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Chapter 1 

INTRODUCTION 

1.1 Speech C 
．． 

ommun1cat1on 

Speech has been the most natural and easiest way to exchange information 

between humans in the long history of the human race. This is because humans are 
able to converse with each other simply by using their own faculties. A human, of 

course, is able to exchange information by other means such as letters and gestures. 
However, humans usually use speech for exchanging information because it is facile 
and because it has many other advantages such as real-time response, no need for 

special training, individuality and conveying emotion information. 

Before computers were developed, human only had to exchange information 

with other humans. The computer, though originally developed as a calculation 
machine, has passed through many levels or technological innovation. Computers 

now cope with a great amount of information which requests human-machine com-

munication. In practice, the exchange of information between humans and machines 
. 

1s ever mcreasmg. 

Considering the demand for communicating with machines and the advantages 
of speech, it is very natural to make use of speech for human-machine corrununica-

tion. The study of human-machine speech communication is an on-going task, and 

speech recognition and speech synthesis are its basic elements. 

This report concerns a study of a speech recognition expert system that inte-

grates human knowledge and neural networks. 

ー



2 CHAPTER 1. INTRODUCTION 

1.2 Background 

In this section, the history of the study of speech recognition is described 
along with a background of the study of neural networks and the knowledge based 
approach [Nakata 77] [Nakata 78) (Niin社79)[Furui 85] [Nakagawa 88] [Waibel 90). 

1.2.1 Speech Recognition 

The study of speech began in about 1940 with the development of the vocoder 
by Dudley [Dudley 40] and the sound spectrogram by Potter [Potter 4 7]. The first 
speech recognizer, whose speech recognition task was digits [Davis 52], was pro-
posed in 1952 by Da.vis. In the 1960's, fundamental studies in speech processing 
were achieved by Franagan [Franagan 55] and Fant [Fant 60]. Around that time, 

research aiming at a phoneme typewriter were proposed by Olson [Olson 56] and 
Sakai [Sakai 63], although these studies only showed the difficulties of automatic 
speech recognition. 

In Japan, the "Maximum Likelihood Spectrum Distance" and "Linear Pre-

dictive Coding (LPC) Analysis" were proposed by Saito and Itakura, [Itakura 69] 
[Itakura 71] and were dramatic developments in speech analysis. The LPC anal-
ysis has had a great effect on the speech signal processing field up to the present 
time. Furthermore, Sakoe formulated the problem of non-linear time-warping of 
speech using "Dynamic Programming (DP or DTW: Dynamic Time・warping)" 
[Sakoe 71]. This method also spurred the study of speech recognition based on 
template-matching. Influenced by these developments, many speech recognizers 
were realized, albeit with limitations such as speaker dependency, isolated word 
utterance input, limited vocabulary, and so on. 

At almost the same time in the U.S.A, research into utilizing natural language 
as a human-machine interface was proposed by ¥Voods and Winograd [Woods 70] 
[Winograd 72]. They demonstrated effective and sophisticated natural language 
communication by implementing "Question-and-Answer" systems. Such research 
in natural language processing showed the possibility of realizing a human-machine 
communication system with a very limited domain such as a Question-and-Answer 
system. 

These developments in the study of speech processing and of natural language 
processing influenced the ARPA (Advance Research Projects Agency) established 
in 1971 [Klatt 77]. The aim of the ARPA project was the development of a speech 
understanding system that integrated speech recognition and natural language pro-

cessing, whose vocabulary size was around 1,000 vvords. Two famous systems were 
developed at Carnegie Mellon University: the "HearSay II" system [Lesser 75] and 
"HARPY" system [Lowerre 76]. The HearSay II system is wellknown because it 
proposed a new architecture called the "blackboard model". The blackboard model 
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is able to cope with variable type knowledge a.nd variable hierarchical knowledge. 

Furthermore, the invention of the blackboard model was the dawn of "Artificial 

Intelligence" (AI) study, the beginning of expert system development. HARPY is 
wellknown because it gave the best speech understanding performance of 97% in the 

ARPA project, by combining the advantages of the "DRAGON" system [Baker 75) 

and the HearSay II system. 

This ARPA project also had considerable influence on the research in Japan 

and Europe. In Japan, Kyoto Institute of Technology's "SPOKEN-BASIC" 
[Niimi 77], Kyoto University's "LITHAN" [Nakagawa 76], NTT's "Voice Q-A sys-

tem" [Shikano 81), ・waseda University's "¥VABOT II" [Kobayashi 85), and in Eu-

rope, CNET's "KEAL" system [Mercier 77] are some of the better known results. 

The ARPA project showed the advantage of integrating natural language as a 

constraint into the speech recognition process. However, it also proved the necessity 
of more accurate and detailed acoustic models for speech recognition. 

At the same time, computer progress has been incredible. Computer hardware 
has become faster, smaller and cheaper and memories have expanded geometrically. 

This progress greatly speed up data handling. On the software side, many program-
ming languages were invented not only for fast calculation, but also to facilitate 
complex system implementation such as knowledge based systems in AI. 

The progress in computers also brought break-throughs in the study of speech 
recognition, making possible several new approaches, such as "Hidden Markov Mod-

els (HMM)" [Rabiner 86), "Neural Networks" [Rumelhart 86] [Lippmann 87] and 

"Expert Systems" [Buchanan 85]. These approaches are the newest techniques in 

the study of speech recognition and are break-throughs from the DTW template-

matching speech recognition approach. 

Considerable progress has been made using these techniques and many speech 

recognition systems have been developed as a result. "SUMMIT" [Zue 90) and 

"SPREX" [Mizoguchi 87] based on "Expert Systems", "TANGO RA" [Jelinek 85], 
"SPHINX" [Lee 89], "BIBLOS" [Chow 87] and "ATR-HMM-LR" [Hanazawa 90] 
based on "Hidden Markov Models." As for "Neural Networks" research into "Time-

Delay Neural Networks" (TDNN) ['Waibel 89], "Dynamic Neural Networks" (DNN) 

[Sakoe 89] and "Neural Prediction Models" (NPM) [Iso 90], is now progressing. Each 
of the aforementioned systems has attained very impressive accuracy and most have 

overcome some recognition constraints such as speaker dependency, utterance style, 

vocabulary size, etc. 

At present. many speech recognition studies are concentrating on improving 

one of these techniques or on integrating certain of these techniques to improve the 

overall speech recognition performance. 

Among these studies, HMM appeared to be a good approach to continuous 
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speech recognition. The main advantages of HMM for speech recognition are as 

follows: 

• Inventi.on of a strong training algorithm, Baum-・welch algorithm [Baum 70] or 

EM algorithm [Dempster 77]. 
• Probabilistic representation in each acoustic model. 
• Capability of dealing with non-linear time warping. 
• Facile integration into language models by concatenating phoneme HMMs. 

On the other hand, speech recognition based on neural networks and expert 

systems appeared to have some difficulties when applied to continuous speech recog-

nition. In the neural network approach, although the performance of the phoneme 

classification is greater than that of HMM [Waibel 89], it has various problems such 

as mis-activation in the untrained regions for the input utterance. Moreover, in the 

approach of classification-type neural networks, the problem of normalizing time 
warping of speech features is serious. In the approach of expert systems research 

has proved the effectiveness of using human expert knowledge. However, on the 

other hand, it also proved the difficulties of full formulating human knowledge into 
explicit rules and the difficulties of full automatic acoustic feature extraction. •’• 

1.2.2 Neural Networks 

The study of neural networks applied to pattern recognition was in fashion in the 

1950's and 60's. However, after 1969, the theoretical limitation of neural networks 
for pattern recognition was shown by Minsh.7 [Minsky 69], and studies in this field 
have faded away. The main reason for this was that a good training algorithm for 

multiple layer neural networks could not be developed at that time. 

Recently, there were break-throughs in the study of neural networks: one was 

the development of the back-propagation algorithm for multiple layer neural network 

training, and the other was the incredible speed-up of computers. These break-

throughs made it possible to use a great amount of data to train multiple layer 
neural networks which ,vere thought to be impossible or very difficult to train. 

This back-propagation algprithm is very easily realize on computers. Thus, it 
spread to many research fields and many neural network application studies are 

now on-going, such as speech processing, image processing, language processing, 

system control and so on. In particular, joined with study of the Massively Parallel 

Distribution Processing in parallel computer science, the study of neural networks 
has become fashionable again. 

Since the back-propagation algorithm was developed, many neural network ap-

plications into speech recognition have been proposed. Several neural net-work ap-

proaches in speech recognition, such as the "Neural Prediction Models" (NPM) 
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[Iso 90], "Dynamic Neural Networks" (DNN) [Sakoe 89] and "Time-Delay Nel].ral 

Networks" (TDNN) [¥iVaibel 89], have shown its effectiveness. 

NPM and DNN are able to deal with the time warping of speech features. TDNN 

has a capability for time-shift tolerance. Considering the type of neural networks, 
the NMP can be classified as a non-linear mapping model, while DNN and TDNN 
can be considered as neural network classifiers. NPM and DNN are proposed for 

a word speech recognizer and TDNN is proposed as a phoneme classifier. TDNN 
showed incredibly high performance on phoneme identification, compared with the 
HMivI identification results obtained using the same data [v¥「aibel89]. 

1.2.3 Expert Systems 

The origin of the knowledge based approach derived from the blackboard model 

of the HearSay II system. This approach directly deals with human knowledge. 
Knowledge engineering is a discipline that seeks to understand the human knowl-

edge, especially the knowledge of human experts using an engineering technique. 

In practice, this discipline aims at the construction of an expert system which is 
able to automatically solve problems the human expert is able to solve. In this 

study, knowledge is the heuristic and experimental knowledge which was di缶cult
to cope with in the previous studies. This heuristic knowledge is described as a 

production rule and is used in the production system to solve the problem by hy-
pothesizing and evaluating the evidence while properly considering the constraints. 
These knowledge based systems are developed閉througha recursive or iterative trial 

and error rule-retraining as shown in Figure 1-1. 

This knowledge engineering technique is adopted in speech recognition because 

a human expert has some sort of knowledge for speech recognition. There are two 

major advantages to using a knowledge based approach for speech recognition: 

(1) Knowledge should be explicitly described as production rules which help the 
researcher make sure and to order one's knowledge. 

(2) Decision path, the way of recognition, can be easily obtained by back-tracking 
the production rules and makes it・easy to modify rules for system improvement. 

These are the main advantages that can be obtained from the knowledge based 
approach compared to the conventional approaches. 

The most famous knowledge for speech recognition is "spectrogram reading 

knowledge." Spectrogram reading is a technique to identify a phoneme category 

with its boundaries on a speech spectrogram using the visual acoustic phonetic fea-

tures. A spectrogram reader obtains experiential knowledge of acoustic phonetic£ea-
tures through spectrogram reading, which makes it possible to recognize phonemes 

in a continuous speech spectrogram with high accuracy (over 80%) [Zue 79], per-

forming phoneme segmentation and phoneme identification simultaneously using 
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spectrogram reading knowledge. For these reasons, several knowledge based speech 

recognizers have been developed [Zue S6] [Carbonell S6] [Mizoguchi S7] [Stern S6] 

[ Connolly S6]. These previous research studies proved the effectiveness of spectro-

gram reading knowledge for phoneme identification. 

1.3 Purpose 

This report has two purposes: 

(1) To simulate spectrogram reading behavior by an expert system. 

(2) To construct a speech recognizer by integrating human knowledge and neural 
networks without a language model. 

The first purpose is advancing the early study of Hatazaki, which is a feature 
based phoneme recognition expert system [Hatazaki 87] [Hatazaki 88]. Hatazaki's 

study has various benefits compared with the previous study of speech recognition 

expert systems because it simulates the human expert spectrogram reading process. 
This means that the system uses not only static human knowledge but also dynamic 

knowledge, i.e. strategies of a human expert. 

Since Zue showed the effectiveness of utilizing spectrogram reading knowledge 
for speech recognition, as previously described, several knowledge based speech 

recognition systems have been developed [Zue 86] [Carbonell 86] [Mizoguchi 87] 
[Stern 86] [Connolly 86]. Most of these systems are basically separable into two 

parts as shown in Figure 1-2: 

(1) Acoustic feature extraction part. 
(2) Verification and recognition part. 

In the acoustic fea.ture part, acoustic analysis is performed, then features are ex-
tracted into explicit・fact representations. In the recognition part, these extracted 
features are evaluated by the production rules which represent for phoneme identi-
:fi cation knowledge. 

However, in this structure, the system is not able to represent human knowledge 

fully. The human knowledge for reading spectrograms consists not only of the facts 
of acoustic evidence for phoneme recognition but also the strategies, in other words 

the ways to manage the acoustic evidence for phoneme determination. Thus, to 

realize an adequate knowledge based speech recognizer, the system should utilize 

not only the static knowledge but also the dynamic knowledge of the human expert. 

Various kinds of acoustic features have to be extracted from a spectrogram 
for phoneme identification. Moreover, they are complex and fuzzy. It is also very 

difficult to automatically extract these acoustic features from a spectrogram. Thus, 
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in most conventional speech recognition systems, very limited acoustic features a.re 

used. They are extracted and symbolized by pre-processing and/or by hand-labeling. 

Extracting acoustic features by hand from a spectrogram remains a major problem 
in fully automatic speech recognition. When e泣 ractingacoustic features by pre-

processing, there are also problems: 

• The system is not able to extract precise acoustic features according to the 

phoneme context, because of the lack of knowledge concerning phoneme vari-

ations and coarticulation effects. 
• The system is not able to pre-process all acoustic feature extraction which 
appear on a speech spectrogram. There are various kinds of acoustic features 
which are global and rough, or local and precise. 

• The system is not able to manage the usage of acoustic features because the 

usage differs considerably according to phoneme context. 

Thus, the separation of feature extraction and verification/recognition makes it dif-

ficult to extract and to control all the necessary acoustic features. 

In Hatazaki's study, these problems were overcome by the use of dynamic human 

expert knovvledge as strategies for phoneme recognition. Acoustic feature extraction 

was performed under the demand of the strategy by considering phoneme contexts, 
which made it possible to extract precise and various acoustic features. In Hatazaki's 
system, the feature extraction and phoneme verification are elegantly integrated and 

very well-formed in controlling acoustic features. 

However, there remain other problems in feature based expert system a.p-

proaches. In general, acoustic features which are useful for phoneme identification, 

such as distinctive features between /m/ and /n/ or /b/ and /d/, etc., are especially 
difficult to extract automatically. Even a human expert is not able to find these fea-
tures. Moreover, spectrogram reading knowledge such as pattern matching, which 

is not a small part of the whole human knowledge, is hard to describe as explicit 

rules. Thus, it is very difficult to fully formalize phoneme recognition knowledge, 
and to extract acoustic features automatically. 

Considering these difficulties, in the approach of this report, only explicit knowl-

edge is described into rules, e.g. strategies, phoneme boundary detection, rough 
phoneme class features, and so on. Knowledge, which is difficult to describe as 

rules, e.g. pattern matching-type knowledge, is implicitly represented inside the 

neural networks. 

The second purpose of this report is to construct a speech recognizer with 
no language model. Most speech recognition systems or speech understanding 

systems previously proposed are designed to choose the best word sequence from 

the word dictionary, under some constraint of a language model and limited domain 

knowledge. However, when humans converse with each other, many new and non-
entry words a.rise, even if the domain is limited. A recent approach that recognizes 
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such non-entry words [Asicli 90], only gets the rough category of the meaning for 
the input speech using the constraints of a task-dependent language model. 

Howev~r, in conversation, it is sometimes necessary to get the exact sequence 

of the input speech. For example, to spell out a name such as "KOMORI", K-0-

M-0箕 I.There is some challenging research aiming toward a phonetic typewriter 
proposed by Kawabata [Kawabata 91] and Kohonene [Kohonene 88]. Kawabata's 

study is based on the "ATR-HMM-LR" speech recognizer [Hanazawa 90] while its 
grammar is modified as a syllabic trigram model. The disadvantage of this system 

is that the performance strongly depends on the syllabic trigram. In this sense, 

this system has some kind of language model because the syllabic trigram is trained 
using a language database, and phonemes a.re not recognized only from the acoustic 

information. Kohonene's approach is a combination of the neural network approach 
and knowledge based approach. The neural network is used to produce the frame-

by-frame phoneme identification results and the knowledge is the phonotactics con-

straint in the language model. In Kohonene's approach, the acoustic information is 

fully analyzed in a neural network, and is not a feature based approach. 

To realize a phoneme recognition system aiming at phoneme typewriter with-

out a language model, powerful methods for phoneme segmentation and phoneme 

identification are indispensable and the architecture of the system should be con-
structed in a full bottom-up style. Many bottom-up style speech recognizers have 

been proposed in recent research. These recognizers consist of some sort of phoneme 
segmentation and phoneme identification. Although, in their segmentation part, 

they did not find the exact phoneme boundary, they obtained every possible acous-

tic boundary or performed very rough segmentation. As for phoneme identification, 

a high performance phoneme identifier, such as neural networks, was not developed 
until recent. 

From this point of view, the boundary obtained by spectrogram reading knowl-

edge is every bit as accurate as that of a human expert [Hatazaki 90] and the TDNN 

is one of the most powerful phoneme identifiers available [Waibel 89]. Thus, this 
combination is one of the most promising ways to realize speech recognition without 

a language model. The system proposed in this report is realized as a sophisticated 

integration of knowledge and TDNNs. 

1.4 Contents 

This report proposes a phoneme recognition expert system which integrates 

knowledge and neural networks, aiming at a speech recognizer without a language 

model by simulating the spectrogram reading behavior of a human expert. 

This report consists of four major parts: 

(1) Introduction, Chapter 1. 
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，
 (2) Recognition system and evaluation, Chapter 2 to Chapter 7. 

(:3) System expansion to continuous speech, Chapter 8 to Chapter 10. 

(4) Conclusions, Chapter 11. 

Chapter 1: The introduction begins with speech as a human-machine conmrnnica-

tion, then describes the background and the purpose of this study along with 
recent studies of speech recognition and finally the contents of this report. 

Chapter 2: An example of spectrogram reading behavior is shown. Then, a knowl-
edge representation that simulates the human expert behavior is described. 
The framework of the expert system, spectrogram reading knowledge for ex-

plicit knowledge, non-deterministic strategy, representation of uncertainty us-

ing certainty factor and fuzziness, on-demand top-down control feature ex-
traction under phoneme context constraints, and neural networks representing 

implicit knowledge are described. 
Chapter 3: The architecture of a speech recognition expert system without a lan-

guage model is proposed along with its hardware configuration. The system 

is realized as an integration of human knowledge and neural networks. The 

system mainly consists of two parts: consonant recognition and vowel recog-

nition. 
Chapter 4: The consonant recognition part is described in this chapter. Consonant 

recognition consists of two main parts: 

(1) Feature based phoneme segmentation. 

(2) Neural network based phoneme identification. 

The details of each part are presented and the experimental result tested on 

an ATR database [Takeda 88] is discussed. 
Chapter 5: In this chapter, five mechanisms for integrating knowledge and neu-

ral networks are studied to enhance their respective advantages. Consonant 

recognition experiments are carried out, and show that the closer integration of 

knowledge and neural networks improves not only identification performance 
but also segmentation accuracy, effectively reducing insertion errors. 

Chapter 6: The details of the vowel recognition part are described. Vowel recogni-

tion utilizes phoneme-spotting neural networks for vowel detection and knowl-

edge for verifying its category and boundaries. The effectiveness of this ap-
proach is shown through a vowel detection experiment. 

Chapter 7: The evaluation of the overall expert system is performed using the 
best integration of knowledge and neural networ、ksproposed in this report. A 

phoneme recognition experiment is shown for all Japanese phonemes on 2,620 
isolated words in the ATR database. 

Chapter 8: The robustness of a feature based segmentation against speaker inde-

pendency and utterance styles (speaking rate) is shown through experimental 
results. The added and modified knowledge for system expansion is also dis-

cussed. 
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Chapter 9: This chapter focuses on neural network structure to improve the 

pho1ieme identification performance of continuous speech and reports a new 

structure for phoneme identification neural networks, "Time-State Neural Net-

works" (TSNN). Phonemes in Japanese have certain rough temporal structures 

of phonemic features which do not greatly change even when the utterance is 

a.n isolated word or continuous speech. The proposed TSNN is able to deal 

with the temporal structure of phonemic features, which is helpful for identify-

ing phonemes. Several types of TSNNs are described along with their phoneme 

identification performance, tested on Japanese phonemes /b,d,g,m,n,N /, taken 

from isolated words, phrase and sentence utterances. 

Chapter 10: This chapter focuses on neural network training to improve contin-

uous speech recognition. A new training method for phoneme identification 

neural networks, called "Neural Fuzzy Training" method, is proposed. The 

general idea is described and the experimental results of phoneme identifi-

cation are presented. Moreover, continuous speech recognition experiments 

using the TDNN-LR speech recognizer [Sawai 91] are performed. Dramatic 

improvements of the proposed Neural Fuzzy Training method compared with 

the conventional training method are shown. 

Chapter 11: Finally, this chapter summarizes the study of this report and discusses 

further studies. 

Appendixes, References, Index are appended at the end of this report. 

声
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Chapter 2 

KNOWLEDGE 
REPRESENTATION 

2 .1 Introduction 

In this chapter, an example of the spectrogram reading process performed by 

a human expert is described in order to show the kinds of human knowledge and 

how they are used. This knowledge is required to be incorporated into the system 

naturally to implement a high performance knowledge based speech recognizer. 

Secondly, this chapter presents knowledge representation in order to simulate 

the spectrogram reading behavior. The knowledge and strategy used by a human 
.. expert in spectrogram reading strongly depend on phoneme context; moreover, it 

is fuzzy. And knowledge consists of various kinds of precise and local, 01、 rough

and global acoustic phonetic features. To simulate a spectrogram reading process 
and to describe complex human knowledge easily and naturally on a computer, a. 

well-formed framework is indispensable. The knowledge representations that are 

incorporated in the system are listed below: 

• Expert system. 
• Spectrogram reading knowledge. 
• Non-deterministic context叫 strategy.

• Representation of uncertainty. 
• Representation of fuzziness. 
• On-demand top-clown control acoustic feature extraction. 
• Time-Delay Neural Networks. 

13 
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2.2 Spectrogram Reading Process 

Figure・2-1 shows an example of a spectrogram uttered by a male speaker. The 

utterance /sukunakutomo/ is visualized as a two-dimensional pattern. The horizon-
tal axis indicates the time scale and the vertical axis indicates the frequency scale。

Shading indicates the power inside a certain region of the time and frequency do-
main. Spectrogram reading is a technique for identifying phoneme categories・with 

their boundaries by using these visual acoustic phonetic features on a speech spec-
trogram. The spectrogram reading process for this example takes place as follows: 

1. Rough segmentation is easily performed. In this case, the spectrogram is 

separated in to 11 regions. 1) From 350rns to 500ms, 2) 500ms to 5 ?Oms, :3) 
570ms to 640ms, 4) 640ms to 670ms, 5) 670ms to 760ms, 6) 760ms to 830ms, 

7) 830ms to 890ms, 8) 890ms to 950ms, 9) 950ms to 1,040ms, 10) 1,040ms to 
1,090ms, 11) 1,090ms to 1,200rns. 

2. These regions are roughly classified into 3 regions. 

silence region: 2), 6) and 8) with no power over the entire frequency range 

(0-6,000Hz). 

unvoiced region: 1) and 7) with no power in the low frequency range (0-

500Hz). 

voiced region: 3), 4), 5), 9), 10) and 11) using the power in the low fre-

quency range (0-500Hz). 

3. Region 1) has considerable power in the high frequency range (4,000-6,000Hz), 
and no power in the low frequency range (0-500Hz). The duration is long. 

Thus, the unvoiced-stop for /ch/ or /ts/, the unvoiced-fricative for /s/ or /sh/ 
or the phoneme /h/ are hypothesized as phoneme candidates. 

4. The phoneme contexts are hypothesized at the same time and acoustic evi-

dence is evaluated. The acoustic features for the phoneme contexts for region 
1) are silence for both left and right. The silence of the left context derives from 

the location at word initial position. The right silence indicates the possibility 

of the following vowel devocalization for it is uttered between unvoiced conso-
na.nts. The left boundary is not so sharp and the strong high frequency power 

exists above 4,000Hz. Thus, the first candidate for region 1) is the phoneme 

/s/. Phonemes /h/, / ch/, /ts/ will be the next candidates. The right phoneme 
boundary is detected at the point of increase and the left phoneme boundary 
at the point of decrease of the high frequency power. 

5. Region 2) is silence, which may be the unvoiced-stop closure. There is some-

thing in the high frequency range, which seems to be a. double burst. This 

is one indication of the phoneme /k/. The aspiration is not short enough to 

suggest /p/ or /t/, and not long enough to suggest /ch/ or /ts/. Thus, the 
first candida.te will be the phoneme /k/. The right boundary will be obtained 
at the start point of voicing where the low frequency power increases. 



2.2. SPECTROGRAM READING PROCESS 1.5 

6. From steps 4 and 5, the hypothesis of vowel devoca.lization is in accord with the 

knowledge "vowel between unvoiced consonants happens to be devocalized". 
7. Region 3) is a vowel-like pattern, and using the pattern matching knowledge, 

the first candidate is hypothesized as the phoneme /u/. Other evidence can 
be found such as very low frequency power exists, which indicates that it is 

not the phoneme / a/ or / o /. There is a strong power around 1,20GHz which 

indicates this is not the phoneme /i/. 
8. Region 4) is detected from a sharp spectral gap, which is one evidence of a 

nasal. The duration is not short and there is a strong low frequency power 

which is other evidence of a nasal. Thus, the phoneme candidates are /m/ or 

/n/. To distinguish /m/ and /n/, the formant movement (almost invisible in 
this case) of the preceding and the following vowel should be captured. The 

left-and the right boundaries are obtained by the spectral gap. 

9. Region 5) is another vowel-like pattern, and using the pattern matching knowl-

edge, the first candidate is hypothesized as the phoneme /a/. 

10. Inside the region 6), 7) and 8), there are two silence closures and a fricative—like 
pattern in the middle. Here, two concatenated unvoiced-stops with a devocal-

ized vowel are hypothesized. At 825ms, a burst is observed. The duration of 

region 7) is not particularly long. The left bound_ary of region 7) is not sharp. 
Region 8) is a complete silence with a sharp boundary on the right side, which 
is a burst. The aspiration after the burst is very short. From this evidence, the 

left phoneme candidate is /k/ and the right phoneme candidates are /p / or 

/t/. To distinguish /p/ and /t/, the formant movement to the following vowel 
is important. The left boundary of the first phoneme is detected by the low 

frequency power decreasing point where silence begins. The boundary of the 
two phonemes is detected at the point where high frequency power decreases 

around 870ms. The right boundary of the second phoneme is detected at the 
low frequency power increasing point. 

11. Region 9) is again a vowel-like pattern, and using the pattern matching knowl-

edge, the first candidate is hypothesized as the phoneme / o /. The second 
formant of this vowel goes up into the preceding closure, which raises the 

possibility that preceding phoneme is a /t/ rather than a /k/. 
12. Region 10) is not short and has a very low frequency power and does not have 

a high frequency power. This indicates the possibility of a nasal. In this case, 
the first-and the second formant of the preceding and following vowel go down 

into region 10). Thus, the first candidate for this region is hypothesized as 

phoneme /m/. The left and the right boundaries are obtained by the edges of 
the spectrum. 

13. Finally, region 11) is a vowel-like pattern, and using the pattern ma.tching 

knowledge, the first candidate is hypothesized as phoneme /o/. The pattern 

of regions 9) a.ncl 10) a.re similar which indicates that these two phonemes 
are the same vowel. The right boundary is obtained at the point where the 

following silence begins. 
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2.3 Expert System 

Since the knowledge based approach [Zue 86] was proposed for speech recogni-
tion, several speech recognizers have been developed [Carbonell 86] [Mizoguchi 87] 

[Stern 86] [Connolly 86]. However, most of these conventional systems adopted sep-
arate structures for 1) the acoustic feature extraction part and 2) the phoneme 

recognition part, utilizing only static human knowledge for phoneme identification. 
I(nowleclge was represented using frameworks of simple if-then rules and certainty 
factors. l¥tioreover, very limited acoustic features were used, because of the difficul-

ties of automatic extraction. These acoustic features were extracted and symbolized 
by pre-processing to be executed by the rules for phoneme recognition. 

However, as shown in the aforementioned spectrogram reading process of a 

human expert, human knowledge consists of not only static knowledge but also 

dynamic knowledge. A human expert spectrogram reader recognizes phonemes by 

simultaneously performing phoneme segmentation and phoneme identification us-

ing his/her dynamic knowledge in combination with static knowledge. Dynamic 

knowledge is the strategy for phoneme recognition which is performed by hypoth-
esizing phoneme contexts and by extracting appropriate acoustic features, while 

static knowledge is the verification of the acoustic evidence. 

To cope wit.h this knowledge, a good framework is required. In the proposed 

expert system, an assumption-based inference is incorporated to describe phoneme 

contextual knowledge and to realize a contextual non-deterministic strategy. Also, 

certainty factors and the idea of fuzzy sets, are adopted to represent the uncer-

ta.in and fuzzy knowledge. Acoustic phonetic features are automatically extracted 
(on-demand top-down control feature extraction), using appropriate methods and 

para.meters according to the phoneme contexts when the features are referred by 
the rules. And knowledge, which is difficult to explicitly describe, is represented by 

neural networks. These techniques make it possible to incorporate human expert 
knowledge into a system easily and naturally. 

2.4 Spectrogram Reading Knowledge 

As already mentioned, a human expert simultaneously performs phoneme seg-

mentation which determines phoneme positions in speech as well as phoneme identi-

fication while reading a spectrogram. Not only for identification but also for segmen-

tation, a human expert has his/her knowledge concerned with the acoustic phonetic 

features and coarticulation, and uses this knowledge for segmentation by extracting 

acoustic features through his/her strategy according to phoneme contexts. Thus, a 

huma.n expert is able to obtain highly accurate phoneme boundaries, regardless of 
acoustic variations in the phoneme caused by coarticulation. 

The acoustic features which are used for phoneme segmentation are more facile 
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than those of phoneme identification, not only in extracting acoustic features but 

also in describing in explicit rules. 

In this system, the spectrogram reading knowledge, both dynamic and static, is 
mainly focused on the phoneme segmentation purpose rather than phoneme iclenti-

fication, by simulating the human spectrogram reading process. The segmentation 
process detects phonemes on a speech spectrogram and determines their left and 

right boundaries along with their phoneme classes using human expert knowledge 
and strategy described in rules. Some knowledge for phoneme identification is also 

incorporated into the system, such as formant frequency range of vowels, however 
this knowledge is used as additional information and not as the ma.in information 
for phoneme identification. 

2.5 N on-De・terministic Strategy 

Phonemes in continuous speech have a number of acoustic variations caused by 

the effect of coarticulation from the preceding and/or from the following phonemes. 

For this reason, a human expert hypothesizes various phoneme contexts and acoustic 

variations of phonemes and evaluates these hypotheses by verifying acoustic evidence 

when reading a spectrogram. To obtain more reliable phonemes, appropriate strate-
gies have to be selected, and suitable acoustic features have to be extracted from a 
spectrogram according to the phoneme contextual hypotheses. 

Through an assumption-based inference technique, the expert system is able 

to deal with phoneme contextual knowledge and variations, and also is able to re-

alize a non-deterministic contextual strategy. Phoneme contextual knowledge is 
described as rules under the conditions of each phoneme context, and is only ap-
plied ,vithin the hypothesized phoneme context. When several kinds of phoneme 

contexts may be hypothesized, phoneme detection is performed under each con-

clition of each phoneme contextual hypothesis in parallel, independently. ART's 

[ART 87] ATMS (assumption-based truth maintenance system) [de Kleer 86] man-
ages the consistency of these hypotheses, by a prohibition of combining contradictory 
hypotheses. 

Each hypothesis is evaluated as correct or incorrect. When the hypothesis is 
correct, a sequence of certain rules under the hypothesis is applied without con-

tracliction, to determine a phoneme. On the other hand, when the hypothesis is 

incorrect, some condition of the rules (in which the phoneme context is described) 

differs from the actual phoneme context on the spectrogram. In such a case, the 
phoneme ca.nnot be determined because of the contradictory phoneme context, or 

else the phoneme will be determined with a low certainty. The phoneme with the 

highest certainty is selected as the final result among all candidates determined 

from each hypothesis. The assumption-based inference makes it easy and natural to 
describe knowledge which is dependent on phoneme contexts and on phoneme vari-
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ations as rules. This is because the conditions of these rules are phoneme contexts 

and phoneme variations. Moreover, this assumption-ba.sed inference also makes it 

very easy to・describe these conditional rules, because it only has to take account of 
each phoneme context and each phoneme variation condition in each rule. 

2.6 Representation of Uncertainty 

¥Vhen reading a spectrogram, a human expert hypothesizes several phoneme 

contexts and phoneme variations. Simultaneously, these hypotheses are judged as 
correct or incorrect, by collecting positive or negative evidence using acoustic fea-

tures extracted from a spectrogram. However, it cannot be defined clearly that 
these hypotheses were correct or incorrect, and the correctness of these hypothe-

ses can only be obtained. The existence of acoustic evidence on a spectrogram is 
also very difficult to clearly identify. Most of the evidence can be characterized as 

"the acoustic feature can be observed clearly" or as "the acoustic feature can be 

observed but not clearly". These examples show that the existence of the acoustic 

evidence should be represented with some sense of certainty. Thus, the certainty of 
the hypothesis is evaluated by its importance, by its certainty, and by the amount 

of evidence. In this way, the hypothesized candidates through spectrogram reading 
are represented with a degree of certainty, which cannot definitely be evaluated as 

right or wrong. 

Generally, when solving a problem of uncertainty, there are relations such as 

AND, 0 R and CO J11 B (combination) between various evidence used in the hy-

potheses. The evidence in an AND relation shows a necessary condition, and the 
evidence in an OR relation shows a sufficient condition. Evidence in a COMB 

relation can be independent positive or negative proof [Ishizuka 85]. 

For instance, "the power between OHz to 500Hz is large": This evidence is a 

positive proof that a phoneme is a vowel, and is also a necessary condition. On 

the other hand, "a double burst exists": This evidence is a positive proof that a 

phoneme is a. burst, but it is not a necessary condition, for no other phoneme except 

phoneme /k/ has a double burst. Moreover, in spectrogram reading, this kind of 
evidence is evaluated independently and regardless of order. 

There a.re some methods to deal with uncertainty like Bayesian probability, 

"MYCIN" certainty factor [Buchanan 85] system, subjective Bayesian method, 

probabilistic theory of Demster-Shafer, or fuzzy set theory. Each of these meth-

ods has advantages and disadvantages. This system basically adopts the certainty 

factor calculation model of the MYCIN system, and modifies it to be able to deal 

with the evidence evaluation, regardless of order. This model is adopted because 

the MYCIN model is able to deal with unsigned values, is able to calculate the 

co」~!JB relation, and is easy to define the importance and certainty of the evidence 

intuitiona.lly. Moreover, the calculation of certainty factors is easily understandable. 
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In the certainty factor calculation model of the MYCIN system, the value of 

the certainty factor CF lies between [-1, +l]. ¥Vhen CF = -1, the hypothesis 
is absolutely negative, when CF = + 1, the hypothesis is absolutely positive, and 
when CF = 0, it means that the hypothesis is neutral and cannot be defined a.s 
right or wrong. ¥¥hen the hypothesis has no evidence, its certainty factor is defined 

as CF= 0. The certainty factor CFp, where P is a condition of some hypothesis, 

will be ca.lculated according to the relation between the evidence x and y, with their 
certainty factors of CFx and CFy shown in the following equations. 

(1) the relation between the evidence x and y is AND: 

CFp = min(CFx, CFy) 

(2) the relation between the evidence x and y is OR: 

CFp = max(CFx, C灼）

(3) the relation between the evidence x and y is COMB: 

Cfェ+(1-Cf』・CFy if CF, ェ>0 and CFy > 0 

CFp= 
(CFェ+CFy) 

1 -min(IC?』,ICF; 叶）
if CF, 工:::;0 or CFy:::; 0 

CFx + (1 + CF』・CFy if CFx < 0 and CFy < 0 

Though there is no theoretical background in this MYCIN equation of the 

COMB relation, the certainty factor result from this equation is easy to understand 
intuitively. This certainty factor calculation model is adopted because any positive 

and negative certainty factors can be combined in any order. The certainty of the 

hypothesis from the N evidence can be integrated, in general, by applying these 
equations of relations one by one. 

Each certainty factor calculation equation (and, or, combine) preserves com-

mutativity. This means thaf if only one kind of relation from these three is used 

and when integrating more than three bits of evidence, the given result will take 
the same value regardless of the order of the evidence integration. However, if two 

or three kinds of relations are used among these three equations for the integration, 

the result value will change according to the order of the evidence integration. This 

means that eval nation of the evidence using t-wo or three relations from A.ND, 0 R 

and COA1 B is not possible, regardless of the order of evidence integration. 

To avoid this problem, a. three-tuple score representation of certainty factors is 

proposed for each relation of evidence (A..N D, OR and CO」~;JB) during the hypoth-
esis as follows: 
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CFh = {CF, 四 d,CF,。1・,CFcomb} 

where CFand, CF,。,., CFcomb are the integrated certainty factor results of each 
AND, OR and CO.MB relation. The initial value_ofthe certainty factors is {1,-1,0}, 

when there is no evidence a.t the beginning. Each certainty factor of the evidence is 

integrated into CFand, CF.。randCFcomb according to each AND, OR and COJi;JB 
relation. In addition, some weight is multiplied according to the importance of 

the evidence in the hypothesis, when its certainty factor is integrated in a CO 111 B 

relation. 

CFh is accumulated into a sca.la.r score, when all evidence evaluations in all the 

hypotheses have been completed. Thus, the three-tuple scores can generally be in-

tegrated into certainty factors of CO!iif B relations using the max() function for an 
AND relation and the min() function for an OR relation. This is because an AND 

relation is a necessary condition and an OR relation is a sufficient condition. More-

over, in this system, evidence of a sufficient condition is treated as more important 

than the evidence of a necessary condition. This is because, generally in spectrogram 
reading, the hypothesis, in which the evidence of sufficient condition is observed, is 

determined to be successful. On the other hand, hypotheses in which the evidence 
of necessary condition is not observed, a.re not determined to be unsuccessful. Thus, 

the CFh is accumulated as a scalar value in the next equation: 

CFh = maぉ{min(CFcomb, CFand), CF,。,.}

In this way, each AND, OR and COJi;J B calculation preserves commutativity 

during the evaluation of the hypothesis, because every evidence integration for each 
relation is performed individually. Thus, the final scalar result can be obtained 

regardless of the order of evidence integration. This means tha.t it is possible to 
integrate results by evaluating a lot of evidence which has relations of AND, OR 

and COJvf B, in any order. 

2. 7 Representation of Fuzziness 

The human's knowledge of acoustic features extracted from a spectrogram 

has a certa.in fuzziness, in other words, it is qualitative. For instance, "the low 

frequency power of vowel is strong, but that of voiced-fricative is not so strong". 
Accordingly, the degree of knowledge is represented in qualitative phrases like "very 

strong", "strong", "not so strong", "weak" and "very ,vea.k", and does not have 

clear boundaries. Moreover, the ma.pping from the numerical quantity of an acoustic 

feature to a qua.litative concept used by a human expert, is different in ea.ch phoneme 

context. For instance, -50dB of low frequency power is "slightly weak" for a vowel, 
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but "suitable" for a voiced-fricative, while -20clB is "sufficiently strong" for a. vowel, 

but "too strong" for a voiced-fricative. 

To deal with such fuzziness, the theory of fuzzy sets [Zadeh 65] is a good frame-
work. Using the fuzzy membership function of this theory, it is easy to map a 

qualitative representation into a numerical one. The fuzzy knowledge is represented 

using this idea in this system. 

In a spectrogram reading a.s described above, the mapping from a qualitative 

representation such as "strong" and/ or "weak" to a. physical quantity, is not a simple 
or a single relation, which means that it is not able to give one single fuzzy mem-

bership function to each qualitative representation. Thus, the fuzzy membership 
function must be defined depending on each extracted acoustic feature and depend-
ing on each phoneme context. Figure 2-2 shows an example of a fuzzy membership 

function of low frequency power (0-500Hz) for voiced-fricatives, which appears in 

the medial part of the utterance. This function shows how the extracted feature 
fits into the phoneme contextual hypothesis. In other words, the value obtained by 

mapping the physical quantity through the fuzzy membership function, represents 

the certainty of existence for the extracted feature. The dynamic range of this fuzzy 
membership function is defined between [-1, +l] which lies in the same range as the 
certainty factor, so as to be directly applied to the ca.lcula.tion model of the certainty 

factor described in the previous section. 

As a result, this makes it easy for a human expert to represent knowledge about 

a physical quantity for the extracted features from a spectrogram using an intuitional 

mapping, which also makes it possible to evaluate the certainty of a hypothesis for 
the extracted feature、vithoutusing any thresholds. 

2.8 Acoustic Feature Extraction 

Spectrogram reading uses various kinds of global and local, or rough and pre-

cise acoustic features on a spectrogram. A human expert is able to extract such 
acoustic features under the phoneme contexts, by predicting and focusing on the 

feature existence on a spectrogram, and by selecting the appropriate method with 
its thresholds. In the same manner, this system extracts the acoustic features under 
the phoneme context hypotheses simultaneously, when the rules are executed. 

This makes it possible to supply an appropriate method with proper parameters 

by top-down control, to extra.ct the acoustic features, such as frequency ranges, time 
ranges, thresholds and smoothing factors. As a. result, the various acoustic features 

used by a human expert can be precisely extracted, easily a.nd accurately. 

H~re is an example of the feature extraction of a. power increasing point. This 
acoustic feature extraction function (power-increase . ….) searches for the power in-
creasing point ?ti me and obtains its value ? change. This function searches from 
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?point within ?range toward before (left) or after (right) between ?lowfrq (low fre-

quency) and ?highfrq (high frequency) by using the ?*smoothing* (smoothing rate) 

and its ?*threshold*. 

(power-increase (?time ?change) 

after ?point ?range ?lowfrq ?highfrq *?smoothing* ?*threshold*) 

As described, every parameter depends upon the feature to be extracted with its 

phoneme and phoneme context. The following two examples show the difference of 

feature extraction parameters which closely depend on the phoneme and its context. 

(1) Searching power increasing point for the right boundary of phoneme /r/ in the 

medial pi;l,rt of the utterance. 

(power-increase 

(?time ?change) after ?point ?lqd-range 

?lqd-lowfrq ?lqd-highfrq *?lqd-smoothing* ?*lqd-start-threshold*) 

where ?point is search start point, 

?lqd-range = 50ms, 
?lqd-lowfrq = 1,000Hz, ?lqd-highfrq = 4,000Hz, 
?*lqd-smoothing* = (5 3), almost no-smoothing, 
?*lqd-start-threshold* = 0.5 

(2) Searching power increasing point for the left boundary of phoneme / s/ in the 

medial part・of the utterance. 

(power-increase 

(?time ?change) before ?point ?frc-range 

?frc-lowfrq ?frc-highfrq ?*frc-smoothi ng* ?*frc-end-t h reshol d*) 

where ?point is search start point, 

?frc-range = 150ms, 
?frc-lowfrq = 4,000Hz, ?frc-highfrq = 6,000Hz, 

?*frc-smoothing* = (10 9), normal smoothing, 
?*frc-start-threshold* = 0.5 

Here are the acoustic features which can automatically be extracted in the 

current system. 

(a) Spectral power in certain frequency ranges. 

(b) Time when the spectral power increases or decreases across thresholds. 

(c) Time and magnitude of spectral power change pea.ks in certain frequency 

ranges. 

(d) Frequency and magnitude of spectrum peaks. 

(e) Cutoff frequency of fricative power. 
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2.9 Time-Delay Neural Networks 

Time-Delay Neural Network, TDNN, is a neural phoneme classifier and consists 

of a layered feed-forward neural network.'¥Vaibel showed the incredible performance 

of TDNN on phoneme identification, comparing with the HMM identification result 

obtained on the same data [Waibel 89]. Thus, TDNN is adopted as a pattern match-
ing knowledge for phoneme identification in the expert system. 

The following properties are considered in a. TDNN architecture, to be useful 

for speech recognition. 

• Multiple layers and sufficient inter-connections between units in each of these 
layers to ensure that the network has the ability to learn complex non-linear 

decision surfaces. 

• Ability to represent relationships between events in time. These events could 
be spectral coefficients, but might also be the output of the higher level feature 

detectors. 

• Tolerance in time of the actual features and abstractions learned by the net-
work. 

• Small number of weights in the neural network compared to the amount of the 
training data for better generalization. 

In the following, the architecture of TDNN design is described. 

The basic unit used in many neural networks computes the sum of the weights 

its inputs and passes this sum through a non-linear function. In the TDNN, this 

basic unit is modified by introducing delays Dl through DN as shown in Figure 2-:3. 

The J inputs of such a unit will be multiplied by several weights, one for ea.ch delay 

and one for the undelayed input. For N=2, and J=16, for example, 48 weights ,vill 

be needed to compute the weighted sum of the 16 inputs, with each input measured 

at three different points in time. In this way, a TDNN unit has the ability to relate 

and compare current input with the passed history of event. The sigmoid function 

was chosen as the non-linear output function F due to its convenient mathematical 
properties. An example of a four layer TDNN with the overall architecture and its 

connections for three phoneme identification tasks is shown in Figure 2-4. 

In the proposed speech recognition system, a. TDNN identifier modularly ex-

panded for 18-consona.nt identification for Japanese and a TDNN phoneme-spotter 

for five vowels, one syllabic nasal and two semivowels are adopted as a pattern 

matching knowledge. 
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2.10 Figures & Tables 
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Figure 2-4: Example of Three Class Identification TONN 



Chapter 3 

RECOGNITION SYSTEM 
OUTLINE 

3.1 Introduction 

In this chapter, the hardware configuration and the system architecture, which 
realize the proposed phoneme recognition expert system by integrating knowledge 

and neural networks, are described. 

3.2 Hardware 

Figure 3-1 shows the hardware configuration of the expert system. The system 
consists of two workstations, Symbolics and VAX, which are connected by Ethernet 
for communication. 

The system control part and the rule-based part are described by use of ART 
[ART 87], which is a commercial tool for building expert systems on the Symbolics 

workstation. The acoustic analysis, feature extraction and neural network perform 
on a VAX workstation, and these are described in programming language C. Accord-

ing to the requests of the rules on the Symbolics: the VAX replies with the acoustic 

features and phoneme identification results. The interface program is described in 
Lisp programming language. 

3.3 System Architecture 

Figure 3-2 shows the rough architecture of the expert system. The expert 

system, which recognizes phoneme in continuous speech, reads a spectrogram of 
an input speech and determine phonemes using the human expert knowledge and 

27 
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strategy by utilizing rules and neural networks. The rules run by hypothesizing and 

by verifying the possible phoneme candidates and phoneme contexts, as shown in 

the figure as・blocks ([コ） • The lines (一） and arrows (→） in the figure show how 
the hypotheses and verifications perform. The a~-row (→） indicates the path which 
gave the final result. 

The system mainly consists of three parts: 

(1) C onsonant recogmt10n. 
(2) Vowel recognition. 

(3) Pl 1oneme determmat1on. 

In the consonant and vowel recognition parts, knowledge and neural networks 
are integrated so as to improve the overall recognition performance. Finally in the 

phoneme determination part, the system selects the results of consonant and vowel 

recognition. 

U
-

上

F
,
9
t
;
f

3.3.1 C onsonant Recogn1t1on 

In the consonant recognition part, the knowledge is mainly used for segmenta-

tion and the neural network is mainly used for identification. First, the segmentation 

candidates are obtained using the knowledge. Then, the neural network is closely 
integrated in order to determine the most likely phoneme category with its boundary. 

3.3.2 Vowel Recognition 

In the vowel recognition part, the system utilizes a neural network as a 

phoneme-spotting method for detecting vowel candidates along with their rough 

locations in the input speech. Then, in combination with rule-based knowledge, the 
system verifies the vowel categories and determines the vowel boundaries. 

3.3.3 Ph oneme Determ1nat1on 

In the current system, the consonant recognition result and the vowel recogni-

tion result are combined in a simple fashion. The regions where consonant segments 
are obtained by the expert system are all assumed to be correct, and the other re-

gions where consonant segments are not obtained are assumed to be vowel segments. 
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Chapter 4 

CONSONANT RECOGNITION 

4.1 Introduction 

In this chapter, the consonant recognition part of the expert system is de-

scribed. Knowledge in this part mainly consists of two types. 1) human knowledge, 
both static and dynamic, for phoneme segmentation realized in a rule-based process, 

and 2) pattern matching phoneme identification knowledge realized in a neural net-

work process. Details of each part and the evaluation of the Japanese 15-consonant 

recognition is described. 

4.2 Consonant Segmentation 

Consonant segmentation, which is a rule-based system, is presented in this 

section. Characteristics, Strategy a.nd Examples are described. 

4.2.1 Characteristics 

The following characteristics are incorporated into the segmentation part of 
the system for knowledge representation. Details have been already described in 

Chapter 2. 

• Phoneme boundaries are detected by hypothesizing and by verifying the 
phoneme contextual acoustic evidence by utilizing the non-deterministic con-

textual strategy. 

• On-demand top-down control feature extraction is performed which makes 

it possible to extract proper acoustic features using appropriate extraction 
parameters. 

31 
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• More reliable phoneme boundaries can be obtained by representing fuzzy hu-
man expert knowledge using the theory of fuzzy sets and certainty factors. 

4.2.2 Seg mentation Strategy 

Knowledge of Japanese consonant se忠nentationis currently incorporated as 
about 250 rules in the system. The rules are almost described for each phoneme 

class: 1) unvoiced-stop, 2) unvoiced-fricative, 3) voiced-stop, 4) voiced-fricative, 5) 
nasal, 6) liquid and 7) glottal. The phoneme segmentation is performed in the 
following steps as shown in Figure 4-1. 

(1) Detecting phoneme candidates. 

(2) Hypothesizing phoneme context. 

(3) Detecting and evaluating phoneme boundaries. 

(4) Selecting more reliable boundaries. 

Details of these processes are as follows: 

Phoneme Candidate Detection 

Phoneme classes and their rough locations are hypothesized as phoneme candi-
dates by referring to global and rough acoustic features, which can be the evidence of 

the existence of the hypothesized phonemes. At the same time, the certainty factors, 
computed from this acoustic evidences with some additional evidences, are assigned 

to the hypotheses. Table 4-1 shows the ?-phoneme class categories in the current 
system. At this stage, the system uses rough and global acoustic features. Thus, 

even when the system obse1-ves only very slight evidence for a phoneme existence, 
it tries to hypothesize the existence of the phoneme. As a result, extra phonemes 

may be hypothesized, in other words more than one phoneme may be hypothesized 

at the same location in the input speech. These extra phoneme candidates will 
be rejected by evaluating the suitability of the acoustic evidence to the phoneme 
contextual hypothesis. 

Phoneme Context Hypothesis 

The phoneme contexts, which include acoustic variations and their left and 

right phoneme classes, are hypothesized for each phoneme candidate hypothesized 

in the phoneme candidate detection stage. In most phonemes, phoneme context is 

hypothesized as a.) silence for the left context and vowel for the right context in the 
initial part of the utterance, b) vowels for both left and right contexts, in the medial 

part of the utterance. 

Vowel devocaliza.tion often occurs when a vowel /i/ or /u/ appears between 
unvoiced-stops or unvoiced-fricatives. In such cases, vowel devocaliza.tion should be 
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assumed. Thus, for a phoneme context hypothesis of an unvoiced-stop which appears 

in the medial of the utterance, a vowel and a devocalized vowel are hypothesized 

as its left phoneme contexts, and a vowel, a fricative and another stop as its right 

phoneme contexts. In addition, the existence of a double burst and the existence 
of the low frequency power in the aspiration region or in the burst region are also 
hypothesized for its own acoustic variations. 

Boundary Detection and Evaluation 

The consonant boundaries are determined in the following steps: 

• Boundary Detection 
Phoneme boundary detection, both the start point and the end point, is per-

formed for each phoneme candidate under each phoneme context hypothesis, 
by referring to local and precise acoustic features. In this way, under the 

correct hypothesis, correct boundaries can be obtained. Under the wrong 

hypotheses, some wrong boundaries are obtained and/or are not obtained 
because of some contradiction in the assumption-based inference. And some-

times, multiple boundaries are obtained under one phoneme context hypoth-

es1s. 

• Boundary Evaluation 
The certainty of the detected boundary is calculated by integrating the cer-
tainty factor of the hypothesis of the phoneme candidate and those of the 

phoneme contexts. Some hypotheses are evaluated explicitly and others implic-

itly. Explicit evaluation of a hypothesis is performed by verifying the acoustic 

evidence directly when the acoustic feature is observed clearly in the phoneme 
context hypothesis. For instance, in the case of "the right phoneme context 

is an unvoiced stop", the certainty of this hypothesis will be evaluated by 

the certainty of the closure existence using its power. On the other hand, in 

some cases, it is very difficult to evaluate the evidence by direct extraction 

of the acoustic features. This kind of hypothesis is evalua.ted implicitly. In 
such a case, the phoneme boundary is detected without verifying the acoustic 

evidence in the hypotheses directly, but is assigned a certainty factor which 

indicates how likely the acoustic measurements are when compared to the 

conditions around the boundary of the hypothesis. As a result, a・phoneme 

boundary which is obtained under more reliable hypotheses will be assigned a 
larger certainty factor. For instance, the hypothesis "an unvoiced-stop has no 

extra low frequency power at the aspiration" is difficult to evaluate directly, 

because it is not easy to tell the difference between the lovv frequency power 

in the aspiration region, from that in the following vowel region. 

• Selecting More Reliable Boundaries 
As the result of detecting boundaries, more than one set of left and right 
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boundaries may be detected for a phoneme, or more than one phoneme may 
be detected at the same location in the input speech. The more reliable bound-
aries are selected from all the detected boundaries: By default, the boundaries 
assigned larger certainty factors are selected. For some phoneme classes, the 
certainty factors are recalculated by referring to additional acoustic features, 
for example, phoneme duration after getting the left and right boundaries. 
Finally, the coarsely classified phonemes and their left and right boundaries 
are obtained with their certainty factors. 

4.2.3 Rule Example 

Here, two examples for consonant boundary detection considering their 

phoneme context are presented. 

• Boundary detection between /h/ and devocalized /u/ 
Figure 4-2 is an example of a spectrogram reading knowledge for phoneme 
boundary detection: "when the vowel /u/ is devocalized between the phoneme 
/h/ and an unvoiced-stop, the end point of the phoneme /h/ is located at the 
boundary between the phoneme /h/ and the closure of the unvoiced-stop". 
In this system, this kind of phoneme contextual knowledge is described as 
individual rules. For example, when the condition part of the following rule 
is SU缶cient"phoneme candidate /h/ exists, and a silence section exists on its 
right side", the rule then executes the action, "detect the boundary between 

phoneme /h/ and silence as an end point of phoneme /h/". 

To detect "the boundary between phoneme /h/ and silence" accurately, the 
boundary is detected using precise acoustic features according to the phoneme 
context in the next process; 

(1) First, the system looks for the rough boundary, the rough start point of 

silence, as a point where the 0-6,000Hz power drops to none. 

(2) Then the system looks for the boundary, hypothesizing that the largest 

formant of the phoneme /h/ comes into the silence region, using the 
knowledge that "the phoneme /h/ has the same formant structure of the 

following vowel". Thus, the system computes the largest formant peak 
around the start point of silence. 

(3) Next, the system determines that the point where the band frequency 
power around the largest formant pea.k土20GHzdrops to none, is the end 

boundary of phoneme /h/ in this phoneme context. 

• Boundary detection between unvoiced-stop and vowel 
Figure 4-3 shows a description of a rule to obtain the right boundary of an 
unvoiced-stop which is followed by a vowel and has no low frequency power in 
the region of its aspiration. This rule performs as follows: 

I •• 
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(1) Rough location where the following vowel starts is found using 0-500Hz 

power increase. 

(2) 0-500Hz power in the vowel region is computed. 

(3) The boundary, which is the end point of the unvoiced-stop, is obtained 
as the time when the 0-500Hz power increases across the threshold of a 

vowel. 

The rule is applied in both cases where the phoneme context hypothesis "a stop 

having no extra power at the aspiration" is correct and incorrect. When the 
hypothesis is correct, the correct boundary is detected with a large certainty 
factor, which is calculated from the power just at the right side of the boundary 

and from the voiced-onset-time (the duration from the time of burst point 
to the start time of the following vowel). However, when the hypothesis is 

incorrect, which means "a low frequency power in the aspiration exists," the 

boundary is detected at a wrong position (at the start point of the following 
vowel), where the low frequency power rises. Then, its certainty factor wm be 

calculated from the power of right side of the boundary which will be smaller 
than the vowel power, and from the voice-onset-time which will be shorter. 

Thus, the certainty factor of this hypothesis will be smaller than that of the 

correct hypothesis, which will obtain the correct boundary under a correct 

phoneme context. As a result, the correct boundary will be selected in the 

next step. 

4.3 Consonant Identification 

This section presents a phoneme identification method which applies neural 

networks to the phoneme segmentation results. The neural network for phoneme 

identification in this system is the modularly structured Time-Delayed Neural Net-

works (TDNN) [Sawai 88] which is able to identify Japanese 18 consonants. First, 
the characteristics and the structure of TDNN are presented. 

4.3.1 Characteristics of TDNN 

TDNN has the following characteristics: 

(1) Easy training using the back-propagation training algorithm. 

(2) Easy extension to large phoneme identification tasks by integrating small mod-

ules of TDNNs. 

(3) High performance phoneme identification using both time and spectrum do-

main information. 

(4) Time-shift tolerance thanks to a time-shifted tied-connected weight a.rchitec-

ture. 
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With these advantages, the neural networks can easily be trained. It can be expected 
that the system is able to identify a correct phoneme in high performance, even if a 
slight boundary alignment error occurs in the phoneme segmentation stage. 

4.3.2 18-Consonant Identification TDNN 

Figure 4-4 shows the TDNN structure used in this system for the iden-

tin.cation of Japanese 18 consonants: (/b/,/d/,/g/, /p/,/t/,/k/, /m/,/n/,/N/, 

/s/,/sh/,/h/,/z/, /ch/,/ts/, /r/,/w/ and /y/). 

Structure 

This TDNN is made up feed-forward neural networks of four layers. The lowest 
layer corresponds to spectral input values, the two next layers are hidden layers and 
the topmost layer, which is the output layer, corresponds to each phoneme output. 
The hidden layers of this network are modularly constructed from consonant sub-
category networks and integrated into one large network. 

In particular, the input layer has 15 frames and 16 spectral coefficients (240 
units) which make it possible to deal with both the dimensions of time and frequency 
simultaneously. The first hidden layer has 13 frames and the 2nd hidden layer has 
9 frames for the time axis. And in the output layer, there are 18 units which 

correspond to each of the 18 consonants to be identified. 

Connection 

The window architecture of the connections between the layers is time-shifted 
and tied-connected, as shown in Figure 4-4. The connection in the time-shifted 

window from input layer to hidden layer one is three frames to one frame, and 
from hidden layer one to hidden layer two is five frames to one frame. The tied-
connected link to the output layer has the same weight for each output unit, i.e. the 
weights of corresponding connections are constrained to be identical by the network 
training, wherever their positions are shifted frame-by-frame over the time axis. In 
this way, the network is forced to discover useful acoustic phonetic features in the 

input regardless of their appearance position within the input windo,v. This is an 
important property, as it makes the neural network less prone to slight segmentation 
errors. All weights are adjusted using the back-propagation training procedure。

The phoneme corresponding to the highest activated output unit is defined as the 
classification result. 

Training and Identification 

In practice, phonemes are culled into data with a length 150ms and analyzed 
through a lOms window into 15 frames of input data. For Japanese phoneme train-
ing, the phoneme end point of the hand-label is aligned at the lOOms point, from 
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the beginning of the 150ms TDNN input layer. Similarly, in recognition, the end 

point of the phoneme segmentation result is also adjusted at the same input point 

of the TDNN input layer. The neural networks were trained using the fast back-

propagation training method "Dynet" [Haffner 89]. And the phoneme identification 
result for the applied segment is determined by the corresponding phoneme of the 
TDNN output unit which indicates the maximum value. 

4.3.3 Knowledge-TDNN Combination 

For the baseline system of integrating knowledge and neural networks, the 

simplest combination of the segmentation part and the identification part is adopted 
in this chapter. The simplest combination of segmentation and TDNN is shown in 
Figure 4-5. In this approach, the consonant segmentation result with the largest 
certainty factor is selected and determined to be the final segmentation result. Then, 

an 18-consonant identification TDNN (Figure 4-4.) is applied to the segment in order 

to recognize the exact consonant category, 

4.4 Consonant Recognition Experiment 

In order to evaluate the consonant recognition process in this expert system, 
an experimental result is discussed. 

4.4.1 Data and Task 

The segmentation rules were tuned on an ATR database of phonetically bal-

anced 216 words uttered by one male speaker (MAU). TDNNs were trained on half 
(even numbered words) of the ATR 5,240 isolated word database [Takeda 88] of 

the same speaker. Experiments using the proposed system were carried out on the 
other half (odd numbered words) of the same database. The task given to the expert 

system was to find the location of consonants in the words and to recognize their 

categories with their boundaries. 

4.4.2 A caustic Analysis 

The acoustic analysis for the input speech is described. 

• Input for Segmentation: 
The input speech for phoneme segmentation is sampled at 12kHz and is an-

alyzed by FFT to 64 coefficients of band-powers through a 5ms Ha.1nming 

window at every 2.5ms shift. Then the spectrogram is smoothed along both 
the time and frequency axis, and the power is normalized to lie between -20dB 

and -SOdB. 
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• Input for Identification: 
The input speech for phoneme identification (TDNN) is sampled at 12kHz 

and is・analyzed by FFT through a 21.3ms Hamming window at every 5ms 

shift. 16 mel-scaled coefficients are computed from the power spectrum to 
collapse adjacent coefficients in time resulting in an overall lOms frame rate. 
The coe缶cientsof each input token are then normalized to lie between -1.0 

and + 1.0 with the average at 0.0. 

4.4.3 Evaluation Criteria 

The following are the evaluation criteria for consonant segmentation and con-

sonant recognition. 

• Criteria for Segmentation 

The criteria of correct phoneme segmentation, deletion, insertion and substi-
tution are: 

correct: vVhen the boundaries, both the start and the end points of a 

phoneme detected by the expert system, exist within 50ms of the 

phoneme boundaries defined by hand-labeling 

deletion: When the boundaries cannot be detected around the correct po-

sition where it should be. This case also includes when ether the start 
or end boundaries detected outside a range 50ms from the hand-labeled 

boundary. 

insertion: When the phoneme boundaries (both start and end point) are 
detected by the system where they should not be. This case also includes 

when either the start or the end boundary is detected out of 50ms range 
from the hand-labeled boundary. The following are typical examples for 

insertion errors: "the boundaries of a consonant appeared in a vowel 

region" or "ether a start or an end boundary is detected out of 50ms 
range from the hand-labeled boundary." 

substitution: The difference of the number of all consonants and the sum of 

the corrects and deletions. 

• Criteria for Recognition 

・when the two following conditions are both sufficient, phoneme recognition is 
evaluated as correct: 

correct segmentation: Segmentation result is evaluated as correct in the 
above criteria. 

correct identification: TDNN output unit corresponding to the correct 

phoneme category obtains the highest activating value and its value is 
over 0.1. 
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4.4.4 Result 

Table 4-2 shows the experimental result tested on the half of the ATR .5,240 

word database not used for TDNN training. Although the neural network is able to 

identify the 18-consonant categories, the current system is only able to recognize 15-

consonant categories, because knowledge for syllabic nasal /N / and semivowels /y / 
and /w / are not implemented yet. These phonemes are considered to be recognized 
in a vowel recognition process. _ Thus, the evaluation of the system is performed on 

the 15 consonants without these three phonemes. 

The segmentation and identification results are described in each column of 
Table 4-2. Correct in the Segmentation Result column shows the percentages 

of the number of phonemes which are evaluated as correct using the criteria described 

above. Average Boundary Error shows the averages of the boundary alignment 

errors compared with hand-labeled boundaries, and the Insertion Errors column 

shows the rates of extra segments for the number of consonants. Correct in the 

Identification Result column, shows the percentages of phonemes both correctly 

segmented and identified, which indicates the expert system ability. And finally, 

In Correct Segment shows the percentages of correctly identified phonemes for 
the number in correct segmentation, and TDNN Ability shows the percentages of 

identification tested on phonemes pre-segmented by hand. 

The segmentation score was 93.3% with 6.7% deletion error in total, and 5.Sms 

boundary alignment error on the average. The insertion error rate was 27.8%. 
TDNN correctly identified 93.0% (In Correct Segment) of the phonemes whose 

segmentation was performed correctly by the system. This score (93.0%) was almost 
the same score as the 93.3% (TDNN Ability) obtained on the hand-labeled pre-

segmented phonemes. 

Many insertion errors have appeared in the current system and the main reasons 

for this are: 

(1) Most of the current phoneme segmentation rules are described to detect bound-

aries even if there is a slight possibility of phoneme existence. 
(2) Few rules which indicate negative evidence of phoneme existence are incorpo-

rated into the system, which is able to reduce the insertion errors. 

(3) There are no segmentation rules for vowels, semivowels and syllabic nasals 

which compete with the consonant segmentation rules; once a consonant seg-
mentation result appears in the vowel regions, it will counted as an insertion 

error. 

Indeed, most of the insertion errors appeared in the regions of vowel and syl-

labic nasal. If some method for detecting vowアelsis integrated in this system, the 

insertion errors will be reduced effectively. Insertion errors caused by voiced-stop 
and unvoiced-stop segmentation rules ma.inly appeared at the initial vowel in the 
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utterance. These appear because the acoustic features at the burst point of the 

initial vowel in an utterance is very similar to the acoustic features of the unvoiced-

stop and of the buzz-bar-less voiced-stop. Most of the insertion errors caused by the 
nasal and the liquid rules occur in the last vowel in the utterance, where the acoustic 

features, such as spectrum and power, are not stable. These insertion errors appear 
because the boundary detection rules of these phonemes use very precise spectral 

features and power changes. 

Figure 4-6 shows the distribution of end point alignment errors for the hand-

labels and phoneme identification rates for each error location. The horizontal axis 
shows the alignment error to right or left side compared with the hand-labeled 

boundaries. More than 90% of the boundaries within the correct segments are 
detected within the -!Oms and +lOms. 

From this result, it can be said that the boundaries detected by the system are 

as accurate as the hand-labeled boundaries, because the hand-labeled ones also have 

errors averaging less than 8ms [Takeda 88]. When the alignment errors are detected 

inside the boundary errors of -20rns to +lOms compared with the hand-labels, the 

phoneme identification rates are almost 90% or more. This performance is as good 
as the average rate of TDNN ability, and through this result indicated that the 

- time-shift tolerance capability of the TDNN is about 30ms for all consonants, on 

the average. All these factors indicate the effectiveness of this rule-based phoneme 
segmentation method and this phoneme identification method based on TDNN. 

Figure 4-7 shows the relation between the recognition performance for each 

phoneme and the segmentation error. The vertical axis indicates the difference 

between the average phoneme recognition rate (expert system ability) and the orig-

inal TDNN phoneme identification performance (TDNN ability) obtained by the 
hand-labeled phoneme identification experiment. The horizontal axis indicates the 

average segmentation error for each phoneme. The Average, x in the figure, shows 
the average point of the boundary alignment error of 5.3rns for the all phoneme 

segmentation and -0.9% lower TDNN phoneme identification performance than the 

original TDNN phoneme identification performance. -0.9% is obtained from "expert 
system ability" -、'TDNNability" (92.4% -93.3%). 

The unvoiced-fricative /s/,/sh/ and stops /b/,/d/,/t/ were segmented within 
5ms of the hand-label accurately and their phoneme identification performance・was 

greater than the average. The tendency of the other phonemes showed that "the 

largei・the boundary error is the lower the identification performance is", except 

phoneme /p/ and /z/. The reason for the lower performance of phoneme /p/ de-
rives from the insufficient number of the TDNN training data. In this case, even 
though there is a slight error of the boundary, the performance drops drastically. 

On the other hand, in the case of phoneme /z/, there are no other phonemes whose 

feature has both low frequency power and large high frequency power. Thus, the 

phoneme /z/ is quite different from other phonemes. Thus, even if there is a large 
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segmentation error, high phoneme identification performance on phoneme /z/ can 

be obtained, 

Overa.11, the expert system correctly recognized 86.8% of the total number 
of phonemes, both in phoneme segmentation and phoneme identification. Every 

phoneme recognition rate is over 75%, except for the phoneme /g/. This is pri-
marily because the rules to detect typical /ng/ segments were not described yet, 
and also because the identification ability of the TDNN for voiced consonants was 

slightly worse than that for other phonemes. An additional reason for deletion er-
rors in phoneme segmentation is observed. There are several acoustic variations or 
allophones which appear on the testing database but did not appeared in the 216 

word database used for segmentation rule creation. 

4.5 Conclusion 

This chapter presented the consonant recognition part of the proposed expert 

system which consists of 1) a rule-based phoneme segmentation based on spectra-
gram reading knowledge, and 2) phoneme identification based on neural networks 

adjusted on the resulted segments. It also discussed an experiment result using this 

system for speaker dependent Japanese consonant recognition. 

The consonant recognition part of this expert system has the following charac-

teristics: 

(1) Highly accurate phoneme segmentation can be achieved by hypothesizing the 
coarse classified phoneme and its left and right contexts simultaneously when 

determining phoneme boundaries. 
(2) High performance phoneme identification can be achieved by applying neural 

networks to the accurate result of phoneme segmentation. 

(3) More reliable phoneme recognition results can be obtained because every result 
and hypothesis for phoneme segmentation and identification are represented 

with some measure of certainty. 

Because of these advantages, the proposed system can achieve a high perfor-

mance of both phoneme segmentation and identification, which were shown through 

the experiment. And this method may be one of the most promising ways to build 

a. high performance phoneme recognizer. 

The expert system presented in this chapter was realized in a very simple com-

bination of the phoneme segmentation part and the phoneme identification part 

in which each part performs individually and independently. It is easy to imagine 

a. more sophisticated integration of each part for this expert system, which would 

improve not only the segmentation accuracy but also the phoneme identification ac-
curacy, and it would definitely improve the phoneme recognition performance itself. 
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The best wa.y to combine the segmentation and icle五tin.cationmethods, so as to make 
use of their respective merits, should be studied. Phoneme identification could also 
be improved by applying different kinds of neural networks according to phoneme 

contexts. In the next chapter, a more sophisticated integration of knowledge and 
neural networks is proposed a.ncl evaluated. 
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4.6 Figures & Tables 

Figure 4-1: Segmentation Strategy 
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(defrule sg-h-right-silence-1 
"Find a right boundary of /h/、whichrig ht context is silence." 
(declare (salience ?*right-segmentation*)) 
(segment-status ?segment segmentation) 
(category ?segment h) 
(rig ht-context ?segment silence) 

?x<-(CF (right-context ?segment silence) ?(Fright-silence) 
(not (applied ?segment sg-h-rig ht-silence-1)) 
(prop ?segment (candidate-loc ?from ?to)) 

;；； search segmentation posision of right silence 
(power-end ?power-end &―NONE 

after ?to 150 0 6000 ?*h-right-is-silence-power*) 
(spectrum-peak (?peak-fre)釘 NONE

&:{?peak-freq>= 1000 
&:(?peak-freq < = 6000) ?peak-amp ?peak-Q) 
at = (-?power-end 1 O) ?power-end 
?*spectrum-peak-smooth in g-for-h *) 

(not (spectrum-peak (?pk-fq&-NONE&:(?pk-fq > = 1000) 
&:(?pk-fq < = 6000) ?another-peak-amp 
&:(> ?another-peak-amp ?peak-amp) ?pk-Q) 
at = (-?power-end 10) ?power-end 
?*spectrum-peak-smooth i ng-for-h *) 

(power-end ?h-end&-NONE 
&:(< (abs (-?h-end ?power-end)) 50) 
after = (-?power-end 50) 100 = (-?peak-freq 200) 
= (+ ?peak-freq 200) ?*h-right-is-silence-power*) 

;；； check charasterictics of right silence 
{power-strength ?h-end = (+ ?h-end 30) 0 6000 ?spw-0-6000) 
(CF (h-power-is-silence-closure ?spw-0-6000) 

?CFspw-0-6000&: mig htbe-valid) 
＝＞ 

(retract ?x) 
(assert (applied ?segment sg-h-right-silence-1)) 
(assert (prop ?segment (following-silence-start-time ?h-end))) 
(assert (CF (right-context ?segment silence) 

= (CFand (CFcomb ?(Fright-silence (CFweight 
?*evidence* ?CFspw-0-6000)) ?CFspw-0-6000)))) 

Figure 4-2: Rule Example for Glottal /h/. 
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(defrule sg-uvstop-bfr-vowel-3a 
"find a right boundary of an unvoiced stop 
with no aspiration power in low freq, 
and followed by a vowel." 

(declare (salience ?*left-segmentation*)) 
(segment-status ?segment se9mentation) 
(CF (category ?segment unvoiced-stop) 

?CFcategory&:mightbe-valid) 
?x <-(CF (right-context ?segment vowel) 

?CFcontext&: mig htbe-val id) 
(CF (has-burst ?segment yes) ?CFburst&:mightbe-valid) 
(prop ?segment (burst ?burst-start ?burst-end ?burst-freq)) 
(prop ?segment (has-burst-power-in-low-frequency no)) 
(prop ?segment (has-aspiration-power-in-low-frequency no)) 
(not (applied ?segment sg-uvstop-bfr-vowel-3a)) 
(power-increase (?vowel-region &―NONE ?change) 

after = (-?burst-start 20) 150 
0 500 
?*normal-smoothing-size* ?*default-min-change*) 

(power-strength 
= (+ ?vowel-region 20) = (+ ?vowel-region 40) 
0 500 
?voicing-power) 

(CF (vowel 0-500-power ?voicing-power) ?CFvowel) 
(power-start ?vowel-start釘 NONE

before = (+ ?vowel-region 40) 100 
0 500 
= (-?voicing-power10)) 

(CF (unvoiced-stop voice-onset-time 
= (-?vowel-start ?burst-start)) ?CFvot) 

=> 
(assert (applied ?segment sg-uvstop-bfr-vowel-3a)) 
(retract ?x) 
(assert (prop ?segment (following-vowel-start ?vowel-start))) 
(assert (CF (right-context ?segment vowel) 

= (CFand (CFcomb ?CFcontext 
(CFweight ?*evidence* ?CFvowel) 
(CFweight ?*weak-evidence* ?CFvot)) 

?CFvowel 
?CFvot)))) 

Figure 4-3: Rule Example for Unvoiced-stop. 

4.5 
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b d 

output 

Figure 4-4: 18-Consonant Identification TONN 

segment:460-520ms 
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Figure 4-5: Simple Combination of Segmentation and TDNN 
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Table 4-1: Phoneme Classes and Spectrogram Acoustic Features 
for Phoneme Candidate Detection 

Phoneme 
Phoneme Spectrogram Acoustic Features 

Class 

Unvoiced-
p,t、k,ts, ch Closure & Burst 

stop 

Unvoiced-
s, sh, h(i) Lar~e High Frequency Power 

fricative Indicating Fricative 

Voiced-
b,d、g Closure & Burst with Buzzbar, 

stop Burst with Weak Buzzbar (lnitail Utterance) 
Voiced- Large High Frequency Power Indicating 
fricative z 

Fricative and Weak Low Frequency Power 

Glottal h Weak Middle and High Frequency Power 
Indicating Fricative 

Nasal m,n Large Low Frequency Power and 
Weak Hiqh Frequency Power 

Liquid r Short Time Power Dip in Middle Frequency 

Table 4-2: Phoneme Recognition、Segmentationand Identification Results 

Phoneme 
Segmentation lndentification 

Result Insertion Result TDNN 

Correct 
BEArorovuenrrda「magres ~ Error Correct In Correct Ability 

Category Number ［％］ [% l Seament 
___ f? ___ 28 96.4 4.2 89.3 92.6 100.0 -----------.,. ---

~ ―-------- ---------!-----------------
t 461 98.0 4.3 93.9 95.8 94.5 ---------------------トー―------- ---------1-----------------
k 1300 97.8 5.8 17.4 89.5 91.6 93.5 --------------1--------- .. , ..'・-- --- "''"一 --------------------------
ch 141 91.5 5.8 75.9 82.9 87.4 

----~· 一・・・ -------ト—-------1--------- --------------------------
ts 220 93.2 5.6 85.5 91.7 93.5 

s 572 88.3 3.5 
3.5 

84.1 95.2 93.5 --------------~ ―--------------- --------------------------
sh 387 92.0 4.5 91.7 99.7 97.5 

h 313 88.8 8.3 7.7 80.5 90.6 94.0 

z 315 85.4 9.6 11.1 83.8 98.1 97.5 

b 230 98.3 4.7 93.9 95.6 93.5 -------------- ●'" ... -- - - - -

トー―------- ---------1-----------------・ 
d 177 98.3 3.4 15.7 93.2 94.8 92.2 -------------- _,. "" ..'■- - - -・ -------- ---------i------------------
CJ 263 83.7 8.9 70.0 83.6 90.5 

m 485 95.3 6.0 
94.2 

87.0 91.3 93.5 
● , —·-----・_, ■ --------------

ト—-------- --------------------------
n 273 97.8 5.7 86.1 88.8 89.0 

r 760 90.7 6.2 47.4 86.1 94.9 97.5 

Total 5925 93.3 5.8 27.8 86.8 93.0 93.3 

' •. 

！ 



Chapter 5 

INTEGRATING KNOWLEDGE 
AND NEURAL NETWORKS 

5.1 Introduction 

This chapter discusses the method of integrating human knowledge and neural 

networks in the consonant recognition part of this expert system. As previously 
mentioned, the consonant recognition part is performed in three stages: 

(1) Consonant segmentation based on spectrogram reading knowledge. 
(2) Consonant identification based on neural networks. 

(3) Consonant determination using the results of segmentation and identification 

stages. 

Several mechanisms for integrating phoneme segmentation based on spectro-

gram reading knowledge and phoneme identification based on neural networks are 
studied to enhance their respective advantages. Consonant recognition experiments 

are carried out, and show that the close integration of segmentation and identifica-
tion improves not only phoneme identification performance but also segmentation 

accuracy. Furthermore, the proposed integration shows an effective reduction of 
insertion errors. 

5 .2 Segmentation and Identification 

Details of the phoneme segmentation process and phoneme identification pro-

cess are akeady described in Chapter 4. 

In the phoneme segmentation process, not only the phoneme boundaries but 
also the phoneme classes are produced, because the boundaries are obtained under 

the condition of some assumed phoneme context which includes phoneme class. 

49 
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In the phoneme identification process, phoneme candidates are produced using 
the Time-Delay Neural Network. The advantage of the TDNN is a. high perfor-
mance phoneme identification and a time-shift tolerance capability. This capability 

provides the system with a high phoneme recognition, even if a slight boundary 

alignment error occurs in the phoneme segmentation stage. 

5.3 Integration of Knowledge and TDNN 

Several integrating mechanisms of knowledge based segmentation and neural 
network based identification for the final consonant determination stage are pro-

posed, compared and discussed. Here are the proposed mechanisms: 

(1) Simple combination of knowledge and single TDNN (baseline, Chapter 4). 

(2) Simple combination of knowledge and selective TDNNs. 

(3) Close combination of knowledge and single TDNN. 
(4) Close combination of knowledge and selective TDNNs. 

(5) Integration of a reject filter. 

5.3.1 Simple Combination of Knowledge and Single 

TDNN 

The simple combination of knowledge and single TDNN is shown in Figure 

5-la. In this approach, the consonant segmentation result with the largest certainty 
factor is selected and determined to be the final segmentation result. Next, an 18-

consonant identification TDNN, as shown in Figure 5-2a, is applied to the segment 
in order to recognize the exact consonant category. Details of this combination are 

described in Chapter 4. 

5.3.2 Simple Combination of Knowledge and Selective 

TDNNs 

Generally, phoneme identification performa.nce of the TDNN is higher when 

the number of phoneme identification classes is smaller. Thus, if a consonant class 

is cleternunecl with certainty, better identification performance can be obtained by 
applying a smaller intraclass identification TDNN corresponding to its class. Using 

this approach, as shown in Figure 5-lb, two separate TDNNs are adopted in or-

der to identify consonants within voiced/unvoiced classes (voiced/unvoiced TDNNs: 

Figure 5-2b). The appropriate TDNN is chosen according to the voiced/unvoiced 
class decision, whose result is rarely wrong, obtained in the consonant segmentation 

stage. 
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5.3.3 Close Combination of Knowledge and Single TDNN 

The rough consonant classification information produced in the phoneme seg-
menta.tion stage can be utilized in a more sophisticated way in combination with 

TDNN phoneme identification. 

As described in the section on the consonant segmentation part, the system 

produces not only the phoneme boundaries but also the phoneme classes. This is 
because the boundaries are obtained under the condition of some assumed phoneme 
context which includes phoneme class. In the first simplest combination mechanism, 
this phoneme class information was ignored. The second approach, which is a sim-

ple combination of knowledge and selective TDNNs only uses the voiced/unvoiced 
class decision of the segmentation stage as a pre-process classification. However, to 

use this sort of information in combination with a TDNN is helpful in improving 
the overall system performance. The approach proposed here, as shown in Fig-

ure 5-lc, is a more sophisticated integration of consonant segmentation knowledge 

and TDNN identification. The recognition result is determined by considering the 
suitability of the identified consonant category from the 18-consonant identification 

TDNN, as shown in Figure 5-2a, with the phoneme class obtained from the conso-

nant segmentation. The final certainty factor of the conson皿 trecognition result, 

C FrecO, is calculated through a suitability function J(). The result which obtains 

the largest certainty factor is determined to be the most reliable recognition result. 
The integrated knowledge-TDNN certainty factor C Free(), is calculated using the 
next equation: 

where 

CFrec = combine(CFseg, CFnn) 

CFnn = k・Wnn・J(arg(seg),arg(nn)) 

CFrec: certainty factor of the final recognition result 
C Fseg: certainty factor of the segmentation result 

CFnn: certainty factor of the identification result 
Hlnn: activating value of the TDNN for the identified consonant 

arg(seg): consonant class from segmentation 

arg(nn): identified consonant category from the TDNN 

k: TDNN reliability (the larger, the more reliable) 
.f(): fitness of consonant for consonant class 

if (category~phoneme class) 
then .f() returns 1.0; 

else if (category~voiced/unvoiced class) 
then f () returns 0.,5; 
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else 

.f() returns -1.0; 

combine(): certainty factor calculation model of MYCIN 

Practically, the suitability function f () is realized as a table of phoneme cate-
gory, phoneme class and phoneme context. In the current system, the phoneme cat-
egories are the 18 consonants; the phoneme classes are voiced-stop, voiced-fricative, 

unvoiced-stop, unvoiced-fricative, nasal, liquid, glottal (for /h/); the phoneme con― 

texts for this current table are position in the utterance, either initial or medial. 

The values in the table are between -1.0 and +1.0, where +LO indicates that the 
results obtained from the knowledge and TDNN have very good positive suitability 
while -1.0 indicates the contrary. These suitability values have a sense of gradual 

levels, defined according to the degree of fitness between the phoneme category and 
the phoneme class. 

For example, the phoneme /r/, which appears in the medial of the utterance, 

has a degree of fitness with phoneme classes as follow: very well with a liquid, quite 

well with a voiced-stop, slightly with a nasal, rather badly with a voiced-fricative 

and really badly with the other phoneme classes. And in the current system, the 
scores in the table for the gradual fitness are fixed as 0.8 for very well, 0.5 for quite 

well, 0.2 for slightly well, -0.2 for rather badly and -0.8 for really badly. 

This integration improves not only the consonant identification performance of 

this system, but also improves the accuracy of the segmentation. This is because 

the system chooses the best combination of results obtained by knowledge based 

segmentation and TDNN based phoneme identification. 

5.3.4 Close Combination of Knowledge and Selective 

TDNNs 

The idea of the fourth approach is a combination of the second approach 

(see 5.3.2) and the third approach (see 5.3.3) applying separate TDNNs for 

voiced/unvoiced class according to the voiced/unvoiced classification obtained in 

the segmentation stage, which is shown in Figure 5-ld. 

5.3.5 Integration of a Reject Filter 

The final a.pproach is shown in Figure 5-le. In this approach, a reject filter 

is added in the close combination of knowledge and single TDNN approach. When 

the result obtained by the segmentation pa.rt and the result obtained by the identi-
fica.tion part strongly conflict, they will be rejected by this reject filter in order to 

reduce the number of incorrect insertion errors. In other words, when the phoneme 
category identified by TDNN conflicts strongly with the phoneme class obtained 
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from the segmentation, the result will be rejected. This mechanism drastically re-

duces the nun1ber of insertion errors. However, this mechanism does not reduce 
the recognition performance; it only reduces the insertion errors or exchanges the 

substitution errors for deletion errors. The reason for this is as follows: If the final 
recognition is correct, the segmentation with phoneme class and the phoneme cate-
gory is correct. The proposed mechanism does not perform in this condition. If the 
segmentation is incorrect, this is an insertion error. TDNN applied to this segment 
may result in some phoneme category. In this case, the phoneme category of TDNN 
may strongly conflict with the segmentation result and the proposed mechanism 

performs to reject all these results. Thus, the insertion error will be reduced. If the 
segmentation is correct but the phoneme category obtained by TDNN is incorrect, 
this is a substitution error. In this case, the proposed mechanism also performs and 

if these results strongly conflict, it rejects the results and the substitution error is 

exchanged for a deletion error. 

5.4 Comparison Experiment 

Experiments to compare the proposed five mechanisms were carried out using 

the ATR 5,240 isolated word database; The task given to the expert system was 
to find the consonants in the words and to recognize their categories with their 

boundaries. 

5.4.1 Experimental Condition 

All of the experimental conditions such as database for rule-training, database 

for TDNN training, database for testing, the task and evaluation criteria, acoustic 

analysis for segl!lentation and identification process are exactly the same as those 
described in Chapter 4 experiment. The neural networks were trained using the fast 
back-propagation training method "Dynet" [Haffner 89]. 

5.4.2 Result 

Table 5-1 shows the results of consonant recognition experiments using the 

five proposed mechanisms. The column labeled Recog. shows the rate correctly 
recognized by the expert system for both consonant segmentation and identification. 

Ins. Error shows the insertion error rate. Seg. shows the rate correctly segmented. 

Boundary Ave. Error shows the average boundary alignment error of the correct 

segments for the hand-label. Ident. shows the rate correctly identified in the correct 

segments. 

• Simple combination of knowledge and single TDNN① (baseline). 
• Simple combination of knowledge a.nd selective voiced/unvoiced TDNNs② 
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• Close combination which considers the suitability of knowledge and single 
TDNN. k=0.4③ (k is the TDNN reliability) and k=0.8④ are adopted. 

• Close combination of knowledge and selective voiced/unvoiced TDNNs. k=OA 
⑤ and k=0.8⑥ are adopted. 

• Integration of reject filter with the close combination of knowledge and single 
TDNN. k=0.8⑦ is adopted. 

First, the four mechanisms are compared: ①②③④⑤ and⑥ 

Comparing① andRthe improvement in columns RECOG. and ID ENT. shows 
the effectiveness of applying smaller consonant identification TDNNs selectively. 
Comparing① and③I④ or② and⑤ /Rit can be seen that the more sophisticated 
combination which considers the fitness of the identified consonant category with the 
consonant class is effective. Almost all results in Table 5-1 improved. In particular, 

the insertion error rate was effectively reduced. 

However, in comparing③ and⑤ or④ andRno improvement can be 
seen. This means that the combination mechanism is not adequate for selecting 
voiced/unvoiced TDNNs. This is because there is no inhibition between voiced and 
unvoiced consonant classes when using voiced/unvoiced TDNNs selectively. Once 
a consonant class error occurs in consonant segmentation, an inadequate TDNN is 
selected and, by combining these results, the certainty factor of the wrong result 

may be larger than that of the correct one. 

The combination mechanism adopted in④ ・showed the best total score among 
the six experiments. The rate, correctly recognized and segmented, shows as good 
a score as the best in each column. In particular, the insertion error rate is reduced 
to its lowest value (18.6%), and the average boundary alignment error reaches its 
minimum value of 5.38ms. 

An additional experiment was performed by integrating the proposed reject fil-
ter with the best knowledge and TDNN integration mechanism. The function of the 
suitability between the result obtained form the segmentation part and the identi-

fication part are slightly modified to improve the overall system performance. The 
experimental result⑦ is shown in Table 5-1. From the result, a drastic reduction 
in the insertion errors can be seen. Slight recognition improvement can also be 
observed. 

The recognition, segmentation and identification performance of⑦ for each 
phoneme is shown in Table 5-2. Correct in the Segmentation Result column 
shows the percentages of the number of phonemes evaluated as correct using the 
criteria. described above. Average Boundary Error shows the averages of the 
boundary alignment errors compared with hand-labeled boundaries, and the Inser-
tion Errors column shows the extra. segment ra.te for the number of consonants. 
Correct in the Identification Result column, shows the percentages of phonemes 
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both correctly segmented and identified, which indicates the expert system ability. 

And finally, In Correct Segment shows the percentages of correctly identified 
phonemes for the number in correct segmentation, and TDNN Ability shows the 

percentages of identification tested on phonemes pre-segmented by hand. 

As a result, a phoneme recognition experiment showed a 89.4% recognition rate 
for Japanese 18 consonants. The deletion error rate was 5.9%, the substitution error 
rate 4. 7% and the insertion error rate 12.4 %, using the best integration mechanism. 

5.5 Conclusion 

A consonant recognition system, which uses a sophisticated and closer inte-

gration of knowledge and TDNN is proposed. The experiments showed that more 
reliable phoneme recognition results can be obtained by integrating knowledge and 

TDNN in a more sophisticated manner. Using this approach, the proposed system 

is able to achieve high phoneme recognition accuracy. 

Consonant recognition experiments showed that the closer combination which 

considers the suitability of knowledge and TDNN improved not only consonant iden-

tification but also segmentation accuracy. It also effectively reduced the number of 
insertion errors. Furthermore, the experiment showed the effectiveness of integrating 

the proposed reject filter. 
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5.6 Figures & Tables 
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Figure 5-1b: Simple Combination of Knowledge and Selective TDNNs 
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Table 5-1: Integration Mechanism Comparison of 
Human Knowledge and Neural Networks 

Combination 
Condition Result 

Method Num. TDNN 
TONN 

Recog. Ins. Seg. 
Boundary 

!dent. Reliability Ave. Error 

Simple ① 18-cons 86.8 27.8 93.3 5.75 93.0 

SimSeple le with 
5 ct. 1ve ② V/UV 87.7 27.8 93.3 5.75 94.0 
TDNNs 

③ 18-cons k=0.4 88.8 22.0 94.6 5.43 93.9 
Close ... ■■ 一，．，ヽ ■" • 一・-----・ , ..''● ● .. 一，l●● "'... '" .......... ・--------"'"""ー・一..__ . ヽ--------------.. ・--

④ 18-cons k=0.8 88.8 18.6 94.5 5.38 93.9 

Close with ⑤ V/UV k = 0.4 88.8 22.6 93.7 5.43 94.8 
Selective ● ,.'"" ... -... ---―ー・"... --------------... ------一● ●ー・9●''"-...... ----------....、----

TDNNs ⑥ V/UV k=0.8 88.4 22.6 93.1 5.40 94.9 

With a 
⑦ 18-cons k=0.8 89.4 12.4 94.1 5.42 95.0 Reject Filter 

Table 5-2: Phoneme Recognition、Segmentationand Identification Results 

Phoneme 
Segmentation lndentification 

Result Insertion Result TDNN 

Correct 
BEArorvuoenrrda「magres ~ Error Correct In Correct Ability 

Category Number [%] [%1 Segment 

___ p ___ 28 92.9 4.6 89.3 96.2 100.0 --------------ト—-------- ----------1-----------------
t 461 98.3 4.3 95.4 97.1 94.5 ------------------------------ ---------1-----------------
k 1300 96.6 5.7 11.9 91.0 94.2 93.5 --------------....... _____ --------- -... ●■ ・-----------------------
ch 141 91.5 5.8 81.6 89.1 87.4 ------------------------------ -・--..、一—.. --一--------------------
ts 220 93.6 5.0 87.6 93.6 93.5 

s 572 92.8 3.3 
3.4 

89.9 96.8 93.5 ------------------------------
___ , ______ 

------~.. ----------
sh 387 94.3 5.4 93.8 99.5 97.5 

h 313 91.7 8.9 0.6 86.6 94.4 94.0 

z 315 87.0 9.4 1.0 86.7 99.6 97.5 

b 230 96.5 4.7 95.2 98.6 93.5 -------ー·~----·一 - -■  ー・""一"". ■ -----.. "" ... --- ● ......... __ ., .. ___ ---------- ーー・"""" ... ・--. 一

d 177 98.3 3.5 12.8 90.4 92.0 92.2 --・..... ・-----., ● ● ● ".''. ■ 9ー・''—. ・---., --------- --—• , ・-'●●''● ., ... 一l ■ 囀一 ，9■ — ... -.. -"" --------
q 263 79.8 8.9 73.0 91.4 90.5 

m 485 94.0 5.7 
33.8 

86.8 92.3 93.5 
----―ー・"' ー・・------ ----・ 一...'" ----..'"'... .,. 一 ー，，．．．ー'.一・..一一1--------- —• - -・ —'"·- --

n 273 95.2 5.2 86.4 90.8 89.0 

r 760 95.4 4.0 13.0 91.2 95.6 97.5 

total 5925 94.1 5.4 12.4 89.4 95.0 93.3 
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Chapter 6 

VOWEL RECOGNITION 

6.1 Introduction 

The vowel recognition part in this expert system utilizes a neural network 

for detecting vowel candidates. The spectrogram reading knowledge is utilized for 

verifying the vowel categories and for detecting boundaries. In this part, five vowels 
/a,i,u,e,o/, one syllabic nasal /N/ and two semivowels /y,w/ are recognized. The 
neural network for vowel recognition is also a TDNN which is used a.s a. phoneme-

spotting method. The time-shift tolerance capability of the TDNN is expected to 

be a good phoneme-spotting method to detect vowels, syllabic nasal or semivowels 

whose spectral features are stable or change smoothly. 

6.2 Vowel Recognition 

Vowel recognition is performed in the following steps: 

Vowel Region Detection 

Possible region for vowels is determined using the power of low frequency range 

(0-1,500Hz and 500-1,000Hz). 

Vowel Region Division 

The vowel region is divided at the point of a large spectral change peak in the 
lo,v and middle frequency range (0-3,000Hz) by assuming that a vowel cha.nge exists 

at that point. 

63 
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TDNN Vowel Spotting 

Vowels and their rough locations are detected using TDNN for phoneme-

spotting in the divided vowel regions. TDNN, which detects vowels a.nd semivowels, 
is shifted over the input speech frame-by-frame, as shown in Figure 6-1, which spots 

five vowels /a,i,u,e,o/, one syllabic nasal /N/ and two semivowels. 

TDNN is trained by adjusting the center of the vowel and semivowel samples to 

the center frame of the input layer. The frame-by-frame vowel outputs which have 
values over a certain threshold are blocked together, and the block is hypothesized 
as a vowel candidate. The certainty factor of the vowel candidate depends on the 

block duration and the sum of the activating values within the block. If this certainty 
factor is not large enough, the hypothesis will be rejected. 

Boundary Detection and Category Evaluation 

The boundaries of the vowels /a,i,u,e,o/ and /N/ are detected by searching 
for points where the spectral difference in the low and middle frequency range (0-

3,000Hz) rises over a fixed threshold. The search is conducted from the middle of 
the hypothesized vowel candidate toward its left and right sides. The exist~nce of 
the semivowels /y/ and /w/ is evaluated by phoneme context. In Japanese, /y/ and 

/w / can appear only in a very limited phoneme context. Phoneme /y / appears at 
the utterance initial position or between the phonemes /p,b,k,g,z,m,n,r,h/, the five 

vowels / a,i, u,e,o /, and / a, u,o /. ・Phoneme / w / only a.pp ears at the u ttera.nce initial 

position or between the five vowels and /a/. 

Additionally, the certainty factor for the candidate is recalculated by using du-

ration information. When a conflicting region exists among these vowel candidates, 

each certainty factor is recalculated using the lowest frequency spectral peak in the 

conflicting region, by assuming the lowest frequency spectral peak as a first formant. 
The vowel given the largest certainty factor is determined to be the vowel recognition 
result. 

Without the integration of this knowledge, i.e. if the system directly uses the 

results of the vowel-spotting TDNN, a large number of insertion errors may occur. 

6.3 Vowel Recognition Example 

Figure 6-2 shows a vowel recognition example and Figure 6-3 shows the spec-

trogram for this utterance. The utterance is a Japanese word /omowazu/. The 

horizontal axis indicates the time scale and the vertical a.xis indicates the frequency 
scale. The phonemes and acoustic events of hand-label lie at the top of this fig-

ure. The segments under the hand-labels a.re the recognition results obtained by the 

expert system. The dotted segments just below the recognition result with vowel 
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characters are the vowel candidates produced by TDNN vo,vel-spotting. Between 

600ms to 700ms, two candidates of vowel /a/ and /o/ are obtained by the TDNN-
spotting. Spectrum peaks are calculated between the conflicting region. In the 
figure, formant peaks 1,218.SHz and 2,625.0Hz were obtained. Using these formant 

peaks, the certainty factors of the two vowel candidates are recalculated. The for-

mant of vowel /o/ is generally lower. Thus, the certainty of the vowel /o/ candidates 

is decreased and finally the vowel /a/ is obtained as a vowel result for this region. 

6.4 Vowel Detection Experiment 

Here, the effectiveness is shown through a vowel detection experiment. 

6.4.1 Experimental Condition 

The training data for the vowel-spotting TDNN are selected from the odd mun-

bered words in the ATR 5,240 isolated word database, up to 500 phonemes for each 
category. The acoustic analysis for the input speech conditions are exactly the same 

as those used in the consonant recognition experiments in chapter 4. The neural 
networks were trained using the fast back-propagation training method "Dynet1' 

[Haffner 89). The task given to the expert system in this vowel detection expeじ

iment was to determine what kind of, and how many, vowels will be detected in 
the vowel regions of the input speech. In this task, mis-detection in the consonant 
regions of the input speech is of no consequence. 

Here, the blocked vowel candidates were used to evaluate vowel detection per-

formance. The blocked vowel candidate with the largest certainty factor is selected 
from among the candidates which overlap each other in the middle of their block 

candidates. 

6.4.2 Result 

Table 6-1 shows the result of the vowel detection experiment; The column 

Num. is the number of vowels for testing. The column Rate is the ratio of correct 

detection to the number of testing vowels. The bold number on the diagonal of this 
matrix is the number of vowels which are correctly detected. And the number in the 

parentheses () are the insertion errors. The total detection score was comparatively 

good, 96.1% [7,726/8,04:3]. The top five causes for detection error were: 1) vowel 

/ a/ mis-activated in /y / following /a/. 2) /" / . / / ~, 3) /u/ m /N/, 4) /o/ in /u/, 1 In V 

5) /u/ in /y / following /u/. 
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6.5 Conclusion 

The vowel recognition part in this expert system is described. This part uti-

lizes the TDNN as a vowel-spotting method for vowel candidate detection. The 

spectrogram reading knowledge is used for category verification and for boundary 

detection. The effectiveness of the proposed method is shown by the vowel and 
semivowel detection experiment. 
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Num. a 

1772 
1771 

a 
(9) 

I 1333 

u 1615 (9) 

e 829 (5) 

゜
1352 (28) 

N 488 (17) 

y 573 (88) 

w 81 (33) 
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-Table 6-1: Vowel Detection 

N 
Rate 

I u e 

゜
y w 

％ 

(4) (8) (1) (1) 99.9 

1186 
(10) (4) (2) (23) (1) 89.0 

(51) 

(20) 
1521 

(20) (54) (11) (6) 94.2 
(70) 

(5) (6) 
820 

(1) (3) 98.9 
(18) 

(26) 
1339 

(4) 99.0 
(34) 

(17) (78) (4) (3) 
464 

95.1 
(15) 

(85) (44) (21) (16) 
554 

(1) 96.7 
(12) 

(3) (2) (17) (1) (1) 
71 

87.7 
(0) 

Average Detection Rate : 96.1 % [7726 / 8043] 

Number in() Indicates the Mis-spotting Vowel 

; . 



Chapter 7 

FULL SYSTEM EVALUATION 

7.1 Introduction 

This chapter presents a phoneme recognition example using the proposed ex-
pert system and discusses all phoneme recognition experiments without using any 

language model. 

7.2 Recognition Example 

Figure 7-1 shows an example recognized using the current expert system. The 

input speech is /subete/, whose spectrogram is shown in Figure 7-2. In the figure, ① 
shows the spectrogram plane where the horizontal axis indicates the time axis(ms) 

and the vertical axis indicates the frequency axis (kHz). The blocks② with the 
alphabetic labels at the top of the figure are the hand-labels. The upper ones are 

the phoneme labels and the lower ones are the event labels. Immediately below 

are the final recognition results③ of the system for this input. The dotted-line 
segments④ with vowel labels are the vowel-spotting results from the vowel identifi-
cation TDNN. The next bars⑤ are the global acoustic features for searching for the 
rough location of phonemes. The characters⑥ under the bars are the consonant 
candidates from the IS-consonant identification TDNN. The segments⑦ with the 
phoneme classes a.re the segmentation results. The dotted-line segments⑧ are the 
phoneme segment candidates. The vertical dotted-lines⑨ are the candidates for 
the phoneme boundaries and the number indicates their position in the time scale. 

The a) rectangles, b) bold vertical lines, c) small circles, d) bold rectangles and e) 

horizontal lines on the spectrogram plane① are the acoustic features @ used in 

the current system: 

a) spectral pO¥ver in certain frequency ranges. 

71 
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b) time when the spectral power increases or decreases across thresholds deter-

mined according to the phoneme context. 
c) time and magnitude of spectral power change peaks in certain frequency 

ranges. 
d) frequency and magnitude of spectrum peaks. 

e) cutoff frequency of fricative power. 

In this example, the phonemes are correctly recognized both in segmentation 
and identification. 

7.3 All Phoneme Recognition Experiment 

All phoneme recognition experiments were performed for total system evalua-
tion purposes. 

7.3.1 Experimental Condition 

The experimental conditions are exactly in the same conditions previously de-

scribed. The acoustic analysis for the input speech conditions are the same. The 

knowledge for the rules is created using an ATR database of 216 phonetically bal-

anced words uttered by a single male speaker (MAU). Both TDNNs for the 18-
consonant identification and for vowel-spotting are trained on half (the even num-
bered words) of the ATR 5,240 isolated word database, uttered by the same speaker. 

The neural networks were trained using the fast back-propagation training method 
"Dynet" [Haffner 89]. 

All phoneme recognition experiments were performed using the other half of 

the 5,240 isolated word database (the odd numbered words). The task given to the 

system was to find phonemes in the words and to recognize their categories. 

In the consonant recognition part, the proposed close integration of knowledge 

and TDNN with a reject filter, which showed the best performance in the consonant 

recognition experiment, is adopted. The consonant recognition part and the vowel 
recognition part are combined in a very simple fashion. In the current system, the 

regions which have consonant segments are assumed to be correct and the results 

obtained by the consonant recognition part is determined as consonant regions. 

The other remaining regions are assumed to be vowel, syllabic nasal or semivowel 
segments. 

7.3.2 Evaluation Criteria 

The criteria of the evaluation is as follows: 

correct recognition: The correct phoneme is found inside the region 

of that phoneme in the input speech. 
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substitution error: The correct phoneme is not found inside the region 

of the input speech phoneme, instead, another incorrect phoneme 

is found. 

deletion error: No phoneme is found inside the region of the input 

speech phoneme. 

insertion error: The phoneme produced by the system is neither a 
correct recognition nor a substitution error. 

7.3.3 Result 

Table 7-1 shows the confusion matrix for all phonemes appearing in the testing 

data. There are 23 Japanese phonemes. The column Num shows the total numbers 

of each phoneme, Del. the number of deletion errors and Rate the percentage of 

phonemes correctly recognized by the system. The row Ins. shows the number of 
insertion errors. The number of phonemes correctly recognized lies on the diagonal 

in this confusion matrix. The numbers which lie off the diagonal are the substitution 

errors. Thus, the sum of "correct recognition", "substitution error" and "deletion 
error" is equal to the number of the input phonemes. All the results obtained by 

the system have certainty factors (CF) over a certain threshold (CF~0.2). 

Overall, the phoneme recognition experiment produced a 91.4% [ll,612/12,710] 
recognition rate for all Japanese phonemes. The deletion error rate was 3.6%, the 
substitution error rate 5.0% and the insertion error rate 20. 7%. 

The phoneme recognition results for /i/,/y /,/w /,/ch/ and / g/ were not suf-
:fi cient. The main reason is that the vowel detection by TDNN-spotting was not 

sufficient for the phonemes /i/,/y / ,/w /. Moreover, when the phoneme /i/ is uttered 

between an unvoiced phoneme or the phoneme /z/, the duration becomes very short. 
Thus, the phoneme /i/ has many deletion errors. This is also true in the case of the 

phoneme /u/. The reason for errors in recognizing the phoneme /ch/ is substitution 

errors with the phoneme /sh/. The acoustic features of the phoneme /ch/ and /sh/ 
are very similar, particularly in utterance initial positions. For the phoneme / g/, 

the reason for the errors was that the segmentation knowledge was not well-tuned. 

Thus, the current system cannot determine the phoneme boundary of the phoneme 

/ g/ with sufficient accuracy. 

Most of the insertion errors were vowels, semivowels, unvoiced-stops and the 

phonemes /g/ and /r/. The main cause of the insertion errors were the vowels. 
Many short vowels, but whose duration exceeded 30ms, appeared at the transitional 

part of the voiced regions. Insertion errors caused by the unvoiced-stops /p/,/t/,/k/, 

mainly appeared in the utterance initial vowel position. These appeared because the 

acoustic features at the burst point of the initial vowel in the utterance is very similar 
to the features of the unvoiced-stop, and of the buzz-bar-less voiced-stop. Most of 

the insertion errors caused by the phonemes / g/ and /r/ occurred in the last vmvel 
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in the utterance, where the acoustic features, such as spectrum and power, are not 

stable. These insertion errors appeared because the rules to detect these boundaries 

use very precise spectra.I features and power changes. 

Some of these errors, especially those which occurred due to the insufficient 

rules, for instance phoneme / g/ deletions, insertions and deletions of short vo¥l「els,
can be improved by adding more knowledge. Although errors occurring by TDNN 

mis-identification are fatal now, TDNN, itself, has to be improved. 

7 .4 Conclusion 

The proposed phoneme recognition expert system, which is realized by a close 
combination mechanism of human knowledge and neural networks, is evaluated 

using the ATR isolated word database. The experimental result showed that high 

phoneme recognition performance can be achieved without any language model, 

using this approach. 

A phoneme recognition experiment showed a 91.4% recognition rate for all 

Japanese phonemes. The deletion error rate was 3.6%, the substitution error rate 

5.0% and the insertion error rate 20.7%. This phoneme recognition performance 
was realized without using any language model. 
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Chapter 8 

ROBUSTNESS OF FEATURE 
BASED SEGMENTATION 

8.1 Introduction 

A phoneme recognition expert system by integrating spectrogram reading 

knowledge and neural networks has been described. In the previous chapters, the ef-
fectiveness of a phoneme recognition expert system integrating spectrogram reading 

knowledge and phoneme identification based on neural networks is shown. 

The spectrogram reading knowledge is mainly used for segmentation because 

phoneme segmentation is not as difficult as identification using a feature based ex-
pert system. The neural networks are mainly used for phoneme identification after 

the segmentation because of the high identification performance on pre-segmented 
phonemes. Through phoneme recognition experiments, it is shown that the inte-

grated system is one of the most promising ways to recognize continuous speech. 

However, all these experiments were performed under the condition of speaker de-
pendent isolated word speech. This expert system should be expanded to a speaker 

independent continuous speech recognition system. As the first step in this expan-

sion, the robustness of this segmentation module to speaker independent speech and 
continuous speech is tested. 

This chapter presents the performance of a feature based phoneme segmentation 
expert system, tested on speaker independent and continuous speech. The exper-

iments were performed both on isolated word speech uttered by six male speakers 

and on speaker dependent continuous speech. The additional and modified knowl-
edge for this expansion is also reported by the cliff erence of the rules and fuzzy 
membership functions. 

79 
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8.2 Rule Expansion 

Details of the feature based consonant segmentation part have already been 

described in Chapter 4. The system consists of about 250 rules in the current 
expert speech recognizer and produces the left and right phoneme boundaries and 

its phoneme classes. 

The rule creation and brushing up have been performed in a style shown in 

Figure 8-1, using an ATR database of 216 phonetically balanced words uttered by 
one male speaker (MAU). The basic rule creation is performed in the following steps: 

(1) Pick up several data having typical spectrogram pattern for creating segmen-
tation rules. 

(2) Describe the rule by carefully observing the spectrogram, then testing and 
modifying iteration is performed until the described rule is correctly seg-

mented. 

(3) Test the rule using the hole database, and pick up the unsuccessful data, go 

to (2). 

(4) Modify the rule until it segments the error data sufficiently. If the acoustic 
features or acoustic environments strongly differ, a new rule must be described, 

goto (1). 

To expand the expert system from speaker dependent to speaker independent 

and/or from isolated word to continuous speech, the same iteration of rule creation 
will be applied, as shown in Figure 8-2. The speaker dependent rules are utilized for 

the initial rules for speaker independent rule training. The process of rule creation 
and knowledge expansion is exactly the same except the data to be trained. 

8.3 Segmentation Experiment 

The evaluation of phoneme segmentation is performed using Japanese con-

sonants in the ATR database. The robustness of this segmentation module of the 

expert system is tested on the ATR 216 phonetically balanced word speech database 
uttered by six male speakers. The robustness to continuous speech is tested on the 

ATR short and long Japanese phrase continuous speech database uttered by one 

male speaker (MAU). 

er1mental Cond1t1on 8.3.1 Exp . 

The task given to the system is to find consonants in the utterances and to 

determine their phoneme boundaries, both start and end points. The knowledge 

for consonant segmentation (about 250 rules), used in the current system, is basi-
cally created from the ATR 216 phonetically balanced isolated word speech database 
uttered by one male speaker (MAU). The phoneme segmentation rules have been 
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enhanced so that the success rate is over 96% using the same MAU training data. 

¥1,/hen the testing is performed on six male speakers, some knowledge is added and/or 

modified using another male speaker (MNM). Details of acoustic analysis and eval-
uation criteria are exactly the same which are described in section 4.4.2 and 4.4.3, 

respectively. 

8.3.2 Result 

Table 8-1 shows the consonant segmentation experiment results on a) 2,620 
isolated words uttered by one male speaker, b) Japanese short and long phrases 

uttered by one male speaker and c) 216 isolated words uttered by six male speakers. 

In the case of the 2,620 isolated words and phrase utterances, knowledge was trained 
by one male speaker (MAU) on 216 isolated word utterances. In the case of six male 

speaker utterances, two results are shown: 

(1) knowledge trained by one male speaker (MAU). 

(2) knowledge trained by two male speakers (MAU and MNM). 

The result for 2,620 isolated words is afready reported in Chapter 4. In the 
table, the column Task indicates the utterance style. Data consists of Speaker for 

speaker information, Number for number of data. Result consists of Segmen-
tation, Boundary Error and Insertion Error. Segmentation indicates the 
percentage of phonemes whose start and end boundaries were detected within 50ms 

of the hand-labeled boundaries. Boundary Error is the average of the boundary 
alignment errors compared with hand-labeled boundaries. Insertion Error is the 

ratio of extra segments to the number of phonemes. 

Figure 8-3 shows the distribution of the boundary alignment error compared 

with the hand-labeled boundaries in the database for short and long phrases uttered 

by one ma.le speaker and 216 isolated words uttered by six male speakers. From these 
distributions, it can be seen that, in any case, most of the errors lie between -15ms 

and +15ms. 

The overall experimental results are as follows. The average result, which is 

correctly segmented by the system on the six male speakers, is 91.1 % [2,938/3,226] 

with an average boundary alignment error of 6.2ms. The result on the short phrase 

utterance was 89.2% [2,374/2,661] and 5.6ms. The result on the long phrase ut-

terance is 87.6% [2,336/2,667] and 5.5ms. These results are as good as, or slightly 

・worse than, the previous experiment result on the speaker dependent 2,620 isolated 

・word speech, which is 93.3% [5,530/5,925] and 5.7ms. These results, especially the 
boundary alignment errors, are as good as those achieved by human labeling. 
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8.3.3 D. 1scuss1on 

This section discusses the difference in acoustic features between utterances 

or between speakers through knowledge which was added and/or modified in this 

experiment. 

Table 8-2 shows the average segmentation results for each phoneme tested on 

1) 216 isolated words uttered by six male speakers, 2) phrases (short and long) 
uttered by one male speaker and 3) on 2,620 isolated words by one male speaker. 
Num. indicates the number of phonemes. Rate indicates the ratio of correct 

segments to the number of phonemes. Bndry Error indicates the average of the 

boundary alignment errors compared with hand-labeled boundaries. Ins. Error 
Rate indicates the rate of extra segments to the number of phonemes. 

The tendency of the performance for each phoneme is very similar whether 

tested on 2,620 isolated words, on phrase utterances or on six male speaker 216 

words. Results which were not so good on 2,620 isolated words such as /g/, /z/, 

/h/ and /s/ worsened, especially in the case of phrase utterances. For the phoneme 
/ g/, the knowledge itself is not enough even for the isolated word utterances in 

the training data. For the other phonemes /z/, /h/ and /s/, the influence of the 
fricative increases the high frequency power of the next vowel, which mismatches the 
inbuilt phoneme contextual knowledge trained by the isolated words. This mismatch 

reduces the certainty factors of the correct segmentation hypothesis. 

From the result of six male speakers trained by one male, the results of three 
speakers were over 90% and others were about 80% (see Table 8-1). This indicates 
that three speakers have some different acoustic phonetic features from the training 

speaker. Moreover, it is very interesting that the performance of the speakers (MHT, 
MSH, MTK) who were not trained also improves when additional knowledge for 

another speaker (MNM) was added and/ or modified. 

Only some knowledge is modified or added to the multiple speaker expansion. 

Only three kinds of knowledge described as rules out of about 250 are directly 

added or modified. Moreover, only seven kinds of knowledge described as fuzzy 
membership functions, out of about 120, are modified. They are shown in Table 8-

3. Two examples of the modified fuzzy membership functions are shown in Figures 
8-4 and 8-5. 

From the number of rules and fuzzy membership functions for expansion, it can 

be said that most of the additional speaker MNM knowledge is the fuzzy membership 

functions. And the modification of these fuzzy membership functions were very 
small as shown in Figures 8-4 and 8-5. These fuzzy membership functions map the 

acoustic measurements to the certainty factors, which represent the suitability of 

the measurements in their phonetic contexts, e.g., the power level function for the 
unvoiced-stop closure, the power level for voiced-stop buzz-bar and the power level 

for burst, etc. Also, a few rules were added, e.g., the rule of searching for the rough 



8.4. CONCLUSION 83 

location of the nasal. In this case, the balance of low and high frequency power ,va.s 
different between speaker MAU and MNM. Also, in the case of the unvoiced-stop in 

speaker MNM, the formant of the previous vowel with the largest power comes into 

the closure part. This kind of acoustic feature was rarely observed in speaker MAU 

utterances. 

Finally, from these results, it can be said that most of the rough contextual 

knowledge of phonemes for segmentation can be obtained from one speaker. How-

ever, more precise adaptation or modification of knowledge should be done for ea.ch 

speaker to achieve good performance. 

8.4 Conclusion 

The expansion of a fea.ture based phoneme segmentation module of the expert 

system toward speaker independent continuous speech were presented. This system 

utilizes spectrogram reading knowledge and the strategy used by a human expert 

when reading spectrograms, and determines the phoneme boundary along with the 

phoneme class. The experiments were performed both on isolated word speech 

uttered by six speakers and on speaker dependent continuous speech. The results 

were as good as, or slightly worse than the result tested on speaker dependent 

isolated word speech. 
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8.5 Figures & Tabl~s 

Typical Samples 

Rule Creation 

and 
Modification 

Rule Testing 

Increase 

Samples 

No 
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Figure 8-2: Rule Expansion for Multiple Speakers 
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Figure 8-4: Membership Function of Voiced-fricative 1000-2000Hz Power 
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、Table8-1: Performance of Phoneme Segmentation 

Data Result 
Task 

Speaker Number Segmentation Boundary Error Insertion Error 

2,620 words MAU 5925 93.3 5.75 27.8 

short phrase MAU 2661 89.2 5.58 25.7 

long phrase MAU 2667 87.6 5.47 24.5 

MAU 546 96.3 5.08 33.3 ............. ・・・.................... ......................... .......................... ......................... 

Isolated 216 
MHT 539 90.0 5.88 33.2 ........... ・・・・・・・ .................. ．．．．．．．．．．．．．．．．．．．．．．．．． ........................... ......................... 

Word Using 
MMY 535 91.8 5.49 31.8 .................. .................. ......................... ....................'..... .......................... 

Rules MNM 542 80.4 7.25 63.3 .................. .... ・・・・・．．．．．．．．． ......................... .......................... .. 書・・・・・..............鴫●● 
Trained by MSH 538 80.9 7.10 45.9 .................. .................. ......................... •••••••••••••••• ■ • ■ •••••• ■ ......................... 

MAU MTK 546 83.2 6.78 42.1 

all 3226 87.1 6.26 41.9 
MAU 546 94.9 5.03 32.8 

Isolated 216 
... ・・・・・・・・嘩.................... ・・・・ ......................... .......................... ......................... 

MHT 53.9 92.9 6.00 33.2 
Word Using .................. • •••••••• •• • •••••• .......................... ．．．．．．．．．．．．．．幽●●．．．．．．．．． ......................... 

MMY 535 91.6 5.54 30.7 Rules ．．．．．．．．．．．．．．．．．． .................. ......................... .......................... ......................... 
Trained by MNM 542 93.9 1.07 57.9 ................... .................. ......................... .... ・・・・・・・・・...................................... 

MAU MSH 538 82.0 7.16 38.1 
＆ 

......... ・・・・・・・・・ ............. ・・・・・ .......................... .......................... ・・・.......................
MTK 546 89.6 6.62 41.6 

MNM 
all 3226 91.1 6.24 

， 
39.3 
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Table 8-2: Phoneme Segmentation on Phrase and Multiple Speaker Speech 

Segmentation Ins. Segmentation Ins. Segmentation Ins. 

on Phrase Error on Six Speakers Error on 2,620 Words Error 

Rate Bndry Rate Rate Bndry Rate Rate Bndry Rate 
Num. [%] Error Num. [%] 

Error Num. [%) Error 
lmsl ［％］ fmsl ［％］ 「msl ［％］ 

""一p --- 53 100. 4.8 
'"一p 132 93.2 5.7 に一e__ 28 96.4 4.2 --- に一――― ----

t 540 93.9 4.2 t 186 94.1 4.7 t 461 98.0 4.3 ~---- ーーー・..一 ーー・"● —· トーー一 -------ト――-------- 1---------------- -■  ー・"●

k 1121 91.7 4.7 12.4 k 525 93.9 5.7 14.2 k 1300 97.8 5.8 17.4 
ト-------------... 一~.. "● トーー一 ..■ , .. ,. ........ 

f-―---
,.,,,,,. __ t------------------.,. 

ch 88 81.8 4.4 ch 131 93.1 5.7 ch 141 91.5 5.8 ~---- ----- ■ , _ ___  1-一ー一 -----に一―--. ~ 一ー一 ト—--- ーー・,...... _ --------
ts 117 89.7 4.4 ts 48 89.6 7.4 ts 220 93.2 5.6 

s 510 77.3 4.9 
1. 1 

s 189 93.1 4.1 
3.9 

s 572 88.3 3.5 
3.5 トーー一 ~---- -----

sh 343 92.4 4.7 sh 145 93.8 3.9 sh 387 92.0 4.5 

h 169 75.1 8.5 13.6 h 190 83.7 9.6 24.7 h 313 88.8 8.3 7.7 

z 149 83.2 7.6 24.2 z 233 79.0 7.9 7.7 z 315 85.4 9.6 11. 1 

b 95 98.9 3.9 b 206 96.6 6.5 b 230 98.3 4.7 ~---- -・.. , .... —— -------- -------... ---1-----・----- ----... --..., ____ -----
d 472 91.5 4.8 14.0 d 124 96.8 4.5 35.1 d 177 98.3 3.4 15.7 

r---------- ------- ~--- ---~-- ト—------- - - - -■-~---- -----
g 242 69.0 9.5 g 208 82.7 8.7 g 263 83.7 8.9 

m 380 90.8 7.0 
72.9 

m 263 86.7 7.1 m 485 95.3 6.0 
94.2 ~---- --- トー― --- ト—--- 125.3 --- i------

n 554 93.3 6.4 n 216 94.0 6.2 n 273 97.8 5.7 

r 497 85.7 6.5 47.9 r 430 93.7 6.3 59.5 r 760 90.7 6.2 47.4 

Total 5328 88.4 5.5 25.1 Total 3226 91.1 6.2 39.3 Total 5925 93.3 5.8 27.8 

Table 8-3: Expansion Knowledge for Multiple Speaker Speech. 

Sort of Knowledge and Expansion 
Knowledqe No. Rule and Function Name 

1) Unvoiced-fricative after vowel (2)→ Threshold 
Rules 2) Unvoiced-stop→ Searching point of burst 

(about 250) 
3) Nasal-peak candidates→ Add 0-500/3000-4000Hz 
1) Voiced-stop burst-1000-6000Hz start-change 

2) Voiced-frictive 1000-2000Hz power 

Membership 3) Unvoiced-stop closure-0-6000Hz power 

Functions 4) Unvoiced-stop 0-SOOHz power before-vowel 
(about 120) 5) Unvoiced-stop 0-500/500-1 ODO Hz power-ratio before vowel 

6) Unvoiced-fricative 0-SOOHz power 

7) Unvoiced-fricative 0-200Hz power at word initial 
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Chapter 9 

TIME-STATE 
NEURAL NETWORKS 

9 .1 Introduction 

In order to expand the proposed system to continuous speech recognition, it 
is necessary to improve phoneme identification performance of neural networks for 
continuous speech. There are two points for improving the neural network per-

formance: 1) neural network structure, 2) neural network training. This chapter 
focuses on the structure of phoneme classification-type neural networks to improve 

the phoneme identification performance against continuous speech. 

Phonemes in Japanese have certain rough temporal structures of phonemic fea-

tures. With phoneme /b/ in the medial part of the utterance, for example, first a 
transition from the previous vowel is observed, next a buzz-bar, then a /b/ burst, 
and finally transition to the next vowel. Each of these features contains informa-

tion which contributes to identifying the phoneme. Moreover, this kind of rough 

temporal manner does not greatly change even if the utterance is an isolated word 

or continuous speech. Thus, if the neural network is to treat this kind of tempo-

ral manner, it would be very helpful in order to identify phonemes, whatever the 
utterance style. 

Since the back-propagation algorithm was developed, many neural network ap-

plications to speech recognition have been proposed. However, there are few neural 

networks whose structure considered the temporal structure of phonemic features. 

Some neural network approaches, such as the Neural Prediction Models (NPM) 

[Iso 90], Dynamic Neural Networks (DNN) [Sakoe 89] and Time-Delay Neural Net-

works (TDNN) [Waibel 89], attempt to deal v,rith this problem. NMP is able to deal 
with the time warping of speech features even though it is classified as a prediction-

91 
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type neural network. DNN a.ncl TDNN are classified as classification-type neural 

networks. Although DNN considers the temporal structure, it is proposed for word 

recognition. Moreover, the time-shift tolerance capabil~ty is unknown. This time-
shift tolerance capability is very significant when combmed with the segmentation 
part in the proposed expert system. TDNN has a time-shift tolerance capability, 

but on the other hand, its structure forces it to suppress the temporal structure of 

the phonemic feature. 

In this chapter, severa.l new structures for phoneme identification neural net-
works, Time-State Neural Networks (TSNN) which are able to deal with the tern-
poral structure of phonemic features, are proposed. Phoneme identification perfor-

mance of the proposed TSNN on Japanese phonemes /b,d,g,m,n,N/ compared with 
that of a conventional TDNN is also described. 

9.2 Time-State Neural Networks 

In this section, the structures of classification-type neural networks, TDNN, 

and several types of TSNNs, are described. 

9.2.1 Time-Delay Neural Networks 

Time-Delay Neural Networks (TDNN) can easily be trained using the back-

propagation training algorithm. Moreover, it is shown to be a very high performance 

phoneme classifier . .The main advantage of TDNN is the time-shift tolerance capa-
bility derived from its time-shifted and tied-connected weight architecture. This is 

an important property in combination with phoneme segmentation, because slight 
errors always occur in phoneme segmentation. It is also very important when the 

TDNN is used for phoneme—spotting in speech. 

Figure 9-1 shows the TDNN architecture for 6-phoneme /b,d,g,m,n,N / identi-

fication. This TDNN is made up of four layers. The lowest layer corresponds to 
spectral input values, the two next layers are hidden layers and the topmost layer, 

which is the output layer, corresponds to each phoneme output. The input layer 

has 15 frames (150ms) X 16 spectral coefficient units. The window structure of the 

connections between the layers is time-shifted and tied-connected. The connection 
in the time-shifted window from input layer to hidden layer 1 is 3 frames to 1 frame, 

and from hidden layer 1 to hidden layer 2 is 5 frames to 1 frame. The tied-connection 

to the output layer has the same weight for each unit. All weights are adjusted us-

ing the back-propagation training procedure. The phoneme corresponding to the 
highest activated output unit is defined as the classification result. 
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9.2.2 Simple Time-State Neural Networks 

Figure 9-2 shows the simplest TSNN, which is a. 6-phone1~e classifier. Each 

output directly concerns each phoneme. This four layer neural network has four 

states in the time sequence and is able to capture the phonemic fea.tures in each 
state. The first state is considered to capture the transition feature from vowel into 

consonant, the second to capture the buzz-bar or stable part of the nasal, the third 
to capture the burst or the nasal transition to the next vowel and the last to capture 
the next vowel. The connections from the input layer to hidden layer 1 are time-

shifted windows (3 frames to 1 frame) and are tied-connected in the manner of the 
TDNN connection. The time-shifted tied-connected windows are also shifted over 
the input speech but differ from the TDNN in the point of its shifting range. In 

this TSNN, each window is shifted between the indicated size as shown by •—• in 
the diagr、ams,(6 frames). This structure allows the TSNN to capture the phonemic 

features at any point within the windows and considers the temporal structure of 

the phoneme features. 

9.2.3 All Tied-Connection TSNN 

The simple TSNN described above, has a time-shifted and tied-connected 
window only between the input layer and the hidden layer 1. Thus, the capability 
of the time-shift tolerance will not be achieved by this neural network architecture 
sufficiently. Here, another TSNN, which has time-shifted and tied-connected win-

dows between every layer, is proposed. This TSNN, shown in Figure 9-3, has three 

states in the time sequence and is also able to capture the phoneme features in each 
state. The first state is considered to capture the transition feature from vowel to 

consonant, the second to capture the buzz-bar or stable part of the nasal, the third 
to capture the burst with next vowel or the nasal transition with the next vowel. 

This TSNN has time-shifted windows from the input layer to each state of hidden 
layer 1 and from each hidden layer 1 to each hidden layer 2. Moreover, the con-

nections are tied-connected between every layer. The windows are only shifted over 

each layer between the indicated window size as shown by一inthe diagrams, (7 
frames in the input layer, 3 frames in the hidden layer 1). The connection to the 
output units is separated into three weights. This architecture may improve the 

time-shift tolerance capability over than that of the simple TSNN. 

9.2.4 Compressed TSNN 

In Figure 9-4 a compressed-type TSNN is shown. Basically, the structure of this 

compressed TSNN is exactly the same as that of the conventional TDNN shown in 

Figure 9-1, except for the weights connected to the output layer. In the conventional 
TDNN, all 9 weights紅 etied-connected, which means that a.11 connections have the 

same weights. In this TSNN, the connections are also tied-connected, but they are 

separated in to three weights: the front three, the middle three and the back three. 
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This weight separation may separate the hidden layers into three states and rna.y 

capture the phonemic features in ea.ch state. The first three weights are considered to 
capture the transition feature from vowel to consonant, the second three to capture 

the buzz-bar or stable part of the nasal, the third three to capture the burst and 
next vowel or the nasal transition to the next vowel. Thus, this TSNN can be 

observed as the compressed-type TSNN shown in Figure 9-3. The time states in 

the hidden layers, which are considered to capture the temporal phonemic features, 

are compressed into one hidden layer. However, the weight separation in the outp_ut 
layer may represent the time states for the temporal phonemic features in the umts 
of the hidden layers through the back-propagation training algorithm. 

9.3 Experiment Using TDNN and TSNNs 

Japanese phoneme /b,d,g,m,n,N / identification experiments are performed us-
ing TDNN and several types of TSNNs which are proposed. 

9.3.1 Experimental Condition 

The neural networks were trained on half (even numbered words) of the ATR 

5,240 isolated word database, recorded by one male speaker. For testing, various 

styles of utterance are used such as the other half (odd numbered words) of the 
5,240 isolated words, short and long phrase utterances and continuous utterances in 

the ATR speech database. 

Two types of data taken from the A.TR database are used: 

(a) 150ms fixed samples. 

(b) Samples linearly normalized by each phoneme duration. 

This linearly normalized data, which alig!ls its phoneme temporal structure, is 
used to show the effectiveness of considering the temporal structure of phonemic 

features. Also, in the isolated word utterance, data shifted from -20ms to +20ms 
in lOms steps, are used to evaluate the time-shift tolerance capability of ea.ch neural 
network. 

For input to the neural networks, the speech was sampled at 12kHz and ana-

lyzed by FFT using a. 21.3ms Hamming winclow every 5rns. 16 mel-scaled coefficients 

were computed and merged for a lOms frame rate, and normalized to fall between 

-1.0 and +1.0 with the a.vera.ge at 0.0. 

The neural networks were trained using the fast back-propagation training 

method "Dynet" [Haffner 89]. In this process, every end point of the hand-

segmented datum is aligned at the center frame of the input layer. Similarly, in 
the process of classification, the encl point of the datum is also adjusted a.t the 
center frame of the input layer. 
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 9.3.2 Result 

Table 9-1 shows the experimental results using TDNN, simple TSNN, all tied-

connection TSNN and compressed TSNN. The number in the table indicates the 
percentage of phonemes correctly identified in ea.ch experimental condition. 

(a.) From the result, the conventional TDNN is capable of a time-shift tolerance 

of a.bout 30ms, or a. little more. However, the recognition rate is drastically 
reduced when the utterance changes from isolated word speech to phrase and 
sentence speech. This is because the TDNN does not have enough flexibility 
to capture the temporal structure of the acoustic feature. This can also be 

confirmed from the results on the linearly normalized data of the phoneme 

duration. 
(b) The Simple TSNN recognition rate improved drastically compared with that 

of the TDNN, especially as regards phrase and sentence utterances. This 

. improvement is more evident for linearly normalized data. However, no time-
shift tolerance capability is obtained in this simple TSNN. 

(c) The result of Shift Training TSNN, which is the simple TSNN trained 

using shift data, shows that the time-shift tolerance capability can be obtained 
by training using the shifted data. However, in this case, three times more 
training da.ta is necessary to train the neural networks, which also means that 
the training cost is three times more than that of a conventional TDNN. 

(d) The phoneme identification performance of the TSNN All-Tied, which in-

di cat es the results of TSNN with tied-connection in the hidden layer, and 
Comp. TSNN, which indicates the results of compressed TSNN, lies be-
tween that of the Shift Training TSNN and Simple TSNN. This result 
shows that the time-shifted and tied connection is not as good as that of the 

TDNN. However, the capability was slightly improved over that of the Simple 

TSNN. 

Additionally, the recognition rate was better than that of the conventional 
TDNN for various utterances. This result indicates that the time-shifted and tied-

connected weights in the conventional TDNN is so strong that it suppresses the 

ability to capture the temporal structure of the acoustic phonemic features. 

Finally, from these results, it can be said that to incorporate some kind of 

temporal structure into neural networks is necessary for improved identification 
performance. Moreover, an additional experiment shows tha.t the TSNN can obtain 

time-shift tolerance ca.pability by making time-shifted and tied-connected weights 

in the hidden layers a.ncl / or by using shifted <la.ta for training. 
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9 .4 Conclusion 

This chapter proposed a new structure of phoneme identifica.tion neural net-

works, Time-State Neural Networks (TSNN). TSNNs are able to deal with the tern-

poral structure of phonemic features, which does not greatly change according to 

utterances such as isolated word or continuous speech. Thus, TSNN is well able to 
identify phonemes, wha.tever the utterance style. Some types of TSNNs are tested on 

Japanese phonemes /b,d,g,m,n,N /. Their phoneme identification performance was 
much better than that of the conventional TDNN, especially on continuous speech. 
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9.5 Figures & Tables 
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Utterance 

Style 

Isolated 

Word 

Table 9-1: Performace of Time-State Neural Networks. 

Samples 
Testing I 150ms Fixed Samples I Normalized 

by Duration 

Neural Simple 
Shift 

TDNN Training 
All-Tied Comp. 

TDNN Simple 
Networks TSNN TSNN TSNN TSNN TSNN 

-20ms 91.2 52.7 81.6 58.7 54.4 - -................................... ・・・・・・・・・・・・・..................................................... ・・・・・・・・・・・・ 
-1 Oms 94.7 86.7 95. 7 92.6 93.0 - -

．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 

Oms 95.7 97.6 97.0 97.0 97.6 95.6 98.0 ....................... ・・・・・・・・・・・・.................................................................. ・・・・・・・・・・・・ 
+ 1 Oms 94.1 84.4 95.0 89.9 90.3 - -

+20ms 85.9 56.5 77.5 65.8 58.6 I I 

Short Phrase 76.6 82.7 79.9 79.0 . --~-~-: ?. .. l . .?. ~---~-.! ... ? 月:.~............ ・・・・・・・..・・・・ ............ ● 疇．．．．．．．．．．． ........ 疇・・・.................. 
Continuous! Long Phrase 75.9 77.6 77.6 77.7 77.7 . 74.8 81.6 s~~-t~-~~~---~·-·61·:s··l··10·.·1··l····11·.·1····l····69·.。 f··i1·:1·· ~-·ss·.·s··I·· ・12 :a 
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Chapter 10 

NEURAL FUZZY TRAINING 
/ 

10.1 Introduction 

In order to expand the proposed expert system to continuous speech recognition, 

it is necessary to improve phoneme identification performance of neural nebvorks 
for continuous speech. There are two points for improving the neura.l nebvork per-

formance: 1) neural network structure, 2) neural network training. This chapter 
focuses on the training method of phoneme classification-type neural networks to 
improve the phoneme identification performance against continuous speech. 

Recently, in the research field of speech recognition, it has become possible 

to deal with a large amount of data because of the incredible improvement of the 
computer. Moreover, methods which use a lot of data such as statistical models like 

HMM and neural networks, become one of the main resources in studying speech 
recognition. 

Among these methods, since the back-propagation algorithm, a powerful 

neural network training algorithm [Rumelhart 86] [Lippmann 87], was clevel-
oped, many applications for speech recognition have been proposed using feed-

forward identification-type neural networks. Time-Delay Neural Networks (TDNN) 

[¥"!vaibel 89] showed good phoneme identification performance. The TDNN is pre-

sented as a good speech recognition neural model not only for its performance but 
also for its time-shift tolerance capability. 

Through the continuing study of neural speech recognizers, a generalization 
problem has a.risen, especially in the phoneme identification-type feed-forward neural 

networks trained with the conventional back-propagation algorithm such a.s TDNN. 

In other words, the robustness of the neural networks trained by the conventional 

back-propagation algorithm a.re not as adequate as expected. The generalization 
problem is essentially an over-learning of the training data. which ca.uses a. clras-
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tic performance reduction when a. slight difference arises in the testing data, (e.g. 

speaking rate differences). This problem arose because the conventional tra.ining 

method creates very sharp boundaries between classes in the neural networks. 

Another problem also arises when combining the phoneme identification-type 

neural networks with a language model, in which the top-N candidate performance 

is not required. This problem derives from simply giving the phoneme class infor-
mation of the training sample, 1 to the phoneme class which the sample belongs and 
Os to the other phoneme classes, to the target values of the neural network in the 

conventional method. Thus, the neural network is trained only to produce the top 
phoneme candidate but not the top-N candidates. In other words, the neura.l net-

works are not trained to produce the likelihood for each phoneme class. As a result, 

the output values of the neural networks for the 2nd, 3rd, and top-N candidates 
are suppressed at almost zero, which reduces the top-N recognition performance. 

However, this top-N phoneme candidate information is very important when com-

bined with a language model for continuous speech recognition. Once the lack of the 

phoneme candidate information occurs, it may lead to a fatal error in continuous 

speech recognition. 

There are several approaches to overcoming these problems for phoneme 
identification-type neural networks. The mo$t famous is to avoid over-learning the 

training data by stopping the traini1?,g iteration using an additional cross validation 
data set. There is another method for creating robust neural networks by adding 

some noise to the training data. Minami proposed a method to improve the top-
N candidates by smoothing the values of the output or the hidden layer units in 

the neural network [Minami 90]. Kawabata proposed the "KNIT" training method 

which avoids over-learning of the training data by imposing the constraints between 

the input data and target values using a K-nearest neighbor interpolation training 
[Kawabata 90]. Also, Takami has proposed a pairwise discriminant approach to 
improve the robustness by using multiple neural networks [Takami 90]. 

In this paper, a new fuzzy training method for phoneme identification neural 
networks, quite different from the aforementioned approaches, called "Neural Fuzzy 
Training", is proposed. The difference between the proposed and the conventional 

method is that the target values of the training datum are given a.s fuzzy phoneme 

class information instead of discrete phoneme class information. By giving the fuzzy 

phoneme class information instead of the discrete phoneme class information, it is 

expe~ted that the top-N candidate performance of phoneme identification neural 
networks will improve and more robust neural networks will be created by overcom-
ing the over-learning problem. 

The basic idea of the proposed Neural Fuzzy Training method is described in 

the next section. Then, the phoneme identification experiments using /b,d,g,m,n,N / 
identification task, 18-consonant identification task is shown using the ATR isolated 

word database, phrase database and sentence database. Finally, continuous speech 
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recognition experiments by means of TDNN-LR speech recognizer using the ATR 

isolated word database and phrase database are presented. From the experimental 

result, the effectiveness of the proposed Neural Fuzzy Training method on training 

speed, on generalization and on untrained speakers are discussed. 

10.2 Neural Fuzzy Training 

Neural Fuzzy Training is realized using the back-propagation algorithm, but 
differs how the target values are given to the neural network. In the conventional 
method, target values are given as discrete phoneme class information. In the pro-
posed method, the target values are given as fuzzy phoneme class information be-

tween O and 1, which inform the phoneme class likelihood of the input sample to 

the neural network. 

The conventional method is realized by the use of the back-propagation algo-

rithm, whose target values are given as discrete phoneme class information, i.e. 1 to 

the phoneme class which the sample belongs and Os to the other phoneme classes. 

On other other hand, the proposed Neural Fuzzy Training method is also re-

alized by the use of the back-propagation algorithm, either. However, the target 
values are given as fuzzy phoneme class information whose values are given as be-
tween O and 1. The fuzzy class information informs the neural network likelihood 

of the training sample to each phoneme class, in other words the possibility of be-
longing to each phoneme class. The reliability of belonging to the phoneme classes 

can be considered using the idea of distance between training samples, for instance 
Euclidean distance measure. Here, there is an assumption that "when the distance 

of two samples is small, these two samples are considered to be similar." This leads 
to each sample having the possibility of belonging to the class of the other sample. 

On the contrary, "when the distance of two samples is large, these two samples 

are considered to be very different." This leads to each sample having less (or no) 
possibility of belonging to the class of the other sample. To model this likelihood 

using the distance d, a likelihood transformation function f (d) is adopted. By the 

use of monotonous decreasing function such as f (d) = exp(-a・dりwhereo: ~0, 
as shown in Figure 10-1, it can easily model the idea that "the larger the distance 

is the loヽverthe possibility is and the smaller the distance is the larger the possibil-
ity is." Thus, fuzzy phoneme class information can be computed according to the 

distance between the input sample and the nearest sample of each phoneme class in 
the training data set. 

Figure 10-2 gives a brief idea of the conventional training method (CT) and 

the proposed Neural Fuzzy Training method (NFT). The target values of the con-
ventional method are given as discrete phoneme class information, i.e. the target 

values of sample B (●） is given as {0,1,0}. The target values of the Neural Fuzzy 

Training method are given as fuzzy phoneme class information, i.e. the target val-
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ues of sample B (●） is given as {J(dAB), f(dBB), J(dcB)} where J(d) is a likelihood 

transformation function of a distance d. 

Considering the computational cost for creating the target values for every 
training sample, if this method is adopted in a straightforward manner, distance 

calculation { N• (N -1)} /2 where N is the number of training samples, is required 

because the nearest samples belonging to each class of the training sample have to 
be selected. This is very expensive if the training set is very large. 

To avoid this problem, pre-selection of training samples for likelihood calculation 

is possible. The computational cost reduces from N・(N-1)/2 to C・A1・N when 

C・A1 is much smaller than JV /2, where N is the number of training samples, C is 
the phoneme class number and M is the pre-selected sample number. 

In the following section, experimental results are described showing the effective-

ness of the proposed Neural Fuzzy Training method compared with the conventional 
training method. 

10.3 Phoneme Identification Experiment 

In this section, /b,d,g,m,n,N / and 18-consonant identification experiments us-
ing the ATR database [Takeda 88] are discussed to show the effectiveness of the pro-

posed Neural Fuzzy Training method for phoneme identification. The Japanese 18 

consonants are /b/,/d/,/g/, /p/,/t/,/k/, /ch/,/ts/, /s/,/sh/,/h/,/z/, /rn/,/n/,/N/, 

/r/,/w/ and /y/. 

10.3.1 Experimental Condition 

Phoneme samples for neural network training are culled using the hand-labels 
from half of the ATR isolated word database (even numbered words; 5.7 mora/s). 

In the /b,d,g,m,n,N / identification task, 1,857 training samples are selected up to 
500 samples for each phoneme class. In the 18 consonant identification task, 3,638 
training samples are selected up to 250 samples for each phoneme class. 

For input to the neural networks, the speech was sampled at 12kHz and analyzed 

by FFT using a 21.3ms Ha皿 ningwindow every 5ms. 16 mel-scaled coefficients were 
computed and merged for a lOms frame rate, and normalized to fall between -1.0 

and + 1.0 with the average at 0.0. 

Phoneme samples for neural network testing are also culled using the hand-

labels from the other half of the ATR. isolated word database (odd numbered words; 

5.7 mora/s). Additionally, to evaluate the robustness to the speaking rate, testing 

samples are also culled from the phrase data.base (7 .1 mora./ s) and from the sentence 
database (9.6 mora/s). 
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TDNNs, as shown in Figures 10-3 and 10-4, are adopted for the /b,d,g,m,n,N / 

identification experiment and for the 18-consonant identification experiment, respec-
tively. The structures of TDNNs are feed-forward neural networks of four layers. 

The input for the TDNNs is 16 mel-scaled spectral power of 7 frames (70ms). All 
the end points of the phoneme labels for training and testing samples are adjusted 

so as to be at the center of the input layer. The neural networks are trained using 

the fast back-propagation training method "Dynet" [Haffner 89]. 

Two conventional training methods and the proposed Neural Fuzzy Training 
method are compared. The two conventional methods differ in the point of the error 

function of the back-propagation algorithm. They are 1) mean square error (M.S.E.) 
function and 2) McClelland error function ln(l —召）. M.S.E. function is adopted 

for the Neural Fuzzy Training method. The McClelland error function, which back-

propagates emphasized errors, is well-known as a very fast training method when 
the number of classes to be identified is very large. 

The Euclidean distance measured of the 7-frame input samples is adopted. To 

model the likelihood using the distance d, f(d) = exp(-a・dりwherea = 0.005, is 
adopted as a likelihood transformation function. The value a= 0.005 is chosen by 

experience in order that the target values of the 2nd and the 3rd candidates may 

have certain values. 

The weight which has the highest performance on the testing data culled from 
the isolated word database is chosen for experiments from 100 training iterations. 

10.3.2 Result 

The phoneme identification results of /b,d,g,m,n,N / identification and those of 

the 18-consonant identification are shown in Figures 10-5 and 10-6, respectively. 
They show the identification performance of the first candidate and the top-N can-

didates on the training data and the testing data (phonemes culled from isolated 
word, phrase, sentence database. The vertical axis indicates the identification rate 
(%) and the horizontal axis the top-N candidates. 

Comparing the two conventional and the Neural Fuzzy Training methods, there 

were no big differences in identification performance on phonemes cut out from 

the isolated word database in both the training and testing tasks. However, the 
identification performance trained by the proposed Neural Fuzzy Training method 

improved on the phoneme culled phrase (7.1 mora/s) and sentence data.base (9.6 
mora/s) in which the speaking rate differs from the training data (5.7 mora/s). The 
:fi gures indicate that not only the first candidate result but also the top-N results 

improved. Especially on the sentence data, the top-N results improved drastically. 

For continuous speech recognition, the top-N phoneme candidate information is 

very important when combined with a language model. Thus, from the improvement 
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shown in these figures, it can be expected that the proposed Neural Fuzzy Tra.ining 

method will improve the overall recognition performance on phrase and/or sentence 

speech in combination with a. language model. 

Comparing the two conventional methods of the top-5 candidate performance on 

IS-consonant identification task, the result trained by the McClelland error function 
was worse than that trained by the M.S.E. function. This performance reduction 

derives from the characteristics of the McClelland error function. The output values 
are forced to be almost O or 1 for the strongly emphasized error back-propagation 
training. As a result, the output values of the neural networks for the top-N candi-

dates are strongly suppressed at almost zero which reduces the top-N identification 
p erforma.n ce. 

From this point of view, the conventional training method with McClelland 

error function will not perform sufficiently on continuous speech recognition which 
performs in cornbina.tion with a language model, even if the training method is 

well-known as a fast training method. 

These experiments indicate the effectiveness of the proposed Neural Fuzzy 

Training method compared with conventional methods. However, there is a problem 

in the proposed Neural Fuzzy Training method. A very high computational cost for 

creating the target values is required if the training set is very large. 

10.4 Continuous Speech Recognition 

Experiment 

In this section, isolated word recognition and phrase recognition experiments 
using TDNN-LR continuous speech recognizer [Sawa.i 91] were performed using t,he 
same ATR data.base applying 25-phoneme identification TDNN. 

10.4.1 TDNN-LR Speech Recognizer 

TDNN-LR speech recognizer con~ists of two ma.in techniques: 

(1) Generalized LR-parser. 

(2) TDNN+DTW phoneme verifier. 

A brief idea. of ea.ch technique is introduced in this section. 

Generalized LR-Parser 

The LR-parser [Aho 86] is originally developed for programming languages, and 

is known as an effective parser for a large class of context-free gra.mn1ar. 
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The grammar rules described in a context-free grammar style a.re automa.tica.lly 

pre-compiled into an LR-table (action table and goto table) by the LR-table 

generator. The LR-parser is deterministically guided by the LR-table with the two 
subtables (action table and goto table) and is processed left-to-right without 

back-tracking. 

The action table determines the next parser action ACTION[s,a] from the 
states currently on top of the stack and the current input symbol a. There are four 

kinds of actions: shift, reduce, accept and error. The action shift means one 

word from input buffer onto the stack. The action reduce means constituents on 
the stack using the grammar rule. The action accept means input is accepted by 
the grammar. And the action error means input is not accepted by the grammar. 

The goto table determines the next parser state GOTO[s,A] from the sta.te s and 

the grammar table symbol A. 

The standard LR-parser cannot handle ambiguous grammars. In order to cope 
with natural language processing, which includes speech processing, this ambiguous 

grammars have to be handled. This ambiguous grammars is able to handled by 

incorporating a multiple entries (conflicts). And as a general method, stack-splitting 

mechanism can be used to cope with multiple entries. Vi/henever a multiple entry 
is encountered, the stack is divided into two stacks, and each stack is processed in 
parallel. The Generalized LR-parser is proposed [Tomita 86] in order to handle this 

ambiguous grammar for natural language processing by incorporating a multiple 

entries (conflicts) into the LR-table. Thus, this mechanism makes it possible to 
use LR-parser to handle an ambiguous grammar which is very effective to handle 

natural language processing. 

TDNN-LR Procedure 

TDNN-LR speech recognizer [Sawai 91] is realized as an integrated system of the 

Generalized LR-parser [Tomita 86] and the TDNN phoneme identifier [Waibel 89]. 
The system architecture of the TDNN-LR is very effective and it is a sophisticated 

speech recognizer which can deal simultaneously with phoneme verifica.tion using 
the linguistic information constraints and language analysis using the gran1mar. 

The block diagram of the TDNN-LR speech recognizer is shown in Figure 10-7. 

The process of TDNN-LR speech recognizer performs as follows: 

(1) Acoustic analysis is performed for the input speech. 
(2) Phoneme identification is performed frame-by-frame by shifting TDNN 

phoneme identifier over the analyzed input speech. 

(3) Phoneme verification, symbol reduction to symbol or acceptance is requested 

by the LR-parser according the LR-table. As for the phoneme verification 

request, t.be phonemes which might come after the current state under the 
linguistic constraint should be verified. As for synサ）ol reduction, the symbol 
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will be reduced to another symbol using the grammar table. As for the a.ccep-

ta.nee, the input is accepted under the linguistic constraint and later end the 

process. 
(4) Verification of the aforementioned phonemes is performed using the DTW 

(Dynamic Time Warping) algorithm. The score for the DTW is computed as 
the log value of the fra.me-by-frame identified phoneme values of the requested 

phoneme. Each phoneme reference has a frame length of an average duration 
estimated using the training samples of the isolated word data.base. The win-
dow for DTW calculation is in between 1/2・t and 2・t where t is number of 
frames in time. 

The DTW is realized in the following equation: 

g(i -1, t -1) 

+log(T DN  N(t,p)), 
g(i-2,t-1) 

+log(T DN  N(t,p)) + log(T DN  N(t -1,p)), 
g(i-1,t-2) 

+0.5log(T DN  N(t,p)) + 0.5log(T DN N(t -1,p)) 

g(i, t) = max 

where 

p is the requested phoneme. 

i is the position in the reference phoneme sequence. 

t is the frame number. 

T DN  N(t,p) is the TDNN activating value of pat t. 

The duration control performs after the phoneme scoring by DTvV. The du-

ration control is realized by multiplying a penalty into the DTvV score in the 

form of Gaussian distribution using the difference between the average dura-
tionμof the phoneme and the estimated duration d of phoneme obtained by 

the DTW. The penalty P(d) for the phoneme duration control is given in the 
following equation: 

P(cl) = exp(-)  
(d -f.l)2 

21rCJ2 

In the case of phrase recognition, the average durationμand the deviation CJ 

for each phoneme are re-estimated from the isolated word phoneme duration 

by the phrase duration transformation function [Hanazawa 90]. 

(5) Scores at the current state are sorted to realize beam search. The top-N 
candidates are saved a.nd the others are pruned. Then shift is performed to go 

to the next state in the LR-table, goto 3). 

The whole process of this TDNN-LR speech recognizer is similar to the level-
building DT"¥i¥「speechrecognition system with a context-free gra.mma.r [Myers 81] 

with its end point free, which builds up subsequent phonemes. 
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10.4.2 Experimental Condition 

To recognize isolated words and phrases in Japanese using the TDNN-LR speech 

recognizer, 25-phoneme identification TDNN is adopted. The Japanese 25 phonemes 

are /b/,/d/,/g/, /p/,/t/,/k/, /ch/,/ts/, /s/,/sh/,/h/,/z/,/zh/, /m/,/n/,/N/, 
/r/,/w/,/y/, /a/,/i/,/u/,/e/,/o/ and silence /Q/. Input to the neural networks is 
analyzed under the same conditions used in the phoneme identification experiment. 

A 25-phoneme identification TDNN is shown in Figure 10-8. The structure 

of the TDNNs is a feed-forward neural network of four layers. The input for the 

TDNNs is 16 mel-scaled spectral power of 7 frames (70ms). The neural networks 
are trained using the fast back-propagation training method "Dynet" [Haffner 89]. 

In this experiment, phoneme samples for the TDNN training are culled from 

half of the ATR isolated word database (even numbered words; 5.7 mora/s) using 
the hand-labels. However, the condition of selecting training samples differs from 

the previous experiments. Samples are culled from a phoneme not at the end of 

the hand-label but from several points in the phoneme as shown in Figure 10-9. 

One sample is selected from the~enter of the phoneme, two from the edge of the 
phoneme whose center of the sample is located 15ms inside the phoneme boundaries, 

and others by shifting 15ms toward the boundaries inside the two edge samples. Up 
to 2,000 training samples for each phoneme class a.re selected. 

For the isolated word recognition experiment, the other half of the training data 

in the ATR isolated word database (odd numbered words; 5.7 mora/s), and for the 
phrase recognition experiment, the 278 ATR phrase database (7.1 mora/s), are used. 

Two word dictionaries and two grammars are used to evaluate the isolated・word 
recognition and the phrase recognition performance, respectively. 

For isolated vrnrd recognition, two word dictionaries are used: 

(1) Small vocabulary task using a 500 word dictionary. 

(2) Large vocabulary task using a 2,620 word dictionary. 

For phrase recognition, two context-free gra.1nmars are used: 

(1) Small task using a task specific grammar. 

(2) Large task using a general grammar. 

The complexity of the phrase grammar is shown in Table 10-1. 

As previously mentioned, the computational cost is very high for creating the 

target values for every training sample in the Neural Fuzzy Training method, if 

this method is adopted in a straightforward manner. Here, about 50,000 samples 

have to be trained. The distance calculation is about (-50, 000・50, 000)/2 in this 
large training set. To avoid this problem, pre-selection of training samples, 200 
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random samples per phoneme class, for likelihood calculation is performed. The 

computational cost is about 1/5 that without pre-selection. 

Here, two conventional training methods and the proposed Neural Fuzzy Train-

ing method are compared. The two conventional methods are the back propagation 
algorithm with 1) mean square error (M.S.E.) function and 2) McClelland error func-
tion lれ(1-c2). M.S.E function is adopted in the Neural Fuzzy Training method. 

Other experimental conditions are almost the same as in the previous phoneme 
identification experiments, such as 7-frame Euclidean distance measure d between 

samples, likelihood transformation function f(d) = exp(-a・cf) where a= 0.005, 
and so on. The only cliff erence is the weight selection. The weight of 100 training it-

erations is chosen. At 100 training iterations, the TDNN training almost converged. 

10.4.3 Result 

Table 10-2 a.nd Table 10-3 show the recognition results of all tasks (500 and 2,620 

isolated word recognition and 278 phrase recognition using task specific grammar 

and general grammar) using the TDNN-LR speech recognizer for speaker MAU and 

MHT, respectively. 

The result for the conventional method is obtained by using the weight trained 

by the McClelland error function, because the weight trained by M.S.E. function was 

not sufficiently estimated within 100 iterations. Discussions of the training speed 

will appear in the next section. 

Figure 10-10 shows the output values obtained by each TDNN for input speech 

/to:jitsuno/. At the top of the figure, the input spectrogram is shown. The second 

shows the output values obtained by the TDNN trained using a conventional training 

method with McClelland error, and the bottom shows the output values obtained 
by the TDNN trained using the Neural Fuzzy Training method. 

In the conventional result, several deletion errors, such as /ts/ and /n/, can be 

observed, which increase the fatal error possibility. On the other hand, few deletion 
errors can be observed in the Neural Fuzzy trained result, but many insertion errors 

can be observed. However, in the regions of these insertion errors, the correct 
phoneme result can also be observed. Thus, it will not lead a fatal error. 

In practice, the recognition result for this input /to:jitsuno/ appears in the sec-

oncl candidate in the Neural Fuzzy Training case. Though in the conventional train-

ing case it appears in the fifth candidate. The top result is mistaken as /to:jitsuo / 
in the Neural Fuzzy Training case, because the duration control is not・well-tuned in 
the current system. 
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10.4.4 Effectiveness of Neural Fuzzy Training 

In this section, the effectiveness of the Neural Fuzzy Training method 1) of 

training speed, 2) against over-training and 3) against untrained speakers, is dis-

cussed. 

Effectiveness of Training Speed 

Figures 10-lla, 10-11 b, 10-llc show the training speed of each meth叫 forthe 

6-phoneme, 18-phoneme and 25-phoneme identification TDNN of the speaker MAU 
data. 6-phoneme are the /b,d,g,m,n,N /, 18-phoneme are for the 18 consonants and 
25-phoneme are of all phonemes. The training methods are: 1) conventional training 
with NI.S.E., 2) conventional training with McClelland error and 3) the proposed 

Neural Fuzzy Training method. The McClelland error function is well-known as a 

very fast training error function in the back-propagation algorithm when the number 

of the identification classes is large. 

In the 6-phoneme training, there a.re no speed differences between each training 

method. In the 18-consonant training and in the 25-phoneme training, the training 
speed of the conventional training method with M.S.E error is somewhat slower than 

the others. 

The effect of the proposed method and the McClelland error is evident, espe-
cially in Figure 10-llc compared with that of the M.S.E. The training speed of the 

proposed method is almost the same as that of the McClelland error. Thus, the 

Neural Fuzzy Training method proved to be a very fast training method. 

Effectiveness against Over-Training 

Figure 10-12 shows the training speed for the 25-phoneme identification TDNN 
of the speaker MHT. In the conventional method with the McClelland error function, 

the training converged around 96%, however in the Neural Fuzzy Training method, 
it converged around 92%. 

From these results, the neural fuzzy training method does not seem to be a good 

training algorithm for neura.l networks. However, the result shown in Table 10-3 is 
good compared with the conventional trained results. Thus, from this point of view, 

the result indicates that the Neural Fuzzy Tra.ining method can a.void over-training 
the tra.ining data.. 

Effectiveness against Untrained Speakers 

Tables 10-4, 10-5 and Tables 10-6, 10-7 show the recognition results for un-

trained speakers. Tables 10-4, 10-5 show the results using the TDNN trained by 
speaker l'vIAU and Tables 10-6, 10-7 trained by speaker MHT. Tables 10-4, 10-6 

show the results on a. 2,620 word recognition task and Tables 10-5, 10-7 on phrase 
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recognition task using a genera.I grammar. There are some slight performance re-

ductions, albeit very small, however, most results ha.ve improved. The improvement 

can be considered evidence of a good generalization of the neural network using the 

proposed Neural Fuzzy Training method. This also indicates that the Neural Fuzzy 

Training will be more effective when it is applied to a speaker independent approach. 

10.5 Conclusion 

A new fuzzy training method for neural network classifiers, called "N eura.l Fuzzy 

Training", has been described. The effectiveness of the proposed method compared 

with the conventional method is shown using both phoneme identification experi-

ments and continuous speech recognition experiments. Furthermore, the proposed 

"Neural Fuzzy Training" method is also shown to be a very fast training algorithm. 
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Figure 10-3: /b,d,g,m,n,N/ Identification TDNN 

Figure10-4: 18-Consonant Identification TDNN 
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Table 10-1: Size of Grammar for Phrase Recognition Using TONN-LR 

Task Grammar 
Number of Size of Number of States 

Rules Vocabulary in LR-table 

Small Task Specific 607 275 1341 

Large General 1672 1035 4866 
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Table 10-2: Speaker Dependent Speech Recognition MAU(%) 

Task 500 words 2、620words *small *large 
＆ 

Method CT NFT CT NFT CT NFT CT NFT 

Top-1 97.8 98.0 96.1 94.7* 71.2 80.9 64.3 71.2 
-----------------... ー・• 一ー一

___ ,. ___ 
--------------------------------

Top-3 99.2 99.6 99.4 99.0* 86.0 93.5 81.7 88.8 
_ ........... -......... -----------------------------------ト―------------------
Top-5 99.2 99.6 99.5 99.4* 92.8 96.0 87.1 92.1 

CT: Conventional Training (McClelland), NFT: Neural Fuzzy Training (M.S.E.) 

*small: Phrase using Small Grammar, *large: Phrase using Large Grammar 

Table 10-3: Speaker Dependent Speech Recognition MHT (%) 

Task 500 words 2,620 words *small *large 
＆ 

Method CT NFT CT NFT CT NFT CT NFT 

Top-1 98.0 97.0* 96.6 94.2* 71.2 76.6 66.9 71.2 
--------... 一 9● ●● ,. ・- - _., .....  , -------- ● ,■------・  ------ 9 ■ ・- -・ 一・--'' ●9● ● ,. 一ー・,,_,.,● 

1-―-----——, "'.'— 

Top-3 98.8 99.6 99.3 98.2* 91.0 89.2* 85.3 88.8 
---------・---・ ~.'"'. -------——,, • .... ■ 一 ., ..'—----- -■ 一・・ 9 ■"'一一 - -■.'"  -- -- -■ '. 鳳-一・ 9■ ""一 ー，"・----

Top-5 98.8 99.6 99.5 98.9* 93.5 93.9 89.2 92.8 

CT: Conventional Training (McClelland), NFT: Neural Fuzzy Training (M.5.E.) 

*small: Phrase using Small Grammar, *large: Phrase using Large Grammar 
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Table10-4: Recognition on Untrained Speakers(%) (Trained by MAU) 

Speaker 
278 Phrase Recognition Using Large Grammar 

＆ MAU MHT MNM FSU 

Method 
CT NFT CT NFT CT NFT CT NFT 

Top-1 64.3 71.2 32.0 40.6 32.0 37.4 2.9 7.2 
__  ,. ● ● "~- - - -

-・---.  ● ""~ ト—----- ● " ..  一—, • —•• --------・-・.. 一・一，'..' ● ●9● ● ● ●'"●● , _ __  

--・  ●'''.  一 ,,,.,,, ___ 
Top-3 81.7 88.8 51.1 55.4 54.4 59.4 8.2 9.4 

・--------"'一ー・,.-----------・・----・--・ 一—, 9● ●9一ー・-.. ・---- •一.'—, ・--・ 一■- - -■-...'. ■ • ""—... ー・-- ~""'---
Top-5 87.1 92.1 59.0 59.7 61.5 67.6 10.1 10.8 

CT: Conventional Training (McClelland), NFT: Neural Fuzzy Training (M.S.E.) 

Table 10-5: Recognition on Untrained Speakers(%) (TrainedbyMTH) 

Speaker 
278 Phrase Recognition Using Large Grammar 

＆ MAU MHT MNM FSU 

Method 
CT NFT CT NFT CT NFT CT NFT 

Top-1 36.7 47.5 66.9 71.2 37.4 46.8 2.9 23.4 
---------ー，,.-・--". ,., ~------ --・------_, ----------"一...■- - - - ~------ -----・・・ 
Top-3 55.4 64.4 85.3 88.8 54.0 66.9 5.0 33.8 
----.. ,~.... -----・------~------ ...... ". , ........ ''ヽ''...., ● ●9 ● • • 一... —·------ ----. ー・'"--' 

● "一・---・・ - - - -■ - •• ■ 

Top-5 59.4 72.7 89.2 92.8 60.4 71.9 6.8 36.7 

CT: Conventional Training (McClelland), NFT: Neural Fuzzy Training (M.S.E.) 
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Table 10-6: Recognition on Untrained Speakers(%) (Trained by MAU) 

Speaker 
2、620isolated word Recognition 

＆ MAU MHT MNM FSU 

Method 
CT NFT CT NFT CT NFT CT NFT 

Top-1 96.1 94.7* 61.6 65.4 52.4 57.7 12.5 10.6* 
---------・---・-----・ 一-------.. , .... --....... -------------_____ ,. ___ し—----- ------
Top-3 99.4 99.0* 78.2 83.2 72.8 76.4 22.0 20.0* 
----------------------------- - - ..  , ● ,,._  --------------

L... ______  

-------・ .. 
Top-5 99.5 99.4* 83.9 87.9 79.1 81.3 27.3 25.8* 

CT: Conventional Training (McClelland)、NFT:Neural Fuzzy Training (M.S.E.) 

Table 10-7: Recognition on Untrained Speakers(%) (Trained by MTH) 

Speaker 
2、620isolated word Recognition 

＆ MAU MHT MNM FSU 

Method 
CT NFT CT NFT CT NFT CT NFT 

Top-1 78.5 78.0* 96.6 94.2* 63.1 76.3 14.5 35.9 --噸.,., _____ 
● ● ,• 一一鴫"'',.一--------------------------•一—,... ,、・---- ----・-.,. - - - -■ 一-

Top-3 91.4 91.0* 99.3 98.2* 80.5 89.9 24.6 52.4 
---------------・--t---------------------------，・・・・・・----ドー―----------
Top-5 94.3 94.0* 99.5 98.9* 85.7 92.7 29.9 60.0 

CT: Conventional Training (McClelland), NFT: Neural Fuzzy Training (M.S.E.) 



Chapter 11 

CONCLUSIONS 

11.1 Summary 

This report proposed a phoneme recognition expert system aiming the two 

purposes: 

(1) Simulation of spectrogram reading玩haviorof a human expert using an expert 

system. 
(2) Development of a speech recognizer by integrating human knowledge and neu-

ral networks. 

In general, conventional expert systems for phoneme recognition are realized by 

a separate structure of a) acoustic feature extraction and b) phoneme veri且cation,
ain1ing at constructing a full rule-based system. Although, most of these systems 

have the following problems: 

• Only the static human knowledge is utilized. 
• Dynamic human knowledge (i.e. human strategy) is not utilized. 
• Impossible to pre-process all acoustic feature extraction. 
• Impossible to extract precise features according to phoneme context. 
• Impossible to describe all knowledge in explicit rules. 
• Di缶cultto manage context dependent acoustic features. 

• Unextractable precise features exist on a spectrogram. 

In order to overcome these problems and to realized the two purposes described 
above, the following techniques are incorporated in the proposed expert system. 

(1) Spectrogram Reading Process Simulation 

-Human strategy is adopted as dynamic knowledge. 

125 
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-Hypothesis a.ncl evaluation as human behavior. 

-Representa.tion of explicit knowledge. 

-Non-deterministic strategy (ATMS). 

-Representation of uncertainty. 

-Representation of fuzziness. 

-On-demand contextual top-down acoustic feature extraction. 

(2) Time-Delay Neural Networks 

-Representation of implicit knowledge. 

-Extraction of unextractable precise features. 

-High performai1ce phoneme identifier. 

-Tolerance capability for slight segmentation errors. 

-Good vowel detector as a phoneme-spotting method. 

(3) Total System 

-Integration of human knowledge and neural networks by considering suit-

ability. 

-Full bottom-up style speech recognizer without a language model. 

With these techniques, the proposed expert system achieved: 

(1) Accurate feature based phoneme segmentation. 
(2) Robust feature based phoneme segmentation for continuous speech and mul-

tiple speaker uttera11ces. 

(3.) Powerful neural nehvork based phoneme identification. 
(4) Good phoneme recdgnition performance by a close integration of knowledge 

and neural networks. 

Moreover, a) Time-State Neural Networks (TSNN) by considering the temporal 

structure of a phonemic feature, and b) Neural Fuzzy Training method for a robust 

neural network creation, are proposed in order to expand the expert system toward 

continuous speech recognition. 

In Chapter 1, the purpose of this study was described along with the back-

ground of recent studies on speech recognition. 

In Chapter 2, the framework of the expert system, in order to simulate human 
expert behavior naturally and easily: a) spectrogram reading knowledge for ex-

plicit knowledge, b) non-deterministic strategy, c) representation of uncertainty and 

fuzziness, d) on-demand top-down control feature extraction under phoneme context 
constraints, e) Time-Delay Neural Networks representing implicit knowledge were 

described. 
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In Chapter 3, the hardware configuration and the architecture of the proposed 

speech recognition expert system, which was realized as an integration of human 

knowledge and neural networks, was described. 

In Chapter 4, details of consonant recognition part was described which con-

sisted of two main parts, 1) feature based phoneme segmentation, 2) neural network 
based phoneme identification. The experimental result tested on speaker dependent 
15-consonant task using an ATR database was also reported. The expert system 

correctly recognized 86.8% of the total number of phonemes, both in phoneme seg-
mentation and phoneme identification. 

In Chapter 5, :five mechanisms of integrating knowledge and neural networks 
were proposed. Consonant recognition e入:perimentswere carried out and the pro-

posed mechanisms were compared. The experiment showed that the close integra-

tion of knowledge and TDNN by considering their suitability with a reject :filter 

improved the overall system performance. Not only the identification performance 

but also segmentation accuracy, and the reject :filter showed an effective reduction 
in insertion errors. A phoneme recognition experiment showed an 89.4% recognition 

rate for 15 consonants using the best integration mechanism. 

In Chapter 6, vowel and semivowel recognition utilizing a phoneme-spotting 

TDNN for vowel detection was described. Human knowledge was mainly utilized for 
verifying the vowel category and boundaries. The effectiveness was shown through a 

vowel detection experiment, whose detection rate of 96.1 % was comparatively good. 

In Chapter 7, the overall phoneme recognition expert system was evaluated 

using the best integration of knowledge and neural networks without using any 

language model. An experiment showed a 91.4% recognition rate for all Japanese 
23 phonemes. The deletion error rate was 3.6%, the substitution error rate 5.0% 
and the insertion error rate 20.7%. 

In Chapter 8, the performance of a feature based phoneme segmentation of 

the proposed expert system, tested on speaker independent and continuous speech, 
were presented. The experiments were performed both on isolated word speech 

uttered by six speakers and on speaker dependent continuous speech. The results 

were as good as the result tested on speaker dependent isolated word speech. In 
order to achieve this performance by the expert system, only slight modification of 

knowledge need to be done, which indicates that the feature based approach is a 
robust method of for phoneme segmentation. 

In Chapter 9, a new structure for phoneme identification neural networks 

which took account of temporal structures of phonemic features, Time-State Neu-

ral Networks (TSNN) was proposed. Several types of TSNNs were described 

along with their phoneme identification experimental results on Japanese phonemes 

/b,d,g,m,n,N / culled from isolated word, phrase and sentence utterances. The peじ
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formance of the proposed TSNNs proved better that that of the conventional TDNN. 

In Chapter 10, a Neural Fuzzy Training method for phoneme identification 
neural networks was proposed whose general idea was to give a fuzzy phoneme class 

information to target values. The experiments of phoneme identification and of con-

tinuous speech recognition using the TDNN-LR speech recognizer showed dramatic 

improvement especially on continuous speech data compared with the conventional 
training method. The improvement of the Neural Fuzzy Training method was not 
only on identification or recognition performance but also on the training speed. 

11.2 Further Research 

The proposed system showed a good performance for phoneme recognition under 

the condition of speaker independent isolated word utterance. 

However, for speaker independent and continuous speech, the performance of 

the proposed system has not yet been evaluated. The main reason is that the perfor-
mance of the neural network phoneme identifier is not particularly significant for an 

untrained speaker, and also the computational cost for speaker independent neural 

network training is very high. Thus, the speaker a.daptation method for neural net-

work [Nakamura 90) [Iso 89) [Fukuzawa 91) or how to train a speaker independent 
neural network [Sawai 91) must be studied. After investigation of these neural net-
works, the system may show a good performance for speaker independent continuous 

speech, because its phoneme segmentation part is robust. 

However, the current system expansion, in other words the rules of knowledge 

creation and modification, have to be performed by hand, which is a very big prob-
lern for the future expansion. Humans are not able to look at a large amount of 

data for rule creation and modification. To overcome this problem, an automatic 
rule creation mechanism and a system adaptation mechanism for new data must 

be developed. Moreover, the increase in the number of rules will lead to another 
difficult problem of complex rule management. Therefore, a more sophisticated rule 
management system must be developed. 

Note that, in recent speech processing research, the speech database has played 
an important role. In particular, phoneme labeled speech databases have contributed 

to the improvement of speech recognition systems, and the larger the better. Thus, 

an accurate automatic labeling system is required. By utilizing the advantage of 

the feature based phoneme segmentation system in combination with the phonetic 

transcription of the utterance, an accurate automatic labeling system [Fujiwara 91) 
for creating a database can be realized. This ca.n be another contribution of this 

report in the study of speech recognition. 
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Appendix A 

Typical Segmentation Knowledge 

This appendix shows some consonant segmentation knowledge in the proposed 

expert system. A typical consonant spectrogram and its segmentation knowledge is 

shown using consonants appearing in a vowel-consonant-vowel phoneme context. In 

practice, more precise and various kinds of knowledge, considering several phoneme 

contexts, are incorporated to realize the total system, 

Unvoiced-stop 

Figure A-1 shows a typical spectrogram with its automatic segmentation result 

of unvoiced-stop /k/ at utterance initial and / ch/ between vowels. The utterance is 

/kachi/. 

• find utterance initial or closure where 0-GOOOHz power < silence threshold. 
• find burst at the utterance initial or at left of closure. 
• find the power increasing point of 0-.500Hz power toward next vowel as the 

end boundary. 

• find the power increasing point of 0-500Hz power toward previous vowel as the 
start boundary. 

• evaluate the vowel possibility using 0-500Hz power of both side of the boundary 

Unvoiced-fricative 

Figure A-2 shows the typical spectrogram of unvoiced-stop /s/ which appears 

between vowels with its・automatic segmentation result. The utterance is / asa./. 

• find region where 4000-60001-Iz power > fricative threshold. 
• find power decreasing point of 4000-GOOOIIz power toward next vowel a.s tl1e 

end boundary. 

• find power decreasing point of 4000-GOOOI―Iz power toward previous vowel c1.s 
the start boundary. 
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• evaluate the vowel possibility using 0-5001-Iz power of both side ofしhebound-

a.ry. 

Voiced-stop 

Figure A-3 shows the typical spectrogram of unvoiced-stop /b/ which appears 

between vov,'els with its automatic segmentation result. The utterance is / oba./. 

• find ck>sure where 1000-6000Hz power < voiced-closure threshold. 
• find btirst to left of closure. 
• find the power increasing point of 0-5001-Iz power toward the next vowel as the 
encl bounda.ry. 

• find the power increasing point of 0-500Hz power toward the previous vowel 
a.s the start boundary. 

• evaluate the vowel possibility using 0-5001―Iz power of both sides of the bound-
ary. 

v・ 01ced-fr1cative 

Figure A-4 shows the typical spectrogram of unvoiced-stop /z/ which appears 

between vowels with its automatic segmentation result. The utterance is /kaze/. 

• find the region where both 4000-GOOOHz power > fricative threshold a.ncl 0-
5001-Iz power > voicing threshold. 

• find the power increasing point of 0-5001-Iz power toward next vowel. 
• find power decreasing point of 4000-6000Hz power toward-the next vowel. 
• select the earlier time as the start boundary. 
• find the power increasing point of 0-5001-Iz power toward the previous vo,vel. 
• find the power decreasing point of 4000-GOOOHz power toward the previous 

vowel. 

• select the later time as the end boundary. 
• evaluate the vowel possibility using 0-500Hz power of both sides of the bound-

ary. 

Nasal 

Figure A-5 shows a typical spectrogram of unvoiced-stop /n/ which appears 

bebveen vov.・els with its automa.tic segmentation result. The utterance is / a.na./. 

• find the power dip using the 4000-GOOOHz / 0-5001-Iz power ratio < nasal dip 
threshold. 

• find the spectral change point of 0-GOOOHz toward the next vowel a.s tl1e end 
bound叩ry.

• find the spectral cha.nge point of 0-6000Hz toward the previous vowel a.s the 

start boundary. 
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• evaluate na.sal possibility of this region using the 0-5001―Iz power a.ncl 500-

lOOOI-lz power around the boundary. 
• evalua.te the vowel possibility using 0-5001-Iz power of both sides of the bound-
a.ry. 

Liquid 

Figure A-6 shows a typical spectrogram of liquid /r/ which appears between 
vowels with its automatic segmentation result. The utterance is /kara.j. 

• find the region where the 2000-4000Hz power decreases and after the 2000-
4000Hz power suddenly increases within 30ms. 

• evaluate the liquid possibility using the sum of decreasing and increasing val-
ues. 

• the decreasing and the increasing points are detected as the boundaries. 
• evaluate the vowel possibility using 0-500I-lz power of both sides of the bound-

ary. 

Glottal 

Figure A-7 shows a typical spectrogram of glottal /h/ which appears at ut-
terance initial and between vowels with its automatic segmentation result. The 

叫 eranceis /haha/. 

• find the power region where the 0-lOOOHz power < glottal threshold. 
• evaluate the glottal possibility around this region using the 1000-5000Hz power 
> glottal threshold. 

• find the power increasing point of 0-500Hz power toward the next vowel as the 
end boundary. 

• find the utterance initial or find the power increasing point of 0-500Hz power 
toward the previous vowel as the start boundary. 

• evaluate the vowel possibility using 0-500Hz power of both sides of the bound-
ary. 
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Appendix B 

Multiple Speaker Speech 

Segmentation 

Figure B-l(a-f) shows the segmentation results of utterance /subete/ for mul-

tiple speakers (MAU, MHT, MNM, MTK, MMY, MXM). 

Figure B-la: /subete/ of speaker MAU 

(spectrogram & recognition). 

Figure B-lb: /subete/ of speaker MHT (segmentation). 

Figure B-lc: /subete/ of speaker MNM (segmentation). 

Figure B-ld: /subete/ of speal-::er MTK (segmentation). 

Figure B-le: /subete/・of speaker MMY (segmentation). 

Figure B-lf: /subete/ of speaker MXM (segmentation). 

Figure B-2(a-f) shows the segmentation results of utterance /rnisebira.kasu/ for 

multiple speakers (MAU, MHT, MNM, MTK, MMY, MXM). 

Figure B-2a: /misebirakasu/ of speal<er MAU 

(spectrogram & recognition). 

Figure B-26: /rnisebiraka.su/ of speaker MHT (segmentation). 

Figure B-2c: /rnisebirakasu/ of speaker MNM (segmentation). 

Figure B-2d: /misebira.kasu/ of speaker MTK (segmentation). 

Figure B-2e: /rnisebira.kasu/ of speaker MMY (segmentation). 

Figure B-2f: /misebira.ka.su/ of speaker MXM (segmentation). 
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