even for the isolated word utterances in
the training data. For the other phonemes /z/, /h/ and /s/, the influence of the

_ fricative increases the high frequency power of the next vowel, which mismatches the

inbuilt phoneme contextual knowledge trained by the isolated words. This mismatch
reduces the certainty factors of the correct segmentation hypothesis.

From the result of six male speakers trained by one male, the results of three
speakers were over 90% and others were about 80% (see Table 8-1). This indicates
that three speakers have some different acoustic phonetic features from the training
speaker. Moreover, it is very interesting that the performance of the speakers (MHT,
MSH, MTK) who were not trained also improves when additional knowledge for
another speaker (MNM) was added and/or modified.

Only some knowledge is modified or added to the multiple speaker expansion.
Only three kinds of knowledge described as rules out of about 250 are directly
added or modified. Moreover, only seven kinds of knowledge described as fuzzy
membership functions, out of about 120, are modified. They are shown in Table §-
3. Two examples of the modified fuzzy membership functions are shown in Figures
8-4 and 8-5. '

From the number of rules and fuzzy membership functions for expansion, it can
be said that most of the additional speaker MNM knowledge is the fuzzy membership
functions. And the modification of these fuzzy membership functions were very
small as shown in Figures 8-4 and 8-5. These fuzzy membership functions map the
acoustic measurements to the certainty factors, which represent the suitability of
the measurements in their phonetic contexts, e.g., the power level function for the
unvoiced-stop closure, the power level for voiced-stop buzz-bar and the power level
for burst, etc. Also, a few rules were added, e.g., the rule of searching for the rough

NPV
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location of the nasal. In this case, the balance of low and high frequency power was
different between speaker MAU and MNM. Also, in the case of the unvoiced-stop in
speaker MNM, the formant of the previous vowel with the largest power comes into
the closure part. This kind of acoustic feature was rarely observed in speaker MAU
utterances.

Finally, from these results, it can be said that most of the rough contextual
knowledge of phonemes for segmentation can be obtained from one speaker. How-
ever, more precise adaptation or modification of knowledge should be done for each
speaker to achieve good performance.

8.4 Conclusion

The expansion of a feature based phoneme segmentation module of the expert
system toward speaker independent continuous speech were presented. This system
utilizes spectrogram reading knowledge and the strategy used by a human expert
when reading spectrograms, and determines the phoneme boundary along with the
phoneme class. The experiments were performed both on isolated word speech
uttered by six speakers and on speaker dependent continuous speech. The results
were as good as, or slightly worse than the result tested on speaker dependent
1solated word speech.
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. Table 8-1: Performance of Phoneme Segmentation

Data Result
Task

Speaker Number | Segmentation |Boundary Error { Insertion Error

2,620 words MAU 5925 93.3 5.75 27.8

short phrase MAU 2661 89.2 5.58 25.7

long phrase MAU 2667 87.6 5.47 24.5
_MAU | 526 963 | 508 I 333

solated 216 MHT 539 90.0 5.88 33.2
olated 216 |-t 228 e 2 2R BT R
Word Using MMY ............... 5 35 .......... 918 .................. 549 .................. 3 18 .........
Rules JMNMOT 5421 .. 80.4 ... 725 e 63.3......
Trained by MSH ] CELH 80.9 .. ... 70 ] 459 ..

MAU MTK 546 83.2 6.78 42.1

all 3226 87.1 6.26 41.9
N 546 a9 1 so3 1 328

Isolated 216 | \HT 53.91 929 6.00 3372
Word USlng MMY. ............... 5 35 .......... g 16. 554 .................. 3 07 .........
Rules U ALAAS SN SRR Arcbrl FERTIN-AP 50 dNUNURP AU Sy (U SOTRRUPON FUNTRIII /> S/ UURRTOI
Trained by | MNM | . 3421 . 93:9 707 37:9......
mau | MsH 1 538 | ea0 T VAL 381

MNM MTK 546 89.6 6.62 41.6

all 3226 91.1 6.24 39.3
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Table 8-2: Phoneme Segmentation on Phrase and Multiple Speaker Speech

Segmentation | ins. Segmentation | ins. Segmentation | ins.
on Phrase Error on Six Speakers| Error on 2,620 Words| error
Num. FES/:]e E:E':?cg Rate Num. F;,;ff E:E':Sorg Rate Num. T‘;:c]e Eér;:ig Rate
[ms] | [%] Ims] | {%)] [ms] | [%]
| o | 53100 as] [ o | 132[932] s7] | p [ _28[964] 42
|t | 5401939] 42| |t | 186j9a1] a7) [t | 461|980 43
[k | 1121917] 47)124] k_ | 525/939] 57]142] k_| 1300]97.8 58] 17.4
| ch | _s8|sis| a4l [ch ] 131]931] 57| | ch | 141]915] 58
ts 117]89.7| 4.4 1s 48|89.6| 7.4 ts 220 93.2] 56
| _s_ 1. 510177.31 43} 4 q4L-s_d__ 189193.1]_41] 39 5_1__ 272|883] 3.5] 3¢
sh 343|924| 4.7 sh 145| 93.8| 3.9 sh 387(92.0| 4.5
h 169{ 75.1| 8.5]13.6] h 190 83.7] 9.6/24.7] h 313/ 88.8| 83| 7.7
z 149|83.2| 7.6/24.2] 2 233/ 79.0| 79| 7.7] = 315/ 85.4| 9.6] 11.1
| b | . 95198.3| 3.9] | _b_|_ 206|966 653 | b | 2301983 4.7]
| d_]_472|91.5| 48114.0) d_ | 124|968 4.5/351] d_| 1771983} 3.47157
g 242/ 69.0| 9.5 g 208 82.7| 8.7 g 263|83.7| 8.9
| m | 3s0[908] 7.0] 0] m | 263[867] 7.1, I m | 485|953] 60],,,
n 554 93.3| 6.4 n 216|94.0| 6.2 n 273/97.8] 5.7
r 497 85.7| 6.5|47.9] 430]93.7| 6.3]59.5] r 760]90.7] 6.2]47.4
Total| 5328|88.4| 5.5|25.1}Total| 3226] 91.1| 6.2 39.3|Total{ 5925|93.3| 5.8]27.8
Table 8-3: Expansion Knowledge for Multiple Speaker Speech.
Sort of Knowledge and Expansion

Knowledge |No.

Rule and Function Name

Functions

1) Unvoiced-fricative after vowel (2) = Threshold
(abitlte;SO) 2){ Unvoiced-stop — Searching point of burst

3) Nasal-peak candidates — Add 0-500/3000-4000Hz

1)| Voiced-stop burst-1000-6000Hz start-change

2)| Voiced-frictive 1000-2000Hz power

Membership | 3)

Unvoiced-stop closure-0-6000Hz power

4)

Unvoiced-stop 0-500Hz power before-vowel

(about'120) 5)

Unvoiced-stop 0-500/500-1000Hz power-ratio before vowel

6)

Unvoiced-fricative 0-500Hz power

7)

Unvoiced-fricative 0-200Hz power at word initial
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Chapter 9

TIME-STATE
NEURAL NETWORKS

9.1 Introduction

In order to expand the proposed system to continuous speech recognition, it
is necessary to improve phoneme identification performance of neural networks for
continuous speech. There are two points for improving the neural network per-
formance: 1) neural network structure, 2) neural network training. This chapter
focuses on the structure of phoneme classification-type neural networks to improve
the phoneme identification performance against continuous speech.

Phonemes in Japanese have certain rough temporal structures of phonemic fea-
tures. With phoneme /b/ in the medial part of the utterance, for example, first a
transition from the previous vowel is observed, next a buzz-bar, then a /b/ burst,
and finally transition to the next vowel. Each of these features contains informa-
tion which contributes to identifying the phoneme. Moreover, this kind of rough
temporal manner does not greatly change even if the utterance is an isolated word
or continuous speech. Thus, if the neural network is to treat this kind of tempo-
ral manner, it would be very helpful in order to identify phonemes, whatever the
utterance style.

Since the back-propagation algorithm was developed, many neural network ap-
plications to speech recognition have been proposed. However, there are few neural
networks whose structure considered the temporal structure of phonemic features.
Some neural network approaches, such as the Neural Prediction Models (NPM)
[Iso 90}, Dynamic Neural Networks (DNN) [Sakoe 89] and Time-Delay Neural Net-
works (TDNN) [Waibel 89], attempt to deal with this problem. NMP is able to deal
with the time warping of speech features even though it is classified as a prediction-
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type neural network. DNN and TDNN are classified as classification-type neural

networks. Although DNN considers the temporal structure, it is proposed for word
recognition. Moreover, the time-shift tolerance capability is unknown. This time-
shift tolerance capability is very significant when combined with the segmentation
part in the proposed expert system. TDNN has a time-shift tolerance capability,
but on the other hand, its structure forces it to suppress the temporal structure of
the phonemic feature.

In this chapter, several new structures for phoneme identification neural net-
works, Time-State Neural Networks (TSNN) which are able to deal with the tem-
poral structure of phonemic features, are proposed. Phoneme identification perfor-
mance of the proposed TSNN on Japanese phonemes /b,d,g,m,n,N/ compared with
that of a conventional TDNN is also described.

9.2 Time-State Neural Networks

In this section, the structures of classification-type neural networks, TDNN,
and several types of TSNNs, are described.

9.2.1 Time-Delay Neural Networks

Time-Delay Neural Networks (TDNN) can easily be trained using the back-

propagation training algorithm. Moreover, it is shown to be a very high performance

phoneme classifier. The main advantage of TDNN is the time-shift tolerance capa-
bility derived from its time-shifted and tied-connected weight architecture. This is
an mmportant property in combination with phoneme segmentation, because slight
errors always occur in phoneme segmentation. It is also very important when the
TDNN is used for phoneme-spotting in speech.

Figure 9-1 shows the TDNN architecture for 6-phoneme /b,d,g,m,n,N/ identi-
fication. This TDNN is made up of four layers. The lowest layer corresponds to
spectral input values, the two next layers are hidden layers and the topmost layer,
which 1s the output layer, corresponds to each phoneme output. The input layer
has 15 frames (150ms) X 16 spectral coefficient units. The window structure of the
connections between the layers is time-shifted and tied-connected. The connection
in the time-shifted window from input layer to hidden layer 1 is 3 frames to 1 frame,
and from hidden layer 1 to hidden layer 2 is 5 frames to 1 frame. The tied-connection
to the output layer has the same weight for each unit. All weights are adjusted us-
ing the back-propagation training procedure. The phoneme corresponding to the
highest activated output unit is defined as the classification result.

PR
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9.2.2 Simple Time-State Neural Networks

Figure 9-2 shows the simplest TSNN, which is a 6-phoneme classifier. Fach
output directly concerns each phoneme. This four layer neural network has four
states in the time sequence and is able to capture the phonemic features in each
state. The first state is considered to capture the transition feature from vowel into
consonant, the second to capture the buzz-bar or stable part of the nasal, the third
to capture the burst or the nasal transition to the next vowel and the last to capture
the next vowel. The connections from the input layer to hidden layer 1 are time-
shifted windows (3 frames to 1 frame) and are tied-connected in the manner of the
TDNN connection. The time-shifted tied-connected windows are also shifted over
the input speech but differ from the TDNN in the point of its shifting range. In
this TSNN, each window is shifted between the indicated size as shown by «— in
the diagrams, (6 frames). This structure allows the TSNN to capture the phonemic
features at any point within the windows and considers the temporal structure of
the phoneme features.

9.2.3 All Tied-Connection TSNN

The simple TSNN described above, has a time-shifted and tied-connected
window only between the input layer and the hidden layer 1. Thus, the capability
of the time-shift tolerance will not be achieved by this neural network architecture
sufficiently. Here, another TSNN, which has time-shifted and tied-connected win-
dows between every layer, is proposed. This TSNN, shown in Figure 9-3, has three
states in the time sequence and is also able to capture the phoneme features in each
state. The first state is considered to capture the transition feature from vowel to
consonant, the second to capture the buzz-bar or stable part of the nasal, the third
to capture the burst with next vowel or the nasal transition with the next vowel.
This TSNN has time-shifted windows from the input layer to each state of hidden
layer 1 and from each hidden layer 1 to each hidden layer 2. Moreover, the con-
nections are tied-connected between every layer. The windows are only shifted over
each layer between the indicated window size as shown by +— in the diagrams, (7
frames in the input layer, 3 frames in the hidden layer 1). The connection to the
output units is separated into three weights. This architecture may improve the
time-shift tolerance capability over than that of the simple TSNN.

9.2.4 Compressed TSNN

In Figure 9-4 a compressed-type TSNN is shown. Basically, the structure of this
compressed TSNN is exactly the same as that of the conventional TDNN shown in
Figure 9-1, except for the weights connected to the output layer. In the conventional
TDNN, all 9 weights are tied-connected, which means that all connections have the
same weights. In this TSNN, the connections are also tied-connected, but they are
separated into three weights: the front three, the middle three and the back three.
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This weight separation may separate the hidden layers into three states and may
capture the phonemic features in each state. The first three weights are considered to
capture the transition feature from vowel to consonant, the second three to capture
the buzz-bar or stable part of the nasal, the third three to capture the burst and
next vowel or the nasal transition to the next vowel. Thus, this TSNN can be
observed as the compressed-type TSNN shown in Figure 9-3. The time states in
the hidden layers, which are considered to capture the temporal phonemic features,
are compressed into one hidden layer. However, the weight separation in the output
layer may represent the time states for the temporal phonemic features in the units
of the hidden layers through the back-propagation training algorithm.

9.3 Experiment Using TDINN and TSNNs

Japanese phoneme /b,d,g,m,n,N/ identification experiments are performed us-
ing TDNN and several types of TSNNs which are proposed.

9.3.1 Experimental Condition

The neural networks were trained on half (even numbered words) of the ATR
5,240 isolated word database, recorded by one male speaker. For testing, various
styles of utterance are used such as the other half (odd numbered words) of the
5,240 1solated words, short and long phrase utterances and continuous utterances in
the ATR speech database.

Two types of data taken from the ATR database are used:

(a) 150ms fixed samples.
(b) Samples linearly normalized by each phoneme duration.

This linearly normalized data, which aligns its phoneme temporal structure, is
used to show the effectiveness of considering the temporal structure of phonemic
features. Also, in the isolated word utterance, data shifted from —20ms to +20ms
in 10ms steps, are used to evaluate the time-shift tolerance capability of each neural
network.

For input to the neural networks, the speech was sampled at 12kHz and ana-
lyzed by FFT using a 21.3ms Hamming window every 5ms. 16 mel-scaled coefficients
were computed and merged for a 10ms frame rate, and normalized to fall between
~1.0 and +1.0 with the average at 0.0.

The neural networks were trained using the fast back-propagation training
method “Dynet” [Haffner 89). In this process, every end point of the hand-
segmented datum is aligned at the center frame of the input layer. Similarly, in
the process of classification, the end point of the datum is also adjusted at the
center frame of the input layer.
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9.3.2 Result

Table 9-1 shows the experimental results using TDNN, simple TSNN, all tied-
connection TSNN and compressed TSNN. The number in the table indicates the
percentage of phonemes correctly identified in each experimental condition.

(a) From the result, the conventional TDINN is capable of a time-shift tolerance
of about 30ms, or a little more. However, the recognition rate is drastically
reduced when the utterance changes from isolated word speech to phrase and
sentence speech. This is because the TDNN does not have enough flexibility
to capture the temporal structure of the acoustic feature. This can also be
confirmed from the results on the linearly normalized data of the phoneme
duration.

(b) The Simple TSNN recognition rate improved drastically compared with that
of the TDNN, especially as regards phrase and sentence utterances. This
improvement is more evident for linearly normalized data. However, no time-
shift tolerance capability is obtained in this simple TSNN.

(c) The result of Shift Training TSINN, which is the simple TSNN trained
using shift data, shows that the time-shift tolerance capability can be obtained
by training using the shifted data. However, in this case, three times more
training data is necessary to train the neural networks, which also means that
the training cost is three times more than that of a conventional TDNN.

(d) The phoneme identification performance of the TSNIN All-Tied, which in-
dicates the results of TSNN with tied-connection in the hidden layer, and
Comp. TSNN, which indicates the results of compressed TSNN, lies be-
tween that of the Shift Training TSNN and Simple TSNN. This result
shows that the time-shifted and tied connection is not as good as that of the
TDNN. However, the capability was slightly improved over that of the Simple
TSNN.

Additionally, the recognition rate was better than that of the conventional
TDNN for various utterances. This result indicates that the time-shifted and tied-
connected weights in the conventional TDNN is so strong that it suppresses the
ability to capture the temporal structure of the acoustic phonemic features.

Finally, from these results, it can be said that to incorporate some kind of
temporal structure into neural networks is necessary for improved identification
performance. Moreover, an additional experiment shows that the TSNN can obtain
time-shift tolerance capability by making time-shifted and tied-connected weights
in the hidden layers and/or by using shifted data for training.
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9.4 Conclusion

This chapter proposed a new structure of phoneme identification neural net-
works, Time-State Neural Networks (TSNN). TSNNs are able to deal with the tem-
poral structure of phonemic features, which does not greatly change according to
utterances such as isolated word or continuous speech. Thus, TSNN is well able to
identify phonemes, whatever the utterance style. Some types of TSNNs are tested on
Japanese phonemes /b,d,g,m,n,N/. Their phoneme identification performance was
much better than that of the conventional TDNN, especially on continuous speech.
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Table 9-1: Performace of Time-State Neural Networks.

Samples
Testing 150ms Fixed Samples Normalized
Utterance by Duration

Style : Shift T .

eural | ronn ST raining T STe ronn STl

........ -20ms | 91.2 | 52.7 | 81.6 | 587 | 544 | - -
........ -10ms | 947|867 | 957 | 926 | 93.0| - | -
soated | oms | 957 ] 97.6 | 97.0 | 97.0 | 97.6 | 95.6 | 98.0
...... +10ms 94118441 950 | 89.9 [ 903 | - | - ]

+20ms | 859 | 56.5| 775 | 658 | 586 | - -
ShortPhrasel 76.6 | 827 | 79.9 | 79.0 | 80.7 | 74.6| 83.8
Continuous| Long Phrase| 75.9 | 77.6 | 77.6 | 777 | 77.7 | 748 816
sentence | 61.8 ] 70.7 | 711 | 69.0 | 717 | 585 | 720
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Chapter 10

NEURAL FUZZY TRAINING

10.1 Introduction

In order to expand the proposed expert system to continuous speech recognition,
it is necessary to improve phoneme identification performance of neural networks
for continuous speech. There are two points for improving the neural network per-
formance: 1) neural network structure, 2) neural network training. This chapter
focuses on the training method of phoneme classification-type neural networks to
improve the phoneme identification performance against continuous speech.

Recently, in the research field of speech recognition, it has become possible
to deal with a large amount of data because of the incredible improvement of the
computer. Moreover, methods which use a lot of data such as statistical models like
HMM and neural networks, become one of the main resources in studying speech
recognition.

Among these methods, since the back-propagation algorithm, a powerful
neural network training algorithm [Rumelhart 86] [Lippmann 87], was devel-
oped, many applications for speech recognition have been proposed using feed-
forward identification-type neural networks. Time-Delay Neural Networks (TDNN)
[Waibel 89] showed good phoneme identification performance. The TDNN is pre-
sented as a good speech recognition neural model not only for its performance but
also for its time-shift tolerance capability.

Through the continuing study of neural speech recognizers, a generalization
problem has arisen, especially in the phoneme identification-type feed-forward neural
networks trained with the conventional back-propagation algorithm such as TDNN.
In other words, the robustness of the neural networks trained by the conventional
back-propagation algorithm are not as adequate as expected. The generalization
problem is essentially an over-learning of the training data which causes a dras-
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tic performance reduction when a slight difference arises in the testing data, (e.g.
speaking rate differences). This problem arose because the conventional training
method creates very sharp boundaries between classes in the neural networks.

Another problem also arises when combining the phoneme identification-type
neural networks with a language model, in which the top-N candidate performance
is not required. This problem derives from simply giving the phoneme class infor-
mation of the training sample, 1 to the phoneme class which the sample belongs and
0s to the other phoneme classes, to the target values of the neural network in the
conventional method. Thus, the neural network is trained only to produce the top
phoneme candidate but not the top-N candidates. In other words, the neural net-
works are not trained to produce the likelihood for each phoneme class. As a result,
the output values of the neural networks for the 2nd, 3rd, and top-N candidates
are suppressed at almost zero, which reduces the top-N recognition performance.
However, this top-N phoneme candidate information is very important when com-
bined with a language model for continuous speech recognition. Once the lack of the
phoneme candidate information occurs, it may lead to a fatal error in continuous
speech recognition.

There are several approaches to overcoming these problems for phoneme
identification-type neural networks. The most famous is to avoid over-learning the
training data by stopping the training iteration using an additional cross validation
data set. There is another method for creating robust neural networks by adding
some noise to the training data. Minami proposed a method to improve the top-
N candidates by smoothing the values of the output or the hidden layer units in
the neural network [Minami 90]. Kawabata proposed the “KNIT” training method
which avoids over-learning of the training data by imposing the constraints between
the input data and target values using a K-nearest neighbor interpolation training
[Kawabata 90]. Also, Takami has proposed a pairwise discriminant approach to
improve the robustness by using multiple neural networks [Takami 90].

In this paper, a new fuzzy training method for phoneme identification neural
networks, quite different from the aforementioned approaches, called “Neural Fuzzy
Training”, is proposed. The difference between the proposed and the conventional
method is that the target values of the training datum are given as fuzzy phoneme
class information instead of discrete phoneme class information. By giving the fuzzy
phoneme class information instead of the discrete phoneme class information, it is
expected that the top-N candidate performance of phoneme identification neural
networks will improve and more robust neural networks will be created by overcom-
ing the over-learning problem. A

The basic idea of the proposed Neural Fuzzy Training method is described in
the next section. Then, the phoneme identification experiments using /b,d,g,m,n,N/
identification task, 18-consonant identification task is shown using the ATR isolated
word database, phrase database and sentence database. Finally, continuous speech
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recognition experiments by means of TDNN-LR speech recognizer using the ATR
isolated word database and phrase database are presented. From the experimental
result, the effectiveness of the proposed Neural Fuzzy Training method on training
speed, on generalization and on untrained speakers are discussed.

10.2 Neural Fuzzy Training

Neural Fuzzy Training is realized using the back-propagation algorithm, but
differs how the target values are given to the neural network. In the conventional
method, target values are given as discrete phoneme class information. In the pro-
posed method, the target values are given as fuzzy phoneme class information be-
tween 0 and 1, which inform the phoneme class likelihood of the input sample to
the neural network.

The conventional method is realized by the use of the back-propagation algo-
rithm, whose target values are given as discrete phoneme class information, i.e. 1 to
the phoneme class which the sample belongs and 0s to the other phoneme classes.

On other other hand, the proposed Neural Fuzzy Training method is also re-
alized by the use of the back-propagation algorithm, either. However, the target
values are given as fuzzy phoneme class information whose values are given as be-
tween 0 and 1. The fuzzy class information informs the neural network likelihood
of the training sample to each phoneme class, in other words the possibility of be-
longing to each phoneme class. The reliability of belonging to the phoneme classes
can be considered using the idea of distance between training samples, for instance
Euclidean distance measure. Here, there is an assumption that “when the distance
of two samples is small, these two samples are considered to be similar.” This leads
to each sample having the possibility of belonging to the class of the other sample.
On the contrary, “when the distance of two samples is large, these two samples
are considered to be very different.” This leads to each sample having less (or no)
possibility of belonging to the class of the other sample. To model this likelihood
using the distance d, a likelihood transformation function f(d) is adopted. By the
use of monotonous decreasing function such as f(d) = ezp(—« - d*) where a > 0,
as shown in Figure 10-1, it can easily model the idea that “the larger the distance
is the lower the possibility is and the smaller the distance is the larger the possibil-
ity is.” Thus, fuzzy phoneme class information can be computed according to the
distance between the input sample and the nearest sample of each phoneme class in
the training data set.

Figure 10-2 gives a brief idea of the conventional training method (CT) and
the proposed Neural Fuzzy Training method (NFT). The target values of the con-
ventional method are given as discrete phoneme class information, i.e. the target
values of sample B (®) is given as {0,1,0}. The target values of the Neural Fuzzy
Training method are given as fuzzy phoneme class information, i.e. the target val-
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ues of sample B (@) is given as {f(dag), f(dps), f(dcp)} where f(d) is a likelihood

transformation function of a distance d.

Considering the computational cost for creating the target values for every
training sample, if this method is adopted in a straightforward manner, distance
calculation {N - (N —1)}/2 where N is the number of training samples, is required
because the nearest samples belonging to each class of the training sample have to
be selected. This is very expensive if the training set is very large.

To avoid this problem, pre-selection of training samples for likelihood calculation
is possible. The computational cost reduces from N - (N —1)/2 to C- M - N when
C - M is much smaller than N/2, where N is the number of training samples, C is
the phoneme class number and M is the pre-selected sample number.

In the following section, experimental results are described showing the effective-
ness of the proposed Neural Fuzzy Training method compared with the conventional
training method.

10.3 Phoneme Identification Experiment

In this section, /b,d,g,m,n,N/ and 18-consonant identification experiments us-
ing the ATR database [Takeda 88] are discussed to show the effectiveness of the pro-
posed Neural Fuzzy Training method for phoneme identification. The Japanese 18
consonants are /b/,/d/,/g/, [p/,/t/./k/, [<b/,[ts/, [s/,/sh/./n],[z/, [m], /n/ N/,
[r/,/w[ and [y].

10.3.1 Experimental Condition

Phoneme samples for neural network training are culled using the hand-labels
from half of the ATR isolated word database (even numbered words; 5.7 mora/s).
In the /b,d,g,m,n,N/ identification task, 1,857 training samples are selected up to
500 samples for each phoneme class. In the 18 consonant identification task, 3,633
training samples are selected up to 250 samples for each phoneme class.

For input to the neural networks, the speech was sampled at 12kHz and analyzed
by FI'T using a 21.3ms Hamming window every 5ms. 16 mel-scaled coefficients were
computed and merged for a 10ms frame rate, and normalized to fall between —1.0
and +1.0 with the average at 0.0.

Phoneme samples for neural network ‘testing are also culled using the hand-
labels from the other half of the ATR isolated word database (odd numbered words;
5.7 mora/s). Additionally, to evaluate the robustness to the speaking rate, testing
samples are also culled from the phrase database (7.1 mora/s) and from the sentence
database (9.6 mora/s).
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TDNNs, as shown in Figures 10-3 and 10-4, are adopted for the /b,d,g,m,n,N/
identification experiment and for the 18-consonant identification experiment, respec-
tively. The structures of TDNNs are feed-forward neural networks of four layers.
The input for the TDNNs is 16 mel-scaled spectral power of 7 frames (70ms). All
the end points of the phoneme labels for training and testing samples are adjusted
so as to be at the center of the input layer. The neural networks are trained using
the fast back-propagation training method “Dynet” [Haffner 89).

Two conventional training methods and the proposed Neural Fuzzy Training
method are compared. The two conventional methods differ in the point of the error
function of the back-propagation algorithm. They are 1) mean square error (M.S.E.)
function and 2) McClelland error function In(1 —?). M.S.E. function is adopted
for the Neural Fuzzy Training method. The McClelland error function, which back-
propagates emphasized errors, is well-known as a very fast training method when
the number of classes to be identified is very large.

The Euclidean distance measure d of the 7-frame input samples is adopted. To
model the likelihood using the distance d, f(d) = exp(—c - d?) where a = 0.005, is
adopted as a likelihood transformation function. The value @ = 0.005 is chosen by
experience in order that the target values of the 2nd and the 3rd candidates may
have certain values.

The weight which has the highest performance on the testing data culled from
the isolated word database is chosen for experiments from 100 training iterations.

10.3.2 Result

The phoneme identification results of /b,d,g,mn,N/ identification and those of
the 18-consonant identification are shown in Figures 10-5 and 10-6, respectively.
They show the identification performance of the first candidate and the top-N can-
didates on the training data and the testing data (phonemes culled from isolated
word, phrase, sentence database. The vertical axis indicates the identification rate
(%) and the horizontal axis the top-N candidates.

Comparing the two conventional and the Neural Fuzzy Training methods, there
were no big differences in identification performance on phonemes cut out from
the isolated word database in both the training and testing tasks. However, the
identification performance trained by the proposed Neural Fuzzy Training method
improved on the phoneme culled phrase (7.1 mora/s) and sentence database (9.6
mora/s) in which the speaking rate differs from the training data (5.7 mora/s). The
figures indicate that not only the first candidate result but also the top-IN results
improved. Especially on the sentence data, the top-N results improved drastically.

For continuous speech recognition, the top-N phoneme candidate information is
very important when combined with a language model. Thus, from the improvement
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shown in these figures, it can be expected that the proposed Neural Fuzzy Training
method will improve the overall recognition performance on phrase and/or sentence
speech in combination with a language model.

Comparing the two conventional methods of the top-5 candidate performance on
18-consonant identification task, the result trained by the McClelland error function
was worse than that trained by the M.S.E. function. This performance reduction
derives from the characteristics of the McClelland error function. The output values
are forced to be almost 0 or 1 for the strongly emphasized error back-propagation
training. As a result, the output values of the neural networks for the top-N candi-
dates are strongly suppressed at almost zero which reduces the top-N identification
performance.

From this point of view, the conventional training method with McClelland
error function will not perform sufficiently on continuous speech recognition which
performs in combination with a language model, even if the training method is
well-known as a fast training method.

These experiments indicate the effectiveness of the proposed Neural Fuzzy
Training method compared with conventional methods. However, there is a problem
in the proposed Neural Fuzzy Training method. A very high computational cost for
creating the target values is required if the training set is very large.

10.4 Continuous Speech Recognition
Experiment

In this section, isolated word recognition and phrase recognition experiments
using TDNN-LR continuous speech recognizer {Sawai 91] were performed using the
same ATR database applying 25-phoneme identification TDNN.

10.4.1 TDNN-LR Speech Recognizer

TDNN-LR speech recognizer consists of two main techniques:

(1) Generalized LR-parser.
(2) TDNN+DTW phoneme verifier.

A brief idea of each technique is introduced in this section.

Generalized LR-Parser

The LR-parser [Aho 86] is originally developed for programming languages, and
is known as an effective parser for a large class of context-free grammar.
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The grammar rules described in a contéxt-free grammar style are automatically
pre-compiled into an LR-table ( action table and goto table ) by the LR-table
generator. The LR-parser is deterministically guided by the LR-table with the two
subtables ( action table and goto table ) and is processed left-to-right without
back-tracking.

The action table determines the next parser action ACTION(s,a] from the
state s currently on top of the stack and the current input symbol a. There are four
kinds of actions: shift, reduce, accept and error. The action shift means one
word from input buffer onto the stack. The action reduce means constituents on
the stack using the grammar rule. The action accept means input is accepted by
the grammar. And the action error means input is not accepted by the grammar.
The goto table determines the next parser state GOTO[s,A] from the state s and
the grammar table symbol A.

The standard LR-parser cannot handle ambiguous grammars. In order to cope
with natural language processing, which includes speech processing, this ambiguous
grammars have to be handled. This ambiguous grammars is able to handled by
incorporating a multiple entries (conflicts). And as a general method, stack-splitting
mechanism can be used to cope with multiple entries. Whenever a multiple entry
is encountered, the stack is divided into two stacks, and each stack is processed in
parallel. The Generalized LR-parser is proposed [Tomita 86] in order to handle this
ambiguous grammar for natural language processing by incorporating a multiple
entries (conflicts) into the LR-table. Thus, this mechanism makes it possible to
use LR-parser to handle an ambiguous grammar which is very effective to handle
natural language processing.

TDNN-LR Procedure

TDNN-LR speech recognizer [Sawai 91] is realized as an integrated system of the
Generalized LR-parser [Tomita 86] and the TDNN phoneme identifier [Waibel 89].
The system architecture of the TDNN-LR is very effective and it is a sophisticated
speech recognizer which can deal simultaneously with phoneme verification using
the linguistic information constraints and language analysis using the grammar.
The block diagram of the TDNN-LR speech recognizer is shown in Figure 10-7.

The process of TDNN-LR speech recognizer performs as follows:

(1) Acoustic analysis is performed for the input speech.

(2) Phoneme identification is performed frame-by-frame by shifting TDNN
phoneme identifier over the analyzed input speech.

(3) Phoneme verification, symbol reduction to symbol or acceptance is requested
by the LR-parser according the LR-table. As for the phoneme verification -
request, the phonemes which might come after the current state under the
linguistic constraint should be verified. As for symbol reduction, the symbol
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will be reduced to another symbol using the grammar table. As for the accep-
tance, the input is accepted under the linguistic constraint and later end the
process.

Verification of the aforementioned phonemes is performed using the DTW
(Dynamic Time Warping) algorithm. The score for the DTW is computed as
the log value of the frame-by-frame identified phoneme values of the requested
phoneme. Each phoneme reference has a frame length of an average duration
estimated using the training samples of the isolated word database. The win-
dow for DTW calculation is in between 1/2 -t and 2 - ¢ where ¢ is number of
frames in time.

The DTW is realized in the following equation:

g(Z -1t - l) )
+og(TDNN(2,p)),
¢(1,t) = maz gli=2,t-1)
+log(TDNN(t,p)) + log(TDNN(t — 1, p)),
g(Z -1t - 2)
+0.5log(TDNN(¢t,p)) + 0.5log(TDNN(t — 1,p)) )

where

p is the requested phoneme.
¢ is the position in the reference phoneme sequence.
t is the frame number.

TDNN(t,p) is the TDNN activating value of p at t.

The duration control performs after the phoneme scoring by DTW. The du-
ration control is realized by multiplying a penalty into the DTW score in the
form of Gaussian distribution using the difference between the average dura-
tion u of the phoneme and the estimated duration d of phoneme obtained by

-the DTW. The penalty P(d) for the phoneme duration control is given in the

following equation:

(d —p)?
In the case of phrase recognition, the average duration x and the deviation ¢
for each phoneme are re-estimated from the isolated word phoneme duration
by the phrase duration transformation function [Hanazawa 90].
Scores at the current state are sorted to realize beam search. The top-N
candidates are saved and the others are pruned. Then shift is performed to go
to the next state in the LR-table, goto 3).

The whole process of this TDNN-LR speech recognizer is similar to the level-
building DTW speech recognition system with a context-free grammar [Myers 81)
with its end point free, which builds up subsequent phonemes.
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10.4.2 Experimental Condition

To recognize isolated words and phrases in Japanese using the TDNN-LR speech
recognizer, 25-phoneme identification TDNN is adopted. The Japanese 25 phonemes
are [b/,d/fg, [plth/5) Jblfts], 1), /sh] bl /2l J2b/, ). /nf,/N],
/t],/w/]y], lal,/i],/a/,/e/,/o] and silence /Q/. Input to the neural networks is
analyzed under the same conditions used in the phoneme identification experiment.

A 25-phoneme identification TDNN is shown in Figure 10-8. The structure
of the TDNNs is a feed-forward neural network of four layers. The input for the
TDNNs is 16 mel-scaled spectral power of 7 frames (70ms). The neural networks
are trained using the fast back-propagation training method “Dynet” [Haffner 89].

In this experiment, phoneme samples for the TDNN training are culled from
half of the ATR isolated word database (even numbered words; 5.7 mora/s) using
the hand-labels. However, the condition of selecting training samples differs from
the previous experiments. Samples are culled from a phoneme not at the end of
the hand-label but from several points in the phoneme as shown in Figure 10-9.
One sample is selected from the center of the phoneme, two from the edge of the
phoneme whose center of the sample is located 15ms inside the phoneme boundaries,
and others by shifting 15ms toward the boundaries inside the two edge samples. Up
to 2,000 training samples for each phoneme class are selected.

For the isolated word recognition experiment, the other half of the training data
in the ATR isolated word database (odd numbered words; 5.7 mora/s), and for the
phrase recognition experiment, the 278 ATR phrase database (7.1 mora/s), are used.

Two word dictionaries and two grammars are used to evaluate the isolated word
recognition and the phrase recognition performance, respectively.

For 1solated word recognition, two word dictionaries are used:

(1) Small vocabulary task using a 500 word dictionary.
(2) Large vocabulary task using a 2,620 word dictionary.

" For phrase recognition, two context-free grammars are used:

(1) Small task using a task specific grammar.
(2) Large task using a general grammar.

The complexity of the phrase grammar is shown in Table 10-1.

As previously mentioned, the computational cost is very high for creating the
target values for every training sample in the Neural Fuzzy Training method, if
this method i1s adopted in a straightforward manner. Here, about 50,000 samples
have to be trained. The distance calculation is about (50,000 - 50,000)/2 in this
large training set. To avoid this problem, pre-selection of training samples, 200
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random samples per phoneme class, for likelihood calculation is performed. The
computational cost is about 1/5 that without pre-selection.

Here, two conventional training methods and the proposed Neural Fuzzy Train-
ing method are compared. The two conventional methods are the back propagation
algorithm with 1) mean square error (M.S.E.) function and 2) McClelland error func-
tion in(1 — &*). M.S.E function is adopted in the Neural Fuzzy Training method.

Other experimental conditions are almost the same as in the previous phoneme
identification experiments, such as 7-frame Euclidean distance measure d between
samples, likelihood transformation function f(d) = exp(—a - d*) where o = 0.005,
and so on. The only difference is the weight selection. The weight of 100 training it-
erations is chosen. At 100 training iterations, the TDNN training almost converged.

10.4.3 Result

Table 10-2 and Table 10-3 show the recognition results of all tasks (500 and 2,620
isolated word recognition and 278 phrase recognition using task specific grammar
and general grammar) using the TDNN-LR speech recognizer for speaker MAU and
MHT, respectively.

The result for the conventional method is obtained by using the weight trained
by the McClelland error function, because the weight trained by M.S.E. function was
not sufficiently estimated within 100 iterations. Discussions of the training speed
will appear in the next section.

Figure 10-10 shows the output values obtained by each TDNN for input speech
[to;jitsuno/. At the top of the figure, the input spectrogram is shown. The second
shows the output values obtained by the TDNN trained using a conventional training
method with McClelland error, and the bottom shows the output values obtained
by the TDNN trained using the Neural Fuzzy Training method.

In the conventional result, several deletion errors, such as /ts/ and /n/, can be
observed, which increase the fatal error possibility. On the other hand, few deletion
errors can be observed in the Neural Fuzzy trained result, but many insertion errors
can be observed. However, in the regions of these insertion errors, the correct
phoneme result can also be observed. Thus, it will not lead a fatal error.

In practice, the recogunition result for this input /to:jitsuno/ appears in the sec-
ond candidate in the Neural Fuzzy Training case. Though in the conventional train-
ing case it appears in the fifth candidate. The top result is mistaken as /to:jitsuo/
in the Neural Fuzzy Training case, because the duration control is not well-tuned in
the current system.
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10.4.4 Effectiveness of Neural Fuzzy Training

In this section, the effectiveness of the Neural Fuzzy Training method 1) of
training speed, 2) against over-training and 3) against untrained speakers, is dis-
cussed.

Effectiveness of Training Speed

Figures 10-11a, 10-11b, 10-11c show the training speed of each method for the
6-phoneme, 18-phoneme and 25-phoneme identification TDNN of the speaker MAU
data. 6-phoneme are the /b,d,g,m,n,N/, 18-phoneme are for the 18 consonants and
25-phoneme are of all phonemes. The training methods are: 1) conventional training
with M.S.E., 2) conventional training with McClelland error and 3) the proposed
Neural Fuzzy Training method. The McClelland error function is well-known as a
very fast training error function in the back-propagation algorithm when the number
of the identification classes is large.

In the 6-phoneme training, there are no speed differences between each training
method. In the 18-consonant training and in the 25-phoneme training, the training
speed of the conventional training method with M.S.E error is somewhat slower than
the others.

The effect of the proposed method and the McClelland error is evident, espe-
cially in Figure 10-11c compared with that of the M.S.E. The training speed of the
proposed method is almost the same as that of the McClelland error. Thus, the
Neural Fuzzy Training method proved to be a very fast training method.

Effectiveness against Over-Training

Figure 10-12 shows the training speed for the 25-phoneme identification TDNN
of the speaker MHT. In the conventional method with the McClelland error function,
the training converged around 96%, however in the Neural Fuzzy Training method,
it converged around 92%.

From these results, the neural fuzzy training method does not seem to be a good
training algorithm for neural networks. However, the result shown in Table 10-3 is
good compared with the conventional trained results. Thus, from this point of view,
the result indicates that the Neural Fuzzy Training method can avoid over-training
the training data.

Effectiveness against Untrained Speakers

Tables 10-4, 10-5 and Tables 10-6, 10-7 show the recognition results for un-
trained speakers. Tables 10-4, 10-5 show the results using the TDNN trained by
speaker MAU and Tables 10-6, 10-7 trained by speaker MHT. Tables 10-4, 10-6
show the results on a 2,620 word recognition task and Tables 10-5, 10-7 on phrase
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recognition task using a general grammar. There are some slight performance re-
ductions, albeit very small, however, most results have improved. The improvement
can be considered evidence of a good generalization of the neural network using the
proposed Neural Fuzzy Training method. This also indicates that the Neural Fuzzy
Training will be more effective when it is applied to a speaker independent approach.

10.5 Conclusion

A new fuzzy training method for neural network classifiers, called “Neural Fuzzy
Training”, has been described. The effectiveness of the proposed method compared
with the conventional method is shown using both phoneme identification experi-
ments and continuous speech recognition experiments. Furthermore, the proposed
“Neural Fuzzy Training” method is also shown to be a very fast training algorithm.
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10.6 Figures & Tables
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Size of Grammar for Phrase Recognition Using TDNN-LR

Table 10-1:

Number of Size of Number of States
Task Grammar Rules -Vocabulary in LR-table
Small Task Specific 607 275 1341
Large General 1672 1035 4866
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Table 10-2: Speaker Dependent Speech Recognition MAU (%)

Task 500 words | 2,620 words *small *large
&
Method CT NFT CT NFT CcT NFT CT NFT

CT: Conventional Training (McClelland), NFT: Neural Fuzzy Training (M.S.E.)
*small: Phrase using Small Grammar, *large: Phrase using Large Grammar

Table 10-3: Speaker Dependent Speech Recognition MHT (%)

Task 500 words | 2,620 words *small *large
&
Method CT NFT CT NFT cT NFT cT NFT

_____________________________________________________________________
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CT: Conventional Training (McClelland), NFT: Neural Fuzzy Training (M.S.E.)
*small: Phrase using Small Grammar, *large: Phrase using Large Grammar
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Table10-4: Recognition on Untrained Speakers (%) (Trained by MAU)

Speaker 278 Phrase Recognition Using Large Grammar

, & MAU MHT MNM FSU
Method

____________________________________________________________________

CT: Conventional Training (McClelland), NFT: Neural Fuzzy Training (M.5.E.)

Table 10-5: Recognition on Untrained Speakers (%) (Trained by MTH)

Speaker 278 Phrase Recognition Using Large Grammar

& MAU MHT MINM FSU
Method

X e S T T Tty URENPEC SN DRI SRS VU R U KA S g

CT: Conventional Training (McClelland), NFT: Neural Fuzzy Training (M.S.E.)
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Table 10-6: Recognition on Untrained Speakers (%) (Trained by MAU)

Speaker 2,620 isolated word Recognition

& MAU MHT MNM FSU
- Method

CT: Conventional Training (McClelland), NFT: Neural Fuzzy Training (M.S.E.)

Table 10-7: Recognition on Untrained Speakers (%) (Trained by MTH)

2,620 isolated word Recognition

Speaker
& MAU MHT MINM FSU

Method I "t T 'ner | o | NET | o7 | NET | o | NET

CT: Conventional Training (McClelland), NFT: Neural Fuzzy Training (M.S.E.)



Chapter 11

CONCLUSIONS

11.1 Summary

This report proposed a phoneme recognition expert- system aiming the two
purposes:

(1) Simulation of spectrogram reading behavior of a human expert using an expert
system.

(2) Development of a speech recognizer by integrating human knowledge and neu-
ral networks.

In general, conventional expert systems for phoneme recognition are realized by
a separate structure of a) acoustic feature extraction and b) phoneme verification,
alming at constructing a full rule-based system. Although, most of these systems
have the following problems:

Only the static human knowledge 1s utilized.

Dynamic human knowledge (i.e. human strategy) is not utilized.
Impossible to pre-process all acoustic feature extraction.

Impossible to extract precise features according to phoneme context.
Impossible to describe all knowledge in explicit rules.

Difficult to manage context dependent acoustic features.
Unextractable precise features exist on a spectrogram.

In order to overcome these problems and to realized the two purposes described
above, the following techniques are incorporated in the proposed expert system.

(1) Spectrogram Reading Process Simulation

— Human strategy is adopted as dynamic knowledge.
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— Hypothesis and evaluation as human behavior.

— Representation of explicit knowledge.

— Non-deterministic strategy (ATMS).

— Representation of uncertainty.

— Representation of fuzziness.

— On-demand contextual top-down acoustic feature extraction.
(2) Time-Delay Neural Networks

— Representation of implicit knowledge.

— Extraction of unexiractable precise features.

— High performaice phoneme identifier.

— Tolerance capability for slight segmentation errors.

— Good vowel detector as a phoneme-spotting method.
(3) Total System

— Integration of iuman knowledge and neural networks by considering suit-

ability.

— Full bottom-up style speech recognizer without a language model.

With these techniques, the proposed expert system achieved:

(1) Accurate feature based phoneme segmentation.

(2) Robust feature based phoneme segmentation for continuous speech and mul-
tiple speaker utterances.

(3) Powerful neural network based phoneme identification.

(4) Good phoneme recognition performance by a close integration of knowledge
and neural networks.

Moreover, a) Time-State Neural Networks (TSNN) by considering the temporal
structure of a phonemic feature, and b) Neural Fuzzy Training method for a robust
neural network creation, dre proposed in order to expand the expert system toward
continuous speech recognition.

In Chapter 1, the purpose of this study was described along with the back-
ground of recent studies on speech recognition.

In Chapter 2, the framework of the expert system, in order to simulate human
expert behavior naturally and easily: a) spectrogram reading knowledge for ex-
plicit knowledge, b) non-deterministic strategy, c) representation of uncertainty and
fuzziness, d) on-demand top-down control feature extraction under phoneme context
constraints, €) Time-Delay Neural Networks representing implicit knowledge were

described.
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In Chapter 3, the hardware configuration and the architecture of the proposed
speech recognition expert system, which was realized as an integration of human
knowledge and neural networks, was described.

In Chapter 4, details of consonant recognition part was described which con-
sisted of two main parts, 1) feature based phoneme segmentation, 2} neural network
based phoneme identification. The experimental result tested on speaker dependent
15-consonant task using an ATR database was also reported. The expert system
correctly recognized 86.8% of the total number of phonemes, both in phoneme seg-
mentation and phoneme identification.

In Chapter 5, five mechanisms of integrating knowledge and neural networks
were proposed. Consonant recognition experiments were carried out and the pro-
posed mechanisms were compared. The experiment showed that the close integra-
tion of knowledge and TDNN by considering their suitability with a reject filter
improved the overall system performance. Not only the identification performance
but also segmentation accuracy, and the reject filter showed an effective reduction
in insertion errors. A phoneme recognition experiment showed an 89.4% recognition
rate for 15 consonants using the best integration mechanism.

In Chapter 6, vowel and semivowel recognition utilizing a phoneme-spotting
TDNN for vowel detection was described. Human knowledge was mainly utilized for
verifying the vowel category and boundaries. The effectiveness was shown through a
vowel detection experiment, whose detection rate of 96.1% was comparatively good.

In Chapter 7, the overall phoneme recognition expert system was evaluated
using the best integration of knowledge and neural networks without using any
language model. An experiment showed a 91.4% recognition rate for all Japanese
23 phonemes. The deletion error rate was 3.6%, the substitution error rate 5.0%
and the insertion error rate 20.7%.

In Chapter 8, the performance of a feature hased phoneme segmentation of
the proposed expert system, tested on speaker independent and continuous speech,
were presented. The experiments were performed both on isolated word speech
uttered by six speakers and on speaker dependent continuous speech. The results
were as good as the result tested on speaker dependent isolated word speech. In
order to achieve this performance by the expert system, only slight modification of
knowledge need to be done, which indicates that the feature based approach is a
robust method of for phoneme segmentation.

In Chapter 9, a new structure for phoneme identification neural networks
which took account of temporal structures of phonemic features, Time-State Neu-
ral Networks (TSNN) was proposed. Several types of TSNNs were described
along with their phoneme identification experimental results on Japanese phonemes
/b,d,g,m,n N/ culled from isolated word, phrase and sentence utterances. The per-
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formance of the proposed TSNNs proved better that that of the conventional TDNN.

In Chapter 10, a Neural Fuzzy Training method for phoneme identification
neural networks was proposed whose general idea was to give a fuzzy phoneme class
information to target values. The experiments of phoneme identification and of con-
tinuous speech recognition using the TDNN-LR speech recognizer showed dramatic
improvement especially on continuous speech data compared with the conventional
training method. The improvement of the Neural Fuzzy Training method was not
only on identification or recognition performance but also on the training speed.

11.2 Further Research

The proposed system showed a good performance for phoneme recognition unde1
the condition of speaker independent isolated word utterance.

However, for speaker independent and continuous speech, the performance of
the proposed system has not yet been evaluated. The main reason is that the perfor-
mance of the neural network phoneme identifier is not particularly significant for an
untrained speaker, and also the computational cost for speaker independent neural
network training is very high. Thus, the speaker adaptation method for neural net-
work [Nakamura 90] [Iso 89] [Fukuzawa 91] or how to train a speaker independent
neural network [Sawai 91] must be studied. After investigation of these neural net-
works, the system may show a good performance for speaker independent continuous
speech, because its phoneme segmentation part is robust.

However, the current system expansion, in other words the rules of knowledge
creation and modification, have to be performed by hand, which is a very big prob-
lem for the future expansion. Humans are not able to look at a large amount of
data for rule creation and modification. To overcome this problem, an automatic
rule creation mechanism and a system adaptation mechanism for new data must
be developed. Moreover, the increase in the number of rules will lead to another
difficult problem of complex rule management. Therefore, a more sophisticated rule
management system must be developed.

Note that, in recent speech processing research, the speech database has played
an important role. In particular, phoneme labeled speech databases have contributed
to the improvement of speech recognition systems, and the larger the better. Thus,
an accurate automatic labeling system is required. By utilizing the advantage of
the feature based phoneme segmentation system in combination with the phonetic
transcription of the utterance, an accurate automatic labeling system [Fujiwara 91]
for creating a database can be realized. This can be another contribution of this
report in the study of speech recognition.
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Appendix A

Typical Segmentation Knowledge

This appendix shows some consonant segmentation knowledge in the proposed
expert system. A typical consonant spectrogram and its segmentation knowledge is
shown using consonants appearing in a vowel-consonant-vowel plioneme context. In
practice, more precise and various kinds of knowledge, considering several phoneme
contexts, are incorporated to realize the total system,

Unvoiced-stop

Figure A-1 shows a typical spectrogram with its automatic segimentation result
of unvoiced-stop /k/ at utterance initial and /ch/ between vowels. The utterance is

[kachi/.

¢ find utterance initial or closure where 0-6000Ilz power < silence threshold.

e find burst at the utterance initial or at left of closure.

e find the power increasing point of 0-500Hz power toward next vowel as the
end boundary.

e find the power increasing point of 0-500Hz power toward previous vowel as the
start boundary.

e evaluate the vowel possibility using 0-500Hz power of both side of the boundary

Unvoiced-fricative

Iigure A-2 shows the typical spectrogram of unvoiced-stop /s/ which appears
between vowels with its automatic segmentation result. The utterance is /asa/.

e find region where 4000-6000Hz power > fricative threshold.

e find power decreasing point of 4000-600011z power toward next vowel as the
end boundary.

e find power decreasing point of 4000-6000Hz power toward previous vowcel as
the start boundary.
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o evaluate the vowel possibility using 0-500Hz power of both side of the bound-

ary.

Voiced-stop

Figure A-3 shows the typical spectrogram of unvoiced-stop /b/ which appears

between vowels with its automatic segmentation result. The utterance is /oba/.

find clesure where 1000-6000Hz power < voiced-closure threshold.

find burst to left of closure.

find the power increasing point of 0-500Hz power toward the next vowel as the
end boundary.

find the power increasing point of 0-500Hz power toward the previous vowel
as the start boundary.

evaluate the vowel possibility using 0-500Hz power of both sides of the hound-

ary.

Voiced-fricative

Figure A-4 shows the typical spectrogram of unvoiced-stop /z/ which appears

between vowels with its automatic segmentation result. The utterance is /kaze/.

find the region where both 4000-6000Hz power > {fricative threshold and 0-
500Hz power > voicing threshold.

find the power increasing point of 0-500Hz power toward next vowel.

find power decreasing point of 4000-6000Hz power toward the next vowel.
select the earlier time as the start boundary.

find the power increasing point of 0-500Hz power toward the previous vowel.
find tlie power decreasing point of 4000-6000Hz power toward the previous
vowel.

select the later time as the end boundary.

evaluate the vowel possibility using 0-500Hz power of both sides of the bound-
ary.

Nasal

Figure A-5 shows a typical spectrogram of unvoiced-stop /n/ which appcars

between vowels with its automatic segmentation result. The utterance is /ana/.

find the power dip using the 4000-6000Hz / 0-500Hz power ratio < nasal dip
threshold.

find the spectral change point of 0-6000Hz toward the next vowel as the end
boundary.

find the spectral change point of (-6000Hz toward the previous vowel as the
start boundary.
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¢ cvaluate nasal possibilily of this region using the 0-500Hz power and 500-
10001z power around the boundary.

o cvaluate the vowel possibility using 0-500Hz power of both sides of the bound-
ary.

Liquid

Figure A-6 shows a typical spectrogram of liquid /r/ which appears between
vowels with its automatic segmentation result. The utterance is /kara/.

e find the region where the 2000-4000Hz power decreases and after the 2000-
4000Hz power suddenly increases within 30ms.

e cvaluate the liquid possibility using the sum of decreasing and increasing val-
ues. :

¢ the decreasing and the increasing points are detected as the boundaries.

e evaluate the vowel possibility using 0-500Hz power of both sides of the bound-
ary.

Glottal

Figure A-7 shows a typical spectrogram of glottal /h/ which appears at ut-
terance initial and between vowels with its automatic segmentation result. The
utterance is /haha/.

e find the power region where the 0-1000Hz power < glottal threshold.

e evaluate the glottal possibility around this region using the 1000-5000Hz power
> glottal threshold.

e find the power increasing point of 0-500Hz power toward the next vowel as the
end boundary.

¢ find the utterance initial or find the power increasing point of 0-500lz power
toward the previous vowel as the start boundary.

e evaluate the vowel possibility using 0-500Hz power of both sides of the bound-
ary.
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Appendix ‘B

Multiple Speaker Speech
Segmentation

Figure B-1(a-f) shows the segmentation results of utterance /subete/ for mul-

tiple speakers (MAU, MHT, MNM, MTK, MMY, MXM).
Figure B-1a: [subete/ of speaker MAU

(spectrogram & recognition).
Figure B-1b: /subete/ of speaker MHT (segmentation).
Figure B-1c: [subete/ of speaker MNM (segmentation).
).
)

Figure B-le: /subete/ of speaker MMY (segmentation).

Figure B-1d: /subete/ of speaker MTK (segmentation

Figure B-1f: /subete/ of speaker MXM (segmentation).
Figure B-2(a-f) shows the segmentation results of utterance /misebirakasu/ for
multiple speakers (MAU, MHT, MNM, MTK, MMY, MXM).

Iigure B-2a: /misebirakasu/ of speaker MAU
(spectrogram & recognition)

Iigure B-2b: /misebirakasu/ of speaker MHT (segmentation).

)
FFigure B-2¢c: /misebirakasu/ of speaker MNM (segmentation).
Figure B-2d: /misebirakasu/ of speaker MTK (segmentation).

)

Iigure B-2e: /misebirakasu/ of speaker MMY (segmentation).
Figure B-2f: /misebirakasu/ of speaker MXM (segmentation).
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