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Abstract 
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This report proposes・a method for automatic phoneme segmenta-

tion of Japanese using continuous mixture density hidden Markov models 
(HMMs). Different kinds of training methods have been performed: word, 

phrase (bunsetsu) and sentence models arc tested after training using sin-
gle and multiple ma.le speaker word data. The main cxperimen ts of this 
study, performed on 2 male speakers'utterances use HMMs trained on 
data from 8 other male speakers, and yield an average success rate of 95 % 
in segmentation within a deviation of 30 ms from the "hand"-deterrnined 

boundaries. 
The problem of word-spotting using "keyword"-segmenta.tion will also 

be discussed. 
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1 INTRODUCTION ー

1 Introduction 

Speech recognition experiments have clearly demonstrated the usefulness of well-segmented speech data. 
An efficient automatic segmentation system is a basic requirement for obtaining good recognition re-
sults, and is also necessary for building large speech data-bases, without which satisfactory recognition 
experiments cannot be achieved. The main purpose of an automatic segmentation system is to obtain 
segmented data without human effort. Formerly, speech segmentation and label generation were carried 
out "by hand", reading the sound spectrograms and then matching a part of the speech wave to a given 
label. This therefore required much time and resources. Hence, the interest of automatic segmentation 
and labelling is obvious. 

The present work investigates the efficiency of a hidden Markov model (HMM) based automatic 
labelling system applied to the Japanese language. The HMM technique has been broadly used in 
speech processing, for it provides a parametric model which can deal with many speech signal units, 
such as phonemes and syllables. Here, we use phoneme models trained by word utterances. Moreover, 
a HMM based automatic segmentation system can easily be applied to continuous speech. Therefore, 
the comparison between hand-labelling and automatic labelling is here performed not only with word 
utterances, but also with "bunsetsu" 1 and full sentence utterances. 

The model considered here is a continuous mixture density HMM. In spite of its computational 
complexity, and the number of parameters to be estimated, this type of model is of great interest, since it 
provides better results than a discrete HMM (using Vector Quantization), as far as speaker-independent 
experiments (requiring the modelling of different speaker characteristics) are concerned. The software 
used is this study is HmmToolKit (HTK), which is a set of modules developed at Cambridge University, 
very convenient to handle such models. Segmentation results using continuous HMMs will be compared to 
discrete HMM-experiments performed previously in ATR. The influence of the number of HMM mixtures 
on the segmentation results is also investigated. 

Two types of HMM training have been carried out. Training with one male speaker has been used 
for tests on the same male speaker (" close" testing), and on another one ("open" testing). Training 
with eight male speakers has been applied to test male speaker utterances (close and open), and female 
speaker utterances. 

The segmentation system has also been used in several word-spotting experiments, for accurate seg-
mentation of "Keywords" in spontaneous utterances. 

2 HMM  theory 

2.1 Introduction 

All the uncertainties about speech, including different speaking styles and rates, use of non-standard 
language, have led to model speech in a probabilistic or statistical way. Matching a set of acoustic 
observations to a given language pattern such as a word, a syllable, a phoneme, can indeed be considered 
as the result of a probabilistic process. 

Moreover, the variability of speech signals with time suggests that a speech-unit model should take 
into account the evolution of the signal between two states where the signal properties can be considered 
as steady. This leads to the use of hidden Markov models (HMMs) in speech processing. 

The HMM theory is based on Markov processes, in which a set of states with output probabilities 
representing random events is associated with a transition probability matrix; these two sets of probabil-
ities enable us to model in a satisfactory way the variability in time and in the observation space which 
characterizes the speech signals. The particularity of HMMs is that the sequence of states is "hidden", 
that is to say only the output symbols (either discrete or continuous) associated to each hidden state can 
be known. 

We thus assume that the observed signal is a stochastic function of the state sequence in that Markov 
chain. 

2.2 Definition 

A HMM is defined by the following parameters [1, 2, 3, 4] : 

1the smallest semantically independant unit in a Japanese sentence 
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T: length of the observation sequence (0山~t~T

N: number of states in the model 

S: a set of states {St} 

V: a set of output symbols 

A: a state transition probability matrix; A = { a;j la;j = Pr(St+i = jlst = i)} 
B: an output probability matrix; B = {匂(Ot)lbj(Ot)= Pr(OtlSt = j)}; if the observation sequence 

consists in symbols from a finite L-sized alphabet, the HMM is said to be "discrete". In that case, 
B is a matrix {妬h翠 N,1雲 L where bij represents the probability that symbol j occurs if the 
current state is i. 

If the observed values can belong to a continuous set, the HMM is said to be "continuous"; in such 
a case, B is a one-dimensional matrix {的(x)},where朽(x)dx:::: Pr(x~Ot~x + dx) and x is a 
d-dimensional observation vector. 

1r: an initial state distribution. Generally, 1r is set to (1,0,0, …，0) since the entry state is the first one. 

Fig.l shows a 3-state left-to-right HMM, in which a;j = 0 if i~j. 

~ ・"'-" 

， 

a 
11 a 22 

a 33 

Figure 1: A 3 state left-to-right HMM 

We must make two assumptions about the HMMs we will use: 

• The transition probability from state i to state j only depends on state i (Markov assumption). 

• The output probability related to one state only depends on that state, no matter when or how the 
state is entered (output-independance assumption). 

We will now refer to入asthe set (A, B, 1r) which defines the model. 

2.3 Basic algorithms 

Once the model is defined, three types of problems have to be solved. 
-, -

2.3.1 The evaluation problem 

Given a model入andan observation sequence (Ot), how can we easily compute Pr(OI入）， whichis the 
probability that the model入willproduce these observations? The model which will eventually be chosen 
will have to maximise this probability. 

"' 
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If S = { st} is a possible state sequence, we can write: 

Pr(OI入）＝［こallsPr(OIS, .>-)Pr(SI入）］．

Moreover, 

Pr(O¥S, A)= [TI『~1(bs,(Ot))], and Pr(S¥入)= TI『~1(as,_,s,)-

Consequently, 

Pr(OI入）＝区allSI1『~l as,-1sふ (Ot). 

A straightforward calculation shows that such a computation is of the order of O(NT), which is quite 
huge. A more efficient algorithm has thus to be found. 

The following Forward-backward algorithm can reduce that computational cost. 
First, we define the forward-variable as: 

叫i)= Pr(01, 02, ... , 0凸＝叫）
which represents the probability of getting the observation sequence (01, …, Ot) and being in state i 

at time t, given the model A. 
We can then compute Pr(OI入） this way: 

• Step 1 : Vi E {1, 2, ... N}, a1(i) =鴫(01)

• Step 2: Vj E {1,2, …N}, Vt E {1, 2, ... , T}心 U)= [Lf:1咋 1(i)a幽 (Ot)

• Step 3 : Pr(OI入）＝区iESp四 (i)where Sp is the set of all possible final states. 

The computational cost is now reduced to the order of O(Nり

We can easily consider a backward-variable佑(i)= Pr(Ot+l,ot+2,・・・,o凸＝も入）， whichwould 
represent the probability of getting the sequence (Dt+l, Ot+2, …，OT), given the state i at time t and the 
model入.A similar algorithm can be processed to compute Pr(OI入)．

2.3.2 The Estimation Problem 

The parameters A, B, 7f of the model入havethen to be adjusted in order to maximise Pr(0 I入） • The 
algorithm which is ordinarily used on that purpose is the Baum-Welch re-estimation algorithm. Assuming 
that the initial parameters can be chosen randomly, or judiciously guessed, this algorithm solves the 
HMM-training problem. 

Considering the previous notations, we can define "ft (i, j) = Pr(St = i, St+l = j IO, 入） as the probabil-
ity of being in state i at time t and in state j at time t + l, given the observation sequence O and the 
model入('"'fijis in fact an a posteriori transition probability from state i to state j.) 

We can also define an a posteriori probability of being in state i at time t, given O and.,¥. 

孤i)= Pr(st =i¥0, 入）＝ゃ叫嗚(i)
kESp 

aT(k) 

We can notice that布(i)=江孤i,j). 
Moreover, aij is the general transition probability from state i to state j, no matter the time those 

states are reached. Therefore, an estimate of a廿 canbe: 

的＝
冗で叫，j)
'J'1 I こー1I:: ,-y,',J （．．＝ニニ．
t=l ） I::,=1 -y,(i) 

Besides, the coefficient of the matrix {B} (in case of a dicrete HMM, for instance) bj(k) represents 
the probability of observing the symbol vk E V, while in state j. From the training data, we can consider 
as an estimate of bj (k) the frequency of occurrence of Vk relative to the frequency of occurrence of any 
symbol while in state j. 
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Thus, an estimate of匂(k)is: 

も(k)
L,eo;=•• r1U) 

= I:"'. 
t=l 

叫 j)

Eventually, an estimate of the initial state probability can be given by西 ='Y1(i).
We can show that: 
-either the initial model was the optimal one, in which case the estimates would be equal to the initial 

probabilities; 
-either the replacement of>. by入＝（ふfJ,示） increases the probability Pr(OI入）．

2.3.3 The decoding problem 

We want to know the best state sequence S = s1s2 ... sT according to the observation sequence. In other 
words, we have to choose the states which maximize Pr(0, SI入). It can be a means of interpreting the 
hidden state sequence of the HMM. One famous method for that purpose is the Viterbi algorithm. Here 
are the outlines of this algorithm: 

Step 1 : Imtiahsat10n. Vi E {1, 2, …，N}, 

的）＝鴫(01)
か(i)= O; 

Step 2: Recursion. Vt E {2, ... , T}, Vj E {1, 2, …，N}, 

bt(j) = maxi[8t-1(i)a;j]匂(Ot)
叫j)= argmaxi[い (i)叫

Step 3: Termination. P = max,es』好(s)]

和=arr, maxsESF [好(s)]
where P and s represent the optimized values. 

Step 4: Path backtracking. for t = T -1 to t = l, 函＝心t+l(st+l) 

~,, -

，， 

This algorithm is used in state segmentation. 

2.4 Continuous HMMs 

The previous explanations considered a discrete-type HMM, that is to say the observation was a symbol 
from a 1-sized finite alphabet. But all those algorithms can be adapted to the continuous HMM, which 
has been used in this study. In that case, the observation x can be any point of a d-dimensional vector 
space to which we assign an occurrence probability. We thus define output probability functions. 

Let X be the observation sequence from the continuous set. The goal is then to maximize f (XI入）
over all the parameters of the model ,¥. 

By using the same kind of formulas as in the discrete case: 

f(XI入） = LallS f(X, SI,\)~LallS TI『~1叫ふ(xt)-

Using continuous HMMs enables to get rid of Vector Quantization; matching an observation to the 
closest element of a finite codebook according to a given distance indeed implied some quantization 
errors, which were one drawback of discrete HMMs. The use of continuous models can then be assumed 
to improve the accuracy of the method. 

If the vectors are scattered in the observation space, it can be necessary to define several density 
probabilities and to consider the global density function as a summation of M densities which are assigned 
some weights. We thus have a mixture density HMM, for each state j of which we can write: 

朽(xt)= L此Cjk匂k(xt)-
叩 isthe weight of m奴turek in state j. 

The Cj k coefficients must verify the essential condition 

区ざ~l Cjk = 1, 

‘
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in which case 

f凸 (x)dx= 1, 
for匂(x)is a density probability. 

Therefore, 

f(X,SI入)=TI『~1 a,,_,,,b,,(xt) 
Several kinds of density probabilities can be used; nevertheless, the most common ones are the Gaus-

sian distributions. As a matter of fact, from the central limit theorem , we know that the probability 
density function of a sum of independant random variables tend to a Gaussian distribution if the number 
of these variables tends to infinity. We can thus consider as a Gaussian distribution the function bj (x) if 
the number of mixtures 1s large enough. 

Using a large number of mixtures can improve the accuracy of the model (especially if the training 
vectors are sparse in the vector space), but also requires a great amount of training data; otherwise, all 
the parameters of the model cannot be well-estimated. 

In order to reduce the computational complexity of such a model and the number of free parameters 
to be estimated, we have to make some assumptions about the mixtures; for example, we can suppose 
that the random variables represented by each mixture are independant. In such a case, the covariance 
matrix of these variables is diagonal. Of course, on the other hand, this simplification can reduce the 
accuracy of the model. 

The training problem will be to find a balance between that accuracy and the simplicity. 

3 The segmentation system 

3.1 Introduction 

The main goal of this segmentation system is to build automatically a large speech database. The system 
will have to determine with the greatest accuracy as possible the boundaries of already known labels. 

3.2 HMM theory applied to phoneme segmentation 

We have seen that hidden Markov modelling was very convenient to treat speech signals. Each predefined 
speech unit (word, phoneme, allophone2) is represented by an HMM which will store its features. 

The elementary speech units which are to be modelled are phonemes, since labelling is performed 
with phoneme units. 

Here, we use a list of 48 phoneme models, including silence (model "+") at the beginning and the end 
of the utterances. These phonemes can be clustered in some classes: 

vowels: a aa e ee i ii o oo u uu N 

v01ced consonants: b bO d dO g gO m mO n nO r rO z zO 

unv01ced consonants: ch chO k kO p pO s sh ss ssh t tO ts tsO 

silence: + 

pause: Q 

other phonemes: h w wO y yO Ui Uu 

This list takes into account the short vowels (ex: "a") and the long ones (ex: "aa") in the Japanese 
language. The "N"model represents the nasal sound, like in "d-e-N-w-a" for example. The symbol "O" 
following a consonant model indicates that this consonant was uttered at the beginning of a word utterance 
or after a word-medial pause, denoted by "Q", like in "m-o-Q-tO-o", transcribed in Latin alphabet as 
"motto". The utterances are indeed different after a pause or inside a word, where coarticulation effects 
can appear. "Ui" and "Uu" are respectively unvoiced "i" and unvoiced "u"; the "i" and "u" sounds are 
generally unvoiced when between two unvoiced consonants, like in "dO-e-k-Ui-t-a", trancribed as "dekita"; 

2enviromnent-dependent phoneme 
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the "u"sound is also often unvoiced at the end of a word, like in "gO-o-z-a-i-m-a-s-Uu", transcribed as 
"gozaimasu". 

48 phoneme HMMs have then to be trained, using phoneme labels from the label files; but those labels 
do not distinguish "Ui" and "i", or "kO" and "k", for example. An automatic label conversion program 
has then to be applied to the original labels, in order to produce the final ones. 

｀ 3.3 Speech coding 

The original speech data come from words, bunsetsu and sentences uttered by several male or female 
speakers and sampled at the rate of 12 kHz. 

The speech data must be analysed and coded in order to train the HMMs. The result of this speech 
analysis is the observation sequence mentioned in the previous section. 
The speech samples { sふ翠1,if I is the length of the sample sequence, are first pre-emphasized to a 
sequence { s~} using the formula: 

si = Si -ksi-1 

In the z-transform domain, this is equivalent to applying a filter, the transfer function of which is 
H(z) = 1 -kz-1. In the following experiments, k will be set to 0.97. 
A Hamming window is then applied to the sequence in the time domain, following the formula: 

S『=0.54 -0.46 cos(差）s~ 

The basic goal of this analysis is to get a sequence of overlapping frames defined by those Hamming 
windows. The window is applied every 5 ms, and its length is set to 25.6 ms in the following experiments. 

Then we perform the Linear Predictive Coding (LPC) [5], and the computation of the LPC Cepstra. 
Assuming that, if {xn} is the time sequence, and X(z) its z-transform, 

X(z) = 
H江=l';-nz-n

where {叩h露 P are the p-order linear predictive coefficients, computed with the autocorrelation 
method. 

With defining the cepstral coefficients { c;} by: 

~:=O CnZ―n = C(z) = log[X(z)] 

It can be shown that 

Cn =-an+¼ 江';了(n-i)a匹n-i

These coefficients, which can be recursively computed from the LPC coefficients, are widely used in 
speech processing. 

For each frame (every 5 ms), p coefficients are computed. We also calculate the difference coefficients 
(delta-cepstra), according to a 2N-sized window, using the formula: 

dt = 区こ T(Ct十r-Ct-r)
1 N 
2~T2 l 

r=l 

Ct being the cepstral coefficient at time t. Here, N is set to 6 ms. 
The energy I:n x; for n in the Hamming window and the corresponding difference coefficient (in fact, 

their logarithms) are also added to these elements. 
The observation vector will therefore be composed of 26 coefficients. To each speech file will correspond 

a feature file containing those vectors. 

” 
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a 
22 a 33 

a 44 

a 45 

Figure 2: The model 

3.4 HMMToolKit 

HMMToolKit (HTK) [6] is a set of modules and programs developed at Cambridge University which 
handle continuous mixture density HMMs with any number of states and mixtures, any observation 
vector size, full or diagonal covariance matrices. 

3.5 The model 

There is no means of knowing in advance either the optimal number of states or the optimal number of 
mixtures a HMM has to contain. Therfore, experience can only give an idea of these numbers to use. All 
the phoneme models in these experiments will be 3 state-models, but HTK requires an entry state and 
an exit state to build an HMM. The model is thus the one shown on Fig.2. 

3.6 Training 

The HMMs are trained using feature files (outputs of the HTK program named "HCode") and label files 
which give, for each label, its start point and end point determined by hand. These files have to be 
changed into HTK format, as follows: 

2550000 

3550000 

3900000 

5600000 

6650000 

3550000 

3900000 

5600000 

6650000 

7650000 

+
h
a
.
1
+
 

where each label (model) is preceded by its start and end points in hundreds of ns. 
The HTK training module named "Hinit" reads all the label and feature files used for training, and 
matches one label to its corresponding part in the feature file. This initialises the parameters of each 
model. 

A "proto-HMM" which a priori random initial values for means and variances of the observation 
vectors, the weights of each mixture, and the transition probability matrix has first to be written. The 
accuracy of the final model depends on the parameters before Baum-Welch iterative reestimation, and 
especially the means of each vector; the purpose of "Hinit" is thus to provide good initial estimates of 
these means. 
After mapping a label to a temporal part of the feature file, the program has to segment each observation 
of this label into the required number of states, using the Viterbi alignment. Each observation vector 
corresponding to each state has to be clustered into a set of M clusters, if M is the required number of 
mixtures of the probability density function. For that purpose, a VQ algorithm is iteratively applied. 
The mixture weights previously denoted as Cj k are in fact the number of vectors pooled in mixture k in 
state j divided by the number of vectors in state j. 

This procedure computes a new mean matrix, a new covariance matrix, a new output probability 
matrix (B), but keeps unchanged the old transition probability matrix (A). 
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A limited number of training data (e.g. 1000 occurrences of the same label in the training files) can 
be enough for this initialisation. 

The iterative reestimation procedure ("HRest"), implementing Baum-Welch algo~ithm formulas, gives 
new estimates of A and B (weights, means and covariance matrices); the new model,¥ enables to compute 
Pr(OI入)， tocompare it to Pr(0 I入） and thus to decide either to stop the procedure (in which case an 
optimal model has been found) or to iterate once more. The largest number of data as possible must be 
used in the reestimation part. 

3.7 Segmentation 

The segmentation is performed on testing speech files coded into feature files, and produces label files 
with the same format as those used during the training part. It is achieved using "HVite" program, 

which is a Viterbi recognizer (also used for recognition) given a deterministic grammar. As a matter of 
fact, in segmentation problem, we already know wfoch phonemes were uttered and in which order; the 
grammar needed by HVite is thus the sequence of phonemes corresponding to each speech file. The goal 
will then be to compare the original ("hand'にdetermined)start points and end points of each phoneme 
to those determined automatically by the program. 

"' 

3.8 Evaluation 

The outputs of HVite program will be compared to the original label files, considered as the reference 
points. For each start point and end point, the difference between the automatic boundary and the 

"hand" -determined one will be the segmentation error. The segmentation rate will represent, for each 
model, the percentage of boundaries for which this error is smaller than 50, 30, 10 ms respectively. This 
evaluation has some drawbacks: :first, the figures 50, 30, 10 ms may seem arbitrary; then, it does not 
take into account the average length of the phonemes (a vowel is obviously longer than a consonant, for 
instance) and uses the same measurements for all phonemes. In spite of those drawbacks, this method 
enables the comparison with other methods. The probability density function of error will also be 

evaluated, with the computation of the mean error, the mean absolute error, and the standard deviation. 

4 Experiments 

4.1 Main questions 

The main points we have to focus on are the following ones: 

• Is the segmentation rate dependent on the kind of tested data, that is to say: are, for instance, 
words "better-segmented"than sentences, in some sense? Therefore, all the different experiments 

will be applied to test words, phrases and sentences. 

• How can the training conditions influence the segmentation results for one given speaker and upon 

the difference between two speakers? Single and multiple speaker training will thus be used. The 
influence of the number of mixtures will also be investigated. 

• How robust is the segmentation system to different speakers? In which case can we consider a 
model as "speaker-dependent", or rather "speaker-independent"? Tests will be performed on both 
male and female speakers, in both "close" and "open" speaker cases. 

• Are some phonemes better segmented than others? Is it possible to find a general trend for some 
phonemes or some phoneme classes? 

Therefore, the following experiments were performed: 
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Testing conditions 

SUO!l!PU giuPI8JL 

MAU MNM MHT MTK FSU 

Cl) 

OS) 
C 

゜.= rr.i .... 

.~ 日.... ゜ ゜
C C 

゜
砦> ('fi 

.~ s ..... 

゜ ゜0¥ 

Single speaker training: MAU (2620 words) 

Multiple speaker training: MHT MMS MMY MSH 

MTK MTM MTT MXM 

(8 * 1310 words) 

11 C 11: close speaker 

"0": open speaker 

tests on words, phrases (sets DSA and DSB), and sentences (set DSC). 
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4.2 Single speaker training 

The first experiments used 3 mixture-HMMs trained with 2620 word-utterances from one male speaker 
(speaker MAU). 

4.2.1 Close speaker testing 

The segmentation was first performed on the same speakers'utterances. 

Close context The 2620 training words were tested, and the phoneme boundaries were compared to 

the hand-determined boundaries. 
The segmentation results have been gathered into phoneme classes: vowels, voiced consonants (de-

noted as "Vcons"), unvoiced consonants (denoted as "Ucons"), and in "all" class, including all the models 
except the silence (+) model. These results distinguish start point comparisons and end point compar-
isons. The "segmentation rate" is the percentage of boundaries correctly determined within a given error 
interval from the "hand"-boundaries. 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 

class occ. (Error :S) (ms) error (ms) 

50 ms 30 ms lOms (ms) 
vowels 6766 99.4 98.0 77.8 3.7 8.6 16.2 

Vcons 2349 99.6 98.7 68.7 -8.2 10.1 19.9 
Ucons 3205 99.9 98.2 61.2 -5.7 10.4 11.8 

all 16298 99.6 98.2 73.6 -1.2 8.9 15.7 

Start points 

Nbr. Segmentation Mean -Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Error :S) (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 6681 98.4 95.6 70.4 -0.1 10.7 20.7 
Vcons 3067 99.2 96.9 70.4 7.1 10.3 20.5 
Ucons 2763 100.0 100.0 93.2 1.6 5.1 6.3 
all 16298 99.1 96.6 72.0 2.8 9.8 17.8 

End points 

The figure below shows the distribution of the boundary errors, that is to say the difference between 
the automatically found boundaries and the "hand" -determined ones. 

" 
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Start Points (i 6298 occurrences) 

u
o
,
r
e
w
n
s山
＞
l
!
S
U
8
0
 /
¥
l
!
l
!
Q
E
Q
 0
」

d

Mean= -i .2 

Std.Dev.= 15.7 

◇
 

ー100 -50 

゜Start Point Shift (ms) 

50 100 

End Points (16298 occurrences) 

u
o
n
e
w
n
s
 w
>

 l!
S
U
9
0
 >
 l!
l
!
Q
E
Q
O
J
d
 

Mean= 2.8 

Std.Dev.= 17.8 

C
 

& ◇
 

ー100 -50 

゜End Point Shift (ms) 

50 100 



4 EXPERIMENTS 12 

Open context The next tests were performed on utterances different from the ones used for testing. 

words 

Nbr. Segmentation Mean Mean Std. .. 
Model of rate (%) error abs. dev. 
class occ. (Error ::;) (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 
vowels 6747 99.5 97.8 77.7 4.0 8.4 11.5 

Vcons 2495 99.7 98.5 67.6 -7.2 9.9 11.3 
Ucons 3127 99.9 98.0 59.9 -5.2 12.2 10.7 
all 15623 99.6 97.9 72.4 -0.9 9.1 12.5 

Start points 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 

class occ. (Error~) (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 6653 98.8 95.8 69.3 0.5 10.6 15.5 

Vcons 2551 99.2 97.2 72.3 7.2 9.5 11.9 
Ucons 2972 100.0 100.0 92.2 1.6 5.2 6.7 

all 15623 99.2 96.8 72.0 2.9 9.6 13.6 

End points 

"' 
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Start Points (15623 occurrences) 
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phrases 

Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Errorく） (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 5456 99.3 97.0 75.4 3.3 8.9 13.6 
Vcons 2068 98.8 96.7 65.2 -4.1 11.1 16.2 

Ucons 2336 99.8 98.7 72.1 -4.5 8.8 11.1 

all 10820 99.3 97.1 71.9 0.0 9.4 14.4 

Start points 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 

cl邸 s occ. (Error ::;) (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 5386 98.8 95.6 65.1 0.2 11.0 16.4 

Vcons 2147 98.6 95.0 69.0 6.3 10.7 16.2 

Ucons 2017 99.9 99.9 90.6 1.0 5.5 8.8 
all 10820 99.1 96.5 70.5 1.6 9.8 15.2 

End points 

.... 
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Start Points (i 0820 occurrences) 
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End Points (10820 occurrences) 
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sentences 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 

class occ. (Error :S) (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 3078 97.9 95.4 68.8 5.4 11.2 19.6 
Vcons 1184 97.6 93.0 55.6 -5.1 13.7 19.8 
Ucons 1247 98.2 95.2 62.9 -4.7 11.9 18.8 
all 6032 97.9 94.7 64.6 1.3 12.0 20.4 

Start points 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 

class occ. (Error :s;) (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 3029 97.4 93.9 58.9 -1.2 13.6 23.7 
Vcons 1224 97.2 93.1 66.2 7.6 12.0 18.0 
Ucons 1145 98.7 98.2 81.1 3.9 8.3 17.3 
all 6032 97.8 94.6 64.6 1.6 12.2 21.5 

End points 

~' 
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Start Points (6032 occurrences) 
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4.2.2 Open speaker testing 

The experiments are now performed on speaker MNM (open speaker). 

wo:r_tl~ 
Nbr. Segmentation Mean Mean Std. 

Model of rate(%) error abs. dev. 

class occ. (Error~) (ms) error (ms) 

50 ms 30 ms lOms (ms) 
vowels 3364 96.5 91.8 59.1 2.7 14.1 21.7 
Vcons 1272 94.0 85.1 50.6 3.8 18.0 26.2 

Ucons 1498 96.5 85.5 49.7 -2.6 17.1 24.7 

all 6962 96.1 89.0 56.1 1.9 15.4 23.1 

Start points 

Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Errorく） (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 2761 95.0 82.8 46.9 -4.6 18.9 26.3 
Vcons 1307 93.1 84.7 51.0 5.4 18.0 26.7 

Ucons 1416 99.8 99.2 74.4 0.8 8.8 13.4 

all 6962 95.7 87.3 53.8 ー1.9 16.3 23.9 

End points 
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Start Points (6962 occurrences) 

U
O
!
l
B
W
!
l
S
 w

>

 
l
!
S
U
8
 0

>
圭
q
B
q
O
J
d

Mean= 1.9 

Std.Dev.= 23.1 

合

-100 -50 

゜Start Point Shift (ms) 

50 

End Points (6962 occurrences) 

U
O
!
l
B
W
!
l
S
山

＞
l
!
S
U
8
 0

>

 
l
!
l
!
q
B
q
o」

C

―

Mean= -1.9 

Std.Dev.= 23.9 

◇ ◇ ◇ 

100 

-100 ・-50 

゜End Point Shift (ms) 

50 100 



4 EXPERIMENTS 20 

phrases 
Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Error :::;) (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 
vowels 6252 97.1 92.3 60.8 3.4 15.0 33.6 

Vcons 2324 95.2 87.9 57.4 2.9 17.3 37.3 

Ucons 2495 96.7 87.3 47.5 -4.5 18.4 39.8 

all 12183 96.3 89.6 56.8 1.9 16.5 35.8 

Start points 

Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Errorく） (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 

vowels 6158 95.0 86.0 50.4 -0.4 19.1 41.1 

Vcons 2471 96.0 89.6 57.2 2.2 16.9 38.6 

Ucons 2252 99.5 98.8 75.8 2.2 10.0 29.0 

all 12183 96.4 89.7 56.7 0.7 16.7 39.3 

End points 
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Start Points (12183 occurrences) 
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End Points (12183 occurrences) 
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sentences 
Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Error ::;) (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 

vowels 3089 97.1 91.2 57.8 4.5 14.8 24.5 

Vcons 1162 95.3 87.7 55.1 3.4 17.5 31.4 

Ucons 1251 97.8 86.5 45.l -6.9 17.2 22.0 

all 6051 96.3 88.8 54.2 2.0 16.4 26.9 

Start points 

Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Error~) (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 

vowels 3034 95.1 84.7 47.0 0.3 19.0 29.7 

Vcons 1238 95.8 89.2 54.9 3.3 16.3 27.9 

Ucons 1137 100.0 98.9 72.2 4.9 9.4 10.6 

all 6051 96.4 88.8 54.0 1.7 16.4 26.6 

Encl points 
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Start Points (6051 occurrences) 
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4.3 Multiple speaker training 

4.3.1 Close speaker training 

speaker MHT 

words 

Nbr. Segmentation 
Model of rate (%) 
class occ. (Error :S) 

50 ms 30 ms 
vowels 3355 99.1 96.7 
Vcons 1249 99.4 98.0 
Ucons 1516 99.7 98.7 
all 6970 99.3 97.5 

Nbr. Segmentation 
Model of rate (%) 
class occ. (Error~) 

50 ms 30 ms 
vowels 3304 99.0 96.4 
Vcons 1289 99.0 97.1 
Ucons 1447 99.6 99.5 
all 6970 99.2 97.1 

24 

Mean Mean Std. 
error abs. dev. 

(ms) error (ms) 
10 ms (ms) 
75.4 4.4 9.7 13.6 

78.9 -6.7 9.1 11.2 
66.9 -7.2 10.3 10.0 
74.4 -0.7 13.5 9.6 

Start points 

Mean Mean Std. 
error abs. dev. 

(ms) error (ms) 
10 ms (ms) 
74.3 -0.9 10.0 14.7 

75.8 6.8 9.6 12.6 

87.2 4.3 6.8 8.3 
75.2 2.6 9.6 13.6 

End points 
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Start Points (6970 occurrences) 
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phrases 

Nbr. Segmentation Mean Mean Std. 
Model of rate(%) error abs. dev. 
class occ. (Errorく） (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 
vowels 6200 99.2 97.4 73.9 4.9 9.7 12.8 
Vcons 2326 99.4 98.1 74.7 -5.8 9.8 11.5 
Ucons 2518 99.8 99.3 69.4 -7.8 10.0 10.0 
all 12118 99.3 97.5 72.4 -0.6 10.0 13.9 

Start points 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 
class occ. (Error ::;) (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 
vowels 6091 99.0 97.0 73.2 -1.5 10.2 15.1 
Vcons 2474 99.4 97.7 73.0 6.0 9.8 12.5 
Ucons 2251 100.0 99.8 84.6 5.2 7.1 7.2 
all 12118 99.3 97.4 72.8 1.9 10.0 14.3 

End points 

！ 
.' 
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Start Points (12118 occurrences) 
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sentences 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 

class occ. (Error :S) (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 3059 99.5 96.7 70.5 5.0 10.1 12.9 
Vcons 1161 99.6 97.8 71.7 -6.0 10.5 11.9 

Ucons 1239 100.0 99.4 66.9 -8.6 10.1 9.0 
all 5986 99.5 97.3 70.0 -0.7 10.3 13.7 

Start points 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 

class occ. (Errorく） (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 2992 99.3 96.6 70.8 -4.0 10.6 13.8 
Vcons 1235 99事6 97.6 76.6 4.4 8.9 11.7 
Ucons 1115 99.9 99.8 79.5 6.1 7.8 8.1 
all 5986 99.5 97.1 70.8 0.4 10.3 13.8 

End points 
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Start Points (5986 occurrences) 
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speaker MTK 

words 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 

class occ. (Error~) (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 3371 99.3 96.6 74.3 5.4 9.6 12.8 

Vcons 1257 99.0 96.6 76.9 -7.7 9.6 11.4 
Ucons 1521 99.3 97.2 71.7 -7.6 9.7 11.3 

all 6986 99.2 96.9 75.0 -0.5 9.5 13.7 

Start points 

Nbr. Segmentation Mean Mean Std. 
Model of rate(%) error abs. dev. 
class acc. (Error ::::;) (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 
vowels 3308 97.1 94.0 74.2 0.1 11.l 17.9 

Vcons 1282 100.0 98.8 72.9 7.3 9.0 9.2 
Ucons 1435 100.0 99.9 88.9 3.3 6.2 7.2 
all 6986 98.5 95.7 74.9 2.9 10.1 15.2 

End points 
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Start Points (6986 occurrences) 
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phrases 

Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Errorく） (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 6192 99.4 96.8 75.9 3.3 9.2 13.0 

Vcons 2319 99.2 97.1 70.2 -7.8 10.6 12.4 

Ucons 2515 99.8 96.4 64.5 -9.0 11.1 11.6 

all 12132 99.1 96.2 71.6 -2.5 10.3 15.5 

Start points 

Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 
class occ. (Error~) (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 
vowels 6081 96.0 92.0 67.6 -1.1 13.2 22.0 

Vcons 2470 99.7 99.0 80.7 3.3 7.8 10.2 

Ucons 2247 100.0 99.8 87.6 2.8 6.2 7.6 

all 12132 97.8 94.4 71.8 1.0 11.2 18.2 

End points 
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Start Points (12132 occurrences) 
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sentences 

Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Error~) (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 3061 98.9 95.6 72.8 3.4 10.1 14.3 
Vcons 1160 98.9 96.7 66.2 -8.2 11.4 13.7 

Ucons 1240 99.4 96.5 59.5 -10.6 12.1 11.2 
all 5985 98.7 95.5 68.4 -2.6 11.0 15.7 

Start points 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 

class occ. (Errorく） (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 3000 98.1 94.3 63.0 -5.4 12.5 17.0 
Vcons 1237 99.6 98.6 80.8 2.1 8.0 11.1 
Ucons 1114 99.9 99.4 85.6 3.2 6.9 8.4 
all 5985 98.7 95.4 69.0 -1.5 11.0 15.9 

Encl points 
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Start Points (5985 -occurrences) 
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4.3.2 Open speaker testing 

3 mixtures 

• speaker MAU 

words 
Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Errorく） (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 3376 98.7 96.7 75.1 3.2 9.0 13.4 
Vcons 1276 98.6 95.7 62.2 -7.6 11.8 14.5 

Ucons 1521 99.5 95.6 50.0 -6.9 13.2 15.2 
all 7025 98.8 96.4 67.0 -1.4 10.5 14.9 

Start points 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 

class occ. (Error~) (ms) error (ms) 
50 ms 30 ms lOms (ms) 

vowels 3331 97.4 93.5 62.8 -0.3 12.6 18.7 

Vcons 1306 98.5 95.4 69.5 5.7 10.3 13.9 

Ucons 1445 99.9 99.8 89.8 3.0 5.6 7.7 
all 7025 98.3 94.9 69.1 1.7 10.8 16.2 

End points 
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Start Points (7025 occurrences) 
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phrases 
Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 
class occ. (Errorく） (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 
vowels 6255 99.2 96.1 72.0 3.4 9.5 13.4 
Vcons 2385 98.7 95.7 59.7 -6.7 11.8 14.5 
Ucons 2512 99.6 97.5 55.3 -8.1 12.6 11.9 
all 12248 99.1 95.8 65.1 -1.4 10.8 15.2 

Start points 

Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 
class occ. (Error ::;) (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 
vowels 6187 97.7 93.3 60.1 -0.9 12.6 18.4 
Vcons 2466 99.3 94.7 67.5 5.4 10.7 14.0 
Ucons 2297 99.9 99.7 89.9 1.5 5.4 7.3 
all 12248 98.6 94.7 65.9 0.7 11.1 16.1 

End points 
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Start Points (12248 occurrences) 
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sentences 
Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Error :::;) (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 308.5 99.0 96.1 70.0 4.0 10.0 13.8 
Vcons 1191 97.9 94.7 53.4 -8.6 13.2 16.0 

Ucons 1248 98.9 94.7 56.9 -8.4 12.5 14.4 
all 6046 98.7 95.2 63.6 -1.5 11.3 15.8 

Start points 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 

class occ. (Errorく） (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 3039 97.8 94.0 57.1 -4.5 12.8 17.1 

Vcons 1233 98.8 95.6 69.5 5.0 10.5 14.4 

Ucons 1146 99.7 99.0 85.0 3.3 6.6 8.5 
all 6046 98.5 94.8 63.9 -0.9 11.4 16.0 

End points 
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Start Points (6046 occurrences) 
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End Points (6046 occurrences) 
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• speaker MNM 

words 
Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 
class occ. (Error :::;) (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 
vowels 3361 99.0 95.9 72.1 2.5 10.1 14.7 
Vcons 1268 98.5 93.9 61.0 -0.2 12.5 17.6 
Ucons 1494 98.5 88.4 45.3 -13.4 15.7 15.0 
all 6949 98.7 93.8 63.9 -1.8 11.8 16.7 

Start points 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 
class occ. (Error ::;) (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 
vowels 3314 98.l 90.8 56.9 -4.4 14.1 19.1 
Vcons 1304 98.9 95.2 71.4 3.3 10.3 14.6 
Ucons 1414 100.0 99.7 82.1 2.1 7.0 8.9 
all 6949 98.5 92.8 64.0 -1.4 12.2 17.4 

Encl points 
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Start Points (6949 occurrences) 
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End Points (6949 occurrences) 
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phrases 
Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 
class occ. (Errorく） (ms) error (ms) 

50 ms 30 ms 10 ms (rns) 
vowels 6233 99.2 96.0 71.3 4.7 10.2 13.6 
Vcons 2312 98.7 94.5 63.6 -2.1 11.8 16.2 
Ucons 2486 99.4 91.7 48.9 -11.9 14.8 14.6 
all 12143 98.7 94.1 64.0 -0.8 12.0 17.1 

Start points 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 
class occ. (Errorく） (ms) berror (ms) 

50 ms 30 ms lOms (ms) 
vowels 6137 97.8 91.9 55.7 -2.7 14.2 20.0 
Vcons 2460 99.7 97.6 76.1 2.5 9.1 15.0 
Ucons 2248 100.0 99.9 79.0 6.1 7.7 7.3 
all 12143 98.6 93.7 63.0 0.6 12.3 17.9 

End points 
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Start Points (12143 occurrences) 
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End Points (12143 occurrences) 
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sentences 
Nbr. Segmentation Mean Mean Std. 

Model of rate(%) error abs. dev. 

class occ. (Errorく） (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 3076 99.4 95.7 65.9 5.3 11.2 14.2 

Vcons 1162 98.3 94.8 64.8 -2.6 11.7 16.3 

Ucons 1244 99.2 88.5 42.3 -13.1 16.5 16.4 

all 6028 98.7 93.3 60.3 -1.0 12.8 18.0 

Start points 

Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Error :=:;) (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 3027 98.1 91.4 52.7 -4.6 14.7 19.9 

Vcons 1232 99.4 97.7 71.4 3.0 9.8 13.2 

Ucons 1134 100.0 99.4 76.8 7.1 8.3 7.7 

all 6028 98.7 93.2 59.8 -0.1 12.9 18.0 

End points 
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Start Points (6028 occurrences) 

U
O
!
+
B
W
!
 窃

山
＞
+
!
S
U
8
 0

>

 +!
l
!
q
B
q
O
.
.
l
d
 

Mean= -0.95 

Std.Dev.= 18.0 

◇ ◇ ◇ 

-100 -50 

゜Start Point Shift (ms) 

50 100 

End Points (6028 occurrences) 
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• speaker FSU 

words 
Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Error~) (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 3369 90.8 85.6 56.5 5.8 20.3 37.4 

Vcons 1243 89.9 83.5 54.6 -4.8 21.3 36.6 
Ucons 1482 97.8 94.0 55.9 -0.8 23.1 14.0 

all 7380 93.0 88.2 56.8 2.5 18.1 33.1 

Start points 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 
class occ. (Error _:S) (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 
vowels 3733 91.5 85.9 55.1 -6.4 19.5 33.1 
Vcons 1298 91.7 85.6 57.4 8.2 18.5 31.6 
Ucons 1420 99.8 98.9 75.6 6.0 9.0 15.1 
all 7380 93.5 88.2 58.1 -0.2 17.7 32.0 

End points 
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Start Points (7380 occurrences) 
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End Points (7380 occurrences) 
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phrases 
Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 
class occ. (Error ::;) (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 
vowels 5846 94.2 88.7 64.5 2.4 15.1 27.5 

Vcons 2303 94.5 89.1 56.3 -9.8 16.0 23.8 
Ucons 2502 98.8 94.9 56.3 -1.9 12.7 16.8 
all 12126 95.2 90.2 60.7 -1.4 14.9 25.6 

Start points 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 
class occ. (Errorく） (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 
vowels 6034 93.3 88.3 53.2 -3.6 17.6 29.4 
Vcons 2479 96.1 89.3 62.4 6.9 14.0 21.9 
Ucons 2319 100.0 99.2 80.0 3.5 7.2 9.2 
all 12126 95.4 90.1 58.4 0.3 15.2 25.6 

End points 
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Start Points (12126 occurrences) 
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End Points (12126 occurrences) 
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sentE)_nces 
Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Error :S) (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 3111 95.3 90.0 64.0 0.3 14.2 25.0 
Vcons 1166 95.7 90.4 55.5 -10.8 15.3 22.1 

Ucons 1266 99.2 96.8 59.4 -2.4 12.0 15.7 
all 6041 96.2 91.5 61.5 -2.8 14.1 23.6 

Start points 

V Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 

class occ. (Error~) (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 2981 94.1 88.6 54.2 -6.6 16.9 27.3 

Vcons 1260 98.5 94.7 66.4 3.2 11.5 19.0 

Ucons 1156 99.9 99.5 85.3 1.8 6.5 9.5 
all 6041 96.3 91.4 60.8 -2.2 14.l 23.6 

End points 
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Start Points (6041 occurrences) 
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9 mixtures 

• speaker MAU 

words 
Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Error :S) (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 3376 98.5 96.5 74.1 3.3 9.4 14.1 
Vcons 1276 98.8 96.2 68.0 -4.7 10.7 14.7 
Ucons 1521 99.0 95.1 54.2 -6.3 12.5 15.5 
all 7025 98.7 96.3 69.0 -1.1 10.2 15.0 

Start points 

Nbr. Segmentation Mean Mean Std. 
Model of rate(%) error abs. dev. 
class occ. (Error :::;) (ms) error (ms) 

50 ms 30 ms lOms (ms) 
vowels 3331 97.7 93.8 65.0 -0.4 11.9 17.5 
Vcons 1306 98.2 95.9 70.1 5.8 10.4 14.9 
Ucons 1445 99.9 99.9 91.1 1.5 5.4 7.8 
all 7025 98.3 95.2 71.0 1.0 10.3 15.7 

End points 



4 EXPER.IMENTS 55 

Start Points (7025 occurrences) 
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End Points (7025 occurrences) 
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phrases 
Nbr. Segmentation Mean Mean Std. 

Model of rate(%) error abs. dev. 
class occ. (Error :S) (ms) error (ms) 

50 ms・ 30 ms 10 ms (ms) 
vowels 6255 99.2 96.4 70.9 2.8 9.6 13.5 

Vcons 2385 98.9 96.5 63.6 -4.1 10.8 14.1 

Ucons 2512 99.8 96.3 55.5 -8.3 12.0 12.7 
all 12248 99.2 96.2 65.6 -1.2 10.6 14.5 

Start points 

Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Error~) (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 6187 98.2 94.2 62.2 -1.0 11.9 17.1 

Vcons 2466 99.2 96.4 66.9 4.7 10.2 13.1 

Ucons 2297 100.0 99.9 85.8 1.1 6.1 7.8 
all 12248 98.8 95.5 67.1 0.0 10.6 15.2 

End points 
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Start Points (12248 occurrences) 
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End Points (12248 occurrences) 
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sent~nces 
Nbr. Segmentation Mean Mean Std. 

Model of rate(%) error abs. dev. 
class occ. (Errorく） (ms) error (ms) 

50 ms 30 ms lOms (ms) 
vowels 3085 99.1 96.8 68.9 3.3 10.0 14.5 
Vcons 1191 98.3 96.0 57.6 -7.0 12.8 17.9 
Ucons 1248 98.9 93.0 56.0 -8.1 12.9 15.2 
all 6046 98.9 95.7 63.7 -1.4 11.3 16.3 

Start points 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 
class occ. (Errorく） (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 
vowels 3039 98.5 95.3 58.5 -4.1 12.4 17.1 
Vcons 1233 99.0 97.0 68.4 4.5 10.2 15.6 
Ucons 1146 99.7 99.3 81.0 2.2 7.3 9.6 
all 6046 98.8 95.7 64.2 -1.2 11.2 16.3 

End points 
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Start Points (6046 occurrences) 
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End Points (6046 occurrences) 
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• speaker MNM 

words 
Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Errorく） (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 3361 98.9 95.9 71.3 2.9 10.1 14.5 

Vcons 1268 98.8 94.1 62.5 1.9 12.1 16.9 

Ucons 1494 97.7 91.7 58.0 -8.5 13.4 16.6 

all 6949 98.6 94.8 67.3 -0.1 11.1 16.0 

Start points 

Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Errorく） (ms) error (ms) 
50 ms 30 ms 10 ms (ms) 

vowels 3314 98.3 93.5 61.8 -1.8 17.5 12.7 

Vcons 1304 99.1 95.3 70.6 4.3 10.4 14.3 

Ucons 1414 100.0 99.7 81.4 1.9 7.1 9.0 

all 6949 98.4 94.1 66.2 0.1 11.6 16.6 

End points 
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Start Points (6949 occurrences) 
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End Points (6949 occurrences) 
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phrases 
Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Error~) (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 
vowels 6233 99.2 95.8 69.5 4.8 10.5 13.9 
Vcons 2312 99.1 93.5 63.3 0.2 12.0 16.4 
Ucons 2486 98.4 92.8 56.8 -8.0 13.1 15:9 
all 12143 98.7 94.3 65.5 0.8 11.6 16.5 

Start points 

Nbr. Segmentation Mean Mean Std. 
Model of rate (%) error abs. dev. 
class occ. (Error~) (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 
vowels 6137 98.1 92.9 58.3 0.3 13.4 18.9 
Vcons 2460 99.8 97.8 71.8 3.2 9.5 12.1 
Ucons 2248 100.0 99.9 78.9 5.9 7.8 7.7 
all 12143 98.6 93.9 63.4 2.3 12.l 17.0 

End points 
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Start Points (12143 occurrences) 
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End Points (12143 occurrences) 

U
O
!
l
B
W
!
l
S
 w

>

 l!
S
U
8
 0

>

 l!
l
!
q
B
q
O
J
d
 

Mean= 2.3 

Std.Dev.= 17 

◇ ◇ ◇ 

-100 -50 

゜End Point Shift (ms) 

50 100 



4 EXPERIMENTS 64 

sentences 
Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Errorく） (ms) error (ms) 

50 ms 30 ms 10 ms (ms) 

vowels 3076 99.1 95.4 65.1 5.4 11.4 15.3 

Vcons 1162 97.8 93.3 67.0 -0.8 12.0 18.7 

Ucons 1244 98.3 88.9 51.5 -9.8 14.8 17.8 

all 6028 98.4 93.1 62.6 0.4 12.5 18.6 

Start points 

Nbr. Segmentation Mean Mean Std. 

Model of rate (%) error abs. dev. 

class occ. (Errorく） (ms) error (ms) 
50 ms 30 ms lOms (ms) 

vowels 3027 97.5 91.5 57.9 -2.2 14.0 20.9 

Vcons 1232 99.4 97.6 70.9 3.9 9.9 13.9 

Ucons 1134 100.0 99.4 75.5 7.3 8.5 7.8 

all 6028 98.3 93.0 61.9 1.2 12.7 18.6 

End points 
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Start Points (6028 occurrences) 
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End Points (6028 occurrences) 
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5 WORD-SPOTTING EXPERIMENTS 

4.4 D. 1scuss1on 

From the previous experiments, we can draw several conclusions: 

66 

-Generally, the segmentation results are very similar, whatever the kind of data used 
for the tests. The difference between words, phrases and sentences is usually very 
small (less than 1.5 % on average, when we consider an error of 30 ms). 
Yet, there are two cases where that trend is not confirmed. 
In case of single speaker training and testing on~he same speaker, the results drop 
quite much from close words (tests on the training set)(98.2 %'for 30 ms) to sentences 
(94.7 %) on start points. This model is very dependent on the training data. 
In case of multiple male-speaker training and female speaker testing, the trend is rather 
opposite: 88.2 % for words and 91.5 % for sentences. But this case is very particular, 
since we do not expect a female testing to have the same "behaviour" as a male testing. 

-Multiple speaker trained models yield worse results than single spaker ones for MAU, 
but much better ones for MNM; MAU and MNM are both open speakers in the mul-
tiple case, which appears to reduce much the differences between two speakers. 
Moreover, it seems to be no need increase a lot the number of mixtures (which also 
increases a lot the computation time), since the results do not vary in a meaningful 
way between 3 and 9 mixtures, either for one speaker's results, or for the difference 
between two speakers. As soon as the results with 3 mixtures are already satisfactory, 
we can reasonably expect those with 9 mixtures not to increase a lot. 
Unfortunately, there are no results for one single Gaussian density model, but we can 
guess it would certainly not be enough to model the characteristics of different speak-
ers. In such a case, we could assume that the results would be rather worse. 
However, we must not forget that all these spakers are professional speakers, so that 
the testing data are well-uttered. Maybe more mixtures would be necessary to test 
less-trained speakers. 

Besides, the continuous HMMs give better results than discrete ones, since, in case of 
single speaker training (MAU), discrete HMMs yield on average 98.0% and 93.9% as 
segmentation rates, respectively for 50 and 30 ms in the close word-testing, and 98.0% 
arid 93.6% in the open word-testing. 

-In the multiple training case, the difference between two speakers in the same testing 
conditions (open/close speaker) certainly comes from the speaking style, since this 
difference is generally rather small. As, even in the open speaker tests, the results are 
quite satisfactory, we can say that this kind of model has a good speaker-independency 
property. 

-Distinguishing start points and end points leads to this conclusion, which agrees with 
results from other experiments: the best segmentation rate is reached for vowels and 
the worst one for unvoiced consonants considering the start points, while the trend is 
exactly opposite for end points. The start points of vowels are usually slightly shifted 
towards the right si9-e (around 3 ms), while the start points of unvoiced consonants 
are rather shifted towards the left side (around 6-7 ms). As for the end points of the 
vowels, the error seems to have a bigger standard deviation than the other phoneme 
classes. 

5 Word-spotting experiments 

5.1 Introduction 

Further speech recognition experiments will require data from continuous and spontaneous 
speech. 
The purpose of this study is thus to determine as precisely as possible the boundaries of 
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predefined keywords in continuous speech. We will assume in the following experiments 
that, in the tested sentences, we know 

-if 

-which 

-in which order 

keywords were uttered. 

The eight keywords chosen in these experiments are: 

-denwa 

-honyaku 

-kaigi 

-kokusai 

-moushikomi 

-touroku 

-tsuuyaku 

-sanka 

The tests are performed on 25 sentences from speaker MAU (set DSC3). 

5.2 The models 

5.2.1 The keywords 

All the keywords will be considered as a sequence of phonemes, modelled like in the 
previous part with 3 state, 3 mixture, multiple male speaker-trained models. 

5.2.2 The background speech 

Any part of the utterance different from a keyword will be considered as "background 
speech", or "garbage". Background speech will be modelled with a "Garbage Model", or 
"Filler Model" [7]. Assuming that we already have good models for the phonemes from the 
keywords, we will focus on the garbage models. We will apply different kinds of grammars 
to the segmentation system (to HVite, if using HTK), according to the different garbage 
models. 
The following garbage models were used: 

-Type 1 
1 model for all phonemes wi,th 1 state, 27 mixtures, trained with word-utterances (8 
speakers). 

-Type 2 
1 model for all phonemes with 3 states, 138 mixtures, trained with word-utterances, 
built with merging all the phoneme models (use of HMerge from HTK). 

-Type 3 
1 model of all phonemes with 3 states, 138 mixtures, trained with 90 sentence utter-
ances (SCI, SC2, SC3) from 8 male speakers. 

-Type 4 
any of the 48 phoneme models (3 states, 3 mixtures, trained with words). 

Let us assume that one testing sentence contains the only keyword "kaigi", and denote as 
"GB" the garbage model. The types of grammars given to the system are: 

-Type 1 
(GB k a i g i GB) 
In that case, we only allow one repetition of the garbage model before the keyword. 

-Type 2 

$k =叫0
$GBM=GBI+ 
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(<$GEM> $k a i g i <$GEM>) 
This grammar allows several repetitions of the garbage model. 

-Type 3 

$phn = ajaajijiij ... 
$GEM=< $phn > 
(<$GEM> $k a i g i <$GEM>) 

The following experiments have been performed: 

68 
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model 
1 2 3 4 

grammar 

1 ． 
2 ． ． ． 
3 ． 

■ : experiment performed 
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5.3 -Results 

70 
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KEYWORD nbr. 50 ms 30 ms 10 ms 
mean mean. 

std.dev. 
err. abs.err. 

kaigi 14 85.7 85.7 78.6 -9.5 13.0 25.2 

kokusai 12 75.0 58.3 41.7 -34.0 34.0 38.3 

denwa 8 100 100 75.0 -8.8 8.8 3.5 

sanka 7 100 100 57.1 ー5.4 11.1 11.3 

touroku 5 100 80.0 80.0 ー10.5 14.5 20.6 

moushikomi 7 71.4 57.1 14.3 10.7 76.4 136.6 

tsuuyaku 6 83.3 16.7 16.7 一13.8 34.6 40.1 

honyaku 5 60.0 60.0 40.0 -362.5 707.3 372.5 

Start Points 

kaigi 14 71.4 71.4 42.9 24.5 33.0 48.5 

kokusai 12 100 100 91.7 0.2 4.0 5.9 

denwa 8 87.5 87.5 75.0 61.3 63.8 159.4 

sanka 7 85.7 85.7 71.4 9.3 17.9 31.3 

touroku 5 40.0 40.0 40.0 196.0 196.0 229.1 

moushikomi 7 85.7 71.4 28.6 92.9 95.0 200.0 

tsuuyaku 6 100 100 66.7 -8.3 8.3 4.1 

honyaku 5 60.0 60.0 60.0 -342.5 342.5 674.7 

End points 

(model 1, grammar 1) 
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KEYWORD nbr. 50ms 30 ms 10 ms 
mean mean. 

std.dev. 
err. abs.err. 

kaigi 14 85.7 85.7 78.6 -9.5 13.0 25.2 

kokusai 12 75.0 66.7 41.7 -32.3 32.3 38.2 

denwa 8 100 100 75.0 -8.8 8.8 3.5 

sanka 7 100 100 51.7 -5.4 11.1 11.3 

touroku 5 100 80.0 80.0 -1_0.5 14.5 20.6 

moushikomi 7 71.4 57.1 14.3 10.7 76.4 136.6 

tsuuyaku 6 83.3 50.0 50.0 -2.1 22.9 35.7 

honyaku 5 60.0 60.0 40.0 -72.5 82.5 112.7 

Start Points 

kaigi 14 71.4 71.4 42.9 24.5 33.0 48.5 

kokusai 12 100 100 91.7 0.2 4.0 5.9 

denwa 8 87.5 87.5 75.0 60.0 62.5 155.9 

sanka 7 85.7 85.7 71.4 9.3 17.9 31.3 

touroku 5 40.0 40.0 40.0 196.0 196.0 229.1 

moushikomi 7 85.7 71.4 28.6 92.9 95.0 200 .. 0 

tsuuyaku 6 100 100 66.7 -8.3 8.3 4.1 

honyaku 5 80.0 80.0 60.0 -37.5 37.5 58.9 

End points 

(model 1, grammar 2) 
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keyword nbr. 

kaigi 14 

kokusai 12 

denwa 8 

sanka 7 

touroku 5 

moushikomi 7 

tsuuyaku 6 

honyaku 5 

kaigi 14 

kokusai 12 

denwa 8 

sanka 7 

touroku 5 

moushikomi 7 

tsuuyaku 6 

honyaku 5 

(model 2, grammar 2) 

SO ms 30 ms 10 ms 

92.9 92.9 78.6 

91.7 75.0 58.3 

100 100 75.0 

100 100 71.4 

100 100 40.0 

100 71.4 42.9 

100 100 50.0 

80.0 80.0 60.0 

(%) 

Start Points 

71.4 64.3 14.3 

100 100.0 91.7 

87.5 87.5 75.0 

85.7 85.7 42.9 

80.0 60.0 40.0 

100 85.7 57.1 

100 100 66.7 

100 80.0 60.0 

End points 

73 

mean mean. 
std.dev. 

err. abs.err. 

-4.5 10.2 20.1 

ー19.8 20.2 28.3 

-8.8 8.8 3.5 

-1.8 10.4 13.0 

4.5 16.5 19.2 

一17.9 20.7 17.9 

-3.8 11.3 14.6 

-26.5 34.5 66.7 

(ms) 

15.9 39.1 51.9 

1.5 5.2 9.7 

30.0 30.6 75.0 

15.0 22.9 34.8 

36.0 37.0 48.3 

7.1 13.9 21.5 

-8.3 8.3 4.1 

ー14.5 14.5 10.7 
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KEYWORD nbr. 50 ms 30 ms 10 ms 
mean mean. 

std.dev. 
err. abs.err. 

kaigi 14 85.7 85.7 78.6 70.2 82.7 227.0 

kokusai 12 58.3 50.0 33.3 -126.5 126.9 158.3 

denwa 8 100 100 75.0 -8.8 8.8 3.5 

sanka 7 100 100 85.7 ー1.1 11.1 14.6 

touroku 5 100 100 40.0 4.5 16.5 19.2 

moushikomi 7 85.7 42.9 14.3 -38.6 42.9 43.9 

tsuuyaku 6 83.3 83.3 50.0 2.1 18.8 30.8 

honyaku 5 20.0 20.0 20.0 187.5 412.5 738.0 

Start Points 

kaigi 14 57.1 57.1 42.9 113.8 116.3 304.2 

kokusai 12 100 100 91.7 1.5 5.2 9.7 

denwa 8 87.5 87.5 75.0 62.5 63.1 160.8 

sanka 7 71.4 71.4 57.1 23.6 30.0 39.2 

touroku・ 5 40.0 40.0 20.0 263.0 263.0 241.6 

moushikomi 7 100 71.4 57.1 4.3 16.1 25.4 

tsuuyaku 6 100 100 66.7 -8.3 8.3 4.1 

honyaku 5 80.0 60.0 60.0 309.5 338.5 732.7 

End points 

(model 3, grammar 2) 

_
L
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KEYWORD nbr. 50 ms 30ms 10 ms 
mean mean. 

std.dev. 
err. abs.err. 

kaigi 14 100 100 92.9 1.6 4.8 9.0 

kokusai 12 100 100 91.7 -5.6 6.0 5.9 

denwa 8 100 100 75.0 -8.8 8.8 3.5 

sanka 7 100 71.4 71.4 7.5 15.4 21.0 

touroku 5 100 100 40.0 6.5 16.5 18.8 

moushikomi 7 100 100 57.1 -4.3 8.6 10.1 

tsuuyaku 6 83.3 83.3 33.3 5.4 20.4 30.9 

honyaku 5 100 100 60.0 5.5 12.5 13.5 

Start Points 

kaigi 14 78.6 71.4 7.1 4.8 37.0 49.3 

kokusai 12 100 100 91.7 1.5 5.2 9.7 

denwa 8 87.5 87.5 62.5 -26.9 30.6 72.4 

sanka 7 100 100 71.4 -0.7 12.1 15.0 

touroku 5 100 80.0 40.0 16.0 20.0 20.9 

moushikomi 7 100 85.7 71.4 3.6 11.4 21.2 

tsuuyaku 6 100 100 66.7 -8.3 8.3 4.1 

honyaku 5 100 80.0 60.0 ー16.5 16.5 9.9 

End points 

(model 4, grammar 3) 
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5.4 Discuss1011 

Because of the very few number of occurrences for each keyword, it is difficult to draw 
general conclusions from those experiments. There does not seem to be any real optimal 
garbage model. However, it seems that several repetitions of the garbage model yield better 
results than only one (with many self-loops). Besides, the results are very dependent on 
the keywords; for example, it is natural that the boundaries of "honyaku" should not be 
determined very accurately, because ofthe"h" and unvoiced "u" sounds; there seems to be 
no real correlation between the length of the keywords and the segmentation results. On 
the other hand, a keyword in a long sentence will certainly be relatively badly segmented 
("honyaku", in sentence SC23, for example). 

5.5 Future research 

The previous experiments were preliminary studies on keyword-segmentation. The next 
step would maybe consist in increasing the size of the testing set, so that the number of 
occurrences for each keyword would enable more conclusions. Although, on average, the 
models 2 and 4 (respectively associated with grarr皿 ars2 and 3) seem to give the best 
results, some experiments with garbage models of the first type with more mixtures (64 or 
128) should be performed. Moreover, it could be interesting to investigate the case where 
phoneme class garbage models are used. 

6 Conclusion 

This report showed that the use of continuous HMMs gives good results in phoneme 
segmentation. Multiple male speaker training can successfully be applied, in a rather 
speaker-independent way, to male speaker testing. The first steps of keyword segmentation 
have been investigated, and show that the main problem is to find a satisfactory means 
of modelling "non-keyword" speech. 
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APPENDIX: 

Final Talk 



Automatic Phoneme Segmentation 

Using 

Continuous Hidden Markov Models 

ー



1. Phoneme labelling experiments 

goal: building automatically large speech databases. 

evaluation of automatic segmentation, 

compared to hand-segmentation. 

2. Word-spotting experiments 

goal: keyword-segmentation in continuous speech. 

2
 



Phoneme Labelling 

Evaluation method 

Reference= hand-labelling (boundaries) 

Measurements: segmentation rate (50, 30, 10 ms comparison window) 

mean error 

mean absolute error 

standard deviation 

probability density function of error 

error = automatic boundary -hand boundary 

distinction between start points and end points. 
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TOOLS 

48 models including: 

46 phoneme models 

silence 

word-medial pause 

Continuous Mixture Density HMMs 

use of HTK software 

' f 1・--

3 states 

Diagonal covariance matrices 
r̀r1' 

HMMs always trained by word-utterances using labels 
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Phoneme Models 

．．． 
-vowels: a, aa, e, ee, 1, 11, o, oo, u, uu , N 

-voiced consonants: b, bO, d, dO, g, gO, m, mo, n, no, r, ro, z, zO 

-unvoiced consonants: ch, chO, k, kO, p, pO, s, sh, ss, ssh, t, to, ts, tsO 

-other phonemes: Ui, Uu, h, w, wo, y, yo 

-pause: Q 

． 
一silence: + 

after Q or+ 鼻 "O"

automatic label conversion (conversion table): 

k-i-k-a-i 

g-o-z-a-i-m-a-s-u 

kO-Ui-k-a-i 

gO-o-z-a-i-m-a-s-Uu 
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a 22 a 33 
a 44 

a 12 
a 45 

5
 

c:r.i 

THE MODEL 



The coding conditions 

-5 ms frame shift 

-26 analysis coefficients: 

12 cepstra (LPC) 

12 delta cepstra 

log power 

delta log power 
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Main questions 

Influence on segmentation results of: 

-The type of tested data 

experiments on words 

bunsetsu 

sentences 

-The training conditions: 

-single/ multiple speaker training 

-number of mixtures 

-The testing conditions 

tests on different speakers (male and female) 

speaker dependency? 

in dependency? 

-The segmented phoneme 
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Testing conditions 

SUOJlJPU g社UPIaIL

MAU MNM MHT MTK FSU 

.~ 昔.... C 

゜Cl.l 

•ャs ><: 一 ゜ ゜
C C 

゜一『"' ('f') 

•~ s 一

゜ ゜0¥ 

Single speaker training: MAU (2620 words) 

Multiple speaker training: MHT MMS MMY MSH 

MTK MTM MTT MXM 

(8 * 1310 words) 

"C" : close speaker 

"0 ": open speaker 

tests on words, phrases (sets DSA and DSB), and sentences (set DSC). 

，
 



General points 

Very similar results on words, bunsetsu and sentences 

(difference < 1.5 % on average for the segmentation rate) 

EXCEPT 

single male-speaker training 

tests on the same speaker: 

close words: 98.2 % 

sentences: 94. 7 % 

on start points with a 30 ms comparison window 

multiple male speaker training 

tests on a female speaker 

words: 88.2 % 

sentences: 91.5 % 

10 



Single/Multiple speaker training 

MAU MNM 

Single 97.1% 89.6% • speaker dependent 

Multiple 
95.8% 94.1% 

(3 mixt.) 
• speaker independent 

Number of mixtures (bunsetsu results) 

MAU MNM 

3 mixt. 95.8% 94.1% 

9 mixt. 96.2% 94.3% 

no significant change for one speaker 

the difference between two speakers does not change much. 

11 



General results (speaker independency?) 

MHT MTK MAU 

Single 97.1 

Multiple 97.5 96.2 95.8 

single speaker-trained model 

multiple speaker-trained model 

MNM 

89.6 

94.1 

FSU 

(bunsetsu results) 

90.2 

speaker-dependent 

(data dependant) 

good (male) speaker-independency 

Influence of the phoneme on segmentation results: 

Best Worst 

Start Points vowels Unvoiced csnts. 

End points Unvoiced csnts. vowels 



Word-spotting 

determine as precisely as possible 

the boundaries of predefined "keywords" in continuous speech (sentences). 

/k/a/i/g/i/ 

assumption: 

we know f
 

.- keywords were uttered. 

which 

in which order 

set of 8 keywords: deNwa 

hoNyaku 

kaigi 

kokusai 

moushikomi 

touroku 

tsuuyaku 

saNka 

tests on 25 sentences (DSC3) from speaker MAU 

13 



MODELS 

KEYWORDS: 

set of 48 phoneme models 

3 states 

3 mixtures 

multiple male-speaker training 

14 
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MODELS 

BACKGROUND SPEECH: 

Different types of "Garbage models" have been tried. 

-1 model for all phonemes with 1 state, 27 mixtures 

trained with word-utterances. 

-1 model for all phonemes with 3 states, 138 mixtures 

trained with word-utterances 

-1 model for all phonemes with 3 states, 138 mixtures 

trained with 90 sentence utterances (SC1, SC2, SC4) from 8 speakers. 

-48 phoneme models with 3 states, 3 mixtures 

trained with words. 

Different kinds of grammars 

(allowing or not some repetitions of garbage models) 

15 



keyword nbr. 

kaigi 14 

kokusai 12 

denwa 8 

sanka 7 

touroku 5 

moushikomi 7 

tsuuyaku 6 

honyaku 5 

kaigi 14 

kokusai 12 

denwa 8 

sanka 7 

touroku 5 

moushikomi 7 

tsuuyaku 6 

honyaku 5 

50 ms 30 ms 10 ms 

92.9 92.9 78.6 

91.7 75.0 58.3 

100 100 75.0 

100 100 71.4 

100 100 40.0 

100 71.4 42.9 

100 100 50.0 

80.0 80.0 60.0 

(%) 

Start Points 

71.4 64.3 14.3 

100 100.0 91.7 

87.5 87.5 75.0 

85.7 85.7 42.9 

80.0 60.0 40.0 

100 85.7 57.1 

100 100 66.7 

100 80.0 60.0 

End points 

(138 mixtures, trained with words) 16 

mean mean. 
std.dev帽

err. abs.err. 

-4.5 10.2 20.1 

-19.8 20.2 28.3 

-8.8 8.8 3.5 

-1.8 10.4 13.0 

4.5 16.5 19.2 

ー17.9 20.7 17.9 

-3.8 11.3 14.6 

-26.5 34.5 66.7 

(ms) 

15.9 39.1 51.9 

1.5 5.2 9.7 

30.0 30.6 75.0 

15.0 22.9 34.8 

36.0 37.0 48.3 

7.1 13.9 21.5 

-8.3 8.3 4.1 

-14.5 14.5 10.7 



KEYWORD nbr. 50 ms 30 ms 10 ms 
mean 
err. 

kaigi 14 85.7 85.7 78.6 70.2 

kokusai 12 58.3 50.0 33.3 -126.5 

denwa 8 100 100 75.0 -8.8 

sanka 7 100 100 85.7 -1.1 

touroku 5 ・100 100 40.0 4.5 

moushikomi 7 85.7 42.9 14.3 -38.6 

tsuuyaku 6 83.3 83.3 50.0 2.1 

honyaku 5 20.0 20.0 20.0 187.5 

Start Points 

kaigi 14 57.1 57.1 42.9 113.8 

kokusai 12 100 100 91.7 1.5 

denwa 8 87.5 87.5 75.0 62.5 

sanka 7 71.4 71.4 57.1 23.6 

touroku 5 40.0 40.0 20.0 263.0 

moushikomi 7 100 71.4 57.1 4.3 

tsuuyaku 6 100 100 66.7 -8.3 

honyaku 5 80.0 60.0 60.0 309.5 

End points 

(138 mixtures, trained with sentence-utterances) 

17 

mean. 
std.dev. 

abs.err. 

82.7 227.0 

126.9 158.3 

8.8 3.5 

11.1 14.6 

16.5 19.2 

42.9 43.9 

18.8 30.8 

412.5 738.0 

116.3 304.2 

5.2 9.7 

63.1 160.8 

30.0 39.2 

263.0 241.6 

16.1 25.4 

8.3 4.1 

338.5 732.7 



賣

Difficult to find an optimal model 

The results also depend on: 

-the keywords (length, type of initial and final phonemes) 

-the sentence {length) 

-the grammar 

(GB $key GB) ＜ (<GB> $key <GB>) 

＇ 
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Future research 

-extend the number df keywords 

() 

-enlarge the testing set (the number of occurrences for each keyword) 

／〉
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