
TR-1-0228

Internal Use Only (非公開）

Tools for Monitoring

Parallel Lisp Programs

Todd Kaufmann

1991.9

概要

Parallel architectures are becoming increasing popular today as a means of
overcoming the speed limitations of convential serial computers. Since parallel
machines are still fairly new, there does not yet exist a wide range of techniques,
expertise, or tools for implementing parallel algorithms or portion serial
algorithms to a parallel machine. The burden is on the program.mer.

共有メモリー型密合並列計算機上でのプログラミングは、共有メモリーのロック等の独特の

特徴があり、プログラムの最適化にあっては、通常の関数評価のプロファイリングでは、十分

ではない。従って、マシン環境に合わせたプロファイラーの設計が必要となる。カーネギーメ

ロン大学のシリアルマシン用プロファイラーを参考にして、 SequentJSymmetry上の並列

Common Lisp (CLIP)用に並列LISPプロファイラーを設計および作成した。本マニュアルで

は、その特徴並びに使用法を述べる。特に並列プロセスの各種のオーバーヘッド並びに、ロッ

クに係わる各種のオーバーヘッドの評価をサポートしたことにより、並列ア）レゴリズムの設計

並びに、シリアルプログラムの並列化に有用である。

*ATR自動翻訳電話研究所

ATR Interpreting Telephony Research Laboratories
◎ ATR自動翻訳電話研究所 1991

◎ ATR Interpreting Telephony Research Laboratories

ー
-
l

Tools for Monitoring

Parallel Lisp Programs

Todd Kaufmann

’
ATR Interpreting Telephony Research Laboratories

Sanpeidani, Inuidani, Seika-cho, Soraku-gun
Kyoto 619-02 Japan

E-mail: Todd..Kaufmann@cs.cmu.edu

＾
Copyright (c) 1991 ATR Interpreting Telephony Research Laboratories.

i
'
A

． ＇

Contents

1 Introduction 1

1.1 Need for monitoring tools 1

~
1.2 How to load these files ．．．．． 1

2 Monitoring Functions 3

2.1 Usage notes and suggestions 3

2.1.1 Monitoring overhead 4

2.2 Function description ．．．． 5

3 Monitoring Processes and Locks ，
3.1 Lock usage recording ，
3.2 Output f uncti． ons 10

3.2.1 Lock usage summary ．．．．．． 10

3.2.2 Assigning names to locks . 11

3.2.3 Lock and process history timeline 12
~ 3.2.4 Miscellaneous functions 15

i

、

,
J

Chapter 1

Introduction

Parallel architectures are becoming increasing popular today as a means of overcoming the
~speed limitations of convential serial computers. Since parallel machines are still fairly new,

there does not yet exist a wide range of techniques, expertise, or tools for implementing
parallel algorithms or porting serial algorithms to a parallel machine. The burden is on the
programmer.

＾

1.1 Need for monitoring tools

Once a set of processes are created and running in parallel, they may behave in a non-
deterministic fashion or interact in unpredictable ways. Most of the processes may spend
most of their time waiting to access a single object, resulting in very i~efficient use of the
processors, possibly worse than a serial implemention of the algorithm.

Described in this document are some tools that can help the programmer better under-
stand how his progr~m is running and utilizing resources in a parallel environment. These
tools can help you understand

• how processes interact

• where execution time is spent

Although these tools can help you make your program more efficient, it won't help you
choose the right algorithm.

'
|
_
J

1.2 How to load these files

On the Sequent Symmetry, they can be loaded in the following way:

ー

<Initial lwp> (load 11/usr1/todd/lisp/monitor11)

; Fast loading /usr1/todd/lisp/monitor.fasl.

Warning:'STUB-FUNCTION'is defined twice in

Warning:'STUB-FUNCTION'is defined twice in
/usr1/todd/lisp/monitor.lisp
/usr1/todd/lisp/monitor.lisp

T

<Initiai lwp>

; Fast loading

ー・
J

‘,

-
＼

(load "/usr1/todd/lisp/lwp-monitor")

/usr1/todd/lisp/lwp-monitor.fasl.

T

The functions associated with /usr1/todd/lisp/monitor are detailed in Chapter 2,

and the lwp-monitor functions are in Chapter 3. The two are completely independent, so
you need only load the one that you use.

＾

＾
¥
.
＊
-

9l

｝

Chapter 2

Monitoring Functions

The functions described here are based on a package from CMU called metering. lisp
~which gathers timing statistics for specified functions while a program is running. They

have been modified in order to work with CLiP and also provide information on a per-
process basis, so you can see which processes are calling which functions how many times.

Sample usage of these functions and the specific features implemented for CLiP are
shown here. For full documentation, you should see the file monitor. lisp which contains
full comments.

＾
,
I
|
J

2.1 Usage notes and suggestions

Start1 by monitoring big pieces of the program, then carefully choose which functions close
to, but not in, the inner loop are to be monitored next. Don't monitor functions that are
called by other monitored functions: you will only confuse yourself.

If the per-call time reported is less than 0.1 seconds, then consider the clock resolution
and profiling overhead before you believe the time. It may be that you will need to run
your program many times in order to average out to a higher resolution.

CLiP note: If the numbers are outrageouly big (larger than possible) or negative, this
means that the function began on one physical processor and then finished on another; it is
even possible that it switched multiple times during execution, so even if it ends and begins
on the same processor some portion of the recorded run time will not be shown, or run
time of another function may be included. This will almost always happen if your function
blocks (via sleepy-lock or suspend-lwp) waiting for another process and/ or the number
of hvps is greater that the number of physical processors allocated via pp: set-numprocs.
Your only recourse is to try again until you are lucky, or (if possible) run it serially on a
single processor.

The easiest way to use.this package is to execute either

1 Many of these comments are from the file metering. lisp, lightly edited.

3

(mon:with-monitoring (names*) ()
your-forms*)

or

(mon:monitor-form your-form)

The former allows you to specify which functions will be monitored; the latter monitors
all functions in the current package. Both automatically produce a table of statistics.
Other variants can be constructed from the monitoring primitives, which are described
below, along with a fuller description of these two macros.

2.1.1 Monitoring overhead

-r

The added monitoring code takes time to run every time that the monitored function is
called, which can disrupt the attempt to collect timing information. In order to avoid
serious inflation of the times for functions that take little time to run, an estimate of the~
overhead due to monitoring is subtracted from the times reported for each function.

Although this correction works fairly well, it is not totally accurate, resulting in times
that become increasingly meaningless for functions with short runtimes. For example,
subtracting the estimated overhead may result in negative times for some functions. This
is only a concern when the estimated profiling overhead is many times larger than reported
total CPU time.

H you monitor functions that are called by monitored functions, in : inclusive mode
the monitoring overhead for the inner function is subtracted from the CPU time for the
outer function. [We do this by counting for each function not only the number of calls to this
function, but also the number of monitored calls while it was running.] In : exclusive mode
this is not necessary, since we subtract the monitoring time of inner functions, overhead
and all.

Otherwise, the estimated monitoring overhead is not represented in the reported total
CPU time. The sum of total CPU time and the estimated monitoring overhead should be
close to the total CPU time for the entire monitoring run (as determined by time).

A timing overhead factor is computed at load time. This will be incorrect if the mon-
itoring code is run in a different environment than this file was loaded in. For example,
saving a core image on a high performance machine and running it on a low performance
one will result in the use of an erroneously small overhead factor.

H your times vary widely, possible causes are:

• Garbage collection. Try turning it off, then running your code. Be warned that
monitoring code will probably cons when it does (get-internal-run-time), as this
value is a bignum.

• Swapping. If you have enough memory, execute your form once before monitoring so
that it will be swapped into memory. Otherwise, get a bigger machine!

＾
¥`

f
-

4

.
j

• Resolution of internal-time-units-per-second. H this value is too low, then the timings
become wild. You can try executing more of whatever your test is, but that will only
work if some of your paths do not match the timer resolution.

• The above mentioned CLiP problem.

~

2.2 F ・unction descr1pt1on

Note that it is not possible to measure consing with Allegro. ff you use the generic (non-
parallel) form of this package with Lucid or other Common Lisps, then it is possible to.

wi th-monitoring (&rest functions)
(&optional (nested : exclusive)

(threshold 0.01)
(key : percent-time))

&body body

The named functions will be set up for monitoring, the body forms executed, a table of
results printed, and the functions unmonitored. The nested, threshold, and key arguments
are passed to report-monitoring below.

monitor-form form
&optional (nested :exclusive)

(threshold O .01)

(key :percent-time)

All functions in the current package are set up for monitoring while the form is executed,
and automatically unmonitored after a table of results has been printed. The nested,
threshold, and key arguments are passed to report-monitoring below.

~ (Variable]

J
↓

monitored-functions
This holds a list of all functions that are currently being monitored.

monitor &rest names [1¥l!acro]
The named functions will be set up for monitoring by augmenting their function def-

initions with code that gathers statistical information about code performance. As with the
trace macro, the function names are not evaluated. Calls the function
mon: : monitoring-encapsulate on each function name. 恥 onames are specified, returns
a list of all monitored functions.

ff name is not a symbol, it is evaluated to return the appropriate closure. This allows
you to monitor closures stored anywhere like in a variable, array or structure. Most other
monitoring packages can't handle this.

5

monitor-all &optional (package *package*) [Function]
Monitors all functions in the specified package, which defaults to the current package.

unmonitor &rest names (Macro]
Removes monitoring code from the named functions. H no names are specified, all

currently monitored functions are unmonitored.

reset-moni toring'"'."inf o name
Resets the monitoring statistics for the specified function.

reset-all-monitoring
Resets the monitoring statistics for all monitored functions.

monitored name
Predicate to test whether a function is monitored.

report-monitoring &optional names
(nested : exclusive)
(threshold O . 01)

(key :percent-time)

[Function]

[Function]

[Function]

Creates_ a table of monitoring information for the specified list of names, and displays
the table using display-monitoring-results. ff names is : all or nil, uses all currently
monitored functions. Takes the following arguments:

nested specifies whether nested calls of monitored functions are included in the times for
monitored functions.

• H : inclusive, the per-function information is for the entire duration of the
monitored function, including any calls to other monitored functions. ff func-
tions A and B are monitored, and A calls B, then the accumulated time and
consing for A will include the time and consing of B. Note: if a function calls
itself recursively, the time spent in the inner call(s) may be counted several
times.

• If : exclusive, the information excludes time attributed to calls to other moni-
tored functions. This is the default.

threshold specifies that only functions which have been executed more than threshold per-
cent of the time will be reported. Defaults to 1 %. If a threshold of O is specified,
all functions are listed, even those with O or negative running times (see note on
overhead).

key specifies that the table be sorted by one of the following sort keys:

事

1'ー

｀
ー
ー
し
●
ー

＾

~

¥
「
'
ー
・

6

↑

.
j

:function
: percent-time
: percent-cons
: calls
: time-per-call
: cons-per-call
: time
: cons

alphabetically by function name
by percent of total execution time
by percent of total consing
by number of times the function was called

by average execution time per function
by average consing per function
same as :percent-time
same as :percent-cons

~

~

display-monitoring-results &optional (threshold O. 01)
(key :percent-time)

Prints a table showing for each named function:

• the total CPU time used in that function for all calls

• the total number of bytes consed in that function for all calls

• the total number of calls

• the average amount of CPU time per call

• the average amount of consing per call

• the percent of total execution time spent executing that function

• the percent亀oftotal consing spent consing in that function

• Summary totals of the CPU time, consing, and calls columns are printed. An estimate
of the monitoring overhead is also printed. May be run even after unmonitoring all
the functions, to play with the data.

Sample table:

J↓

Cons

¼ % Per Total Total
Function Time Cons Calls Sec/Call Call Time Cons

--
FIND-ROLE: 0.58 0.00 136 0.003521

゜
0.478863

゜GROUP-ROLE: 0.35 0.00 365 0.000802

゜
0.292760

゜GROUP-PROJECTOR: 0.05 0.00 102 0.000408

゜
0.041648

゜FEATURE-P: 0.02 0.00 570 0.000028

゜
0.015680

゜
TOTAL: 1173 0.828950

゜Estimated total monitoring overhead: 0.88 seconds

7

per-process-report name ・ [Function]

Shows a list of number of calls and amount of time on a per-process basis for function
name (Allegro CLiP only).

For function MY-FUNCTION:
calls time(secs) name of process

2 0.85 process-5 ， 1.13 process-・o
5 0.98 process-2
2 0.78 process-3
4 0.72 process-1

ミ
ー
、

ii-

Again, remember to not believe very strange times. It is possible that this will only
happen for some of the processes, in which case you can probably believe the other~
ones.

＾

＇0
,

ー
よ
―

8

-.IJ

Chapter 3

Monitoring Processes and Locks

~The functions associated with lwp's and locks have been modified to record their
usage and times. The following functions are modified:

lock functions: acquire-sleepy-lock, release-sleepy-lock, with-spin-lock1.

lwp functions: resume-lwp, suspend-lwp, kill-lwp, start-1守 s,and make-1守 2_

The functions are modified by loading the file monitor. lisp. These modifications
will remain in effect until you call the function lwp-mon-off which will revert to the
original definitions of these functions. It can also be turned back on with lwp-mon-on.

＾

3.1 Lock usage recording

The following information is recorded for each usage of each lock:

-The time the process first tried to acquire the lock

-The time the process actually acquired the lock

-The real and run time spent blocked (the period while waiting for a lock)

-The time the process released the lock

-The real and run time spent while holding the lock

-The name of the process holding the lock

-The maximum number of processes ever waiting for the lock

-How many times the lock has been used.

,`

J

『

i
1vith-spin-lockis a~aero, so it is not possible to modify it without requiring all user code to be recom-

piled. Instead, the undocumented primitives excl: :release-spin-lock and excl: :acquire-spin-lock
have been modified to achieve this behavior.

2make-l~also is a macro; the actual modified function is pp: :make-1叩*which is called by this.

，

3.2

3.2.1

Output functions

Lock usage summary

The data recorded is summarized by the function print-lock-usage. Here is a test
function which will be used in the examples, and the resulting sample output.

<Initial lvp> (defvar *my-lock*

MY-LOCK
<Initial lwp> (set-lock-name-for-printing *my-lock* "My lock")

: ADDED

<Initial

(make-spin-lock))

lwp> (defun lock-test (n)

(let ((count 0))

(make-lwp (dotimes (in)

(with-spin-lock•my-lock* (incf count)))
(make-1守 (dotimes(in)

（土th-spin-lock•my-lock*

(start-lwps)

count))

(inc£count)))

:name "l町》ー1")

: name "l町》ー2")

i
、
ー
し
●
"

,.....,.,

LOCK-TEST
<Initial 1町>(lock-test 60)

Using 6 processors

120

<Initial lwp> (print-lock-usage)

usage max# time blocked time held

count waiting run real run real

------------------------—c=-----------

maェblocked

run real

max held

run real lock name

------------==---=―=---・--------, __
0.01 0.00 0.00 Spin-0

*** 4百aiting
0.10 0.13 1.15 0.15 0.02 0.01 0.05 0.01 My lock

----------=-----------------------—==------------------------·-------------------------------—, ・--[***indicates that lock is still being vaited for.]

4

4

0.02 0.01 0.00 0.00 0.02

60 2

~

(The lock named Spin-0 is a lock used by the CLiP system for scheduling.)

The descriptions of the fields are:

usage count the number of times attempted to acquire the lock. If some attempts
are unsuccessful, then there will still be processes waiting for the lock when the
all processes terminate. This is possible if the processes terminate abnormally
(due to error or interrupt) or are killed by another process.

max # waiting the maximum number of processes waiting for a lock at any given
time.

f
`
1

10

-.）

~

time blocked The total amount of time spent by all processes as they waited for
the lock to become available.

time held The total amount of time for all processes between the time they acquired
the lock and the time releasing it.

max blocked The longest time that any single process spent waiting for this lock.

max held The longest time any process held the lock.

lock name name of the lock.

Real time is the amount of clock time that has elapsed. Run time is the amount of
CPU time used. Note that run time is calculated by getting the value of
(get-internal-run-time) at an initial time, and then subtracting this from the
value at a later time. One of the "features" of the Sequent Symmetry parallel pro-
cessing operating system is that program may switch to other physical processors. A
side effect of this is that the value of different calls to (get-internal-run-time) may
be values from different processors, which will have no relation to each other. This
can cause very large or negative run times to appear. When you see such numbers it
is best to compare them with the real times to see if they make sense.

To clear and reset the lock usage statistics, use the following function:

reset-lock-table (&optional clear-zeros [Function]

Zero all entries for the locks in *lock-held-times-hashtable*. If optional argument
clear-zeros is supplied, remove any entries for locks which have not been used (usage
count = 0) as well.
(progn (reset-lock-table) (reset-lock-tablet))

will have the result of emptying the table entirely.

~
3.2.2 Assigning names to locks

Locks have no name slot, appearing simply as #<μnlocked spin-lockce1d1e9>
which makes them hard to distinguish apart when there is large number of them on
your screen. The following are supplie~to allow you to associate a name with the
locks you have created, which the functions here will use for more readable output.

set-lock-name-for-printing (lock name) [Function]

,'‘,

Assign name to be used when lock is print by the functions print-1-history and
print-lock-usage. Both functions call pretty-print-lock to get this name.

lock-name-mapping [Global Variable]

11

A list of (<lockobj >

usage more readable.

<print-name-for-lock>) to make output from print-lock-

maybe-generate-lock-name (lock)

Get the pretty name of lock, generating one if necessary and

lock-name-mapping list. This is normally called by print-1-history.

(Function]

adding to

雫
i
\
‘
•
9

3.2.3 Lock and process history timeline

The output functions can also display a timeline showing

-when lwp's are started, suspended, and resumed, and by which process

-when sleepy and spin locks are acquired and rele邸 edby which process, and also

when the process is blocked waiting for the lock.

Here is a simple test function and sample output:

<Initial

Using 3

lwp>

processors

6

<Initial lwp>

17:58:50.010:

17:58:50.015:

. . .
17:58:50.040:

17:58:50.045:

17:58:50.050:

17:58:50.055:

17:58:50.060:

(lock-test 3)

(print-1-history)

17:58:50.065:

17:58:50.070:

Legend of Lock

Spin-0

My lock

My

My

My

My

My

My

lock

lock

lock

lock

lock

lock

is

is

is

is

is

is

BLOCK by lwpー1;

BLOCK by lwp-2;

My

My

Spin-0 is BLOCK by Scheduler1;

names:

lock

lock

is

is

ACQUIRE by 1町）ー1;

RELEASE by 1町）ー1;

BLOCK by 1町）ー1; My lock is ACQUIRE by lwp-1;

RELEASE by lwp-2; My lock is RELEASE by 1町）一1;

BLOCK by 1町）ー2; My lock is ACQUIRE by 1町）ー2;

BLOCK by 1町）一1; My lock is RELEASE by 1町）ー2;

Spin-0 is BLOCK by SchedulerO; Spin-0 is ACQUIRE by SchedulerO;

My lock is RELEASE by lwp-1; My lock is ACQUIRE by lwp-2;

My lock is RELEASE by lwp-2; lwp-2 is KILL'd by Schedulerl;

lwp-1 is KILL'd by SchedulerO; ・

Spin-0 is ACQUIRE by Scheduler!;

is #<unlocked spin-lockcSc9a11>

is #<unlocked spin-lockcd05201>

＾

＾
¥
1
'↓`

12

9
,
J

~

The format of each message is <object> is <action> by <lwp>, where object can be
a lock or lwp. The following actions may appear:

for locks: block, acquire, and release;

for lwps: start-lwp, resume, suspend, create, and kill.

You may not see all these types of items in your output if your program doesn't use
these features. Occasionally there may be write-write conflicts during usage recording
if several processing try to acquire a lock at the same time (trying to use a lock to
overcome this problem would not help things). This is a minor issue since eventually
the process will acquire the lock, and acquiring should not have this problem since
only one process will acquire a lock at any given time, whereas several may block on
the same lock at the same time. If the acquires and release happen fast enough to
incur write-write conflicts, this indicates that it is not a bottleneck in your program
anyway.

print-1-history &key lwp lock
(dont-show-lwps *dont-show-lwps*)
(dont-show-locks *dent-show-locks*)
(time-scale 2)
(elision-threshold *normal-elision-threshold*)
(initial-elision-threshold *initial-elision-threshold*)
time-zero

＾
I
ー

This is the main output function for process and lock history timelines. Without
any arguments, an attempt is made to display them all in a readable fashion. The
arguments allow focussing or filtering certain locks and processes, and changing the
scale of the timeline.

lwp and lock allow focusing on a specific lwp or lock. lock must be a lock; lwp may
be a lwp or the name of one. To specify no lwps or locks in the output, use the
value :none, or use the functions print-lwp-history or print-lock-history
which have the same effect as specifying :none for the type your don't wish to
see.

dont-show-lwps - lwps which match an item of this list (either being a member or
matching the name as a string) will not be shown in the output. For example,
specifying the string "Sched" will filter out all scheduler processes from the
timeline.

dont-show-locks Locks which match this (either eq to it or a member of the list) will
not be shown in the output.

13

time-scale specifies by what factor the increment from one line listing the time to
the next should be divided by. The following heuristic is used in calculating the
increment: take the number of non-zero time differences between subsequent
events (events occurring at the same time are counted as a single event) and
divide by the number. This is then divided by time-scale and used as the incre-
ment. This seems to produce fairly good results most of the time. By increasing
time-scale you spread out the events farther, but the spaces between them will be
bigger. By decreasing time-scale you cause more events to be bunched together
at the same time.

血 e-zerocan be used for setting the time from which print-1-history starts; by
default it is the first time a lock usage is recorded or the time when start-1匹 S

is called, whichever is earlier.

elision-threshold To decrease the amount of empty lines with no events listed, after
elision-threshold number of empty lines a " ... " is printed to show that there
are lines not shown. This produces a shorter listing, but it can be misleading
because it looks like there is very little time between subsequent events. This
can be made a large number to show the space between times more accurately,
but the tradeoff is that it is harder to find the events among the blank lines.

initi吐elision-thresholdcan be used for setting the initial number before eliding; after
the first event, elision-threshold will be used.

print-lwp-history [Function]

Print a timeline showing times and events that occurred among lwp's. This is simply
a call to print-I-history, with lock information suppressed via the :lock :none
argument.

print-lock-history [Function]

Print a timeline showing times and events that occurred concerning sleepy and spin
locks. This is simply a call to print-I-history, with lwp information suppressed
via the : lwp :none argument.

,`ー

＾

＾ lwp-mon-on

Enable lwp and lock monitoring.

1町)-mon-off

Revert to old lwp and lock function behavior (no monitoring).

[Function)

(Function]

＼

ヽ

14

- -~

r'

:

I
I)
＇

＇

i

3.2.4 Miscellaneous functions

These following functions are used internally by the lwp and lock recording mecha-

nisms. You may want to record other events to trace your program.

[Function]

Removes all events associated with lwp. If lwp is nil or not specified, then all Jwp's
events are removed. This normally happens when start-lwps is first called. This

can be suppressed by setting the following global.

clear-lwp-history (&optional lwp)

。

initial-start...:lwp [Global Variable]

Bound in the redefinition of pp: start-lwps to nil, so that history isn't cleared by
further calls within to pp: start-lwps. You could also set this to nil if you want to
make several runs without clearing out the accumulated info each time.

[Function]

Record for lwp the type of event that occurred, and the associated lwp control
which was responsible. This creates messages such as proc-1 is KILL'd by proc-2,

where lwp would be the lwp proc-1, type would be : kill, and control would be the

lwp proc-2. This event is recorded for the time at which this function is called.

record-lwp-history (lwp type control)

reset-lock.:..times (lock) [Function]

Zeroes all the usage information associated with lock as printed by print-lock-usage.

reset-lock-times is an interface to this function.

clear-lock-history (&optional lock)

ぃ

[Function]

Clears the events associated with lock. If lock is not specified, removes all lock events.
This normally happens when start-lwps is first called, and can also be suppressed

by *initial-start-1守＊．

record-lock-history (lock type lwp) [Function]

Record for lock the type of event that occurred, and the associated lwp. This is the
analog of record-lwp-history for locks.

print-internal-time-readably

ー

[Functi叫

Prints a humanly readable form of internal time, which has resolution of the order of

10 milliseconds.

(itime &optional (stream t))

15

	ct1
	0228cv

