
ー・・一. .. I, ,,

Internal Use Only (非公開）

TR-I-0229

Unification-Based Parsing on Increasing
Levels of Parallelism

並列効果の高い単一化解析法

P. Neuhaus
ノイハウス・ベーター

0. Furuse

古瀬蔵

H. Iida
飯田仁

1991.9

As effectively programmable p紅 allelarchitectures become available their usage in natural lan-
guage processing incre邸 es.But an often disreg江 dedproblem is the discrepancy between the num-
ber of processors required by so-called massively-parallel algorithms and the number of processors
provided by the p紅 allelmachine actually at hand.
Ap紅 allelp紅 singalgorithm on the basis of the well known CYK叫gorithmh邸 beenpublished.
We present an efficient, further parallelized version for JPSG-like unification-b邸 edgr皿 marsand
show the effectiveness of restricting p紅 allelizationwith reg江 dto the size of the p紅 allelmachine

used.

効果的にプログラム可能な並列アーキテクチャが利用できるようになるにつれ、自然言語処理におい

ても並列計算機が使われるようになってきた。しかし、超並列アルゴリズムなどで仮定される理論上の

プロセッサの数と、実際に並列計算機で使用可能なプロセッサの数の違いの問題は議論されないことが

多かった。本論文では、 JPSGのようなユニフィケーションに基づく文法を使って、 CYKの並列化

アルゴリズムを改良した効率的なパーサを提案し、与えられた並列計算機の並列度に関し、効果的に動

作することを示す。

ATR自動翻訳電話研究所
ATR Interpreting Telephony Research Laboratories

◎ ATR自動翻訳電話研究所
◎ ATR Interpreting Telephony Research Laboratories

ー

Contents

i

j

1 Introduction

2 Unification-based Grammar

3

3

3 Parallel Parsing 4

3.1 The CYK Parser for Context Free Languages . 4
3.2 A Parallel CYK Parser . 5
3.3 Theoretical Complexity vs. Actual Usage of Processors 6

4 Possible Parallelization of Unification-based Parsers 6

5 Our Further Parallelized Parsing Algorithms 8
5.1 Combining Table Entries is Independent . 8

-ヽ 5.2 Combining Non-Terminals is Independent . 8
5.3 Reconsider Combination of Entries . 9

6 Implementation

7 Evaluation

8 Conclusion

A The Quasi-Destructive Graph Unification

B Files and Usage

C Garbage Collection

D Example Screens

9

0

2

3

3

4

4

1

1

1

1

1

1

＾
． ー

2

r'‘,j

~

1 Introduction

As effectively programmable parallel紅 chitecturesbecome available their usage in natural language
processing increases. Algorithms for parallel analysis, i.e. parsing and unification, have been
published. For example, [1vlat89] presents a parallel parser based on logic programming, [Lan.90]
shows the utilization of systolic computations for p紅 allelparsing, [Fuj90] investigates parallel
unification, to name only a few.
Some of the suggested algorithms are massively parallel (for instance [Lan90]). But an often
disregarded problem is the discrepancy between the number of processors required by these algo-
rithms and the number of processors provided by the p紅 allelmachine actually at hand. Usually
this problem is handled by virtual processors and/or a scheduling scheme. However, this obvi-
ously introduces additional overhead, that in the worst case, negates the benefits of p紅allelization.
So-called massively-parallel parsers a.re an interesting research subject, but most available parallel
architectures will not allow for massive p紅 allelism.
In this paper a parallel parsing algorithm for a JPSG-style unification-based gramm紅 ispre-
sented. It is based on the CYK (Cocke-Younger-Kasam.i, for example [You67]) p紅sing1algorithm.
The algorithm is pa.i・allelized on increasing levels in terms of the number of required processors. At
the first level, as proposed by [B紅 90],a linear number of processors (in the length of the input
string) is used. vVe show that on further levels more and more p紅叫elismcan be achieved and that
this is necess江yfor an efficient p紅 serfor natur叫languageprocessing.
In section 3 the original CYK parsing algorithm and its first level p紅叫lelizationare explained.
After a brief discussion of possible p紅 allelizationsin section 4, section 5 presents our further
parallelized versions that will fit medium-sized p紅 allelmachines. In section 6 implementational
details are explained. Finally, section 7 gives a discussion of results that show how the choice of an
appropriate p紅allelizationscheme is cruci叫forefficient run-time results.

~

i.

2 Unification-based Grammar

A unification-b邸edgrammar has two components: a (usuallyりcontext-freegrammar back bone
and some feature structure formalism attached to it. For a basic introduction to unification-based
gram.mars the reader is referred to (Shi86]. We use a gram.mar following the notion of JPSG as
presented in [Gun87].
JPSG uses just one contaxt free rule, Mother→ Daughter Head, to account for the structure
of Japanese sentences. This assumption of binary structures in JPSG suggests the use of a CYK
type of parser, because it requires the context-free grammar to be in Chomsky Normal Form汽i.e.
it must be binary (cf. section 3).
We do not restrict the grammar used (see [Kog88]) to contain only one context free rule as was
suggested in [Gun87]. Actually the grammar should try to restrict the context-free synta.x as far
as possible because checking context free rules is less expensive than doing unifications. [Tom91]
reports that in certain parsers over 90% of the time is consumed by unification.

1 A remark concerning the term "parser": we will use it both in the sense of parsing a context free grammar and in
the sense of analyzing natural language which itself consists of parsing and unification. Its use should be clear from
the context.
2[Mat89] covers non-context-free grammars, too.
3 Actually it is easily possible to allow unary rules which may sometimes be convenient.

3

There are two main strategies combining a parser and a unification algorithm. One is to produce
all parse trees of the input string first, and then to do all unifications in a second phase. The other
way is to do the unification after each reduction step of the parser. Since many syntactically
possible structures are semantically ill-formed, the latter strategy will rule out these structures at
an early point in time. This kind of parser is called an integrated parser and will be our choice.
Figure 1 shows all necessary parts of a complete parser. The following sections will describe
the unifier and parser only.

unification-based

CFG ↓

Lexicon - I Grammar Compiler!
↓

Grammar Table ．
and Lexicon

Sentence

，
 par

parallel
unification-based
ser

↓
Table of Parses

Figure 1: Unification based parser a.rchi tecture

3 Parallel Parsing

Before introducing the first level of parallelization we will explain the original sequential CYlく
algorithm as presented in [You67].

3.1 The CYK Parser for Context Free Languages

If a grammar contains only productions of the form A → B CorA→ t for some non-terminals
A, Band C and some terminal t, it is said to be in Chomsky normal form. The standard CYK
algorithm determines for all sub-strings of the input string their possible (sub-)tree structures. This
is done by building a table, here lvl. The first row contains the pre-terminals (the A of "A→ t")
as table entries and is indexed 1¥tli,i, where i = 0, ... , n -1 and n is the length of the input string.
The next row's entries -indexed as Mi,i+1, for i = 0, …, n -2 -are computed by combining
two adjacent entries of the previous line, i.e. Mi,i and Mi+l,i+t. Combining two entries means,
that the non-terminals in the two sets are joined to pairs and for each pair the grammar is checked
(by a table lookup) if it can be reduced by a production. If this is the case this production's left
side is added to the set Mi,i+t. Thus this new entry describes two tokens of the input string. For
example, in figure 2 the verb "ita" (past tense of "to be") and the noun "toki" ("time") form a
noun phrase.
For the next rows, each entry describes substrings of the input string. For the computation
of entry .Nli,i (describing all possible structures of the substring from tokens i to j of the input
string), for all k = i ... (j -1), entries Mi,k and .Nfk+l,i are combined. For example, figure 2 shows

¥
り
|
＇
J

，

＾
＼

ー

・

4

?
l

the computation of M2,4 at the third row. Entries M2,2 and M314 are combined by joining V and
PP, for which no grammar rule exists. Entries Nl2,3 and Nl414 are combined by joining NP and P,
yielding PP. For entries in the next row three combinations will take place, and so on.
Eventually table entry Mi。,n-I will contain the first non-terminals of all possible parses. If it
contains the root symbol, obviously the string has been accepted. Actually at this point no tree is
directly available. How to get the parse tree (in our implementation) will be described in section 6.

Ooitsu ni ita toki ni

~

ロニ□[I／ 念：：：:::::,.
I NP II II II―

Figure 2: The combination scheme for entries in table M, here entry 1vl2,4

＾
ー

Since each table entry can contain at most all non-terminals of the gr皿 1m紅 thecombination
of two table entries is of constant complexity in the length of the input string. That, the overall
complexity is 0(n3).

3.2 A Parallel CYK Parser

As shown by [B四90)the above described algorithm's time comple、xitycan be decre邸 edto O(nり
by utilization of a number of processes line四 inthe number of input tokens, the time-processor
product rem叫ningthe s皿 e.
As can be seen from the description of the sequential CYK algorithm the computation of a
row entry depends only on previous rows. For a"'{ample in figure 2, while Nl2,4 is computed by one
process, other processes can compute entries Mi。,2, M1,3, M3,s, and so on. That means that all
entries of a row can be computed in p紅 allel.We need only ensure that the computation does not
start before the required entries of previous rows紅ecomputed.

Let Pi for i = 0 ... n-1 be the processes then Pi computes entries Mi,i ... l¥lfi,n-I・Synchronize(Pi, Pi+t)
m咄essure that process Pi does not proceed to compute entry Mi,i until process Pi+1 finished its
computation of entry Mi+I,i. vVe get the following algorithm:

begin P{i}
for j=i to (n-1)
do

synchronize(P{i},P{i+1})

5

compute-entry(M{i>j})
end P

This algorithm has been proposed in the field of programming language parsing. In [Bar90] it
is argued that -with respect to existing parallel architectures -a parallel parsing algorithm that's
processor usage is of linear complexity (in the length of the input string) is much more realistic
than an algorithm with quadratic complexity is. Though input strings in natural language analysis
are much shorter, a similar・argument applies to natural language parsing as ヽ~ell.

3.3 Theoretical Complexity vs. Actual Usage of Processors

Because of the much shorter strings in natural language analysis the complexity in terms of the 0-
calculus is not so important. The 0-calculus is only valid for asymtotic considerations. For us the
ratio of the number of processes to the number of {hardware) processors is much more important.
If it becomes extremely big or small then the parsing is far from being efficient.
Thep紅 allelCYK algo~ithm presented above st印 tsout with n processes doing one combination
of entries. With every new row one process terminates but each remaining process has to combine
one more pair of entries, thus the quadratic time complexity. vVhat should concern us is that once
there匹eless processes than actual processors we waste computational power. The effect of this
waste can be seen in the results presented below.

4 Possible Parallelization of Unification-based Parsers

The basic analysis of the parallelization of unification-based parsers (cf. [Kat90]) shows that there
a.re three sources of parallelism e入q>loitableby a parsing algorithm:

1. context-free grammar

(a) independent sub-trees

(b) structural ambiguities

2. disjunctions of feature structures

3. recursive unification of complex feature structures

A parse tree usually contains non-overlapping subtrees that can be computed in parallel. More-
over, if there is a structural ambiguity in a sentence, two or more parse trees will be created. The
related unifications can be done simultaneously. Figure 3 shows an example. It also illustrates item
(la) because the upper parse contains two P sub-trees that can be computed in parallel.
Disjunction of feature structures means that one terminal or non-terminal has more than one
feature structure. For example, a verb may have two different feature structures, for example
because of a transitive and an intransitive meaning (see figure 4). Thus there a.re two possibilities
to form a verb-phr邸eby adding an inflection. The corresponding unifications can be done in
parallel.
Two complex feature structures are said to unify if the values (possibly again complex struc-
tu.res) of corresponding attributes unify. Complex feature structures therefore imply recursion. Its

¥
『

l

，

~

\‘,i,•}

6

テ

l

l sub-trees

.............. actions that can
:.. : be parallelized

’

Figure 3: Parallelism in the context-free grammar

~

9
,＇

＼ Vinfl->『U
{fs3}

Figure 4: Parallel unification of feature structures

7

parallelization would lead to massive parallelism4. We did not exploit this source of parallelism
(item (3) above) because it counteracts achieving a parsing algorithm efficient for mediu元sized
parallel architectures. For a discussion of this kind of massive parallelization and its results the
reader is referred to [Fuj90].

5

Our Further Parallelized Parsing Algorithms

vVe are presenting one parsing algorithm on several levels of parallelization. Thus the following
subsections show algorithmic realizations of the discussion above.

5.1 Combining Table Entries is Independent

Let us examine the example of computing a row entry from above. To compute entry kl2,4 it is
necessary to combine entries lvl2,2 with 1vl3,4 and lvl2,3 withル14,4・Thesetwo combinations can be
done in parallel, let us say by a worker-process.
This will lead to the usage of O (が）processors5. The synchronization overhead increases because
now all worker-processes have to be synchronized because an entry is not entirely computed until
all related "workers"紅efinished. To prevent them from overwriting each other's results, a lock
must be used also (with-lock acquires the lock, executes the body and releases the lock). Thus we
get the following algorithm:

begin P{i,k} ¥¥ worker fork-th combination
for j=i to (n-1)
do

for l=i to (j-1)
do

synchronize(P{i,k},P{i+1,l})
combine(M{i,k},M{(k+1),j})

vi th-lock
write(M{i,j})

end P

This approach is somewhat naive because in an actual parse there are often empty entries. A
worker combining empty entries just consumes time for synchronization. After looking at another
source of parallelism in the next section we will consider further the combination of table entries.

5.2 Combining Non-Terminals is Independent

For the combination of two entries each non-terminal in the first entry is combined with each
non-terminal in the second entry. While the check of the gr皿 martable is very fast and can
be done sequentially the unification of two items is slow. So the unifications should be done in
parallel after the sequential synta..x check has sorted out all impossible combinations with respect

f
'
に
こ
・

~

＾
,
＇
ー
、
ー
ー
•
―

4To avoid massive parallelism here a山orker/agendamechanism could be helpful.
package will supply such a mechanism it has not been implementation yet.
s More exactly the number of processors、villbe ln/2」*「n/21

Though the BEHOLDER

8

こ
＇
ー
、
~
』

to the context free grammar. The synchronization mechanism used here is that of a fork, i.e. the

entry-combination routine spawns unification processes and waits for them to be terminated.
This further parallelization covers item 2 of section 4. If a non-terminal has disjunctive feature
structures there are multiple copies of it in the table entry, each with a different feature structure.
Parallelizing the combination of all non-terminals of two table entries obviously leads to a parallel
unification of the disjunction of feature structures. The resulting algorithm is shown in the next
section after one more level of parallelization has been added.

5.3 Reconsider Combination of Entries

The fork mechanism described in section 5.2 can be expanded to the entire computation of an entry.

That is not only the joining of non-terminals but also the combination of table entries is executed
in the fork. Thus it covers not only all unifications of one combination of a pair of entries but all
necessary combinations of previous entries. That yields the following algorithm: ，

begin P{i}
for j=i to (n-1)

do
synchronize(P{i},P{i+1})

compute-entry(M{i,j})

end P

begin compute-entry(M{i,j})
for k=i to (j-1)

fork
combine(M{i,k},M{(k+1),j})

end compute-entry

begin combine(M{i,k},M{l,j})
for all pairs in M{i,k} X M{l,j}

do
if reducible

then mark pair
for all marked pairs
fork
unify

end combine

，

る

'
a
1,0

6 Implementation

We implemented sever~parallel versions of a parser along the above described levels of paralleliza-
tion on a Sequent Symmetry S81 with 12 tightly-coupled processors. The coding was done in CLiP

(cf. [CLiP]), a parallel LISP based on Allegro CL. To deal with specific problems of CLiP the
BEHOLDER package proved to be very useful.
Under CLiP only 11 processors are available and another processor has been spent for moni—

toring, such that we could test the different parsers with 1 to 10 processors. On these, so called,
Light liVeight Processes were scheduled. A sequential reference version also has been implemented.

In our algorithm on a tightly-coupled architecture the parsing table M is held in common
memory. In contrast to the original algorithm presented in section 3.1, we store pointers to the
constituents of each non-terminal. Thus, an entry can contain multiple copies of one non-terminal
-each with different constituents6

6This has a heavy impact on the time complexity of the first level parallelization. Since now a.n entry can
contain more non-terminals than there a.re in the grammar the combination of two entries is not of linear complexity
anymore. Theoretically the complexity became even exponential with respect to a.I1_1biguities in the grammar and the
input string.

，

The stated synchronization condition is implemented by blocking and unblocking processes.
Before a process computes an entry it reads a channel (here a mail-box) from its right neighbour (see
figure 5). If it is empty (indicating that required data is still being computed by its right neighbour)
the process blocks until a message arrives in its mail-box (thereby unblocking the process). If the
mail-box is not empty all required data is available and the process does not have to block. Each
process tells its left neighbour through a sync m叫1-boxthat it has completed the computation of
the previous entry.

¥
-
J
-

ProccssO 応 easn-2 ProcCMn-1

'~

Memo

Figure 5: Synchronization scheme of parallel CYK

vVe are using the quasi-destructive graph unification algorithm as presented in [Tom91]. It
solves the efficiency problems in case of unification failures7 most elegantly, while it is still easy to
be altered to run concurrently, see appendix A.

7 Evaluation

In the following the implementations (see appendix B for a more detailed description) of the pre-
sented algorithms will be referred to as:

• : sequ -the sequential CYK algorithm (section 3.1)

● : lin -the first level parallelization presented in [Bar90] (section 3.2)" たヽ

● : sqr -then叫veparallelization using O(n2) processors (section 5.1)

● : fork -the further parallelized parsing algorithm (sections 5.2 and 5.3)

Figure 6 shows the run-time of parsing three sentences by :fork compared to the sequential
version of the algorithm (the dotted lines). The sentences are, A: onamae to gozyuusyo wo onegai shi
masu ("Would you please give me your name and address?" 819 top-level unifications), B: soredewa
kochira kara sochira ni tourokuyoushi wo ookuri itashi masu ("Then, I'll send you a registration
form." 321 top-level unifications) and C: wakari mashita ("I see." 34 top-level unifications).
The synchronization overhead is compensated for when at least two or three processors are
used. The speed up was 1:3 for the 10-processor run vs. the I-processor run in all tests. It was at
least 1:2 for the 10-processor run vs. the sequential reference version.

7If a unification algorithm creates copies of feature structures but eventually the unification fails, the copying is
aw認 teof time and memory resources.

9
、ー・

10

J
占

sec. A
40 ..l- •••••• い・・

30

20

10

ri

ー 2
4

8 Processors

Figure 6: Parsing times for three sentences by :fork

sec.

＾ 10

-----:sequ
o :lin
+ :sqr
x :fork

ー 2
4

8 Processors
る
疇
鼻
＇
．

Figure 7: Comparison of all four versions
1
0

11

Figure 7 compares all versions of the presented algorithm for sentence D: wakara nai ten ga
gozaimashi tara watakushidomo ni itsu demo okiki畑dasai. ("Please feel free to ask if there's
anything you don't understand." 141 top-level unifications).
The :Zin version suffers from its not using all processors. This waste shows especially at its bad
scaling: The run-time for more than four processors was more or less constant in all tests. The
reason is, that :Zin actually does not use most of the processors much. Still, this version is easy to
implement and maybe interesting for very small parallel machines.
Finally, the :sqr version clearly is not usable at all. The・reason is the large amount of sychro-
nization necessary with this algorithm. Even, its implementation is more complicated than that of
the other versions.
The run-time of :fork shows, that this is a better way to do things. Though it required more
synchronization than :lin, it was faster with three or more processors. Also, it showed a better
scaling.

¥
e
_
|
9

8 C onclus1on

vVe introduced the CYK parsing algorithm and its parallelization following [Bar90]. On this basis
an efficient parallel unification-based parser has been presented. It used further parallelism for
better utilization of the parallel machine and incorporated a unification algorithm. The strength of
the presented parallel parsing algorithm lies in the combination of a fast unification algorithm with
a parser that is parallelized with respect to the underlying architecture. The reduced parallelism,
in contrast to massively parallel algorithms, resulted in good run-times on a medium-sized parallel
machine. Even with as few as four processors, good speed-ups could be achieved.

，

＾
f
rー・-

12

』

1
ー

l

'

,

-

~

A The Quasi-Destructive Graph Unification

As explained in [Tom91] the qu邸i-destractivegraph unification algorithm avoids unnecessary copy-
ing by the usage of a global clock. That is, all unification information that h邸 tobe added to a

feature structure is marked by a time-stamp. Only if the whole unification suceeds the structure

and its added information is copied. The time is stepped after each top-level unification, thereby
devalualting the added information.

Let us now consider the example from above where a verb has different feature structures.
vVhen the unification algorithm runs simultaneously on the feature structure of a verb inflection

the unification information will become defective. What is needed are independent places for these
different data.

Since there is a maximal number of processors running the unification algorithms it would be
sufficient to supply a special slot in the data structure for each processor. But in CLiP it is not

possible to identify the actual processor, though process names can be determined. So we chose a

h邸 h-tableorganisation where the h邸h-keyis the process name. This is less efficient in terms of
memory usage but f邸tand stable.

For illustration the data structure is shown in figure 8. The first three slots are used to represent
the original node information. In the hash-tables additional information and time-stamps are saved.

type :atomic, :complex or :leave

arc-list list of graph node's edges

forward forwarded node

comp-arc-list hash-table of edges added in unification

comp-forward hash-table of nodes forwarded in unification

comp-arc-mark hash-table of time-stamps for comp-arc-list

comp-forward-mark hash-table of time-st皿 psfor comp-forward

Figure 8: Adapted node structure for concurrent unification algorithm

＾
B Files and Usage

The system can be found in directory /usr1/peter /IMP on the Sequent at ATR Interpreting
Telephony Research Laboratories. ,'.The parser and unifier are in files grammar, pcyk, unify and

interface. In grammar the data structures and routines to read grammar and lexicon are defined.
In pcyk the actual parser is contained, plus some functions for printing tree structures. Finally
unify and interface provide the adapted version of the quasi-destructive graph unification algo-
rithm.
To load the system the file local_init. lisp is used. There the garbage colection behaviour is

changed and all necessary files are loaded8. Especially the example grammar and lexicon, tom. gra
and tom. lex respectively, are loaded9. These may be changed by the user to own files. Please
observe that the e..xtensions gra and lex are obligatory.

8We assume that the BEHOLDER package is lo叫ed.For details see the /usrl/peter/. clinit. cl file.
, The test gramm江 isessentially Kogure's as in [Kog88].

13

The main function is (parse sentence &optional algorithm) that parses a sentence using
algorithm. It follows a list of available algorithms with a brief explanation:

● : sequ is the sequential reference version. It is started邸 aLWP because the lnitial-LvVP is
slow -no parallel computing!!

● : lin is the 1st level parallelization, number of processes is linear in the length of the input

● : sqr is the naive further parallelization using a quadratic number of processes

● : fork1 similar to :lin version but after joining non-terminals unifications are done simitan-
iousely, controlled by a FORK mechanism

● : fork, dito. but combining table entries AND joining non-terminals are paralleized in a
FORK

● : sequfork, like :fork but on basis of the sequential algorithm

● : sqrf ork, like :fork but on the b函 sof the quadratic algorithm

• :uni, like :fork but allowing unitary rules

The documentation string of parse gives further information how to control the output format
of parsing results.

●
ー
-
-

，

C Garbage Collection

The Allegro CLiP uses a so-called "generation-scavenging garbage collection" system. for a detailed
introduction see (CLiP]. We were able to adjust the garbage collection behaviour such that it could
cope with the fast increasing number of graph structures, that were deleted just after the run of
the parser.
A main problem was that when ever the garbage collector required more memory and the OS
would not be able to supply a piece of memory subsequent to the prior memory, than an entire new
work space is requested. The point is, that the now unused old work space was not freed causing ;-、
the system to run in severe memory problems.

D Example Screens

This appendix shows some examples of the system implemented on a Sequent Symmetry S81.

<Initial l町>:ld local_init.lisp

+++ 11 -1--1-11 I I I I I I I I 1, I I 11 I++++ I I I 11 I I I I+ I I I I I -l--t-l-44½4-t+-t++++-tH"-H4+--I=

Experimental parallel parser on the basis of a CYK parser.
(parse sent[1-16] :algorithm) to use various algorithms.

Don't forget to call (memory) after first nevspace expansion.

<Initial 1叩>(parse sent9)

9

rー・・‘

14

7
,
!

ー-

Parsmg sentence: (SOREDEHA KOCHIRA KARA SOCHIRA NI TOUROKUYOUSHI WO OOKURI ITASHI MASU),

by algorithm : FORK

Using 1 processor

scavenging. • • eヰandingand moving nev space-done ut: 67., copy nev: 3088048 + old: 0 = 3088048

cpu time (non-gc) 10867 msec user, 1099 msec system
cpu time (gc) 14600 msec user, 1684 msec system

cpu time (total) 25467 msec user, 2783 msec system

NIL

Number of parses: 5

＾
NIL

<Initial 1叩>(memory) ; ; new space has been eヰanded
T

<Initial 1叩>(set-numprocs 4)

4

<Initial 1叩>(parse sent9)

Parsing sentence: (SOREDEHA KOCHIRA KARA SOCHIRA NI TOUROKUYOUSHI WO OOKURI ITASHI MASU),
by algorithm :FORK

Using 4 processors

cpu ti.me (non-gc) 4650 msec user, 783 msec system

cpu time (gc) 0 msec user, 0 msec system

cpu time (total) 4650 msec user, 783 msec system

real time 5640 msec

NIL

Number of parses: 5

＾
•
ヽ

o
r
,＇

NIL

<Initial 1叩>(set-numprocs 10)

10

<Initial 1町>(parse sent9)

Parsing sentence: (SOREDEHA KOCHIRA KARA SOCHIRA NI TOUROKUYOUSHI WO OOKURI ITASHI MASU),
by algorithm :FORK

Using 10 processors

cpu t:iJlle (non-gc) 3950 msec user, 867 msec system

cpu t泣e(gc) 0 msec user, 0 msec system

cpu time (total) 3950 msec user, 867 msec system

real time 4830 msec

NIL

Number of parses: 5

NIL

<Initial 1町> (setq•print-parse• : CFG) ; ; give the context-free structure

15

:CFG

<Initial 1町>(parse sent11)

Parsing sentence: (OOSAKASHIKITAKUCYAYAMACHIROKUNONIZYUUSAN• SUZUKIMAYUMI DESU),
by algorithm : FORK

Using 10 processors

cpu time (non-gc) 933 msec user, 0 msec system

cpu time (gc) 0 msec user, 0 msec system

cpu time (total) 933 msec user, 0 msec system

real time 1080 msec

NIL

Number o:f parses: 2

Parse:---------------------------------------

X01 [['WH X02[]]

[SUBCAT X03[[REST X04 END]

[FIRST XOS[[SUBCAT X06 END]

[SEM X07口］
[HEAD XOS[[POS X09 P]

[GRF X10 SUBJ]

[FORM X11 GA]]]]

[SLASH X12口］
[SEM X13[[RELN X14 DA-IDENTICAL]

[OBJE X07]

[IDEN X15[[ARG-X1 X16口］
[ARG-X2 X17[[PARM X18口］

[RESTR X19[[IDEN X20 SUZOKIMAYUMI]

[OBJE X18]

[RELN X21 NAMED]]]

[RELN X22•-COORDINATE]]]
[PRAG X23[[SPEAKER X24口］

[RESTR X25[[REST X26口］
[FIRST X27 [[REST X28 END]

[FIRST X29 [[RELN X30 POLITE]

[RECP X07]

[AGEN X24]]]]

[HEARER X07]]

[HEAD X31 [[CFORM X32 SENF]

[CTYPE X33 DESU]

[POS X34 V]

[MODL X35[[COPL X36 +]]]

-v
----N

-------P
----------N
----------P
-------N
----v

↑

J

ヽ

戸

”
?
|
1
.
r

ー
'
’
•

Parse:---------------------------------------

X01[['WH X02口］

16

C>

[SUBCAT X03 END]

[SLASH X04口］
[SEM X05 [[ARG-X1 X06口］

[ARG-X2 X07[[PARM X08口］
[RES TR X09 [[IDEN X10 SUZUKIMAYUMI]

[OBJE X08]

[RELN X11 NAMED]]]

[RELN X12 *-COORDINATE]]

[PRAG X13[[SPEAKER X14[]]

[RESTR X15[[REST X16[]]

[FIRST X17[[REST X18 END]

[FIRST X19 [[RELN X20 POLITE]

[RECP X21口］
[AGEN X14]]]]

[HEARER X21]]

[HEAD X22[[CFORM X23 SENF]

[CTYPE X24 DESU]

[POS X25 VJ

[MODL X26[[COPL X27 +]]]

-v
----N

-------P
----------N
----------P
-------N
----v

T

<Initial 1叩>(setq *print-parse* :FS) ; ; give feature structure for each node

: FS

<Initial lwp> ; ; no example to save space!

i¥‘

,,
I

17

References

(Bar90] D. T. Barnard, D. B. Skillicorn: Parallel Parsing: A Status Report {chp. 4), Queen's
University, 1990

[CLiP] Franz Inc.: Allegro CLiP JV!anual, 1989

[Fuj90] T. Fujioka, H. Tomabechi, 0. Furuse, H. Iida: Parallelization Technique for Quasi-
Destrnctive Graph Unification Algorithm, reprint of WGNL 80-7, IPSJ, 1990

[Gun87] T. Gunji: Japanese Phrase Structure Grammar, D. Reidel Publishing, 1987

(Kat90] S. Kato: Performance Evaluation of Parallel Algorithms for Unification-Based Parsers,
reprint of WGNL 77-2, IPSJ, 1990

[Kog88] K. Yoshimoto, K. Kogure: Japanese Sentence Analysis by means of Phrase Structure
Grammar, ATR Technical Report TR-I-0049, 1988

[Lan90] L. Langlois: Parallel Parsing via the backward trace of systolic computations, Proceed-
ings of the Workshop of P紅 allelComputation, Kingston, 1990

[Mat89] Y. Matsumoto: Natural Language Parsing Systems based on Logic Programming, Thesis
at Kyoto University, 1989 . ,

[Shi86] S. M. Shieber: An Introduction to Unification-based Approaches to Grammar, CSLI
Lecture Notes No. 4, 1986

[Tom91] H. Tomabechi: Quasi-Destructive Graph Unification, Procee出ngsof ACL91

(You67] D. H. Younger: Recognition and Parsing of Context-『reeLanguages in Time訊 Infor-
mation and Control Vol. 10, p. 189-208, 1967

18

	ct1
	0229cv

